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ABSTRACT: Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction sys-

tems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin

boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management

of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a

challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently,

postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a meth-

odology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for

local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model

by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the

pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared

to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to

provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also

outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping be-

tween large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can

adapt its input set to increase the skill of postprocessed forecasts.
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1. Introduction
Predicting the hydrological response in a river basin over the

coming seasons can be of significant added value for water

resources management (Contreras et al. 2020; Lavers et al.

2020). Recent investigations have demonstrated the benefits

from the use of seasonal streamflow forecasting services at

large (i.e., continental) and regional scales (Crochemore et al.

2020; Y. Li et al. 2017; Pechlivanidis et al. 2020; Wanders et al.

2019). Statistical streamflow forecasting approaches commonly

relying on stochastic modeling techniques (Foster et al. 2018;

Pianosi and Soncini-Sessa 2009; Pina et al. 2017) have re-

cently been complemented by forecasting services driven by

seasonal dynamic prediction systems (Arnal et al. 2018;

Johnson et al. 2019; MacLachlan et al. 2015). A number of

applications of seasonal forecast information for decision-

making can be found in water-related sectors, i.e., urban

water supply (Guo et al. 2018), hydropower (Giuliani et al.

2020; Raso and Malaterre 2017; Sreekanth et al. 2012; Wu

et al. 2016), agriculture and droughts (Brown and Rogers

2006; Y. Li et al. 2017;Wetterhall et al. 2015), flood protection

(Arnal et al. 2016; Ficchì et al. 2016; Neumann et al. 2018b),

and transport (Meißner et al. 2017). However, the potential of

seasonal forecasts is not linearly dependent on the skill of a given

forecasting system, accounting also how this skill is transformed

into improved operational decisions by stakeholders (Crochemore

et al. 2016; Y. Li et al. 2017; Neumann et al. 2018a).

Traditionally, hydrological modeling and forecasting is per-

formed at the river basin (regional) scale, which allows an ade-

quate representation of the hydrological cycle. Large-scale

(continental and/or global) modeling is usually set to take into

account human impacts (i.e., irrigation, reservoir operation) and

provide a comprehensive understanding to enable a coordinated

management of water and water-induced risks (Nazemi and

Wheater 2015; Pechlivanidis and Arheimer 2015). Continental

models have proven as powerful tools to address water-related

risks (droughts, floods) in a coherent and harmonized way

(Ramos et al. 2007), and evaluate information at gauged and

ungauged locations (Donnelly et al. 2016).

Despite recent scientific advantages in process understand-

ing, continental models are challenged by uneven performance

across the modeled territory caused by factors such as spatial

heterogeneities and lack of reliable data (Abbaspour et al.

2015; Andersson et al. 2015; Beck et al. 2016; Crochemore et al.

2020). Furthermore, the calibration of continental models is

challenging, requiring a large sample of observations and

also regionalization approaches to adequately estimate the

model parameters (Hundecha et al. 2016; Samaniego et al.

2010). Considering the aforementioned challenges, the ap-

plicability of continental models at the river basin scale can

be challenging.
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To adjust the hydrological information to local conditions,

postprocessing is required to bridge the gap between continental-

scale models and river-basin scale applications (Maraun et al.

2010; Teutschbein et al. 2011; Yang et al. 2010). These post-

processors are usually statistical models that derive the joint

probability distribution of continental-scale forecasts and

the corresponding regional observations and then apply it to

derive hydrological forecasts that preserve the statistical

properties of the observations. However, these methods as-

sume stationary conditions, which challenges the prediction

of unprecedented extreme values when tailored to a particular

location and forecasting system (W. Li et al. 2017). Furthermore,

the parameters of a statistical postprocessing function tailored to a

particular meteorological forecast product, area and climate pe-

riod are not directly applicable to other ones.

