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Abstract

In this paper, we establish a qualitative study of nonlinear Fredholm integral
equations, where we will carry out a study on the localization and separation of
solutions. Moreover, we consider an efficient algorithm to approximate a solution.
To do this, we study the semilocal convergence of an efficient third order iterative
scheme for solving nonlinear Fredholm integral equations under mild conditions.
The novelty of our work lies in the fact that this study involves first order Fréchet
derivative and mild conditions. A numerical example involving nonlinear Fredholm
integral equations, is solved to show the domains of existence and uniqueness of
solutions. The applicability of the iterative scheme considered is also shown.
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1 Introduction

In this paper, we consider the integral equations given by

x(s) = f(s) + λ

∫ b

a

K(s, t)[H(x)](t)dt, (1)

where H is a Nemystkii operator [7], H : Ω ⊆ C[a, b] −→ C[a, b], with [H(x)](t) = H(x(t)),
being H : R −→ R a derivable scalar function, f : [a, b] −→ R a continuous function and
K : [a, b]× [a, b] −→ R a continuous function in both arguments. C[a, b] denotes the space
of continuous real functions in [a, b].

Notice that nonlinear integral equation (1) is a particular case of Fredholm integral
equations [11, 13]. The Fredholm integral equations have strong physical background
and arise from the electro-magnetic fluid dynamics. These equations appeared in the 30s
of the twentieth century as general models for the study of semi-linear boundary value
problems, where the kernel K(s, t) typically arises as the Green function of a differential
operator. Also, these equations are applied in the theory of radiative transfer and the
theory of neutron transport as well as in the kinetic theory of gases. They also play a very
significant role in several applications, as for example, the dynamic models of chemical
reactors, which are governed by control equations, justifying then their study and solution.

As the Fredholm integral equations of form (1) cannot be solved exactly, we can use
numerical methods to solve them. In fact, different numerical techniques can be applied
and some of them mentioned in the references of this work. In particular, iterative schemes
based on the homotopy analysis method in [3], adapted Newton-Kantorovich schemes in [8]
and schemes based on a combination of the Newton-Kantorovich method and quadrature
methods in [14].

If we pay attention to the iterative methods that can be applied for approximating a
solution x∗ ∈ C[a, b] of (1), the method of successive approximations play an important
role (see, [1, 2, 15]). This method consists of applying the fixed point theorem to the
equation

x(s) = F (x)(s), (2)

with F : Ω ⊆ C[a, b] −→ C[a, b], where Ω is a nonempty convex domain in C[a, b], with

F (x)(s) = f(s) + λ

∫ b

a

K(s, t)[H(x)](t)dt (3)

and obtaining a sequence {xn+1 = F (xn)}n∈N that converges to a solution x∗ ∈ C[a, b] of
(1), i. e., a fixed point of F .

Two are the main aims of the paper. In first place, we perform a qualitative study
of equation (1) by obtaining a result of existence and uniqueness of a solution for (1).
In second place, a solution of (1) is successively approximated. Since the application of
Fixed point Theorem is restrictive, F must be contractive from a domain to itself (see,
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[12]) and besides the method of successive approximation converges slowly to a solution
x∗ ∈ C[a, b] of (1).

Observe that looking for a fixed point of equation (2) is equivalent to solving G(x) = 0,
where G : Ω ⊆ C([a, b]) −→ C([a, b]) and

G(x)(s) = x(s)− F (x)(s) = [(Id− F )(x)](s). (4)

The methods for solving the previous equation are usually iterative schemes. So,
starting from one initial approximation of a solution x∗ of the equation G(x) = 0, a
sequence {xn} of approximations is constructed such that the sequence {‖xn − xn−1‖}
is decreasing and a better approximation to the solution x∗ is then obtained at every
step. Obviously, the interest focuses on limn xn = x∗. The choice of an iterative scheme
for approximating x∗ usually depends on its efficiency [16], which links the speed of
convergence (order of convergence) of the method to its computational cost.

In relation to the above, we can obtain the sequence of approximations {xn} by dif-
ferent ways, depending on the iterative schemes applied. Between these, the best-known
is Newton’s method, whose algorithm is the following:{

x0 given in Ω,
xn+1 = xn − [G′(xn)]−1G(xn), n = 0, 1, 2 . . .

