Document downloaded from:

http://hdl.handle.net/10251/161159

This paper must be cited as:

Maliogka, VI.; Calvo, M.; Carbonell, A.; Garcia, JA.; Valli, A. (2012). Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses support Plum pox virus infection. Journal of General Virology. 93(7):1601-1611. https://doi.org/10.1099/vir.0.042168-0

The final publication is available at https://doi.org/10.1099/vir.0.042168-0

Copyright Microbiology Society

Additional Information

1	
2	Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses
3	support Plum pox virus infection
4	Varvara I. Maliogka ^{1,2} , María Calvo ¹ , Alberto Carbonell ^{1,3} , Juan Antonio García ^{1,*} , Adrian
5	Valli ^{1,4,*}
6	
7	¹ Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049
8	Madrid, Spain.
9	² Present address: Plant Pathology Laboratory, School of Agriculture, Aristotle University of
10	Thessaloniki, 54124 Thessaloniki, Greece.
11	³ Present address: Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
12	⁴ Present address: Plant Sciences Department, Cambridge University, CB2 3EA Cambridge,
13	United Kingdom.
14	
15	
16	221 words in the abstract, 5153 words
17	
18 19 20	Key words: <i>Plum pox virus</i> , RNA silencing suppressors, HCPro, RNA silencing, <i>Potyviridae</i> , <i>Potyvirus</i> , <i>Ipomovirus</i> .
21	Running title: Several RNA silencing suppressors support PPV infection
22	
23	* To whom correspondence may be addressed: e-mail: jagarcia@cnb.csic.es, phone: +34-
24	915854535, fax: 34-915854506; e-mail: aav30@cam.ac.uk, phone: +44-1223748966, fax:
25	+44-1223333953.
26	
27	

1	
2	

ABSTRACT

3 HCPro, the RNA silencing suppressor (RSS) of viruses belonging to the Potyvirus genus in 4 the *Potyviridae* family, is a multifunctional protein presumably involved in all essential steps 5 of the viral infection cycle. Recent studies have shown that *Plum pox potyvirus* (PPV) HCPro 6 can be successfully replaced by *Cucumber vein yellowing ipomovirus* P1b, a sequence 7 unrelated RSS from a virus of the same family. In order to gain insight into the requirement of 8 a particular RSS to establish a successful potyviral infection, we tested the ability of different 9 heterologous RSSs from both plant- and animal-infecting viruses to substitute HCPro. 10 Making use of engineered PPV chimeras, we show that PPV HCPro can be functionally 11 replaced by some, but not all, unrelated RSSs, including the NS1 protein of the mammalian-12 infecting Influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro 13 does not strictly correlate with its RNA silencing suppression strength. Altogether, our results 14 suggest that not all suppression strategies are equally suitable for an efficient escape of PPV 15 from the RNA silencing machinery. The approach followed here based on using PPV 16 chimeras in which an under-consideration RSS substitutes for HCPro could further help to 17 study the function of diverse RSSs in a "highly-sensitive" RNA silencing context, such as that 18 taking place in plant cells during the process of a viral infection. 19

20

21

22

1 INTRODUCTION

2 RNA silencing is a general term that refers to a complex set of RNA-guided gene regulatory 3 mechanisms controlling crucial physiological processes, such as developmental patterning, 4 responses to stress conditions and maintenance of genome stability, in a wide variety of 5 eukaryotic organisms (Ambros & Chen, 2007; Baulcombe, 2005). Among its functions, RNA 6 silencing plays a major role in natural antiviral immunity at least in plants, fungi and 7 invertebrate animals, where infecting viruses induce the production of small-interfering 8 (si)RNAs from viral double-stranded (ds)RNAs and/or secondary RNA structures by the 9 action of RNase-III ribonuclease Dicer-like (DCL) proteins. These viral-derived (v)siRNAs 10 are then incorporated into RNA-induced silencing complexes (RISCs), guiding them, by base 11 pair complementarity, to viral RNAs for degradation. Intriguingly, it still remains 12 controversial whether this mechanism is part of the innate antiviral response in vertebrate 13 animals (for a complete review of RNA silencing-based viral immunity systems, see Ding, 14 2010).

15 In turn, to counteract this defensive response, viruses have evolved a variety of strategies, the 16 most common of which is the expression of proteins that block the RNA silencing machinery 17 of the host. These factors are called RNA silencing suppressors (RSSs) and show a large 18 diversity in amino acid sequence and anti-silencing mechanisms (Burgyán & Havelda, 2011; 19 Dunoyer & Voinnet, 2005; Roth et al., 2004; Valli et al., 2009). The helper component 20 protease (HCPro) of plant potyviruses was the first RSS to be described (Anandalakshmi et 21 al., 1998; Brigneti et al., 1998; Kasschau & Carrington, 1998). It is a potent suppressor that 22 blocks RNA silencing by hijacking specifically 21-nt long vsiRNAs (Lakatos et al., 2006), 23 and, possibly, by other mechanisms (Endres et al., 2010). HCPro is a cysteine protease 24 (Carrington et al., 1989) defined as a multifunctional protein involved in all essential steps of 25 the potyviral infection cycle (Maia *et al.*, 1996; Syller, 2005), apparently, with host specificity 26 (Carbonell et al., 2012; Sáenz et al., 2002). Nevertheless, whereas several HCPro functions 27 may depend on its silencing suppression activity (Kasschau & Carrington, 2001), the 28 relevance of specific silencing suppression mechanisms and the extent of dependence of plant 29 viruses on their natural RSS(s) are largely unknown.

A large number of interactions with viral and host proteins have been attributed to HCPro.
Thus, HCPro interacts with the viral coat protein (CP) (Blanc *et al.*, 1997; Roudet-Tavert *et al.*, 2002), cylindrical inclusion (CI) protein (Choi *et al.*, 2000; Guo *et al.*, 2001; Zilian &

1 Maiss, 2011), P1 (Merits et al., 1999), genome-linked protein (VPg) (Guo et al., 2001; 2 Roudet-Tavert et al., 2007; Yambao et al., 2003) and its precursor, nuclear inclusion protein a 3 (NIa) (Guo et al., 2001). As host factor partners, HCPro interacts with two potato RING-4 finger proteins, HIP1 and HIP2, (Guo et al., 2003), the maize ferredoxin-5 (Cheng et al., 5 2008), the NtMinD protein (Jin et al., 2007b), and the translation initiation factors eIF(iso)4E 6 and eIF4E (Ala-Poikela et al., 2011) of tobacco, with unknown physiological consequences. 7 HCPro has also been shown to interact with some subunits of the 20S proteasome, inhibiting 8 its endonuclease activity (Ballut et al., 2005; Dielen et al., 2011; Jin et al., 2007a); and 9 interactions of HCPro with a calmodulin related protein (rgs-CaM) (Anandalakshmi et al., 10 2000) and the ethylene-inducible transcription factor RAV2 (Endres et al., 2010) appear to 11 regulate its silencing suppression activity. Although these interactions were identified in 12 different heterologous systems, their biological relevance in the context of a natural potyviral 13 infection has not been established yet.

14 Recent studies with viruses of the Potyviridae family have shown that, even though 15 suppression of silencing is a pivotal potyviral function, a particular infection does not depend 16 on a singular RSS. Hence, Plum pox virus (PPV, Potyvirus genus) HCPro can be successfully 17 replaced by the sequence-unrelated RSS P1b from *Cucumber vein yellowing virus* (CVYV, 18 Ipomovirus genus) (Carbonell et al., 2012). Although these two RSSs share no homology in 19 their amino acid sequences, both are present in members of the *Potyviridae* family and use a 20 similar mechanism to suppress the RNA silencing, which is based on siRNA sequestering 21 (Valli et al., 2011). To gain further insight into how viruses evade the RNA silencing 22 machinery of the host, we tested to what extent different RSSs can substitute HCPro without 23 abolishing PPV infectivity. Our results show that PPV HCPro can be functionally replaced by 24 some, but not all, unrelated RSSs, including the NS1 protein of Influenza A virus, and suggest 25 the existence of some specific preferences in the silencing counteracting process.