As alternative to statistical processes, heuristic approaches such

as artificial neural networks (ANN), Bayesian networks (BN),

fuzzy logic (FL), and decision trees (DT) have been proven to

efficiently model mathematical relationships between variables

(Dobson et al. 2019; Rani and Moreira 2010). Fuzzy logic has the

ability to express uncertainty and vagueness in a mathematical

way, using fuzzy sets, and efficiently operate with them (Sen 2010).

It is also able to handle mathematical relationships that are com-

plex and difficult to elicit and encode. Fuzzy logic has been proven

as an efficient way to infer streamflows depending on variables

such as precipitation, soil moisture, and evapotranspiration (Sen

2010; Turan andYurdusev 2016), and to derive reservoir operating

rules depending on past and current hydrological and reservoir

information such as inflows and current storage levels (Macian-

Sorribes and Pulido-Velazquez 2017; Russell and Campbell 1996;

Shrestha et al. 1996).

In this paper, we explore fuzzy logic as an alternative post-

processing method to adjust seasonal streamflow forecasts from

continental-scale models to the regional scale, enhancing the

usability of existing continental forecasting services.Wepose the

following scientific questions: 1)What is the seasonal streamflow

forecasting skill from existing continental services? 2) How can

postprocessing methods influence the usability of the seasonal

forecasts at the regional scale? 3) Is fuzzy logic a suitable post-

processing alternative compared to ‘‘common’’ methods? We

answer these questions through an application of the proposed

methodology in the Jucar River basin (eastern Spain).

The paper is organized as follows. Section 2 presents the case

study and available data, while section 3 introduces the proposed

postprocessing method. Section 4 presents the results from the

comparison between the different forecasting systems. Finally,

section 5 discusses the results and section 6 states the conclusions.

2. Case study and data

a. The Jucar River basin
The Jucar River is one of the most important watercourses in

eastern Spain, with a length of 497km between the Iberian

Mountains and the Mediterranean Sea. Its basin covers an area of

22 260km2 mainly located in the regions of Castilla–La Mancha

and Comunitat Valenciana (Fig. 1), with the Cabriel, Magro, and

Albaida Rivers being its main tributaries. Its precipitation pattern is

Mediterranean (high rainfall in autumn and very little precipitation

during summer), ranging between 309 and 717mmyr21 (with an

average of 473mmyr21). Its average hydrological streamflow is

equal to 1548Mm3 yr21 (CHJ 2015).Around 70%of streamflow

comes from groundwater contribution as baseflow. The main

reservoirs in the basin are Alarcon (1088Mm3 useful storage),

Contreras (429Mm3), and Tous (369Mm3). The smaller Forata

(36Mm3) and Bellus (68Mm3) reservoirs are placed in the Magro

and Albaida Rivers, respectively. The annual mean consumptive

demand is equal to 1505Mm3 (CHJ 2015) divided into urban

(9%), agricultural (89%), and industrial (2%). The main cities are

Valencia, Albacete, Cuenca, and Sagunto. The most important

irrigated areas are placed in the lower basin (downstream Tous

reservoir) and in the Mancha Oriental area (Albacete province).

The Jucar River basin is divided into seven subbasins.

Alarcon and Contreras subbasins have similar hydrological

features as the Magro and Albaida subbasins. Skillful hydro-

logical forecasts are particularly important in these headwater

subbasins during the refill season (from October to April) to

anticipate the state of themain Jucar reservoirs for the upcoming

irrigation season (from May to September). The Mancha and

Middle subbasins refer to the middle Jucar and Cabriel water-

courses, from Alarcon and Contreras to Tous. The Mancha

subbasin mainly corresponds to the drainage of the Mancha

Oriental aquifer, the largest groundwater body in the basin,

which holds the major groundwater-irrigated area. Skillful

streamflow forecasts in these subbasins are important for the

existing hydropower plants and minimum environmental flows

during the whole year and, during the irrigation season, for

balancing Alarcon and Contreras releases. The lower subbasin

corresponds to the Jucar River floodplain, which holds the vast

majority of the surface water demands. Hydrological forecasts

for this area are crucial during the irrigation season, since low

streamflow needs to be compensated by reservoir releases.

