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aUniversitat Politècnica de València, DISCA, Camino de Vera s/n, Edificio 1G, 46022
Valencia, Spain

bQueen’s University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland,
United Kingdom

∗Corresponding author
Email addresses: fsilla@disca.upv.es (Federico Silla), japraga@gap.upv.es

(Javier Prades), mebaydal@disca.upv.es (Elvira Baydal), C.Reano@qub.ac.uk (Carlos
Reaño)

Preprint submitted to Journal of Parallel and Distributed Computing December 17, 2019



Abstract

Traditionally, High-Performance Computing (HPC) has been associated
with large power requirements. The reason was that chip makers of the
processors typically employed in HPC deployments have always focused on
getting the highest performance from their designs, regardless of the energy
their processors may consume. Actually, for many years only heat dissipation
was the real barrier for achieving higher performance, at the cost of higher
energy consumption. However, a new trend has recently appeared consisting
on the use of low-power processors for HPC purposes. The MontBlanc and
Isambard projects are good examples of this trend. These proposals, however,
do not consider the use of GPUs.

In this paper we propose to use GPUs in this kind of low-power processor
based HPC deployments by making use of the remote GPU virtualization
mechanism. To that end, we leverage the rCUDA middleware in a hybrid
cluster composed of low-power Atom-based nodes and regular Xeon-based
nodes equipped with GPUs. Our experiments show that, by making use of
rCUDA, the execution time of applications belonging to the physics domain
is noticeably reduced, achieving a speed up of up to 140x with just one remote
NVIDIA V100 GPU with respect to the execution of the same applications
using 8 Atom-based nodes. Additionally, a rough energy consumption esti-
mation reports improvements in energy demands of up to 37x.

Keywords:
CUDA, rCUDA, low-power processors, physics applications, GPU
virtualization, InfiniBand
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1. Introduction

Recently, a new trend has appeared in the HPC (High-Performance Com-
puting) domain, consisting on the use of low-power processors as a replace-
ment for the traditional x86 mainstream processors, which comprise Intel
Xeon chips requiring up to 145 Watts to work [1]. Examples of this new
trend include the MontBlanc project [2] being developed in the Barcelona
Supercomputing Center, or the Isambard project [3] from the University of
Bristol. Both projects propose the use of massive ARM-based computing
facilities as a way to achieve the computing power required in current and
future data centers. Many other studies also analyzed the usage of low-power
processors for HPC, such as [4], [5], [6], etc.

The most recent of the aforementioned initiatives are supported by the
Cavium ThunderX processor, which provides 48 64-bit ARM cores in a single
chip in the first version of the processor [7] whereas 32 cores are included in
the ThunderX2 version [8]. Furthermore, it is possible to create dual-socket
systems by using these processors. Well renowned companies such as Cray,
HPE or GigaByte are providing the nodes for these projects at the same
time that they have created high performance commercial products based on
these processors [9][10][11].

It is also remarkable that before these 64-bit ARM processors were com-
mercially available, different systems were proposed based on the use of the
Intel Atom processor. Using the Intel Atom processor ensures full compati-
bility for the application codes already developed. Currently, Supermicro has
introduced several of these solutions into the market, such as the Superserver
5039MA16-H12RFT system [12], which comprises 12 Atom sockets providing
a total of 192 cores in a very dense 3U format. The new ARM-based systems
by HPE, Cray or GigaByte are also available in very dense formats.

The reason for the appearance of the new trend mentioned at the be-
ginning of this section is energy consumption. Traditionally, HPC has pri-
oritized performance over energy consumption, thus being associated with
high power demands. In this regard, in order to achieve execution times as
low as possible, powerful (but energy hungry) processors have traditionally
been used. Unfortunately, the energy demands of supercomputers and data
centers reached such a non-sustainable point that the scientific community
shifted the focus to energy-efficiency. One of the consequences of this shift
was the creation of the GREEN500 list [13] in November 2007, which is
the energy-efficient counterpart of the TOP500 list [14], that includes, since
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1993, the most powerful supercomputers in the world just attending to the
computing power they deliver and regardless of the energy they require.

The energy concern is so important that several governments got involved
into the problem. For instance, the U.S. and the U.K. governments cre-
ated new taxes intended for facilities consuming large amounts of electric-
ity [15][16]. These taxes were the consequence of studies such as [17], which
showed that U.S. data centers required 1.5% of the total electricity consumed
in the U.S in year 2005. This amount of energy increased to 2% in 2016 [18].
In a wider perspective, large data centers consumed about 0.5% of the overall
electricity worldwide during year 2005 [19]. This amount increased by 56%
in year 2010 [20].

In this search for energy-efficient computing we should not forget accel-
erators. These devices have shown to be able to noticeably reduce the exe-
cution time of applications while keeping energy consumption at reasonable
levels. GPUs (Graphics Processing Units) are one example of accelerators.
GPUs are widely used in current data centers and supercomputers as a way
to increase their computing capacity (almost 20% of the supercomputers in
the TOP500 list include GPUs). Furthermore, GPUs are very power-efficient
when they are active (6 out of the 10 best supercomputers in the GREEN500
list include GPUs), although they require non-negligible amounts of energy
while idle1. In order to avoid the downside of idle GPUs, GPU virtualization
can be leveraged. By virtualizing GPUs, their utilization is increased [21],
similarly to what happens with traditional CPU virtualization. Furthermore,
it is also possible to enhance GPU virtualization by adding a new feature to
it: remote access [22]. In this way, it is possible to virtualize GPUs and
provide them to applications that are being executed in other nodes of the
cluster. This technique is known as remote GPU virtualization [23], and it
allows to transparently share the GPUs in a server among many applications
running in different nodes of the cluster. The overall effect is that GPU uti-

1When referring to the idle state of GPUs, it is important to distinguish between the
case when they are assigned to an application but they are not performing any computation
and the state when they are not assigned to any application. In the former state, power
consumption may easily reach 50 Watts while in the latter state power consumption is
lower (up to 25 Watts depending on the exact model of GPU). Unfortunately, the state
where a GPU is assigned to an application but it is not performing any computation is
much more frequent than expected [21]. In this way, idle GPUs are, in general terms,
non-power efficient devices.
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lization is noticeably increased, thus reducing the waste of energy caused by
the idle state of GPUs.