26

27 **RESULTS**

Generation of a universal PPV intermediate cDNA clone lacking the HCPro silencing suppressor coding sequence

In order to easily generate PPV-based chimerical viruses by replacing HCPro with unrelated
 proteins, we first generated an intermediate clone in a pGEMT backbone carrying the PPV
 P1-P3 cistrons, but lacking the HCPro coding sequence (Fig. 1a). The amplified P1-P3

fragment was engineered to maintain the coding sequence of the two first amino acids of HCPro (SD) just downstream of P1 for ensuring an efficient P1 self cleavage. This sequence was followed by an EcoRV/SbfI cloning site (Fig. 1a). Since most of proteins aimed to replace the self-cleaving cysteine-protease HCPro lack a proteolytic activity that release themselves from the viral polyprotein once that the infection takes place, a DNA sequence coding for a PPV NIa protease cleavage site was added just upstream of the P3 coding sequence (Fig. 1a).

8 The coding sequence of a set of HCPro-unrelated proteins with suspected RNA silencing 9 suppression activity (those fully described in this study are shown in Fig. 1b and Table 1) 10 were cloned in the pGEMTp1p3 intermediate plasmid. Fragments containing the 5'-part of 11 each chimerical viral genome were released from the pGEMTp1RSSp3 clones and 12 subsequently used to replace the equivalent fragment from a full-length cDNA of a wild type 13 PPV, which also contains the coding sequence of the green fluorescent protein (GFP) to 14 further facilitate the monitoring of the infection process (Fig. 1b). For simplicity, each 15 chimerical virus is termed here as PPV followed by the name of the protein that replaces 16 HCPro (Fig. 1b). It is noteworthy that this universal PPV intermediate clone is useful for 17 cloning any "under-study" protein in order to test its ability to replace the well-known 18 suppressor HCPro in the context of a viral infection.

19

20 TBSV P19 functionally replaces PPV HCPro and efficiently prevents plant recovery

21 It has been previously described that PPV HCPro can be functionally replaced by the RSS 22 P1b from the ipomovirus CVYV, another member of the family Potyviridae (Carbonell et al., 23 2012). P19 is a well-characterized RSS of viruses of the genus Tombusvirus, which 24 suppresses silencing by sequestering double-stranded siRNAs (Silhavy et al., 2002; Vargason 25 et al., 2003), the same mechanism that has been proposed for the potyviral HCPro and CVYV 26 P1b (Lakatos et al., 2006; Valli et al., 2011). The infectivity of PPV-P19, in which the P19 27 coding sequence from Tomato bushy stunt virus (TBSV) replaces that of HCPro, was tested 28 by biolistic inoculation in N. benthamiana. Previously described wild type PPV, HCPro 29 deletion mutant (PPV-AHC) (P1AHC in Carbonell et al., 2012), and the chimerical virus 30 PPV-P1b in which HCPro was replaced by CVYV P1b (P1P1b in Carbonell et al., 2012), 31 were used as controls. As expected, just a few days post-inoculation (dpi), GFP foci were 32 detected in all leaves inoculated with PPV and PPV-P1b, whereas no foci appeared in those 33 leaves inoculated with P1 Δ HC (Fig. 2a and Fig. S1). Interestingly, GFP foci also appeared in

1 all leaves inoculated with PPV-P19 (Fig. 2a and Fig. S1a). The size and number of PPV, 2 PPV-P1b and PPV-P19 GFP foci were similar. Western blot analysis of extracts prepared 3 from GFP foci-containing inoculated tissues showed high accumulation levels of viral CP in 4 plants inoculated with PPV, PPV-P1b and PPV-P19 (Fig. 2b). No viral accumulation was 5 detected in equivalent leaf areas of plants inoculated with PPV-AHC (Fig. 2b). Virus-like symptoms (chlorotic mottling) and GFP signals, equivalent to those of PPV and PPV-P1b, 6 7 were observed in upper non-inoculated leaves of plants infected with PPV-P19 (Fig. 2c and 8 Fig. S1b). Western blot analysis of extracts prepared from GFP expressing tissues of 9 systemically infected leaves showed similar virus accumulation levels for PPV, PPV-P1b and 10 PPV-P19 (Fig. 2d).

11 A previous report has shown that, whereas the replication of wild type PPV is maintained 12 active at late times of infection in N. benthamiana plants, partial recovery occurs in new 13 growing tissues of plants infected with the chimerical virus carrying P1b instead of HCPro, 14 which is indicative of some defect in the silencing suppression machinery of the virus 15 (Carbonell et al., 2012). To test the capacity of a PPV chimerical virus with another 16 heterologous RSS to escape from plant recovery, PPV-P19-infected plants were analyzed at 17 later stages of the infection process (38 dpi) by testing viral accumulation in old and young 18 leaves. As expected, whereas severe symptoms, intense green fluorescence and high CP levels 19 were maintained in both types of tissue of plants infected with PPV, young leaves of plants 20 infected with PPV-P1b showed a characteristic "recovery" phenotype with the new apical 21 leaves appearing healthy, with much less intensity of green fluorescence, and lower 22 accumulation of CP compared to the older leaves (Fig. 3). However, no recovery was 23 observed in PPV-P19-infected plants, and young leaves still appeared heavily infected at 38 24 dpi (Fig. 3). Intriguingly, whereas the accumulation of wild type PPV was similar in old and 25 young leaves, a decline in fluorescence intensity and CP levels was apparent in aging leaves 26 of plants infected with PPV-P19 (Fig. 3).

Thus, our results indicate that CVYV P1b and TBSV P19 can functionally replace HCPro in a
PPV infection, but only TBSV P19 prevents the recovery of plants from PPV infection in the
absence of HCPro.

31 RSSs with different silencing suppression mechanisms are able to support PPV infection

1 Both CVYV P1b and TBSV P19 share with PPV HCPro the ability to specifically bind 2 double-stranded siRNAs. In order to assess the ability of other proteins that suppress RNA 3 silencing by different mechanisms to replace HCPro in a PPV infection, the HCPro coding 4 sequence of PPV was replaced by sequences encoding the P1 N-terminal region of P1 (P1^N) 5 from Sweet potato mild mottle ipomovirus (SPMMV), the P6 from Cauliflower mosaic 6 caulimovirus (CaMV) and the protein NS1 from the animal-infecting orthomyxovirus 7 Influenza A, which suppress the RNA silencing by targeting mature RISC complexes (Giner 8 et al., 2010), impairing the DCL4-mediated processing of dsRNAs by interaction with DRB4 9 (Haas et al., 2008), and an unknown mechanism, respectively.

10 In the new experiment, wild type PPV and PPV-P19 efficiently infected N. benthamiana as 11 previously shown. Local GFP foci were also detected in 6 out of 8 plants inoculated with 12 PPV-NS1, but in smaller number and size than those of wild type PPV and PPV-P19 (Fig. 4a and Fig. S2a). No GFP foci were observed in leaves inoculated with PPV-P1^N and PPV-P6 13 (Fig. 4a and Fig. S2a). Surprisingly, when leaf tissue around the inoculated area was assessed 14 15 by western blot analysis, CP accumulation was detected, although at low levels, not only in leaves inoculated with PPV-NS1, but also in those inoculated with PPV-P1^N (Fig. 4b). In 16 contrast, no CP accumulation was observed in extracts prepared from plants inoculated with 17 18 PPV-P6 (Fig. 4b).