Streamflow data as well as inflows, storages and releases

from reservoirs are publicly available from the Automatic

System for Hydrological Information of the Jucar River basin

[Sistema Automático de Información Hidrológica (SAIH),

http://saih.chj.es/chj/saih/glayer?t5a], and from the Annual

Report on Gauging Stations from the Ministry of Ecological

Transition of Spain (CEDEX 2016). Naturalized (impaired)

streamflow observations of the Jucar River subbasins in Fig. 1,

restituted to natural regime (using streamflow observations,

water Abstractions, and return flows), are obtained from the

Jucar River Basin Authority [Confederación Hidrográfica del

Júcar (CHJ)]. These are key inputs to the water resource sys-

tem models used by CHJ in planning and operation (CHJ

2015), and thus are the key hydrological variables to predict.

b. Pan-European seasonal hydrological forecasts
We extract seasonal streamflow forecasts from the pan-

European service run by the Swedish Meteorological and

Hydrological Institute (SMHI). The service is based on the

E-HYPE hydrological model, which is the pan-European setup

of the Hydrological Predictions for the Environment (HYPE)

distributed hydrological model (Lindström et al. 2010) running

at daily time step (Donnelly et al. 2016). E-HYPE covers an

area of 8.8 million km2 divided into about 35 400 catchments

with a median size of 214km2. Its calibration and evaluation
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included hydrological streamflow observations at 115 and

538 stations, respectively, applying a stepwise regionalization

approach for parameter estimation (Hundecha et al. 2016). In

this paper we use the term ‘‘catchment’’ when referring to the

hydrological divisions used by E-HYPE, and ‘‘subbasin’’ when

referring to the hydrological divisions of the Jucar River basin.

Seasonal streamflow forecasts are available from the E-HYPE

model driven by meteorological (precipitation and temperature)

forecasts from the European Centre of Medium-Range Weather

Forecasts (ECMWF) System 4. These forcing meteorological

forecasts were bias-adjusted prior to this study by means of the

distribution-based scaling method (Yang et al. 2010), using as

reference the statistical properties and probability distributions

from the HydroGFD dataset (a global reanalysis dataset condi-

tioned to observations; Berg et al. 2018). The hindcast period is

from 1 January 1981 to 31 December 2010, with 15 daily-scale

ensemble members issued at the first of each month for a forecast

horizon of 7 months. E-HYPE modeled streamflows are also

available for the same period representing the ‘‘perfect forecasts.’’

3. Method

a. Proposed approach

The methodology developed to postprocess continental-

scale seasonal hydrological forecasts is based on fuzzy logic

systems that map streamflow forecasts from a continental

model (inputs) to forecasts at user-specified locations of the

target river basin (outputs) (Fig. 2). For each location, catch-

ments from the continental model are chosen as inputs to the

postprocess method by performing a suitability analysis com-

paring their modeled streamflows (hydrological model forced

with historical meteorological inputs) against observations at

the given locations. A single fuzzy logic system is developed for

each location, using modeled streamflows and naturalized

observations. The method respects the temporal dependence

structure of the time series during the mapping process, since

each single modeled streamflow is mapped to the naturalized

observation found at the same time stage. These fuzzy logic

systems are then used to transform seasonal hydrological

forecasts from the continental model into forecasts at the rel-

evant locations applying a fuzzy inference process. The anal-

ysis period is the same as the hindcast period (1981–2010).