The several low-power processor based aforementioned projects (Mont-
Blanc, Isambard) do not consider the use of GPUs. Several might be the
reasons for this decision. For instance, it may be counter intuitive to include
these accelerators, which require large power supplies, in these servers which
are usually equipped with much smaller power supplies. One more reason
might be the lack of enough PCIe lanes to install both a GPU and high per-
formance network card. Another reason for not considering GPUs might be
the compact form factor that is usually employed for these low-power sys-
tems. Regardless of the exact reason, we believe that GPUs can help these
systems to noticeably increase their computing capacity while being power-
efficient. To that end, we propose the use of the remote GPU virtualization
within these systems in order to access high-end GPUs located in regular
x86-based servers.

In this paper we analyze the use of high-end GPUs in the context of these
low-power systems by making use of the rCUDA middleware [24], which
allows applications being executed in a cluster node to transparently use
GPUs located in other nodes of the cluster. To that end, we use low-power
Atom systems by Intel. The aim of this study is to analyze how the use of
high-end remote GPUs can benefit the execution of applications in these low-
power systems. In particular, we will focus on applications from the physics
domain. On the other hand, we make use of four different generations of
NVIDIA GPUs: Tesla K20 GPUs [25], Tesla K40 GPUs [26], Tesla P100
GPUs [27] and Tesla V100 GPUs [28]. Notice that we could have used ARM-
based systems instead of Atom-based ones. It is important to remark that
we do not suggest in this study that the choice of Atoms is better than using
ARM processors. In this paper we do not enter into that discussion. We
simply make use of Atom-based systems because using current application
codes in them is straightforward, thus not requiring any tuning or adaptation
stage of their code.

A preliminary version of this study was presented in [29]. Contrary to
the present paper, that work considered a reduced amount of applications
as well as a smaller amount of GPU generations. Also, the present paper
provides a noticeably more mature performance analysis. In this regard, the
study in [29] used only two applications whereas this paper is based on the
analysis of five different applications. This larger amount of applications
makes the conclusions of this new paper much more solid. On the other
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hand, this paper considers more GPU generations than the study in [29].
Furthermore, this new study presents scalability trends for the considered
applications based on real executions using up to 256 CPU cores distributed
in several x86-based nodes. Finally, the performance analysis in this paper
includes additional metrics, such as efficiency.

The rest of this paper is organized as follows. In Section 2 the neces-
sary background about the hardware and software environment used in this
study is provided. In addition, the main motivation for this study is also
presented. Later, Section 3 presents the performance results for our pro-
posal: using remote high-end GPUs from Atom systems. Section 4 provides
an analysis of how the results in this paper could be applied to very large
low-power processor-based deployments. Finally, Section 5 presents the main
conclusions of this work.

2. Motivation and Background

Section 2.1 explains the rationale for our proposal. Next, we provide an
overview of remote GPU virtualization in Section 2.2.

2.1. Motivation for our Proposal

The aim of the aforementioned proposals for using low-power processors
in the HPC domain is to maintain energy consumption as low as possible,
given that power requirements in general, and energy consumption in partic-
ular, is one of the most important concerns in current data centers. Neverthe-
less, low-power processors usually provide worse performance than traditional
mainstream processors. This is the reason why using GPUs might be very
interesting in this context. However, as mentioned before, there are several
reasons that hinder the use of GPUs in deployments based in low-power pro-
cessors. Thus, in order to combine the best of both approaches (low-power
processors and high-performance GPUs), remote GPU virtualization could
be used, as shown in Figure 1. This figure depicts a cluster based on Atom
processors, consisting of 42 nodes, which is enhanced with some nodes that
contain high-end GPUs, such as the NVIDIA Tesla P100 ones, for instance.
In this way, thanks to the sharing features of the remote GPU virtualization
mechanism, all the 42 Atom nodes can offload, across the network, their com-
putations to the remote high-end GPUs. Furthermore, these high-end GPUs
can be dynamically and concurrently shared among all the Atom nodes. The
overall result is that applications being run in the low-power processors are
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Compact form factor:
3 nodes per row

Network

Atom based servers Servers with GPUs

Figure 1: Atom-based cluster complemented with a few nodes comprising high-end GPUs.
The high-end GPUs are shared among the many Atom nodes thanks to the remote GPU
virtualization mechanism.

accelerated whereas energy-efficiency is maintained because (1) Atom pro-
cessors are more efficient from an energy point of view than traditional HPC
processors and (2) GPUs remain idle much less time because they are con-
currently shared among many applications.

2.2. Selection of the GPU Virtualization Solution

Different solutions have been created for virtualizing GPUs. In the con-
text of the CUDA [30] programming environment, frameworks such as vCUDA [31],
GridCuda [32], DS-CUDA [33], rCUDA [23], GVirtuS [34] or GViM [35] can
be found. In general, all these middleware proposals provide the same API
(Application Programming Interface) as the NVIDIA CUDA Runtime API
[36] does. Actually, they replace the original NVIDIA CUDA Runtime li-
brary by their own implementation. This replacement is their way to virtu-
alize GPUs. Moreover, these solutions also allow GPUs to be concurrently
shared among several applications.

The architecture typically used by these middleware solutions is shown
in Figure 2. It can be seen in this figure that these GPU virtualization
solutions follow a distributed client-server approach. The client side typically
consists of the particular implementation of the NVIDIA CUDA Runtime
library. This client side is installed in the node that executes the application
requesting GPU acceleration. On the other hand, the server side of the
middleware typically consists of a daemon running in the node that owns the
real GPU.

The distributed architecture shown in Figure 2 works as follows: every
time the application performs a call to a CUDA function, that call is received
by the client side of the middleware which forwards it to the server side

7



running in the node owning the GPU. There, the request is interpreted and
forwarded to the GPU. Upon completing the execution of the CUDA function
in the real GPU, the results of such function are returned back from the server
to the client side of the middleware. Finally, the client middleware forwards
those results to the CUDA application.