(5)

If we consider one-point iterative schemes without memory, i.e., xn+1 = Λ(xn) with
x0 given in Ω, as Newton’s method (5), it is known that their order of convergence ρ is a
natural number and, moreover, the algorithm of these methods depend explicitly on the
first ρ − 1 derivatives of the function involved in the equation. So, if we want consider
iterative schemes with third order of convergence, the computational cost increases as it is
necessary to evaluate the successive derivatives of the function involved in the algorithm
of the method. Then, in this paper, we are interested in a numerical iterative scheme that
avoid the expensive computation of the derivatives of the function G at each step, but
third order of convergence is reached ([9, 10]). Therefore, in this paper, we consider the
2-steps iterative process with frozen first derivative given by the following algorithm:

x0 given in Ω,

yn = xn − [G
′
(xn)]−1G(xn)

xn+1 = yn − [G
′
(xn)]−1G(yn), n ≥ 0,

It is well known that if we compose Newton’s method with itself twice, but taking into
account the derivative frozen, we obtain a iterative scheme of order three. This is a
classical result obtained by Traub, [16]. Moreover, being an iterative scheme of third
order, it does not increase the expensive computation of derivatives because this iterative
scheme only uses the same first derivative in each step. For this, it is easy to check that
this iterative scheme is more efficient than Newton’s method [6].

So, in this paper, we consider an iterative scheme of fixed point type for approximating
a fixed point of F . The algorithm of this iterative scheme is
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x0 given in Ω,

yn = xn − [I − F ′
(xn)]−1(xn − F (xn))

xn+1 = yn − [I − F ′
(xn)]−1(yn − F (yn)), n ≥ 0.

(6)

Notice that this iterative scheme is the frozen two steps Newton method [6] applied to
the equation G(x)(s) = x(s)− F (x)(s) = 0.

In this paper, we obtain a semilocal convergence result for the iterative scheme (6)
from which we will carry out the qualitative study for equation (1). Notice that a semilocal
convergence result requires conditions on the operator involved, on the equation to solve
and on the starting point of the iterative scheme, x0 ∈ C[a, b]. It provides the results on
the existence of solution of the equation that allows us to obtain a domain of existence
of solution. Moreover, we obtain a result of uniqueness of solution. On the other hand,
for approximating a solution x∗ ∈ C[a, b], the iterative scheme (6) is applied. As above,
we have indicated that this iterative scheme has cubic convergence and is more efficient
than Newton’s method.

The work is organized as follows. In Section 2.1, we study the existence of the fixed
point x∗ of equation (4), obtaining recurrence relations for the sequences {xn} and {yn}
of (6). In Section 2.2, the uniqueness of the fixed point is established, which implies the
uniqueness of the solution of equation (1). Finally, in Section 3, we apply the results
to a particular nonlinear Fredholm integral equation, obtaining convergence radii and
numerical solutions. We also compare our results with the exact solution, obtaining
some error estimates, and analyse results obtained by comparing with other numerical
techniques.

2 A qualitative study: existence and uniqueness of

solution

In what follows, we consider F : Ω ⊆ C[a, b] −→ C[a, b], where Ω is a nonempty convex
domain in C[a, b], and the Nemytskii operator H : Ω ⊆ C[a, b] −→ C[a, b] such that
H(x)(s) = H(x(t)). Obviously, it is a Frechet differentiable operator and then the operator

F (x)(s) = f(s) + λ

∫ b

a

K(s, t)H(x(t))dt

verifies

[F
′
(x)y](s) = λ

∫ b

a

K(s, t)[H′
(x)y](t)dt = λ

∫ b

a

K(s, t)H
′
(x(t))y(t)dt.
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2.1 Existence and location of a solution for (1)

Now, to obtain a semilocal convergence result for (6), we assume that the following con-
ditions are satisfied:

(I) Γ0 = [I − F
′
(x0)]

−1 exists for some x0 ∈ Ω ⊆ C[a, b], with ‖Γ0‖ ≤ β, ‖Γ0(x0 −
F (x0))‖ ≤ η.

(II) H′ is a ω-Lipschitz continuous operator such that

‖H′
(u)−H′

(v)‖ ≤ ω(‖u− v‖) for u, v ∈ Ω, (7)

where ω : R+ −→ R+ is a continuous and nondecreasing function satisfying ω(αz) ≤
φ(α)ω(z) for α, z ∈ [0,+∞) with φ : R+ −→ R+ a continuous and nondecreasing
function.

As first step, from the previous conditions, we easily obtain the following result for
the operator F

′
.

Lemma 1. F
′

is a ω-Lipschitz continuous operator in Ω such that

‖F ′
(u)− F ′

(v)‖ ≤ |λ|Mω(‖u− v‖) for u, v ∈ Ω,

with M = max
s∈[a,b]

∣∣∣ ∫ b

a

K(s, t)dt
∣∣∣.

Proof . As,

[(F
′
(u)− F ′

(v))x](s) = λ

∫ b

a

K(s, t)[(H′
(u)−H′

(v))x](t)dt, for x, u, v ∈ Ω ⊆ C[a, b],

thus Lemma 1 follows directly from (II). �

As second step, denoting Γn = [I−F ′
(xn)]−1, we prove the existence of these operators

for each n ∈ N from the Banach Lemma [12].