Although the proposed postprocessing method can be applied

to any time step, here we use monthly averages of daily

streamflows.

b. Fuzzy logic systems building and inference
The process of using fuzzy logic systems to postprocess

continental hydrological forecasts (Fig. 3) can be divided into

fuzzy logic system building and fuzzy inference. Building a

FIG. 1. Jucar River basin hydrological map (colored areas), gauging stations (green squares),

and relevant E-HYPE catchments (dashed).
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fuzzy logic system requires: 1) characterization of the input

variables (modeled streamflows from the continental model)

and quantification using fuzzy numbers; 2) setting up fuzzy

rules by combining inputs; 3) selection of outputs; 4) training of

the predefined fuzzy logic system; and 5) evaluation of the

trained system. After building, the operation of a fuzzy logic

system (known as fuzzy inference) requires: 1) previous oper-

ations on raw inputs if necessary; 2) fuzzification of inputs by

comparing their values with the fuzzy numbers associated with

input variables; 3) rule triggering to determine the degree of

fulfillment of each fuzzy rule according to fuzzified inputs; 4)

output composition from the outputs of the triggered rules; and

5) final operations to refine the output if necessary. Fuzzy logic

systems of Sugeno type of order 0 were used for postprocessing

hydrological forecasts of the Jucar River basin. A compre-

hensive description of these stages is provided in the first part

of the online supplemental material.

c. Historical suitability analysis
The historical suitability analysis compares modeled stream-

flows of E-HYPE with observations at selected locations of the

Jucar River basin (Table 1) to estimate how well E-HYPE re-

produces its hydrological behavior and to choose the catchments

to be used as input variables by the postprocessing fuzzy logic

FIG. 2. Proposed methodology for postprocessing continental streamflow forecasts.

FIG. 3. Fuzzy logic system building and inference procedure.
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systems. A number of E-HYPE catchments (shown in Fig. 1)

were identified as candidate inputs considering their physical

location (covering the whole Jucar River basin) and their

proximity to reservoirs and gauging stations (which allows

comparing their streamflows with observations and natural-

ized observations). The best candidates are the catchments

whose outlets are located at reservoirs, gauging stations, or

Jucar River subbasins’ outlets. To choose the inputs for each

fuzzy logic system among the candidates, their modeled

streamflows were compared with the naturalized observa-

tions of each Jucar River subbasin. The comparison was done

through the modified Kling–Gupta efficiency index (KGEM;

Kling et al. 2012), and its three decomposed terms (r, b, and

g). Its formulation is provided in the second part of the on-

line supplemental material.

d. Fuzzy postprocessing of pan-European forecasts

In case of positive KGEM in at least one candidate, input

catchments were chosen based on the KGEM. In case of

negative KGEM values in all candidates, input catchments

were selected based on the correlation coefficient r, since fuzzy

logic systems were found to be more skilled in correcting the

variability in the streamflow signal than in adjusting the tem-

poral dynamics (i.e., autocorrelation coefficient). The decision

on the number of inputs depends on the KGEM and r values.

In general, two inputs were chosen if all KGEM values were

positive or all r coefficients were higher than 0.5, while three

inputs were chosen otherwise. We considered that the in-

crease in complexity associated with adding a fourth input in

subbasins with already three inputs would not be compensated

by the value of adding more information. For each input, lin-

guistic descriptors were attached: five linguistic descriptors

were chosen (very low, low, medium, high, and very high) in

case of two inputs; and three linguistic descriptors (low, me-

dium, and high) in case of three inputs. This choice balances

the complexity of the fuzzy logic system with the number of

inputs, avoiding an excessive number of rules in case of three

inputs and taking advantage of the relatively close relationship

between inputs and outputs in the case of two inputs.

Once input variables were chosen, fuzzy logic systems for

each subbasin were developed applying the process described

in section 3b. Triangular fuzzy numbers linked to linguistic

descriptors were built following the next stages: 1) the modal

value of each fuzzy number (upper vertex) was chosen ac-

cording to the statistical properties of the modeled streamflows

(minimum, first quartile, median, third quartile, and maximum

in the case of two inputs; andminimum,median, andmaximum

in the case of three inputs); and 2) the lower vertices of each

fuzzy number were chosen to make them coincide with the

modal values of the neighboring fuzzy numbers (e.g., the lower

right vertex of the fuzzy number linked to ‘‘very low’’ in a fuzzy

logic system of two inputs is equal to the modal value of the

fuzzy number associated with ‘‘low’’). This way of building the

fuzzy numbers allows an equitable division of the space of each

variable in terms of its probability distribution and an adequate

level of overlap between fuzzy numbers. After the input defi-

nition, fuzzy rules were created considering all possible com-

binations between linguistic descriptors. Consequently, fuzzy

logic systems with two inputs had 25 rules (5 3 5) and fuzzy

logic systems with three inputs had 27 rules (3 3 3 3 3).