No disease symptoms were observed in plants inoculated with PPV-NS1, -P1^N and -P6. 19 20 However, some GFP fluorescent spots were detected, with a long delay with respect to the 21 wild type virus, in upper non-inoculated leaves of 2 plants infected with PPV-NS1 (Fig. 4c and Fig. S2b). In addition, a faint green fluorescence appeared, with a similar delay as the 22 23 PPV-NS1 fluorescent spots, in the upper non-inoculated leaves of 2 plants infected with PPV-P1^N (Fig. 4c and Fig. S2b). Western blot analysis of whole leaf extracts confirmed the 24 systemic spread of PPV-P1^N and PPV-NS1, although the CP accumulation levels of these 25 26 viruses were very low compared to those of PPV-P19 and PPV wild type (Fig. 4d). 27 Immunoreactions with available specific antibodies (anti-HCPro, anti-P19 and anti-NS1) (Fig. 28 4d) and sequencing of IC-RT-PCR-amplified products (Fig. S2c) confirmed the identity and 29 the genetic stability of the infecting viruses. Neither GFP fluorescence nor viral CP 30 accumulation was detected in upper leaves of plants infected with PPV-P6 (Fig. S2b and d). 31 These results indicate that an RSS with a different mechanism of action than HCPro, SPMMV

32 P1, and a protein of an animal virus that suppresses silencing by a still uncharacterized

mechanism, the influenza A virus NS1, are able to support a limited systemic infection of a
potyvirus in the absence of HCPro. However, not all the proteins with reported RNA
silencing suppression activity were able to functionally replace HCPro in the PPV infection.

4

5 The ability to replace HCPro in the PPV infection process does not strictly correlate 6 with the strength of the silencing suppressor

7 To assess the contribution of the RNA silencing suppression activity of each PPV chimera in 8 its ability to infect N. benthamiana plants, each RSS was tested in a co-agroinfiltration assay. 9 Therefore, we constructed Agrobacterium binary plasmids expressing the 5'-half-part of the 10 different chimerical viruses (Fig. 5a), which were coagroinfiltrated with p35S:GFP (a plasmid 11 expressing single-stranded GFP RNA that is here used as both trigger and reporter of 12 silencing), and pMDC32-NIaPro (a plasmid expressing the protease domain of the PPV NIa 13 protein) (Fig. 5a). For simplicity, in this part of the report, we will refer to each A. 14 tumefaciens line by the plasmid it carries.

15 Whereas GFP fluorescence strongly declined at 4-5 days post agroinfiltration (dpa) in patches 16 expressing p35S:GFP, pMDC32-NIaPro and the empty pBin19 empty vector, the green 17 fluorescence remained strong at 6 dpa in patches co-agroinfiltrated with p35S:GFP and 18 pMDC32NIaPro plus either pBIN-P1HCPro, pBIN-P1P19, pBIN-P1P1b or pBIN-P1NS1 19 (Fig. 5b), showing that PPV HCPro, TBSV P19, CVYV P1b and Influenza A virus NS1 20 suppress the RNA silencing with similar efficiency. In contrast, very weak fluorescence was observed in patches expressing p35S:GFP and pMDC32-NIaPro plus either pBIN-P1P1^N or 21 pBINP1P6 indicating that, at least in this system, SPMMV P1^N and CaMV P6 have very 22 23 weak silencing suppression activity (Fig. 5b).

Northern blot analysis confirmed the green fluorescence observations, showing that GFP
mRNA accumulation was similarly high at 6 dpa in those leaves expressing TBSV P19,
Influenza A virus NS1, PPV HCPro and CVYV P1b (Fig. 5c). The drop in GFP mRNA levels
could not be prevented in leaves expressing any of the other tested proteins (Fig. 5c).

The genomic expression strategy of potyviruses through proteolytic processing of long polyprotein precursors results in the inevitable presence of extra amino acids at the end of the foreign sequences, which are necessary for the protease recognition in the polyprotein precursor (Fig. 1a). To assess the possibility that these extra amino acids incorporated at the termini of CaMV P6 could be disturbing the silencing suppression activity of this RSS, then

1 abolishing the infectivity of PPV-P6 chimera, we compared the anti-silencing activity of wild 2 type protein with their counterparts as it was engineered in the PPV genome. Hence, we 3 constructed binary plasmids expressing wild type CaMV P6 and a modified version of it 4 carrying extra amino acids as they should be produced in the PPV context (SD-P6-QVVVHQ, 5 where SD represents the amino acids +1 and +2 of P1 cleavage site, whereas QVVVHQ 6 represents the amino acids -6 to -1 of the NIa cleavage site). Plasmids were co-agroinfiltrated 7 together with p35S:GFP, and their ability to suppress the GFP silencing was assessed at 6 dpa 8 by monitoring GFP fluorescence signal (Fig. S3). Intriguingly, wild type CaMV P6 was 9 unable to suppress the RNA silencing in this co-agroinfiltration test, even though it was 10 expressed in the wild type form, suggesting that a deficiency of P6 anti-silencing activity 11 could be responsible for its inability to support PPV infection.

Altogether, these results indicate that a strong silencing suppression activity is required for an efficient potyviral infection, but that a week anti-silencing activity could be enough to support a limited viral infection. However, a strict correlation between HCPro replacement capacity and anti-silencing activity was not observed.

16

17 DISCUSSION

18 How specific is the dependence of potyviruses on HCPro for a successful infection?

19 Most plant viruses have been shown to produce RSSs that counteract antiviral defences 20 mediated by RNA silencing (Burgyán & Havelda, 2011; Shimura & Pantaleo, 2011; Valli et 21 al., 2009). However, RSSs are not always essential, and some RSS-defective viruses are able 22 to develop restricted, but still productive, infections (for instance, Ding et al., 1995; Havelda 23 et al., 2003). In turn, HCPro appears to be strictly required for infections caused by viruses of 24 the genus Potyvirus (Fig. 2 and Carbonell et al., 2012; Garcia-Ruiz et al., 2010). Interestingly, 25 viruses of other genera of the family *Potyviridae* do not depend on HCPro to infect their 26 hosts, since their silencing suppression activity is provided by other viral proteins (Janssen et 27 al., 2005; Stenger et al., 2005; Valli et al., 2006; Young et al., 2012), and one of these 28 proteins, P1b from the ipomovirus CVYV can functionally replace the HCPro from the 29 potyvirus PPV (Carbonell et al., 2012). In the present report we show that a heterologous RSS 30 from an unrelated virus, the protein P19 from the tombusvirus TBSV, is also able to support 31 an efficient PPV infection (Fig. 2). PPV-P19 appears to escape antiviral silencing with an 32 efficiency similar to that of the wild type virus, since plants infected with this chimerical virus do not show the recovery phenotype typical of silencing suppression-deficient viruses (Fig.
 3), further supporting the conclusion that potyviruses do not depend on a specific silencing
 suppression provided by HCPro.

4

5 Do potyviruses depend on a specific RNA silencing suppression strategy?

6 Sequestering of siRNAs appears to be a very successful strategy to suppress silencing, which 7 is used, among other RSSs, by HCPro, P1b and P19 (Lakatos et al., 2006; Valli et al., 2011). 8 However, the lack of similarity, and the diverse dependence on specific features at the siRNA 9 ends for efficient binding (Valli et al., 2011), support the idea that siRNA binding 10 mechanisms of these RSSs are different. The high infectivity of PPV-P1b and PPV-P19 11 suggests that potyvirus infection does not require a specific strategy of siRNA sequestering, 12 and, thus, different mechanisms of siRNA binding could be equally useful for the virus as 13 long as they provide an effective silencing suppression.