Lemma 2. Given R ∈ R+, if xn ∈ B(x0, R) ⊆ Ω and β|λ|Mω(R) < 1, then [I−F ′
(xn)]−1

exists and ‖[I − F ′
(xn)]−1‖ ≤ βR, where

βR =
β

1− β|λ|Mω(R)
.

Proof . Consider

‖I − Γ0[I − F
′
(xn)]‖ ≤ ‖Γ0‖‖F

′
(xn)− F ′

(x0)‖
≤ β|λ|M‖H′

(xn)−H′
(x0)‖ ≤ β|λ|Mω(R) < 1.

Then, by means of Banach’s Lemma, the result is obtained.
�
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From now on, we denote θ(t) =
β

1− β|λ|Mω(t)
, and then βR = θ(R). In what follows,

we tested a technical lemma to subsequently obtain recurrence relations for the sequences
{xn} and {yn}.

Lemma 3. If xn, yn ∈ B(x0, R) ⊆ Ω, then

(i) ‖xn+1 − yn‖ ≤ ψR(‖yn − xn‖)‖yn − xn‖,

(ii) ‖xn+1 − xn‖ ≤
(

1 + ψR(‖yn − xn‖)
)
‖yn − xn‖,

(iii) ‖xn+1 − F (xn+1)‖ ≤ |λ| M
(
ω(‖yn − xn‖) +Q ω(‖xn+1 − yn‖)

)
‖xn+1 − yn‖,

(iv) ‖yn+1 − xn+1‖ ≤ χR(‖yn − xn‖, ‖xn+1 − yn‖)‖xn+1 − yn‖,

where ψR(u) = βR |λ|M Q ω(u), χR(u, v) = βR |λ|M
(
ω(u)+Q ω(v)

)
and Q =

∫ 1

0
φ(t)dt.

Proof . Using the following identity:

yn − F (yn) = −
∫ yn

xn

(F
′
(ξ)− F ′

(xn))dξ,

we obtain, from Lemma 1, that

‖xn+1 − yn‖ ≤ ‖Γn‖‖yn − F (yn)‖ ≤ βR |λ| M Q ω(‖yn − xn‖)‖yn − xn‖ = ψR(‖yn − xn‖)‖yn − xn‖,

so, (i) is proved.
On the other hand, to prove (ii), it is clear that

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖ ≤
(

1 + ψR(‖yn − xn‖)
)
‖yn − xn‖.

Now, from identity

xn+1 − F (yn) = F
′
(xn) (xn+1 − yn) ,

we consider

xn+1 − F (xn+1) = xn+1 − F (yn)− (F (xn+1)− F (yn))

= F
′
(xn) (xn+1 − yn)−

∫ 1

0

(
F

′
(yn + t (xn+1 − yn))

)
(xn+1 − yn)dt

=
(
F

′
(xn)− F ′

(yn)
)

(xn+1 − yn)

−
∫ 1

0

(
F

′
(yn + t (xn+1 − yn))− F ′

(yn)
)

(xn+1 − yn)dt.
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Taking norms on both sides, we get

‖xn+1 − F (xn+1)‖ ≤ |λ| M
(
ω(‖yn − xn‖) +Q ω(‖xn+1 − yn‖)

)
‖xn+1 − yn‖,

and (iii) is then proved.
Obviously, (iv) can be derived easily from (iii). �

In what follows, we establish the recurrence relations for the sequences {xn} and {yn}
using the lemmas proved previously.

For n = 0, condition (I) gives

‖y0 − x0‖ = ‖Γ0(x0 − F (x0))‖ ≤ η.

Using Lemma 2 and Lemma 3 for n = 0, we get

‖x1 − y0‖ ≤ ψR(η)η

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ (1 + ψR(η))η

So, we define the scalar parameters

r0 = η

s0 = ψR(r0)r0

S = 1 + ψR(r0)

T = χR(r0, s0)ψR(r0)

For n = 0, Lemma 3 gives

‖y1 − x1‖ ≤ χR(r0, s0)ψR(r0)r0 = Tr0 = r1.

If we take T < 1, then r1 < r0. Since S > 1, we have

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖ ≤ Tr0 + Sr0

= (T + S)r0 < (1 + T )Sr0.

On the other hand, as

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ (8)

and

‖x2 − x1‖ ≤ ‖x2 − y1‖+ ‖y1 − x1‖
≤ (1 + ψR(‖y1 − x1‖)) ‖y1 − x1‖
≤ (1 + ψR(r1))χR(r0, s0)ψR(r0)r0

≤ (1 + ψR(r0))χR(r0, s0)ψR(r0)r0 = STr0, (9)
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using (8) and (9), we get

‖x2 − x0‖ ≤
(
STr0 + Sr0

)
= (1 + T )Sr0.

From the above results, we define the following scalar sequences:

rn = Trn−1

sn = ψR(rn)rn

Clearly, if T < 1, rn and sn are decreasing scalar sequences and following results can be
established.