Each fuzzy logic system was given one output: the natural-

ized streamflow of the corresponding subbasin. For each fuzzy

rule, the output is defined as a nonfuzzy number according to

the Sugeno type of order 0 formulation. All systems were

trained against naturalized observations for the 1981–2005

period and evaluated against naturalized observations for the

2006–10 period. The training process was automatic, using a

solver to adjust the values of the fuzzy rules’ outputs seeking

the maximization of the KGEM index.

e. Benchmarking forecasts and skill assessment

As benchmark we consider a postprocessing method based

on quantile mapping to quantify the added value of the fuzzy

postprocessing. The quantile mapping procedure maps the

cumulative probability distribution of raw E-HYPE forecasts

with the cumulative probability distribution of the natural-

ized observations of the corresponding subbasin (Table 2). In

the Jucar River basin, four subbasins share their outlet with

their corresponding E-HYPE catchment (Alarcon, Mancha,

Middle, and Lower); and there are two subbasins whose

outlet is close to and along the same river as the outlet of their

corresponding E-HYPE catchment (Contreras and Albaida).

For the Magro subbasin, its particular configuration (two

rivers that converge at its outlet) prevents associating it to

a single E-HYPE catchment. Considering this and the exis-

tence of neighboring catchments with similar hydrological

TABLE 1. Gauging stations and E-HYPE catchments used in the

historical suitability analysis.

Location

name

Jucar

gauge ID

Associated

E-HYPE

catchment

Location drainage

area (km2)

Alarcon reservoir E8001 9001503 2937

Contreras reservoir E8009 9700024 3266

Balazote 08138 9727355 792

Estacadilla — 9727059 503.32

Los Frailes 08036 9726937 5403

Cofrentes 08112 9700432 4694

Tous reservoir 08042 9700121 17 821

Bellus reservoir E8032 9727156 493

Outlet C8154 9726978 21 561

TABLE 2. Jucar River subbasins and corresponding E-HYPE

catchments used in quantile mapping.

Subbasin

Corresponding

E-HYPE catchment

Subbasin

drainage

area (km2)

Alarcon 9001503 2937

Mancha 9700432 7979

Contreras 9700024 3266

Middle 9700121 2962

Lower 9726978 2274

Magro 9700121 1011

Albaida 9727158 493
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patterns in the Jucar River, the corresponding catchment of

the Magro is placed on the Jucar River.

The performance of the fuzzy logic postprocessing was

evaluated in two steps: 1) contrasting the skill of the fuzzy

postprocessed forecasts with the one achieved by the raw

forecasts and 2) contrasting the skill of the fuzzy postprocessed

forecasts with the skill obtained by quantile mapping. The skill

of each forecasting system was measured using the continuous

rank probability score (CRPS) and the continuous rank

probability skill score (CRPSS) (Hersbach 2000;Matheson and

Winkler 1976). Reference forecasts for computing meteoro-

logical skills were observations form HydroGFD. Reference

forecasts for computing raw E-HYPE skills were E-HYPE

modeled streamflows. Reference forecasts for postprocessed

E-HYPE skills were the results of applying the postprocess-

ing fuzzy logic systems to the E-HYPE modeled streamflows.

The added value of the proposedmethodology with respect to

quantile mapping was estimated calculating the CRPSS of

fuzzy postprocessed E-HYPE forecasts with quantile map-

ping as reference forecasts. The formulation of CRPS and

CRPSS is provided in the second part of the online supple-

mental material.