It is important to notice that these middleware solutions provide GPU
virtualization in a transparent way. That is, applications using remote GPUs
are not aware that their calls to CUDA functions are actually being serviced
by a GPU located in another cluster node instead of by a GPU located in
the local node.

The several GPU virtualization middleware solutions mentioned above
present different features. For example, the vCUDA middleware only sup-
ports the obsolete CUDA version 3.2. Additionally, it implements only an un-
specified subset of the CUDA Runtime API. Furthermore, its communication
protocol includes heavy encoding and decoding stages, which considerable in-
crease overall overhead, thus causing a noticeable reduction in performance.
On the other hand, GViM is based on the obsolete CUDA version 1.1 and
only implements a subset of the CUDA Runtime API. Similarly, GVirtuS
is based on the old CUDA version 6.5 while implementing a small fraction
of the CUDA API. Regarding GridCuda, it supports the obsolete CUDA
version 2.3. Furthermore, there is no public version of this framework which
can be used for testing purposes. Finally, DS-CUDA supports the old version
4.1 of CUDA. This middleware includes support for the InfiniBand network
fabric, although it presents important constraints such as not implementing
data transfers that use host pinned memory.

In this work we use the rCUDA (remote CUDA) middleware because
it is the most well maintained framework among the aforementioned ones

GPU

Application

client engine
CUDA libraries 

server
engine

Hardware

Software

Client side Server side

CUDA API

Network

Figure 2: General architecture of remote GPU virtualization solutions.
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and, additionally, it provides the best performance when compared to other
available remote GPU virtualization solutions [37]. In spite of supporting
version 9.2 of CUDA, rCUDA is binary compatible with CUDA. This means
that the source code of CUDA applications do not have to be modified for
using rCUDA. Moreover, contrary to the rest of remote GPU virtualization
solutions revisited above, rCUDA implements the entire CUDA API (ex-
cept for graphics functions), also providing full compatibility for the other
CUDA libraries such as cuSPARSE, cuDNN, cuSOLVER, cuFFT, cuBLAS,
etc. Regarding network support, rCUDA features different interconnects,
such as TCP/IP, InfiniBand and RoCE. The support for InfiniBand and
RoCE network fabrics includes the use of the RDMA features provided by
these networks. It is important to notice that support for each of these net-
works has been implemented and tuned in a specific way so that as much
performance as possible is obtained from the underlying interconnect [38][39].

3. Offloading Computations from Atom nodes to Remote GPUs

In this section we provide the performance measurements for five differ-
ent applications when executed using both Atom CPUs and remote GPUs.
Nevertheless, we first describe the hardware and software configurations used
in the experiments.

3.1. Hardware and Software Environment

This section presents the details about the hardware and software em-
ployed in this study. Experiments have been carried out in a heterogeneous
cluster containing 8 Atom-based nodes and four different kinds of regular
Xeon-based nodes, owning four different generations of NVIDIA GPUs. The
8 Atom-based nodes were used to execute the applications, either using only
CPU cores or using the remote GPUs in the Xeon-based nodes. Atom-based
nodes are populated with one C2750 Atom processor, which contain 8 cores
working at 2.4 GHz consuming 20 Watts. These nodes have one PCIe v2 x8
connector, where a QDR InfiniBand network adapter is plugged, providing
40 Gb/s2. On the other hand, the four different kinds of regular Xeon-based

2Notice that more modern Atom-based systems are available in the market. For in-
stance, the C3955 Atom processor contains 16 cores working at 2.10 GHz and is equipped
with 16 PCIe v3 lanes. However, at the time of writing this paper, the authors only had
access to nodes based on the C2750 Atom processor.
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nodes contain two 6-core Intel Xeon E5-2620 v2 processors, 32 GB of DDR3
SDRAM memory at 1600 MHz, and one Mellanox ConnectX-3 VPI single-
port InfiniBand adapter (FDR InfiniBand). The first kind of these nodes
contains Tesla K20 GPUs. The second kind of these nodes contains Tesla
K40 GPUs. The third kind of these nodes contains Tesla P100 GPUs. The
fourth kind of these nodes contains Tesla V100 GPUs. These Xeon-based
nodes equipped with GPUs will be used as rCUDA servers in order to pro-
vide GPU services to the Atom-based nodes. Finally, all these nodes (both
Atom-based and Xeon-based) are connected by a Mellanox switch SX6025
with FDR compatibility (a maximum rate of 56 Gb/s). Additionally, a set
of 32 Xeon-based nodes without GPUs will also be used for some of the
experiments in order to execute the applications with up to 256 Xeon cores.

The CentOS 7.3 operating system and the Mellanox OFED 2.4-1.0.4 were
used along with the NVIDIA driver 365.96 and CUDA 8.0. The rCUDA
version used is 16.11. Regarding the applications to be used in the test, we
have used five applications belonging to the physics domain:

1. Neutral: a simplified Monte Carlo neutral particle transport solver
that supports a number of physical processes as particle histories are
tracked [40].

2. Hot: a simplified heat diffusion application that uses a conjugate gra-
dient solver without a pre-conditioner to implicitly solve the diffusion
equation on a structured grid [41].

3. CloverLeaf: solves the compressible Euler equations on a Cartesian
two-dimensional grid [41].

4. Flow: is a Lagrangian-Eulerian remap hydrodynamics code that is
staggered in both space and time [42].

5. TeaLeaf: solves the linear heat conduction equation on a two dimen-
sional spatially decomposed regularly grid using a 5 point stencil with
implicit solvers [43].

All the five applications provide support for performing their computa-
tions on CPU (single node an also multi-node distributed with MPI [44],
except for the Neutral application) as well as for carrying out their compu-
tations on GPU. Additionally, all the applications are able to use multiple
GPUs except the Neutral and Hot applications, which can only use a single
GPU. Therefore, these applications are representative of realistic scenarios
for comparing the performance of low-power processors deployments when
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Figure 3: Execution time of the Neutral application when scaled up to 8 Atom cores in
a single node. Different benchmarks for the application are considered as well as several
problem sizes for each benchmark.

only CPUs are used with the performance of using remote CUDA GPUs
located in regular Xeon-based codes.