14 To assess whether potyviruses could successfully use other silencing suppression 15 mechanisms, a series of recombinant viruses in which PPV HCPro was replaced by RSSs 16 with a broad range of anti-silencing strategies were constructed. We were unable to detect 17 infection in the chimerical virus that express CaMV P6 (Fig. 4 and Fig. S2). Recombinant 18 viruses expressing P0 from the polerovirus BWYV, RNase3 from the crinivirus SPCSV, Tat 19 from the human retrovirus HIV and the ribonuclease XRN4 from Arabidopsis thaliana, for 20 which silencing suppression activities in different experimental systems have been reported 21 (Bennasser et al., 2005; Cuellar et al., 2009; Gazzani et al., 2004), appear to be also not 22 infectious. Unfortunately, we were not able to detect silencing suppression activity for these 23 proteins when they were expressed as part of the PPV polyprotein in a co-agroinfiltration 24 assay (data not shown). In the case of BWYV PO, and perhaps in other cases, this is due to the 25 extra amino acids added to its ends to facilitate its excision from the viral polyprotein (data 26 not shown). For other proteins, such as CaMV P6, the deficiency could be genuine (Fig. S3). 27 It should be noted that to our knowledge, for some of these RSSs, such as Tat and P6 viral 28 factors and the A. thaliana XRN4 protein, anti-silencing activity using co-agroinfiltration 29 assays has not been reported yet.

Two heterologous RSSs were also able to support PPV infection: the NS1 protein of
Influenza A virus and an N-terminal fragment of the P1 protein from the ipomovirus SPMMV
(Fig. 4). Although NS1 has shown potent RNA silencing suppression activity in different

experimental systems (Table 1, Fig. 5), PPV expressing NS1 instead of HCPro infects *N*. *benthamiana* very poorly (Fig. 4). NS1 is able to bind long dsRNA and ds-siRNAs, and both
capacities are expected to contribute to its ability to suppress the RNA silencing (Bucher *et al.*, 2004; Li *et al.*, 2004). The poor infectivity of PPV-NS1 shows that even though RNA
binding might provide strong silencing suppression activity, some additional RSS features
seem to be required for supporting an efficient potyviral infection.

- 7 An N-terminal fragment of the P1 protein from SPMMV (aa 1-383) has been reported to be 8 an efficient RSS (Giner et al., 2010). However, very little silencing suppression activity was observed here for a similar SPMMV P1 fragment (P1^N, aa 1-360) expressed as part of the 9 10 PPV polyprotein (Fig. 5), which could be due to the extension of this particular deletion or to 11 additional amino acids introduced at both ends of the protein to ensure the correct processing during the viral infection. In spite of that, PPV-P1^N showed some infectivity (Fig. 4 and Fig. 12 S2), indicating that very little RNA silencing suppression activity is enough for a limited 13 14 potyviral systemic infection. The fact that the infection efficiencies of PPV-NS1 and PPV-P1^N are very similar although the silencing suppression activity of NS1 is much stronger than 15 that of P1^N, suggests that not all anti-silencing mechanisms are equally effective to support 16 potvviral infection. P1 has been shown to suppress silencing by argonaute binding (Table 1), 17 18 and this strategy appears to be more effective for PPV than the strategy, still to be 19 characterized, used by NS1. It is interesting to remark that, although the infectivity of PPV-NS1 and PPV-P1^N chimerical viruses is similar, their patterns of infection are quite different 20 21 (Fig. 4), which suggest that specific infection features can be conditioned by the RSS used by 22 the virus to counteract the antiviral silencing response of the host.
- 23

24 Only RNA silencing suppression or something else?

25 HCPro is a multifunctional protein, known to be involved in all essential steps of the viral 26 infection, and it has been shown to interact with a large number of host factors (Ala-Poikela et 27 al., 2011; Anandalakshmi et al., 2000; Ballut et al., 2005; Cheng et al., 2008; Dielen et al., 28 2011; Endres et al., 2010; Guo et al., 2003; Jin et al., 2007a; Jin et al., 2007b). Some of the 29 functions of HCPro and several of its interactions with host factors appear to be closely 30 related with its RNA silencing suppression activity (Anandalakshmi et al., 2000; Endres et 31 al., 2010; Kasschau & Carrington, 2001; Kasschau et al., 2003). It is interesting to remark 32 that, whereas the cysteine proteinase activity of HCPro is not necessary for RNA silencing

1 suppression, it appears to be required for genome amplification (Kasschau & Carrington, 2 1995), suggesting that potyviral infection could rely on silencing suppression-independent 3 functions of HCPro. Our results do not support this hypothesis since TBSV P19, which lacks 4 any proteolytic activity, is able to provide all HCPro activities essential for PPV infection. We 5 cannot rule out the possibility that this heterologous protein provide a common hypothetical 6 silencing suppression-independent function of HCPro, but given the large divergence between 7 them, this possibility appears to be very unlikely. What does not seem improbable, however, 8 is that HCPro has important, but not essential, functions in the potyviral infection not related 9 with silencing suppression or with its first identified role as helper factor in aphid 10 transmission, which would not be supplied by other heterologous RSSs.

11 Altogether, our findings demonstrate that the well-characterized RSS HCPro can be replaced 12 by different heterologous RSSs from both plant- and animal-infecting viruses with dissimilar 13 results, thus leading to the conclusion that, whereas PPV infection, and presumably potyviral 14 infections in general, does not strictly rely on a particular RSS, specific silencing suppression 15 mechanisms would fit better for a given virus. The approach followed here of exchanging the 16 HCPro coding sequence of the PPV genome by other coding sequences producing 17 heterologous proteins could contribute to identify novel RSSs and study their function in the 18 process of a viral infection using a highly "silencing-sensitive" model like plants. Moreover, 19 our particular viral system will be very helpful when the evaluation of the RNA silencing 20 suppression activity of a given protein is not feasible in its original viral genome.

1	METHODS
2	Plant hosts. Agroinfiltration and viral infectivity assays were performed in N. benthamiana plants. All
3	plants were grown in a greenhouse maintained at 16 hours light with supplementary illumination and a
4	temperature range of 19-23 °C.
5	
6	Plasmids. A detailed description of plasmids used in this study can be found in the supplementary
7	methods in the supplementary materials.
8	
9	Biolistic inoculation. The Helios Gene Gun System (Bio-Rad, Hercules, CA, U.S.A.) was used for
10	biolistic inoculation. Microcarrier cartridges were prepared from 2 different clones per construct, with
11	1.0 μ m gold particles coated with the different plasmids at a DNA loading ratio of 2 μ g/mg of gold
12	and a microcarrier loading of 0.5 mg/shooting. Helium pressure of 7 bars was used for shooting plants.
13	Each cartridge was shot twice onto two leaves of each plant.
14	
15	Transient expression by agroinfiltration. N. benthamiana plants were infiltrated with A. tumefaciens
16	C58C1 strain carrying the indicated plasmids as previously described (Valli et al., 2006). Appropriate
17	Agrobacterium cultures were mixed after induction with acetosyringone. In the cases of pBIN-P1RSS
18	plasmids expressing RSSs without self-cleaving activity, an Agrobacterium strain carrying a binary
19	plasmid expressing the NIa protease domain (pMDC32-NIaPro) was also included in the infiltration
20	mixtures.
21	
22	Fluorescence imaging. The green fluorescent protein (GFP) fluorescence was monitored under long-
23	wavelength UV light (Black Ray model B 100 AP). To capture pictures of fluorescent areas, leaves
24	were examined with a Leica MZ FLIII epifluorescence microscope using excitation and barrier filters
25	at 425/60 nm and 480 nm respectively, and photographed with an Olympus DP70 digital camera.
26	
27	Western blot assays. Tissue samples of inoculated leaves were harvested under UV light from GFP
28	expressing foci or the whole inoculated area, whereas tissue of upper non-inoculated leaves was
29	collected from areas showing green fluorescence or the indicated whole leaves. Control samples
30	corresponding to non-infected leaves were taken from equivalent areas. Preparation of protein
31	samples, SDS-PAGE electrophoresis, and electroblotting were done as previously described (Valli et
32	al., 2006). Specific proteins were detected using anti-HCPro rabbit serum, anti-P1b rabbit serum, anti-
33	P19 rabbit serum (kindly provided by Herman Scholthof, Texas A&M University, US), anti-NS1
34	rabbit serum (kindly provided by Ariel Rodriguez, Centro Nacional de Biotecnologia-CSIC, Madrid,
35	Spain) or anti-CP rabbit serum, as primary antibodies, and horseradish peroxidase (HRP)-conjugated