Lemma 4. If the equation

t =
1 + θ(t) |λ| M Q ω(η)

1− θ(t) |λ| M
(
ω(η) +Q ω(θ(t) |λ| M Q ω(η)η

))
θ(t) |λ| M Q ω(η)

η (10)

has at least one positive real root and the smallest positive real root, denoted by R, satisfies
β |λ| M ω(R) < 1 and B(x0, R) ⊆ Ω, then

(an) ‖yn − xn‖ ≤ rn and ‖yn − x0‖ ≤ S
(
1 + T + . . .+ T n

)
r0,

(bn) ‖xn+1 − yn‖ ≤ sn,

(cn) ‖xn+1 − xn‖ ≤ ST nr0 and ‖xn+1 − x0‖ ≤
(
1 + T + . . . T n

)
Sr0,

(dn) xn, yn ∈ B(x0, R).

Proof . In first place, notice that as we consider R ∈ R+, and R =
S

1− T
η, then T < 1.

We have already proved (an), (bn), (cn) and (dn) for n = 1. In order to apply mathe-
matical induction, assume that (ak)− (ck) holds for k = 1, 2, . . . , n. Then, for n+ 1, we
have

‖yn+1 − xn+1‖ ≤ χR(‖yn − xn‖, ‖xn+1 − yn‖)‖xn+1 − yn‖
≤ χR(rn, sn)ψR(rn)rn = Trn = rn+1

and

‖yn+1 − x0‖ ≤ ‖yn+1 − xn+1‖+ ‖xn+1 − x0‖ ≤ Trn + (1 + T + . . .+ T n)Sr0

≤ T n+1r0 + (1 + T + . . .+ T n)Sr0 < (1 + T + . . .+ T n+1)Sr0

<
S

1− T
r0 = R.

8



Thus, yn+1 ∈ B(x0, R). Using Lemma 3, we get

‖xn+2 − yn+1‖ ≤ ψR(‖yn+1 − xn+1‖)‖yn+1 − xn+1‖ ≤ ψR(rn+1)rn+1 = sn+1.

Therefore,

‖xn+2 − xn+1‖ ≤ ‖xn+2 − yn+1‖+ ‖yn+1 − xn+1‖ ≤ (1 + ψR(rn+1)) rn+1

≤ (1 + ψR(r0)) rn+1 = Srn+1.

Now,

‖xn+2 − x0‖ ≤ ‖xn+2 − xn+1‖+ ‖xn+1 − x0‖
≤ Srn+1 + (1 + T + . . .+ T n)Sr0

≤ (1 + T + . . .+ T n+1)Sr0

<
S

1− T
r0 = R.

Hence xn+2 ∈ B(x0, R). �

Now, we establish the existence of the fixed point x∗.

Theorem 5. Under the previous notations, let F : C[a, b]→ C[a, b] be a nonlinear Fréchet

differentiable operator given by [F (x)](s) = f(s) − λ
∫ b
a
K(s, t)H(x)(t)dt. If the equation

(10) has at least one positive real root and the smallest positive real root, denoted by R,
satisfies β |λ| M ω(R) < 1, B(x0, R) ⊆ Ω and assumptions (I) and (II) hold, then,
for the starting point x0, method (6) converges to a fixed point x∗ of (2). Moreover,
xn, yn, x

∗ ∈ B(x0, R).

Proof . To prove the convergence, it is sufficient to prove that {xn} is a Cauchy sequence.
Using T < 1 and Lemma 3, we get

‖xn+m − xn‖ ≤
n+m−1∑
j=n

‖xj+1 − xj‖ ≤
n+m−1∑
j=n

ST jr0

≤ Sr0

n+m−1∑
j=n

T j ≤ Sr0
T n − T n+m

1− T
. (11)

Hence {xn} is a Cauchy sequence which converges to x∗. Taking n = 0 and m → ∞ in
(11), we get ‖x0 − x∗‖ ≤ R, and x∗ ∈ B(x0, R).

Now, we have to prove that x∗ is a fixed point of (2). Consider ‖xn − F (xn)‖ ≤
‖I−F ′

(xn)‖‖Γn(xn−F (xn))‖ = ‖I−F ′
(xn)‖‖xn+1−xn‖ and the operator {‖I−F ′

(xn)‖}
is bounded. Taking n → ∞ and from the continuity of the operator, we get that x∗ is a
solution of x− F (x) = 0 and therefore a fixed point of operator F . �
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2.2 Uniqueness of solution for (1)

Observe that a fixed point of (2) is a solution of equation (1) and reciprocally. For this,
we establish the uniqueness of the fixed point which proves the uniqueness of the solution
of (1).