3.2. Neutral

Figure 3 shows the execution time of the Neutral application when exe-
cuted in a single Atom-based node with up to 8 cores. Four different problems
are executed in the experiments:

1. center square problem (csp): particles stream until they encounter
a region of high density in the center of the slab.

2. scatter: particles will mostly collide within the slab.

3. split: particles are spread evenly in regions of high and low density to
match the number of events of each type.

4. stream: particles stream across the mesh multiple times per timestep,
colliding infrequently.

In addition to use four different benchmarks for the Neutral application,
each of the benchmarks are configured with three problem sizes, which ba-
sically differ in the amount of particles considered during the simulation.
In this regard, all the problem sizes use a 4000 x 4000 two dimensional
grid. Problem size 1 makes use of 250,000 particles. Problem size 2 considers
2,500,000 particles. Finally, problem size 3 uses 25,000,000 particles in the ex-
ecutions. It can be seen in Figure 3 that execution time grows super-linearly
with problem size for all the four benchmarks. Additionally, increasing the
amount of cores noticeably reduces total execution time. Notice that this
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Figure 4: Execution time of the Neutral application when executed in an Atom system
using a remote GPU thanks to the rCUDA middleware. Different benchmarks for the ap-
plication are considered as well as several problem sizes for each benchmark. Experiments
are conducted on four generations of GPUs.

application does not allow the use of the MPI library in order to distribute
the simulations across several nodes [40]. Therefore, the performance of this
application is constrained to the computing resources of a single node.

Figure 4 depicts the execution time of the Neutral application for the four
different benchmarks considered when a remote GPU is used thanks to the
rCUDA middleware. In this case, the application is executed in an Atom
node by using a single CPU core whereas a remote GPU located in a regular
Xeon node is used to carry out the computations. Notice that this application
is only able to use a single GPU. Furthermore, the QDR InfiniBand network
is leveraged to access the remote GPU. The same three problem sizes used
in the previous experiments are also used in this case. Four generations of
GPUs are used in the performance analysis.

It can be seen in Figure 4 that execution time is reduced as better GPUs
are used to execute the Neutral application. Actually, we can see a large
performance improvement when moving from the K20 and K40 GPUs (Kepler
architecture) to the P100 GPU (Pascal architecture). The Volta architecture
used in the V100 GPU further contributes to reduce total execution time.
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Figure 5: Speed up attained by the Neutral application when executed with different
generations of remote GPUs. Speed ups are relative to the execution time obtained with
the K20 GPU.
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Figure 6: Speed up attained by the Neutral application when executed with different
generations of remote GPUs. Speed ups are relative to the execution time obtained when
using 8 Atom cores in a single node.

Figure 5 shows the speed up achieved by each of the GPU generations with
respect to the K20 GPU. It is remarkable the very different speed up attained
by each of the GPU generations for each of the benchmarks considered to test
the Neutral application. In this regard, the V100 GPU, for instance, achieves
more than 25x speed up for the scatter problem whereas it only achieves 4x
speed up for the stream benchmark. Actually, for this benchmark, all the
GPU models behave similarly in terms of speed up.

Figure 6 presents the most interesting results in this analysis: the speed
up obtained when using a remote GPU with rCUDA instead of performing
the computations using the 8 CPU cores of the low-power Atom-based nodes.
Remember that this is our proposal in this paper: using remote GPU to boost
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the performance of low-power deployments. It can be seen in Figure 6 that
using a remote GPU is noticeable beneficial, specially when using the recent
generations of GPUs. In this regard, the V100 GPU reports an speed up of
up to 1600x for the scatter benchmark. Notice that speed ups in Figure 6
increase with problem size. Therefore, we can expect that for bigger problem
sizes the benefit of using a remote GPU will be even more remarkable even
for older GPU generations.

3.3. Hot

Figure 7 shows the execution time of the Hot application. Contrary to
the Neutral application, the Hot application can use MPI in order to dis-
tribute the computations across a large number of cores. Figure 7 shows the
execution time of the Hot application when up to 64 Atom cores are used
(up to 8 Atom-based nodes in our testbed). An important concern is related
to the way of distributing the cores participating in the execution of the
application across the nodes of the testbed. In this regard, two approaches
can be followed. In the first approach, nodes are increasing filled up as we
are using more and more cores. In this way, when up to 8 cores are used
to execute the application, then a single node is used (remember that each
node has eight Atom cores). In the case of using 16 cores, two nodes are
used, and so on. The second approach for distributing cores across nodes is
spreading the cores across as many nodes as possible. In this way, when two
cores are used, two different nodes are employed. Similarly, when 4 cores
are used to execute the application, four different nodes are used (each node
hosts one of the cores). Given that our testbed has only 8 nodes, when 16
cores are used for executing the Hot application, 2 cores are located at each
node. We can refer to the first approach as the “dense” approach whereas the
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second approach can be referred to as the “spread” approach. Each of them
has benefits and drawbacks. The dense approach reduces inter-node com-
munication while reducing the benefit of the processor caches because cache
lines will probably stay for shorter in the cache. On the contrary, the spread
approach increases inter-node communications but might accelerate compu-
tations because smaller competition exists among cores for the cache space.
At the end, depending on the application trade-off between communications
and computations, one approach might be better than the other.

Figure 7 shows the execution time of the Hot application when the dense
approach is followed (lines in the figure). Additionally, bars in the figure show
the benefit, in percentage, of using the spread approach with respect to using
the dense core distribution. Four problem sizes are considered. Differences
among problem sizes mainly consist on using a larger two dimensional grid.
Table 1 shows the grid dimensions for each of the problem sizes considered.
It can be seen in Figure 7 that is noticeably reduced with the number of
cores involved in the execution of the application. Also, it can be seen that
differences in performance between the two core distribution policies is not
larger than 6%. This behavior is similar to the one obtained when executing
the application in a cluster of regular Xeon-based nodes (Figure 8). In this
case, up to 32 nodes are used to execute the application. Therefore, when 32
or less cores are involved in the execution of the application, only one core
per node is used.