goat anti-rabbit IgG (Jackson) as secondary reagent. The immunostained proteins were visualized by
 enhanced chemiluminescence detection with a LifeABlot kit (Euroclone). Ponceau red staining was
 used to check the global protein content of the samples.

4

5 IC-RT-PCR. Leaf extracts from infected N. benthamiana plants were homogenized in 5 mM sodium 6 phosphate buffer, pH 7.5 (2 ml: 1g tissue) and incubated in tubes previously coated with anti-PPV 7 IgGs overnight at 4°C. The incubation was followed by two washing steps with PBS-Tween buffer (16 8 mM PBS, 0.1 M NaCl, 0.5 g/L Tween 20, pH 7.2). RT-PCR was performed using the Titan kit (Roche 9 Molecular Biochemical) with primers targeting the 3' end of PPV P1 (#90: 5'-10 CGGACCCAATGCAAG-3') and 5' end of PPV P3 (#317: 5'-TGAACCACTATTGAACAG-3'). For 11 further sequence analysis, PCR fragments were purified using the MinElute PCR purification kit 12 (QIAGEN).

13

RNA extraction and northern blot analysis. Samples containing messenger RNAs were prepared
 from agroinfiltrated leaf tissue and subjected to northern blot analysis as previously described (Valli *et al.*, 2006).

17

18 ACKNOWLEDGMENTS

19 We are especially grateful to those people who sent us plasmids containing the DNA 20 sequence of different viral proteins. We thank Veronique Ziegler-Graff for providing the 21 BWYV P0, Ana Giner and Juan José Lopez-Moya for providing SPMMV P1, Joel Milner for 22 providing CaMV P6, María Rosa Lopez-Huertas and Jose Alcamí for providing HIV Tat, Jan 23 Kreuze for providing SPCSV RNAse3, and M. Taliansky for providing GRV ORF3. We 24 thank Herman Scholthof and Ariel Rodriguez for providing anti-P19 and anti-NS1 serum, 25 respectively. We are also grateful to David Baulcombe for providing the GFP expression 26 vector and TBSV P19-containing plasmid, and Mark Curtis for providing pMDC32 27 destination vector. This work was supported by grants BIO2010-18541 from Spanish MICINN 28 and KBBE-204429 from European Union. MC was a recipient of an I3P fellowship from 29 CSIC-Fondo Social Europeo.

30

31 **REFERENCES**

- 32
- Ala-Poikela, M., Goytia, E., Haikonen, T., Rajamaki, M.-L. & Valkonen, J. P. T. (2011).
 Helper component proteinase of genus *Potyvirus* is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E that contains a 4E binding motif. J *Virol* 85, 6784-6794.

1	Ambros, V. & Chen, X. M. (2007). The regulation of genes and genomes by small RNAs.
2	<i>Development</i> 134 , 1635-1641.
3	Anandalakshmi, R., Marathe, R., Ge, X., Herr Jr., J. M., Mau, C., Mallory, A., Pruss,
4	G., Bowman, L. & Vance, V. B. (2000). A calmodulin-related protein that suppresses
5	posttranscriptional gene silencing in plants. Science 290 , 142-144.
6	Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H. &
7	Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proc Natl Acad
8	<i>Sci USA</i> 95 , 13079-13084.
9	Ballut, L., Drucker, M., Pugnière, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T.,
10	Schmid, H. P., Nicolas, P., Le Gall, O. & Badaoui, S. (2005). HcPro, a
11	multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and
12	affects its enzymic activities. J Gen Virol 86, 2595-2603.
13	Baulcombe, D. (2005). RNA silencing. <i>Trends Biochem Sci</i> 30, 290-293.
14	Bennasser, Y., Le, S. Y., Benkirane, M. & Jeang, K. T. (2005). Evidence that HIV-1
15	encodes an siRNA and a suppressor of RNA silencing. <i>Immunity</i> 22, 607-619.
16	Blanc, S., López-Moya, J. J., Wang, R. Y., García-Lampasona, S., Thornbury, D. W. &
17	Pirone, T. P. (1997). A specific interaction between coat protein and helper
18	component correlates with aphid transmission of a potyvirus. <i>Virology</i> 231 , 141-147.
19	Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W. & Baulcombe, D. C. (1998).
20	Viral pathogenicity determinants are suppressors of transgene silencing in <i>Nicotiana</i>
20	<i>benthamiana. EMBO J</i> 17 , 6739-6746.
21	Bucher, E., Hemmes, H., de Haan, P., Goldbach, R. & Prins, M. (2004). The influenza A
	virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in
23	plants. J Gen Virol 85, 983-991.
24	•
25	Burgyán, J. & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends Plant Sci 16, 265-272.
26	
27	Carbonell, A., Dujovny, G., Garcia, J. A. & Valli, A. (2012). The Cucumber vein
28	yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox
29	virus infection in a host-specific manner. <i>Mol Plant-Microbe Interact</i> 25 , 151-164.
30	Carrington, J. C., Cary, S. M., Parks, T. D. & Dougherty, W. G. (1989). A second
31	proteinase encoded by a plant potyvirus genome. <i>The EMBO journal</i> 8 , 365-370.
32	Cheng, Y. Q., Liu, Z. M., Xu, J., Zhou, T., Wang, M., Chen, Y. T., Li, H. F. & Fan, Z. F.
33	(2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize
34	ferredoxin-5 in vitro and in planta. J Gen Virol 89 , 2046-2054.
35	Choi, I. R., Stenger, D. C. & French, R. (2000). Multiple interactions among proteins
36	encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 267, 185-
37	198.
38	Cuellar, W. J., Kreuze, J. F., Rajamaki, M. L., Cruzado, K. R., Untiveros, M. &
39	Valkonen, J. P. (2009). Elimination of antiviral defense by viral RNase III. Proc Natl
40	Acad Sci USA 106 , 10354-10358.
41	Delgadillo, M. O., Sáenz, P., Salvador, B., García, J. A. & Simón-Mateo, C. (2004).
42	Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA
43	silencing suppressor in plants. J Gen Virol 85, 993-999.
44	Dielen, A. S., Sassaki, F. T., Walter, J., Michon, T., Menard, G., Pagny, G., Krause-
45	Sakate, R., Maia Ide, G., Badaoui, S., Le Gall, O., Candresse, T. & German-
46	Retana, S. (2011). The 20S proteasome alpha5 subunit of Arabidopsis thaliana carries
47	an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro
48	protein. Mol Plant Pathol 12, 137-150.