Theorem 6. The fixed point of (2) is unique in B(x0, R) ∩ Ω, with R being the biggest
positive solution of the equation

β |λ| M
∫ 1

0

ω(τ t+ (1− τ)R) dτ = 1. (12)

Proof . To show the uniqueness, we will proceed by reductio ad absurdum. So, we
suppose that y∗ ∈ B(x0, R) is another fixed point of (2) with y∗ 6= x∗. Then

0 = Γ0(y
∗ − F (y∗))− Γ0(x

∗ − F (x∗)) =

∫ 1

0

Γ0 (I − F ′(x∗ + τ(y∗ − x∗))) dτ(y∗ − x∗).

We are going to prove that, under hypothesis of theorem, A−1 exists, where A is a linear
operator defined by

A =

∫ 1

0

Γ0 (I − F ′(x∗ + τ(y∗ − x∗))) dτ,

then y∗ = x∗.
For this, notice that, for each x ∈ C[a, b] and t ∈ [a, b], we have

(A− I)(x)(t) =

∫ 1

0

Γ0 (F ′(x0)− F ′(x∗ + τ(y∗ − x∗))) x(t)dτ.

Then, we obtain

‖A− I‖ ≤ ‖Γ0‖
∫ 1

0

‖F ′(x0)− F ′(x∗ + τ(y∗ − x∗))‖ dτ

≤ β |λ| M
∫ 1

0

ω(‖x0 − x∗ − τ(y∗ − x∗)‖) dτ

< β |λ| M
∫ 1

0

ω(τR + (1− τ)R) dτ.

So, if (12) holds, the operator

∫ 1

0

Γ0 (I − F ′(x∗ + τ(y∗ − x∗))) dτ has an inverse and,

consequently, y∗ = x∗, which is an absurd. Then, the proof is complete. �

Notice that, if

β |λ| M
∫ 1

0

ω(τ t∗ + (1− τ)R) dτ ≤ 1,

for t∗ ∈ [a, b], then the fixed point of (2) is unique in B(x0, t∗)∩Ω. So, from the previous
reasoning, it is easy to check that R ≤ R.
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3 Numerical examples

Next, we present two examples where we illustrate all the above, we calculate the domains
of existence and uniqueness of solution for the two nonlinear integral equations considered
and, for both equations, we approximate a solution from iterative scheme (6). The two
examples arise from the two possibilities that may present kernel K(s, t), since it can be
separable or not.

3.1 Example 1

Now, we illustrate all the above-mentioned with an application to the following nonlinear
Fredholm integral equation,

x(s) = sin(πs) + λ

∫ 1

0

cos(πs) sin(πt)x(t)3 dt, (13)

with s ∈ [0, 1], that has been used by other authors as numerical test [8, 3, 14, 4]. So,
we provide a result of existence and uniqueness of solution for nonlinear integral equation
(13).

Observe that solving the equation (13) is equivalent to solving G(x) = 0, where G :
Ω ⊆ C([a, b]) −→ C([a, b]) and

G(x)(s) = x(s)− F (x)(s) (14)

F (x)(s) = sin(πs) + λ

∫ 1

0

cos(πs) sin(πt)x(t)3 dt. (15)

We then apply the study of the last section to obtain different results on the existence
and uniqueness of solution of equation (13), or equivalently a fixed point of F given by
(15), for different values of λ.

First of all, we determine the domain Ω. For this, as F ′ must be ω-Lipschitz, this fact
depends on Ω. Notice that the first derivative of operator (15) is

[F ′(x)y](s) = 3λ cos(πs)

∫ 1

0

sin(πt)x(t)2y(t) dt (16)

and

[(F ′(x)− F ′(y))z](s) = 3λ cos(πs)

∫ 1

0

sin(πt)
(
x(t)2 − y(t)2

)
z(t) dt.

Then, we have

‖F ′(x)− F ′(y)‖ ≤ 3|λ|M(‖x‖+ ‖y‖)‖x− y‖,

where M =

∣∣∣∣ 1∫
0

sin(πt)dt

∣∣∣∣ =
2

π
.
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As a consequence of the last inequality, to obtain the function ω, the quantities ‖x‖
and ‖y‖ must be bounded, for what we need to fix the domain Ω. Besides, as a solution
x∗(s) of the equation must be contained in Ω, a previous location of x∗(s) is usually done.
For this, from (13), it follows

‖x∗‖ ≤ 1 + |λ|M‖x∗‖3 ≤ 1 +
2|λ|
π
‖x∗‖3.