The Hot application is able to offload the computations to a single GPU.
Figure 9 shows the execution times attained by this application when the
same four GPU generations used in the previous section are used with rCUDA
remotely. As with the Neutral application, results in Figure 9 are obtained
by running the application using a single core in the Atom-based node while
using a remote GPU located in a regular Xeon-based node. It can be seen that
using newer GPU generations reduces execution time, specially for the larger

Table 1: Most relevant parameters used for the executions of the Hot application.

Size Spatial dimensions # iterations

1 512 x 512 10
2 1024 x 1024 10
3 2048 x 2048 10
4 4096 x 4096 10
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Figure 8: Execution time of the Hot application when scaled up to 256 Xeon cores. Dif-
ferent problem sizes are considered.
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Figure 9: Execution time of the Hot application when executed in an Atom system using a
remote GPU thanks to the rCUDA middleware. Several problem sizes for each benchmark.
Experiments are conducted on four generations of GPUs.

problem sizes. Figure 10 shows the speed up attained by each of the GPU
generation with respect to the use of the K20 GPU. If compared to the speed
ups obtained for the Neutral application, it can be seen that in the case of
the Hot application the speed ups are smaller. In this case, communications
with the remote GPU represent a larger fraction of the execution time, thus
reducing the benefits of the newer GPU generations.

Finally, Figure 11 shows the most important kind of results in this study:
the speed up of using a remote GPU with respect to using the CPU cores
to carry out the computations of the application. In this case, given that
the Hot application is able to scale to a large amount of nodes thanks to
the use of the MPI library, speed ups shown in Figure 11 are relative to
the execution times of the application when 64 Atom cores are used. It can
be seen in the figure that speed ups grows with problem size because the
ratio between computation and communication is reduced and this benefits
to rCUDA even using a relatively slow network as QDR InfiniBand. On the
other hand, it is remarkable the large speed up attained by the V100 GPU for
the largest problem size considered with respect to the old K20 GPU model.
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3.4. CloverLeaf
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Figure 12: Execution time of the CloverLeaf application when scaled up to 64 Atom cores.
Different problem sizes are considered.
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Table 2: Most relevant parameters used for the executions of the CloverLeaf application.

Size Spatial dimensions # iterations

2 1920 x 960 2955
4 1920 x 1920 2955
8 3840 x 1920 2955
16 3840 x 3840 2955
32 7680 x 3840 2955
64 7680 x 7680 2955
128 15360 x 7680 2955

Figure 12 shows the execution time of the CloverLeaf application when
executed with up to 8 Atom-based nodes (8 cores per node) using the dense
policy described before. Different problem sizes are considered in the figure
in order to better analyze the scalability of this application. Table 2 shows
the parameters used for each of the problem sizes depicted in Figure 12. It
can be seen in the table that larger problem sizes translate into a larger
cartesian 2D grid, although the amount of iterations performed for all the
sizes is the same.

It can be seen in Figure 12 that the scalability of the application is very
good: as the amount of cores is increased, the execution time of the appli-
cation is proportionally reduced. Furthermore, the application also scales
very well according to problem size: as problem size increases, execution
time increases proportionally. On the other hand, and contrary to the Hot
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Figure 14: Execution time of the CloverLeaf application when executed in an Atom system
using up to 8 remote K20 GPUs thanks to the rCUDA middleware. Different problem
sizes are considered.
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Figure 15: Analysis of the execution time of the CloverLeaf application when executed in
an Atom system using K20 remote GPUs. Different problem sizes are considered.

application, in general the spread distribution of cores among nodes slows
down the execution of the application. This behavior is very different to the
one obtained when using up to 256 Xeon cores to execute the application
(Figure 13) where the usage of the spread policy noticeably improves per-
formance when the sharing degree is small. Notice, however, that the Xeon-
based cluster makes use of an FDR InfiniBand network fabric. Additionally,
the characteristics of the processors and the main memory bandwidth are
also different. Thus, it is not surprising the different behavior.

Figure 14 shows the execution time when the CloverLeaf application is
executed using up to 8 remote K20 GPUs thanks to the rCUDA middleware.
In this experiments, each of the GPUs is driven by a single core. Therefore,
the amount of CPU cores equals the amount of GPUs used in each of the
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Figure 16: Execution time of the CloverLeaf application when executed in an Atom system
using up to 8 remote K40 GPUs thanks to the rCUDA middleware. Different problem
sizes are considered.

0

1

2

3

4

5

1 2 4 8

Sp
ee

d
 u

p

Number of GPUs

Size 2d Size 4d Size 8d Size 16d

Size 32d Size 64d Size 128d Size 2s

Size 4s Size 8s Size 16s Size 32s

Size 64s Size 128s

(a) Speed up

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8

%
 L

o
ss

 s
p

ee
d

 u
p

 r
es

p
ec

t 
to

 t
h

eo
re

ti
ca

l

Number of GPUs

Size 2d

Size 4d

Size 8d

Size 16d

Size 32d

Size 64d

Size 128d

Size 2s

Size 4s

Size 8s

Size 16s

Size 32s

Size 64s

Size 128s

(b) Loss in speed up

Figure 17: Analysis of the execution time of the CloverLeaf application when executed in
an Atom system using K40 remote GPUs. Different problem sizes are considered.

executions. Additionally, as for the CPU-based executions, two different
policies can be followed to locate the CPU cores. In the “dense” approach,
all the processes run in the same node (the Atom-based nodes used in this
paper have 8 cores). In the “spread” approach, each of the processes of
the application are placed in a different Atom-based node. Figure 14 also
shows the percentage of improvement of using the spread configuration with
respect to using the dense approach. Several conclusions can be derived
from Figure 14. The first one is that execution times for small problem
sizes are not improved as more GPUs are used. On the contrary, it can be
seen that for the smallest problem size, execution times are worsened. The
second conclusion that can be derived from Figure 14 is that, for the larger
problem sizes, execution time is proportionally reduced as the amount of
remote GPUs is increased. Finally, it can also be seen in the figure that the
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Figure 18: Execution time of the CloverLeaf application when executed in an Atom system
using P100 remote GPUs. Different problem sizes are considered.

benefit of the spread approach is larger when 8 remote GPUs are used. The
reason for this bigger improvement is that when all the cores are placed in the
same node, all the data transfers to the remote GPUs (located in different
remote nodes) are sequentially performed because there is only one network
interface in the node. This makes that data transfers to/from the remote
GPUs become an important bottleneck. On the contrary, when cores are
distributed across different nodes, the larger amount of network interfaces to
concurrently communicate with remote GPUs improves overall performance.