4. Results
Here, we first assess the E-HYPEmodel performance over

the historical period in order to determine the need (or not)

of postprocessing. Afterward, we assess the meteorological

forecasting skill, followed by a skill assessment of the E-HYPE

hydrological forecasts. Then, we present the building, training

and evaluation of the fuzzy logic systems for postprocessing.

Finally, we assess the skill of the postprocessed E-HYPE hy-

drological forecasts and compare the performance of fuzzy

postprocessing with postprocessed forecasts based on quantile

mapping.

a. Historical suitability assessment
E-HYPE modeled streamflows and observations, as well as

the KGEM and its decomposed terms for the analysis period,

are shown in Fig. 4. Results show large differences between

modeled streamflows and observations in most locations,

which was to a certain extent expected due to the strong human

impact (i.e., streamflow regulation) in the region, which

further challenges the E-HYPE model setup and parameter

identification. Moreover, the Jucar River is impacted by

excessive groundwater Abstraction in the Mancha region

(Mancha Oriental aquifer), causing streamflow depletion

(through stream–aquifer interaction) challenging to be re-

produced by E-HYPE. Moreover, the continental E-HYPE

model is setup using open global datasets which are usually

prone to larger uncertainty/error than local/regional datasets

(Kauffeldt et al. 2013).

The influence of regulation is clearly shown by the de-

crease of the model performance along the river (from up-

stream to downstream locations). Results at catchments

which are not subject to significant upstream modifications

(Alarcon, Contreras and Bellus reservoirs) show adequate

values for correlation coefficient, particularly in the Alarcon

reservoir. Consequently, raw E-HYPE streamflow outputs

can be directly used at the Alarcon subbasin (whose outlet

corresponds to the Alarcon reservoir), and may be employed

at Contreras and Bellus subbasins (whose outlets correspond

to the reservoirs of the same name) taking into account that

they can introduce large biases (in particular for high

streamflows). Moreover, results show a poor performance

between E-HYPE and observations for the Arquillo River

(gauge 08138), with no surface regulation but affected by

groundwater overdraft. Furthermore, understanding and rep-

resentation of impacts caused by the hydropower reservoirs

located between the Jucar and Cabriel confluence and Tous

reservoir is also challenging, as shown by the decrease in the

KGEM values between both locations. However, the largest

KGEM decrease is caused by the surface-irrigated agricultural

areas downstream of Tous, which are subject to a complex

regulation scheme that poses a major challenge even to de-

tailed (locally setup) water resource management models.

b. Skill of forcing meteorological forecasts
Here, we assess the forecasting skill (in terms of CRPSS) for

all lead months (0–6) and seasons. Figure 5 depicts the per-

centage of forecasts with skill (positive CRPSS) for the analysis

period. Percentages above 50% (greenish areas) represent

skillful forecasts, since they outperform the reference forecasts

during more than 50% of the analysis period, while percent-

ages below 50% (reddish areas) represent unskillful forecasts

for similar explanations as before. Overall, precipitation fore-

casts do not show skill beyond lead month 0, which is also in

line with previous findings (see Arnal et al. 2018). The only

exception is found in spring, during which precipitation fore-

casts for lead month 1 show skill for the Mancha and Lower

subbasins. Precipitation forecasts initialized in the summer

months show the highest skill in most of the Jucar River basin

(upper and middle sections). However, precipitation vol-

umes are the lowest in the summer months, which means

that the model has skill in foreseeing this feature of the

Mediterranean climate in the Jucar River basin. Results for

autumn are similar to those for summer, although lower skill is

observed. Forecasts in winter achieve the highest skill for the

upper basins of the Jucar, despite not presenting skillful fore-

casts for the rest of the basin. Forecasts in spring are skillful

only in the lower part of the Jucar River basin.

c. Benchmarking seasonal hydrological forecasts
We next assess the E-HYPE based seasonal streamflow

forecasting skill before postprocessing. We note that using

modeled streamflows as reference, instead of naturalized ob-

servations, allows evaluation of the hydrological predictability

without taking into account the E-HYPE model performance

for the region. Figure 6 depicts the percentage of forecasts with

skill for the analysis period similarly to Fig. 5.