So, we consider the scalar equation deduced from the last expression and given by

1 +
2|λ|
π
t3 − t = 0, (17)

and suppose that equation (17) has at least one positive real solution. We then denote
the smallest positive real solution by ρ1. Obviously, if the last is true, condition (II)
is satisfied, provided that ‖x∗(s)‖ < ρ1, so that if integral equation (13) has a solution
x∗(s) ∈ B(0, ρ1), we can choose

Ω = {x ∈ C([a, b]) : ‖x‖ < ρ}, (18)

for some ρ > ρ1, since Ω is an open domain. As a consequence,

ω(z) =
12|λ|ρ
π

z (19)

and, in addition, ω(tz) ≤ h(t)ω(z) with h(t) = t.
As we can see in Tables 1 and 2, taking as starting functions x0(s) = 0 and x0(s) =

sin(πs), respectively, for different λ values, we obtain existence and uniqueness radii for
a solution. We can observe that the starting function x0(s) = sin(πs) provides us smaller
existence domains than the starting function x0(s) = 0, so that the solution is better
located. However, for the domains of uniqueness of solution, the opposite occurs. This is
because the starting function x0(s) = sin(πs) is closer to the solution and therefore is a
better choice as starting function.

Value of λ ρ1 ρ R R
1
5

1.2467 1.2467 + ε 1.0815 15.2796
1
8

1.1083 1.1083 + ε 1.0232 46.0443
1
10

1.0803 1.0803 + ε 1.0140 74.4242

Table 1: Results for x0(s) = 0 and ε = 0.01

In practice it is not easy to construct iterative scheme (6) for operators defined on
infinite dimension spaces. The main difficulties arise for calculating at each step the
inverse of the linear operator I − F ′(xn) or, equivalently, in solving the associated linear
equation. Next, we approximate a solution of (13).

In this example, we are considering a separable kernel of the form K(s, t) = g(s)h(t),
where g(s) = cos(πs) and h(t) = sin(πt).
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Value of λ ρ1 ρ R R
1
5

1.2467 1.2467 + ε 0.1032 12.0916
1
8

1.1083 1.1083 + ε 0.0559 39.52062
1
10

1.0803 1.0803 + ε 0.0430 65.7901

Table 2: Results for x0(s) = sin(πs) and ε = 0.01

We give an algorithm that defines iterative scheme (6) to solve x = F (x), where

[F (x)](s) = f(s) + λg(s)

∫ b

a

h(t)H(x(t))dt, s ∈ [a, b],

which verifies

[F
′
(x)y](s) = λg(s)

∫ b

a

h(t)H
′
(x(t))y(t)dt, s ∈ [a, b].

In this case, it is possible to obtain the analytical expression for the inverse of I−F ′(x)
for each x ∈ C[a, b]. So, for each y ∈ C[a, b] we have

[I − F ′
(x)]y(s) = y(s)− λg(s)

∫ b

a

h(t)H
′
(x(t))y(t)dt, s ∈ [a, b],

and considering [I−F ′
(x)]y(s) = φ(s) for φ ∈ C[a, b]. Then, if there exists [I−F ′(x)]−1,

we have

[I − F ′(x)]−1φ(s) = y(s) = φ(s) + λg(s)

(∫ b

a

h(t)H ′(x(t))y(t) dt.

)
.

If we denote J =
∫ b
a
h(t)H ′(x(t))y(t) dt, the value of J can be obtained independently

from y. For this, we multiply next-to-last equality by h(s) H ′(x(s)) and integrate it
between a and b, obtaining

J =

∫ b
a
h(t) φ(t) H ′(x(t)) dt

1− λ
∫ b
a
g(t)h(t)H ′(x(t)) dt

,

provided that λ
∫ b
a
g(t)h(t)H ′(x(t)) dt 6= 1. Consequently,

[I − F ′(x)]−1φ(s) = φ(s) + λg(s)

∫ b
a
h(t) φ(t) H ′(x(t)) dt

1− λ
∫ b
a
g(t) h(t) H ′(x(t)) dt

.

Now, as a consequence of the last equation, condition (I), that is required to prove
Theorems 5 and 6, can be omitted, provided that∫ 1

0

g(t) h(t) H ′(x0(t)) dt 6= 1. (20)

13



After that, it is enough to choose some starting point x0(s) for iterative scheme (6) such
that condition (20) is satisfied.

Then, the iterates given by iterative scheme (6) can be calculated in the following way:

1.- First step: calculate the integrals

An =

∫ b

a

h(t)H(xn(t)) dt; Bn =

∫ b

a

h(t)xn(t)H ′(xn(t)) dt;

Cn =

∫ b

a

h(t)f(t)H ′(xn(t)) dt; Dn =

∫ b

a

h(t)g(t)H ′(xn(t)) dt.

2.- Second step: define

yn(s) = f(s) + λ g(s)
An − Bn + Cn

1 − λ Dn

.

3.- Third step: calculate the integrals

A′n =

∫ b

a

h(t)H(yn(t)) dt; B′n =

∫ b

a

h(t)yn(t)H ′(xn(t)) dt;

4.- Fourth step: define

xn+1(s) = f(s) + λ g(s)
A′n − B′n + Cn

1 − λ Dn

.