Figure 15 further analyzes the results presented in Figure 14. On the
one hand, Figure 15(a) shows the speed up attained as more GPUs are used.
It can be seen in this figure that speed up does not reach the amount of
GPUs used in the execution of the application. For instance, when 8 remote
K20 GPUs are used, speed up for the largest problem size is about 5x. This
means that some speed up has been lost with respect to the theoretical one.
Figure 15(b) shows this loss in speed up. It can be seen in the figure that
the loss in speed up is reduced as problem size increases.

Figures 16 and 17 present similar analysis although in this case up to 8 re-
mote K40 GPUs are used. In this case, it can be seen in Figure 16 that using
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Figure 19: Execution time of the CloverLeaf application when executed in an Atom system
using a V100 remote GPU. Different problem sizes are considered.

a large amount of remote K40 GPUs with the dense approach is not bene-
ficial except for the largest problem size. The reason is that the K40 GPU
presents a better performance than the K20 GPU whereas the bandwidth
to the remote GPU remains the same (QDR InfiniBand network interface
at the Atom node). Therefore, the worse ratio between communication and
computation experienced by the CloverLeaf application causes that the rel-
ative weight of data transfers increases, thus reducing the benefit of using a
large amount of remote K40 GPUs.

Figure 18 shows a similar analysis when up to 2 remote P100 GPUs
are used (in this case we present results for up to 2 remote P100 GPUs
because no more P100 were available in our cluster). Similar conclusions to
those derived for the case of using remote K20 and K40 GPUs can be drawn
also in this case. Additionally, Figure 19 presents the execution time of the
CloverLeaf application when a remote V100 GPU is used (only one V100
GPU is available in our cluster).
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Comparing the execution times when using CPUs and when using remote
GPUs presented in the previous figures (Figures 12 to 19), it can be quickly
seen that execution times when remote GPUs are used are noticeable smaller.
Indeed, noticeable speed ups are achieved, as shown in Figure 20. This figure
depicts the execution time for the largest problem size when 64 Atom cores
are used and compares that result against the times required when making
use of remote GPUs. The spread policy has been used for locating the pro-
cesses that drive the remote GPUs. The figure also shows the achieved speed
up. It can be seen that just by using two remote P100 GPUs provides 15x
smaller execution times with respect to the case of using 64 Atom cores. Sim-
ilarly, using a single remote V100 translates into 14x speed up with respect
to using 8 Atom-based nodes.

3.5. Flow

The performance of the Flow application follows a similar trend to that
of the CloverLeaf one. Figure 21 shows the execution times for the different
problem sizes described in Table 3 when up to 64 Atom cores are used. It can
be seen that this application presents similar scalability features to those of
the CloverLeaf application. This can also be seen in Figure 22, that depicts
the performance of the Flow application when executed with up to 256 Xeon
cores using the FDR InfiniBand fabric.

When the Flow application is executed by using remote GPUs with
rCUDA, execution times are noticeably smaller, as shown in Figure 23 for
the remote K20, K40 and P100 GPU cases. Similarly to the CloverLeaf

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 4 8 16 32 64

%
 Im

p
ro

ve
m

en
t 

Sp
re

ad
 o

ve
r 

D
en

se

Ex
ec

u
ti

o
n

 t
im

e 
(s

)

Number of cores

% Imp. Size 1 % Imp. Size 2
% Imp. Size 3 % Imp. Size 4
Size 1 dense Size 2 dense
Size 3 dense Size 4 dense

Figure 21: Execution time of the Flow application when scaled up to 64 Atom cores.
Different problem sizes are considered.
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Table 3: Most relevant parameters used for the executions of the Flow application.

Size Spatial dimensions # iterations

1 4000 x 4000 2000
2 6000 x 6000 2000
3 8000 x 8000 2000
4 10000 x 10000 2000

application, using a large amount of remote GPUs reports an increment in
the execution time when the dense policy is used. This can be seen in Fig-
ures 23(a), 23(d) and 23(g) for the three GPU models. The increment in
execution time is more noticeable for smaller problem sizes. Nevertheless,
when the spread policy is considered, using more GPUs is beneficial. This
can be seen in Figures 23(b), 23(e) and 23(h) where the speed up attained
by the spread policy increases as the amount of GPUs used in the execution
of the application increases.

Regarding the usage of the remote V100 GPU available in our testbed,
Figure 24 shows the execution times of the Flow application for all the four
problem sizes considered. It can be seen in the figure that execution time
increases with problem size, as expected. However, execution times when
the remote V100 GPU is used are noticeably lower than for the other GPU
models, specially for the oldest ones (K20 and K40).

Figure 25 compares the execution time for the largest problem size when
only CPU cores are used against those achieved when the application is
executed by using remote GPUs. In the case of the CPU-based executions,
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Figure 22: Execution time of the Flow application when scaled up to 256 Xeon cores.
Different problem sizes are considered.
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Figure 23: Execution time and analysis of the Flow application when executed in an Atom
system using remote GPUs. Different problem sizes are considered.

all the 64 Atom cores across the 8 nodes of the testbed are used, as in the case
of the CloverLeaf application presented in the previous section. On the other
hand, similarly to what we did in the previous section, results for GPU-based
executions use the spread policy where each of the processes driving a GPU
is placed in a different node. It can be seen in Figure 25 that 27x smaller
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Figure 24: Execution time of the Flow application when executed in an Atom system
using a V100 remote GPU. Different problem sizes are considered.
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Figure 25: Speed up obtained when executing the Flow application using up to 4 different
generations of remote GPUs. Different problem sizes are considered.

execution times are obtained when using just two remote P100 GPUs. It is
remarkable that using a single remote V100 GPU located in a Xeon node
reports a speed up of 24x.