1	Ding, SW., Li, WX. & Symons, R. H. (1995). A novel naturally occurring hybrid gene
2	encoded by a plant RNA virus facilitates long distance virus movement. EMBO J 14,
3	5762-5772.
4	Ding, S. W. (2010). RNA-based antiviral immunity. Nat Rev Immunol 10, 632-644.
5	Dunoyer, P. & Voinnet, O. (2005). The complex interplay between plant viruses and host
6	RNA-silencing pathways. Curr Opin Plant Biol 8, 415-423.
7	Endres, M. W., Gregory, B. D., Gao, Z., Foreman, A. W., Mlotshwa, S., Ge, X., Pruss, G.
8	J., Ecker, J. R., Bowman, L. H. & Vance, V. (2010). Two plant viral suppressors of
9	silencing require the ethylene-inducible host transcription factor RAV2 to block RNA
10	silencing. PLoS Pathog 6, e1000729.
11	Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis,
12	K. J. & Carrington, J. C. (2010). Arabidopsis RNA-dependent RNA polymerases
13	and dicer-like proteins in antiviral defense and small interfering RNA biogenesis
14	during Turnip mosaic virus infection. Plant Cell 22, 481-496.
15	Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. & Sablowski, R. (2004). A link
16	between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046-
17	1048.
18	Giner, A., Lakatos, L., Garcia-Chapa, M., Lopez-Moya, J. J. & Burgyan, J. (2010). Viral
19	protein inhibits RISC activity by argonaute binding through conserved WG/GW
20	motifs. <i>PLoS Pathog</i> 6 , e1000996.
21	Guo, D., Spetz, C., Saarma, M. & Valkonen, J. P. (2003). Two potato proteins, including a
22	novel RING finger protein (HIP1), interact with the potyviral multifunctional protein
23	HCpro. Mol Plant-Microbe Interact 16, 405-410.
24	Guo, D. Y., Rajamaki, M. L., Saarma, M. & Valkonen, J. P. T. (2001). Towards a protein
25 26	interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the useful two hybrid system <i>LCan Viral</i> 82 , 025, 020
26 27	on the yeast two-hybrid system. <i>J Gen Virol</i> 82 , 935-939. Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., Fukuhara,
28	T., Keller, M. & Voinnet, O. (2008). Nuclear import of CaMV P6 is required for
29	infection and suppression of the RNA silencing factor DRB4. <i>EMBO J</i> 27, 2102-2112.
30	Haasnoot, J., de Vries, W., Geutjes, E. J., Prins, M., de Haan, P. & Berkhout, B. (2007).
31	The Ebola virus VP35 protein is a suppressor of RNA silencing. <i>PLoS Pathog</i> 3 , e86.
32	Havelda, Z., Hornyik, C., Crescenzi, A. & Burgyan, J. (2003). In situ characterization of
33	<i>Cymbidium ringspot tombusvirus</i> infection-induced posttranscriptional gene silencing
34	in Nicotiana benthamiana. J Virol 77, 6082-6086.
35	Janssen, D., Martín, G., Velasco, L., Gómez, P., Segundo, E., Ruiz, L. & Cuadrado, I. M.
36	(2005). Absence of a coding region for the helper component-proteinase in the
37	genome of cucumber vein yellowing virus, a whitefly-transmitted member of the
38	Potyviridae. Arch Virol 150, 1439-1447.
39	Jin, Y. S., Ma, D. Y., Dong, J. L., Jin, J. C., Li, D. F., Deng, C. W. & Wang, T. (2007a).
40	HC-Pro protein of <i>Potato Virus Y</i> can interact with three <i>Arabidopsis</i> 20S proteasome
41	subunits in planta. J Virol 81, 12881-12888.
42	Jin, Y. S., Ma, D. Y., Dong, J. L., Li, D. F., Deng, C. W., Jin, J. C. & Wang, T. (2007b).
43	The HC-Pro protein of Potato virus Y interacts with NtMinD of tobacco. Mol Plant-
44	<i>Microbe Interact</i> 20 , 1505-1511.
45	Kasschau, K. D. & Carrington, J. C. (1995). Requirement for HC-Pro processing during
46	genome amplification of tobacco etch potyvirus. Virology 209, 268-273.
47	Kasschau, K. D. & Carrington, J. C. (1998). A counterdefensive strategy of plant viruses:
48	Suppression of posttranscriptional gene silencing. Cell 95, 461-470.

1	Kasschau, K. D. & Carrington, J. C. (2001). Long-distance movement and replication
2	maintenance functions correlate with silencing suppression activity of potyviral HC-
3	Pro. Virology 285 , 71-81.
4	Kasschau, K. D., Xie, Z. X., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A. &
5	Carrington, J. C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes
6	with Arabidopsis development and miRNA function. Dev Cell 4, 205-217.
7	Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y. P.,
8	Dolja, V. V., Calvino, L. F., López-Moya, J. J. & Burgyán, J. (2006). Small RNA
9	binding is a common strategy to suppress RNA silencing by several viral suppressors.
10	<i>EMBO J</i> 25 , 2768-2780.
11	Lecellier, CH., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saïb,
12	A. & Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human
13	cells. Science 308 , 557-560.
14	Li, W. X., Li, H., Lu, R., Li, F., Dus, M., Atkinson, P., Brydon, E. W., Johnson, K. L.,
15	García-Sastre, A., Ball, L. A., Palese, P. & Ding, S. W. (2004). Interferon
16	antagonist proteins of influenza and vaccinia viruses are suppressors of RNA
17	silencing. Proc Natl Acad Sci USA 101, 1350-1355.
18	Love, A. J., Laird, J., Holt, J., Hamilton, A. J., Sadanandom, A. & Milner, J. J. (2007).
19	Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88,
20	3439-3444.
21	Maia, I. G., Haenni, AL. & Bernardi, F. (1996). Potyviral HC-Pro: a multifunctional
22	protein. J Gen Virol 77, 1335-1341.
23	Merits, A., Guo, D. Y., Jarvekulg, L. & Saarma, M. (1999). Biochemical and genetic
24	evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and
25	proteins of the putative replication complex. Virology 263, 15-22.
26	Qian, S., Zhong, X., Yu, L., Ding, B., de Haan, P. & Boris-Lawrie, K. (2009). HIV-1 Tat
27	RNA silencing suppressor activity is conserved across kingdoms and counteracts
28	translational repression of HIV-1. Proc Natl Acad Sci USA 106, 605-610.
29	Qiu, W. P., Park, J. W. & Scholthof, H. B. (2002). Tombusvirus p19-mediated suppression
30	of virus-induced gene silencing is controlled by genetic and dosage features that
31	influence pathogenicity. Mol Plant-Microbe Interact 15, 269-280.
32	Roth, B. M., Pruss, G. J. & Vance, V. B. (2004). Plant viral suppressors of RNA silencing.
33	<i>Virus Res</i> 102 , 97-108.
34	Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delécolle, B., Candresse, T. & Le
35	Gall, O. (2002). Interaction between potyvirus helper component-proteinase and
36	capsid protein in infected plants. J Gen Virol 83, 1765-1770.
37	Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E. & Le Gall, O.
38	(2007). Central domain of a potyvirus VPg is involved in the interaction with the host
39	translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 88, 1029-
40	1033.
41	Sáenz, P., Salvador, B., Simón-Mateo, C., Kasschau, K. D., Carrington, J. C. & García,
42	J. A. (2002). Host-specific involvement of the HC protein in the long-distance
43	movement of potyviruses. <i>J Virol</i> 76 , 1922-1931.
44	Shimura, H. & Pantaleo, V. (2011). Viral induction and suppression of RNA silencing in
45	plants. Biochim Biophys Acta 1809, 601-612.
46	Silhavy, D., Molnár, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M. & Burgyán, J.
47	(2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21-
48	to 25-nucleotide double-stranded RNAs. EMBO J 21, 3070-3080.