The results of xn(s) obtained for the starting points x0(s) = sin(πs) and x0(s) = 0 are
shown on Tables 3 and 5 and Tables 4 and 6, respectively, where condition (20) is verified
in both cases.
For solving the iterates given in (6), we have solved the four-step algorithm explained
above, where the integrals have been approximated with Simpson’s quadrature method.
For this method, we have divided the interval [0,1] in 10 subintervals, and in the fourth
step of the algorithm, a tolerance ‖xn(s)− xn−1(s)‖ < 10−32 has been imposed.

14



n xn(s)
0 sin(πs)
1 7.542187500000000e-2 cos(πs) + sin(πs)
2 7.542668890493716e-2 cos(πs) + sin(πs)
3 7.542668890493716e-2 cos(πs) + sin(πs)
4 7.542668890493716e-2 cos(πs) + sin(πs)

Table 3: Solution of xn(s) for starting point x0(s) = sin(πs) and tolerance 10−32.

n xn(s)
0 0
1 7.500000000000000e-2 cos(πs) + sin(πs)
2 7.542668890404322e-2 cos(πs) + sin(πs)
3 7.542668890493716e-2 cos(πs) + sin(πs)
4 7.542668890493716e-2 cos(πs) + sin(πs)

Table 4: Solution of xn(s) for starting point x0(s) = 0 and tolerance 10−32.

Once the solutions for each iteration n have been obtained, we calculate different
norms. The first column shows the difference between two consecutive solutions, and the
second column shows the norm between the solution obtained and the exact solution:

ψ(s) = sin(πs) +
1

3

(
20−

√
391
)

cos(πs).

Once more, our results are shown for both initial points x0(s) mentioned above.

n ‖xn(s)− xn−1(s)‖ ‖xn(s)− ψ(s)‖
1 1.8475e-01 1.179161e-05
2 1.1792e-05 3.144874e-18
3 3.1449e-18 5.843402e-56
4 5.9307e-56 8.869960e-58

Table 5: Errors for starting point x0(s) = sin(πs) and tolerance 10−32.

The Table 7 compares the error obtained with our method with four other methods,
where Method 1 is a scheme based on a combination of the Newton-Kantorovich method
and quadrature methods [14], Method 2 is an iterative scheme based on the homotopy
analysis method [3], Method 3 is an adapted Newton-Kantorovich iterative scheme [8]
and Method 4 is Newton’s method [4]. Some points of the interval [0,1] have been
chosen, and the difference in norm between the exact solution ψ(s) and the approximation
obtained with each method is shown. As we can observe from these results, the error
obtained with our method (6) is noticeably smaller than the ones obtained with the other
four methods, since we obtain an error of order 10−58 with only four iterations of our
method. For this, only the initial point x0(s) = sin(πs) has been used.
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n ‖xn(s)− xn−1(s)‖ ‖xn(s)− ψ(s)‖
1 2.2436e+00 1.045170e-03
2 1.0452e-03 2.189688e-12
3 2.1897e-12 2.013868e-38
4 2.0139e-38 9.920915e-58

Table 6: Errors for starting point x0(s) = 0 and tolerance 10−32.

s Method (6) Method 1 Method 2 Method 3 Method 4
0.0 3.7836e-58 4.98e-02 5.53e-15 5.44e-08 2.87e-30
0.2 3.1862e-58 4.03e-02 4.55e-15 4.40e-08 2.32e-30
0.4 1.5931e-58 1.53e-02 1.77e-15 1.68e-08 8.87e-31
0.6 1.5931e-58 1.53e-02 1.77e-15 1.68e-08 8.87e-31
0.8 3.1862e-58 4.03e-02 4.55e-15 4.40e-08 2.32e-30
1.0 3.7836e-58 4.98e-02 5.53e-15 5.44e-08 2.87e-30

Table 7: Errors ‖x∗(s)− ψ(s)‖ when different methods are applied to equation (13).

3.2 Example 2

Second, we consider the following nonlinear integral equation of Fredholm,

x(s) = s+
3

4

∫ 1
2

− 1
2

estx(t)4 dt, s ∈
[
−1

2
,
1

2

]
, (21)

that has been used in [5]. Observe that, in this case, kernel K(s, t) = est is nonseparable
and operator F defined in (3) is such that F : Ω ⊆ C([−1

2
, 1
2
])→ C([−1

2
, 1
2
]) with

[F (x)](s) = s+
3

4

∫ 1
2

− 1
2

estx(t)4 dt, s ∈
[
−1

2
,
1

2

]
. (22)

Observe that solving the equation (21) is equivalent to solving G(x) = 0, where G : Ω ⊆
C([−1

2
, 1
2
])→ C([−1

2
, 1
2
]) and

G(x)(s) = x(s)− F (x)(s).

Now, we then apply the iterative scheme (6) to obtain a solution of equation (21), or
equivalently a fixed point of F given by (22). As usually for this type of nonlinear
integral equations, according to equation (21), x0(s) = s is a reasonable choice of starting
point.