3.6. TeaLeaf

Similarly to the CloverLeaf and Flow applications, we can perform a
CPU versus GPU analysis for the TeaLeaf application. In this case, we have
used 5 different problem sizes for the executions of the TeaLeaf application.

Table 4: Most relevant parameters used for the executions of the TeaLeaf application.

Size Spatial dimensions # iterations

1 10 x 10 10000
2 250 x 250 10000
3 1000 x 1000 10000
4 4000 x 4000 10000
5 10000 x 10000 10000
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Figure 26: Execution time of the TeaLeaf application when scaled up to 64 Atom cores.
Different problem sizes are considered.
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Figure 27: Execution time of the TeaLeaf application when scaled up to 256 Xeon cores.
Different problem sizes are considered.

The difference among the several problem sizes is the dimension of the two-
dimensional spatial grid used in the simulations. Table 4 shows the exact
dimensions for each of the problem sizes. It can be seen in the table that the
spatial dimensions for the different problem sizes encompasses a large size
variety.

Figure 26 shows the execution time of the TeaLeaf application when scaled
up to 64 Atom cores across all the 8 nodes in our testbed. As in previous
sections, we present with lines the execution times obtained with the dense
policy whereas bars represent the percentage of improvement attained by
the spread policy. It can be seen in the figure that using a larger amount
of Atom cores reduces the execution time, as expected. However, differences
in performance among both process distribution policies depend on problem
size. A similar behavior is obtained when the TeaLeaf application is executed
with up to 256 Xeon cores in a cluster leveraging the FDR InfiniBand network
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Figure 28: Execution time of the TeaLeaf application when executed in an Atom system
using up to 8 remote K20 GPUs thanks to the rCUDA middleware. Different problem
sizes are considered.
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Figure 29: Analysis of the execution time of the TeaLeaf application when executed in an
Atom system using K20 remote GPUs. Different problem sizes are considered.
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Figure 30: Execution time of the TeaLeaf application when executed in an Atom system
using up to 8 remote K40 GPUs. Different problem sizes are considered.

fabric, as shown in Figure 27.
Similarly to the CloverLeaf and Flow applications, the TeaLeaf appli-
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Figure 31: Analysis of the execution time of the TeaLeaf application when executed in an
Atom system using K40 remote GPUs. Different problem sizes are considered.
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Figure 32: Execution time of the TeaLeaf application when executed in an Atom system
using up to 2 remote P100 GPUs. Different problem sizes are considered.

0

20

40

60

80

100

1 2 3 4 5

Ex
ec

u
ti

o
n

 t
im

e 
(s

)

Size

Size

Figure 33: Execution time of the TeaLeaf application when executed in an Atom system
using a remote V100 GPU. Different problem sizes are considered.

cation allows to use multiple GPUs. As it was the case for the previous
applications, each of the GPUs is driven by a different process. Thus, in
order to use multiple GPUs we must leverage the MPI library. Figure 28
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Figure 34: Speed up obtained when executing the TeaLeaf application using up to 4
different generations of remote GPUs. Different problem sizes are considered.

presents the execution time of the TeaLeaf application when using up to 8
remote K20 GPUs. It can be seen that using 8 GPUs is not beneficial in
the case of applying the dense process distribution policy. On the contrary,
when the spread policy is used, performance is noticeably improved for the
larger problem sizes, as shown in Figure 29.

Figures 30 and 31 show a similar analysis when up to 8 remote K40
GPUs are used for executing the TeaLeaf application. It can be seen in these
figures that a similar behavior is obtained. On the other hand, Figure 32
presents execution time when up to two remote P100 GPUs are used to
execute the application. It can be seen in this figure that using the spread
policy reports lower execution times for two remote GPUs with respect to the
dense policy. However, in all cases, using two remote P100 GPUs increases
execution times. The reason is that problem sizes are too small for this GPU.
Similar conclusions about the small size of the problems considered can be
derived from Figure 33, where the extraordinary performance of the V100
GPU is hidden behind the communications between the Atom node and the
remote GPU.

Finally, Figure 34 presents the main goal of this paper: comparing the
performance of using CPU-only executions against the performance of using
GPU-based executions in low-power processors thanks to the rCUDA mid-
dleware. It can be seen in the figure that a noticeable speed up is attained
when the recent V100 GPU model is used to execute the TeaLeaf application.
This result is aligned with the results obtained in previous sections.
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Figure 35: Speed up attained by the Neutral application when scaled up to 8 Atom cores
in a single node. Different benchmarks for the application are considered as well as several
problem sizes for each benchmark.
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Figure 36: Projection of the execution time of the Neutral application over a large amount
of Atom cores. Comparison against the execution time using one remote V100 GPU.

4. Projecting Performance on Larger Systems

All the five applications analyzed in the previous section present good
scalability properties. This makes possible to carry out performance esti-
mations for larger systems composed of a very large amount of Atom-based
nodes. Additionally, those estimations can be compared against the per-
formance of these applications when using remote GPUs. In this section
we compare those estimations with the performance achieved when a single
V100 GPU is used with the rCUDA middleware.

Figure 35 shows the speed up experienced by the Neutral application
when the amount of cores used to execute it is increased (remember that this
application did not use MPI and therefore it is constrained to a single node).
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Figure 37: Speed up attained by the Hot application when scaled up to a large amount of
cores. Different problem sizes are considered.
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Figure 38: Projection of the execution time of the Hot application over a large amount of
Atom-based nodes. Comparison against the execution time using one remote V100 GPU.