- Stenger, D. C., French, R. & Gildow, F. E. (2005). Complete deletion of *Wheat streak mosaic virus* HC-Pro: a null mutant is viable for systemic infection. J Virol 79, 12077 12080.
- Syller, J. (2005). The roles and mechanisms of helper component proteins encoded by
 potyviruses and caulimoviruses. *Physiol Mol Plant Pathol* 67, 119-130.
- Valli, A., López-Moya, J. J. & García, J. A. (2009). RNA silencing and its suppressors in
 the plant-virus interplay. In *Encyclopedia of Life Sciences (ELS)*, p.
 <u>http://www.els.net/</u> [DOI: 10.1002/9780470015902.a9780470021261]. Chichester:
 John Wiley & Sons, Ltd.
- Valli, A., Martín-Hernández, A. M., López-Moya, J. J. & García, J. A. (2006). RNA
 silencing suppression by a second copy of the P1 serine protease of *Cucumber vein yellowing ipomovirus* (CVYV), a member of the family *Potyviridae* that lacks the
 cysteine protease HCPro. J Virol 80, 10055-10063.
- Valli, A., Oliveros, J. C., Molnar, A., Baulcombe, D. & Garcia, J. A. (2011). The specific
 binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of
 Cucumber vein yellowing virus P1b and perturbs endogenous small RNA populations.
 RNA 17, 1148-1158.
- Vargason, J. M., Szittya, G., Burgyan, J. & Tanaka Hall, T. M. (2003). Size selective
 recognition of siRNA by an RNA silencing suppressor. *Cell* 115, 799-811.
- Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. (1999). Suppression of gene silencing: A
 general strategy used by diverse DNA and RNA viruses of plants. *Proc Natl Acad Sci* USA 96, 14147-14152.
- Yambao, M. L., Masuta, C., Nakahara, K. & Uyeda, I. (2003). The central and C-terminal
 domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg VPg interactions. J Gen Virol 84, 2861-2869.
- Young, B. A., Stenger, D. C., Qu, F., Morris, T. J., Tatineni, S. & French, R. (2012).
 Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. *Virus Res* 163,672-677.
- Zilian, E. & Maiss, E. (2011). Detection of plum pox potyviral protein-protein interactions *in planta* using an optimized mRFP-based bimolecular fluorescence complementation system. *J Gen Virol* 92, 2711-2723.
- 32
- 33
- 34

1 Legends to the figures

2

Figure 1. Schematic representations of viral constructs derived from *Plum pox virus* (**PPV).** (a) Intermediate plasmids created for cloning the coding sequence of different RNA silencing suppressors (RSSs). P1 and NIa cleavage sites engineered at the ends of the inserted RSSs are also indicated. (b) Chimerical full-length cDNA clones derived from PPV and expressing heterologous RSSs. The GFP reporter gene inserted between the NIb and CP coding sequences is represented with a green rectangle.

9

10 Figure 2. P19 from Tobacco bushy stunt virus functionally replaces HCPro from Plum 11 pox virus (PPV). (a) Pictures of leaves inoculated with the indicated viruses, taken under an 12 epifluorescence microscope at 9 days post-inoculation (dpi). White bar, 1 cm. (b) Western 13 blot analysis of protein extracts prepared from inoculated leaves (2 plants per construct) 14 collected at 9 dpi. (c) Pictures taken under an epifluorescence microscope at 21 dpi of the 4th 15 leaves above the inoculated ones. White bar, 1 cm. (d) Western blot analysis of protein 16 extracts prepared from the whole 3rd and 4th leaves above the inoculated ones collected at 21 17 dpi. A polyclonal antiserum specific for PPV CP was used for assessment of virus 18 accumulation. Membranes stained with Ponceau red showing the Rubisco are included as 19 loading controls.

20

21 Figure 3. A Plum pox virus (PPV) chimera expressing Tobacco bushy stunt virus P19 22 escapes from plant recovery. (a) Pictures of old and young upper non-inoculated leaves of 23 plants infected with the indicated viruses taken under an epifluorescence microscope at 38 24 days post-inoculation (dpi). White bar, 1 cm. (b) Western blot analysis of protein extracts 25 prepared from upper non-inoculated leaves (2 plants per construct) collected at 38 dpi. O: old 26 tissues (leaves at position 6 to 9 above the inoculated ones); Y: young tissues, (leaves at 27 position 10 to 13 above the inoculated ones). A polyclonal antiserum specific for PPV CP was 28 used for assessment of virus accumulation. Membranes stained with Ponceau red showing the 29 Rubisco are included as loading controls.

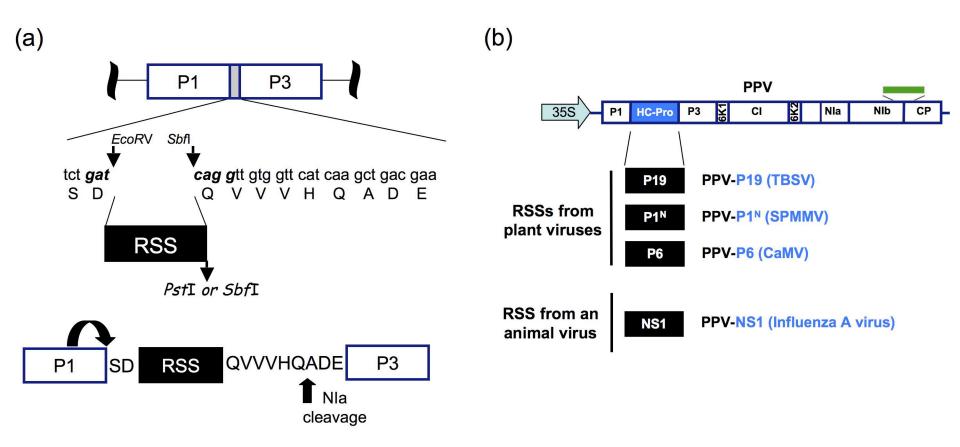
30

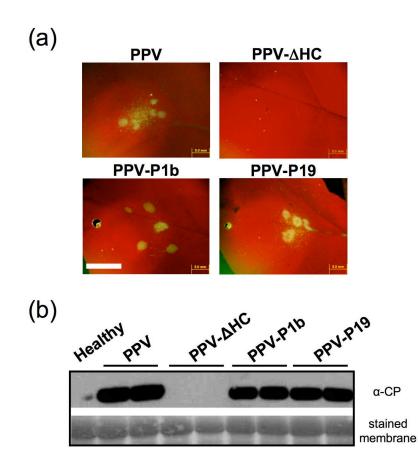
Figure 4. Sweet potato mild mottle virus P1^N and Influenza A virus NS1 support Plum pox 31 32 virus (PPV) infection. (a) Pictures of leaves inoculated with the indicated viruses taken under 33 an epifluorescence microscope at 9 days post-inoculation (dpi). White bar, 1 cm. (b) Western 34 blot analysis of protein extracts prepared from inoculated leaves (2 plants per construct) 35 collected at 9 dpi. (c) Pictures taken under an epifluorescence microscope at 21 dpi of the 4th 36 leaves above the inoculated ones. White bar, 1 cm. (d) Western blot analysis of protein 37 extracts prepared from the whole 3rd and 4th leaves above the inoculated ones (2 plants per 38 construct) collected at 21 dpi. A polyclonal antiserum specific for PPV CP was used for 39 assessment of virus accumulation. Ten times more concentrated anti-CP serum was used as 40 required. Specific antibodies recognizing different RSSs were also used, if available, for 41 confirming viral identity. Membranes stained with Ponceau red showing the Rubisco are 42 included as loading control.