As kernel K(s, t) = est is nonseparable, the application of iterative scheme (6) for
solving (21) is difficult. Taking into account this fact, we first use Taylor’s series to
approximate K(s, t) = est. So,

K(s, t) = est = K̃(s, t) +R(ε, s, t); K̃(s, t) =
`−1∑
i=0

si ti

i!
, R(ε, s, t) =

esε

`!
s` t`, (23)
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where ε ∈ (min{0, t},max{0, t}), and consider the integral equation

x(s) = s+
3

4

∫ 1
2

− 1
2

K̃(s, t)x(t)4 dt, s ∈
[
−1

2
,
1

2

]
. (24)

If we denote the solutions of (21) and (24) by x∗(s) and x̃(s), respectively, and try to
locate them previously in C([−1

2
, 1
2
]), we see that

‖x∗(s)‖ − 1

2
− 3M

4
‖x∗(s)‖4 ≤ 0 and ‖x̃(s)‖ − 1

2
− 3M̃

4
‖x̃(s)‖4 ≤ 0,

where M = max
s∈[− 1

2
, 1
2
]

∫ 1
2

− 1
2

estdt = 1.010449 . . . and M̃ = max
s∈[− 1

2
, 1
2
]

∫ 1
2

− 1
2

∣∣∣K̃(s, t)
∣∣∣ dt. In addition,

x∗(s) satisfies ‖x∗(s)‖ ≤ 0.594952 . . . = σ∗, where σ∗ is the smallest positive solution of

scalar equation t− 1

2
− 3M

4
t4 = 0, and x̃(s) does ‖x̃(s)‖ ≤ σ̃, where σ̃ is the smallest

positive solution of scalar equation t− 1

2
− 3M̃

4
t4 = 0. We can obtain this last bound

once the value of ` is fixed to obtain K̃(s, t). So, by using that

x∗(s)− x̃(s) =
3

4

∫ 1
2

− 1
2

(
estx∗(t)4 − K̃(s, t)x̃(t)4

)
dt

we can obtain the following approximation

‖x∗(s)− x̃(s)‖ ≤
3
4
Qσ∗4

1− 3
4
M̃ (σ∗3 + σ∗2σ̃ + σ∗σ̃2 + σ̃3)

where Q = maxε∈[− 1
2
, 1
2
]

(
maxs∈[− 1

2
, 1
2
]

∫ 1
2

− 1
2

|R(ε, s, t)| dt
)

= 0.417977 . . .×10−4 and provided

that

M̃
(
σ∗3 + σ∗2σ̃ + σ∗σ̃2 + σ̃3

)
6= 4

3
.

If, for example, we now want to obtain an approximation of the solution x∗(s) of order

10−6, by choosing ` = 4 in (23), we have M̃ = 1.010422 . . . and σ̃ = 0.594943 . . . and we
obtain ‖x∗(s)− x̃(s)‖ ≤ 2.664991 . . .× 10−6.

Hence, if we now look for a solution x̃(s) of (21) by iterative scheme (6), such as
‖x̃(s) − xn(s)‖ ≤ 10−6, by running the required number of iterations n, then we can
assure that

‖x∗(s)− xn(s)‖ ≤ ‖x∗(s)− x̃(s)‖+ ‖x̃(s)− xn(s)‖,

it is of order 10−6, so we have obtained the solution of the main problem with the required
bound of the error.
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Let’s do it for the analyzed case with ` = 4, we apply iterative scheme (6) from
x0(s) = s in order to approximate a solution x̃(s) of integral equation (24) with the
stopping criterion ‖xn(s) − xn−1(s)‖ < 10−w with w >> 6. Then, for example, after
3 iterations we have the approximation x3(s) verifies this fact, with ‖x3(s) − x2(s)‖ ≤
1.33153 . . . × 10−14. So, the approximated solution obtained by the algorithm described
in section 3.1 is given by

x3(s) = 0.0000107161s3 + 0.000840845s2 + 1.00036s+ 0.00942279

and verifies that

‖x∗(s)− x3(s)‖ ≤ ‖x∗(s)− x̃(s)‖+ ‖x̃(s)− x3(s)‖ ≈ 2.664991 . . .× 10−6,

and as a consequence, x3(s) is an approximation of the solution x∗(s) of equation (21) of
order 10−6 as we looked for.

4 Conclusions

In this paper, given a nonlinear Fredholm integral equation, we establish a qualitative
study that provides us the localization of a solution as well as the separation of this
solution from other possible solutions. These results are obtained from the study of
the semilocal convergence of an efficient iterative scheme of third order and a result of
uniqueness of solution obtained for the same iterative scheme. In addition, we used the
iterative scheme considered to approximate a solution of the nonlinear Fredholm integral
equation given, obtaining important results that improve notably those obtained by other
numerical methods.
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