It can be seen that the Neutral application presents very good scalability fea-
tures. Figure 36 shows the performance estimation for the four benchmarks
considered when up to 2048 Atom cores are used. The largest problem size
has been used for these estimations. Notice that currently it is impossible to
integrate 2048 Atom cores in a single node. Thus, the results in Figure 36
show how beneficial is to use remote GPUs with rCUDA.

Figure 37 shows the scalability of the Hot application when executed with
up to 64 Atom cores and with up to 256 Xeon cores. It can be seen that this
application does not present the extraordinary scalability characteristics of
the Neutral application. Figure 37 shows that relative speed up is reduced
as more cores are used for executing the application. For the largest prob-
lem size, loss in speed up gets steady in about 15%. Taking this trend in
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Figure 39: Speed up attained by the CloverLeaf application when scaled up to a large
amount of cores. Different problem sizes are considered.

consideration, we can estimate the performance of the Hot application for a
very large amount of Atom cores, as show in Figure 38. It can be seen in
this figure that only when the amount of nodes is 256 or larger (2048 Atom
cores), CPU performance is better than that obtained by using a single re-
mote V100 GPU. Again, this figure shows that introducing GPU acceleration
in low-power Atom-based clusters is very beneficial.

A similar analysis can be carried out for the CloverLeaf application. Fig-
ure 39 shows that this application presents worse scalability features than the
Hot application. As shown in the figure, not only the loss in speed up is larger
but this loss increasingly grows with the number of cores used for executing
the application. Thus, it is expected that for core counts larger than the ones
shown in Figure 39, speed up is increasingly reduced. In any case, taking
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Figure 40: Projection of the execution time of the CloverLeaf application over a large
amount of Atom-based nodes. Comparison against the execution time using one remote
V100 GPU.

into account the loss in speed up obtained for the 64-Atom core executions
in Figure 39, it is possible to estimate the performance of the CloverLeaf ap-
plication. Notice that this would be an optimistic estimation, which actually
represents a worst case for the comparison carried out in Figure 40. This
figure shows that only when 128 Atom-based nodes are used, performance of
CPU-based executions is better than that of GPU-based executions using a
remote V100 GPU.

On the other hand, as in the case for previous applications, given the
good scalability properties of the Flow application, it is possible to make
estimates about the execution time of this application when a very large
amount of Atom-based systems are used to execute it using only CPUs.
Additionally, it is also possible to analyze the scalability trends of the Flow
application as it has been done with the previous ones. Figure 41 shows
how this application scales in performance, both for Atom-based systems as
well as for Xeon-based deployments, when the dense core allocation policy is
considered. As it was the case for the CloverLeaf application, performance
loss is dependent on the number of cores used for executing the application.
It can be clearly seen in Figure 41 that speed up is reduced as more and more
cores are involved in the execution.

Assuming a constant performance loss equal to that shown in Figure 41(a)
for 64-core executions, we can estimate the performance of the Flow appli-
cation for very large system deployments. Notice that this would be an
optimistic estimation because, as shown in Figure 41, it is expected that loss
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Figure 41: Speed up attained by the Flow application when scaled up to a large amount
of cores. Different problem sizes are considered.
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Figure 42: Projection of the execution time of the Flow application over a large amount of
Atom-based nodes. Comparison against the execution time using one remote V100 GPU.

in performance would be larger beyond 64-core executions.
Figure 42 depicts such estimation for executions with up to 256 Atom-

based nodes (up to 2048 Atom cores). It can be seen in Figure 42(b) that only
when the Flow application is executed with 256 Atom nodes, execution time is
smaller than when a single remote V100 GPU is used. These results are very
important from the point of view of energy consumption given that, making
a rough estimation, 256 Atom-based nodes consume at least 5120 Watts
(considering only the power required by the CPU sockets, which is 20 Watts
per node and excluding power consumption of main memory), whereas using
a single remote V100 GPU requires about 530 Watts (250 Watts for the GPU,
plus two Xeon sockets requiring 140 Watts each of them; as in the previous
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Figure 43: Speed up attained by the TeaLeaf application when scaled up to a large amount
of cores. Different problem sizes are considered.

case, power required by main memory is excluded in this rough estimation).
According to this simple estimation, using a remote V100 GPU reports a
reduction in energy consumption of about 10x. Notice that we should add to
these numbers the power required by other elements such as main memory.
Considering also the power consumption of those other elements, it is clear
that using remote GPUs is advantageous from an energy consumption point
of view, although more accurate energy measurements should be carried out.
This reasoning is very important because it demonstrates that enhancing
low-power Atom-based deployments with rCUDA provides an extraordinary
reduction in energy consumption.

Finally, a similar analysis can be carried out for the TeaLeaf application.
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Figure 44: Projection of the execution time of the TeaLeaf application over a large amount
of Atom-based nodes. Comparison against the execution time using one remote V100 GPU.

Figures 43 and 44 present, respectively, the scalability characteristics of this
application and the performance estimations. It can be seen that using a
single remote V100 GPU is a better option in terms of performance than
using 1024 Atom-based nodes. This would report a 37x improvement in terms
of energy consumption (according to the rough estimation made before).

5. Conclusions

Recent proposals for reducing the energy consumption of large HPC de-
ployments consider the use of low-power processors instead of using the tra-
ditional power-hungry ones. However, these proposals do not consider the
usage of GPUs, which in general are power-efficient while in use.

In this paper we have analyzed the usage of such accelerators by making
use of the remote GPU virtualization technology. To that end we have ana-
lyzed the behavior of five applications belonging to the physics domain when
executed in a cluster based on Atom processors. We have also considered the
use of four generations of remote mainstream GPUs with rCUDA.

Results show that it is advantageous to use remote GPUs for improving
the performance of the physics applications evaluated, even when the network
fabric is a QDR InfiniBand providing 40 Gbps. In terms of energy consump-
tion, a rough estimation shows that required energy can be reduced by an
order of magnitude. As for future work, the use of better network technolo-
gies should be investigated as well as the benefits provided by multitenancy
(several applications sharing the same remote GPU) [45] [46].
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