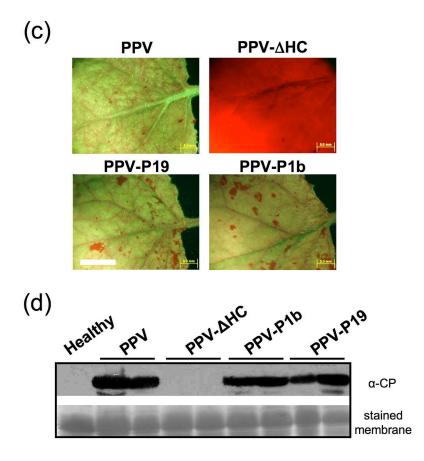
43

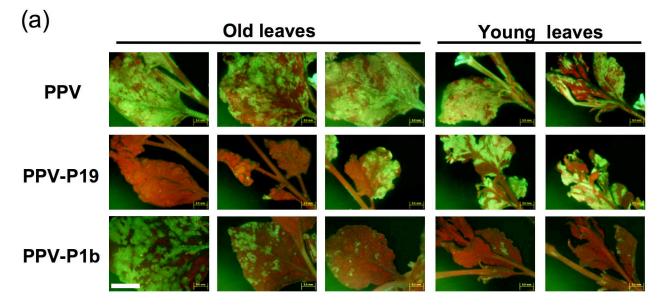
Figure 5. Anti-silencing activity of RSSs expressed in different *Plum pox virus* (PPV)based chimerical viruses. (a) Schematic representation of constructs used in the agroinfiltration tests. Black arrows indicate self-cleavages by the corresponding viral proteases, whereas the grey arrow indicates a cleavage *in trans* by the action of PPV NIaPro. (b) GFP fluorescence pictures of agroinfiltrated leaves expressing the indicated proteins, taken under 1 an epifluorescence microscope at 6 days post-agroinfiltration (dpa). White bar, 1 cm. (c)

2 Northern blot analyses of GFP mRNA extracted at 6 dpa from leaf patches of two plants


3 expressing the indicated proteins by agroinfiltration. EtBr-stained rRNAs are shown as


4 loading control.


1	
2	Table 1: List of RNA silencing suppressors used to replace PPV HCPro.


RNA silencing suppressor	Virus name	Tested by	Proposed RNA silencing suppression mechanism	References
P1b ^a	Cucumber vein yellowing virus	Plants: prevention of silencing in co- agroinfiltration assays, enhancement of PVX pathogenicity	Binding of ds-siRNAs	(Valli <i>et al.</i> , 2006; Valli <i>et al.</i> , 2011)
P19	Tobacco bushy stunt virus	Plants: prevention of silencing in co- agroinfiltration assays, enhancement of PVX pathogenicity, reversal of transgene silencing, inhibition of VIGSAnimals: support of FHV infection in insect cells, enhancement of PFV-1 accumulation in mammalian cells, suppression of miRNA activity in co-transfected cells, rescue of gag mRNA translation in infected cells	Binding of ds-siRNAs	(Lecellier <i>et al.</i> , 2005; Li <i>et al.</i> , 2004; Qian <i>et al.</i> , 2009; Qiu <i>et al.</i> , 2002; Vargason <i>et al.</i> , 2003; Voinnet <i>et al.</i> , 1999)
NS1	Influenza A virus	Plants: prevention of GFP silencing in co- agroinfiltration assays, enhancement of PVX pathogenicityAnimals: support of FHV infection in insect cells, interference with shRNA activity in co- 	Binding of ds-siRNAs and long dsRNAs	(Bucher <i>et al.</i> , 2004; Delgadillo <i>et al.</i> , 2004; Haasnoot <i>et al.</i> , 2007; Li <i>et al.</i> , 2004)
P1, P1 ₁₋₃₈₃	Sweet potato mild mottle virus	Plants: prevention of silencing in co- agroinfiltration assays	AGO1 inhibition	(Giner et al., 2010)
P6	Cauliflower mosaic virus	Plants: reversion of amplicon silencing in transgenic plants	DRB4 inhibition	(Love <i>et al.</i> , 2007)

^a The chimerical virus that carries P1b instead of HCPro has been previously reported (Carbonell *et al.*, 2012).

(b)

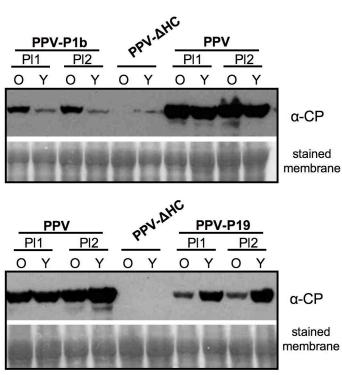
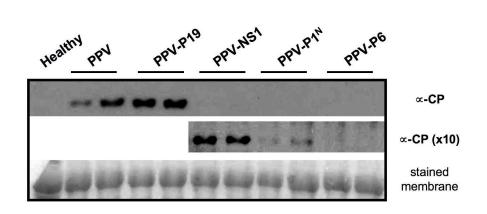
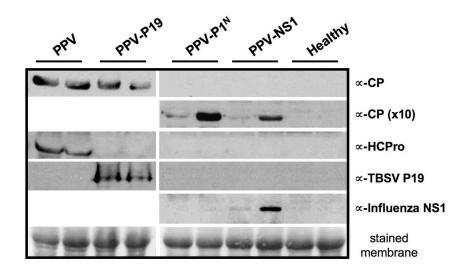
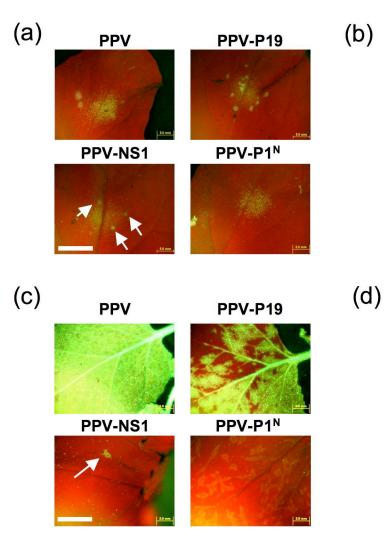
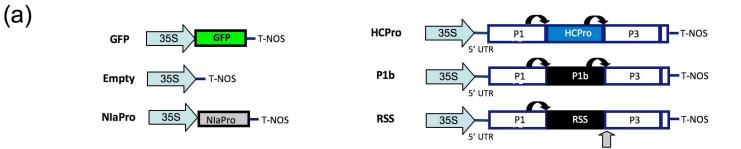
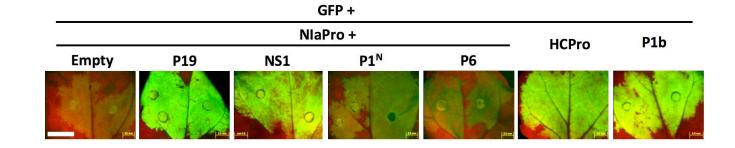
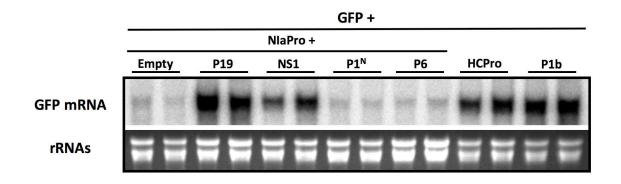






Figure 3





(C)