It is generally observed that hydrological forecasts are

overall more skillful than precipitation forecasts. Hydrological

forecasts in spring show skill up to lead month 3 in parts of the

Mancha and the lower Jucar (2 months above precipitation

forecasts). However, the skill of the hydrological forecasts

during this season in the headwaters of the Jucar River is

positive until lead month 1 (lead month 2 in Alarcon) despite
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the lack of skill in the precipitation forecasts. Winter forecasts

show skill up to lead month 1 in almost all regions of the Jucar

basin (particularly in the headwaters); however, summer and

autumn show no skill beyond lead month 0.

The observed increase in lead months with skill during

winter and spring is due to the role played by groundwater

bodies, which add a backup streamflow to rivers; stream–

aquifer interaction is easier to predict than meteorology if

the initial conditions are properly assessed. The role of the

initial hydrological conditions, in particular in the transi-

tion from a wet to a dry season and/or in a dry season, has

been highlighted previously (Arnal et al. 2017; Shukla et al.

2013; Wood et al. 2016; Wood and Lettenmaier 2008).

Although surface water bodies also contribute to the increase

of predictability, their role in the Jucar River basin is consid-

ered secondary (see CHJ 2015). Groundwater contribution is

observed in spring, during which the hydrological forecasts

show skill up to lead month 1 (and even further ahead in some

areas) despite the lack of skill in the precipitation forecasts.

d. Fuzzy postprocessing of hydrological forecasts
The historical suitability analysis highlighted the need to

postprocess the E-HYPE seasonal forecasts and adjust them to

the naturalized observations. Here we describe the process

followed to build postprocessing fuzzy logic systems for the

Jucar River basin. Table 3 shows the KGEM values comparing

the E-HYPE modeled streamflows in the candidate catch-

ments and the naturalized observations in the Jucar River

FIG. 4. Monthly time series of E-HYPE modeled streamflows and historical observations for candidate E-HYPE input catchments (see

locations in Fig. 1 and Table 1) and associated KGEM indices and decomposed terms for the period 1981–2010.
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subbasins. Some catchments were discarded beforehand due

to being physically far from the corresponding subbasin.

Moreover, the Cofrentes catchment, in the center of the

Jucar basin, was discarded due to the lack of forecasting

skill. The inputs for the postprocessing fuzzy logic systems

(shown in bold in Table 3) were chosen following the criteria

indicated in section 3d. The only exception was the Contreras

subbasin, in which the E-HYPE catchment of Contreras was

chosen instead of Los Frailes (both showing similar r values)

due to the physical proximity. Alarcon and Contreras were

given two inputs due to showing positive KGEM values in all

the candidates (Alarcon) or r higher than 0.5 (Contreras). In

the case of the Albaida subbasin, two inputs were selected

since the Bellus catchment showed an r value of 0.71. The in-

puts were characterized following the procedures described in

section 3d, as the number of rules and outputs. Details on the

fuzzy logic systems can be found in the third part of the online

supplemental material.

FIG. 5. Percentage of forecasts with skill of forcing precipitation forecasts (positive CRPSS) using HydroGFD as reference. Percentages

above 50% mean skillful forecasts (green tones) while percentages below 50% mean unskillful forecasts (red tones).

FIG. 6. Percentage of forecasts with skill of raw E-HYPE seasonal streamflow forecasts (positive CRPSS) using modeled streamflows as

reference. Percentages above 50% mean skillful forecasts (green tones) while percentages below 50% mean unskillful forecasts

(red tones).
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Training of the fuzzy logic systems achieved a good perfor-

mance in all subbasins, with KGEM being greater than 0.8,

expect from Mancha and Middle (Fig. 7). As mentioned in

section 4a, the challenging representation of groundwater

mining in the Mancha Oriental aquifer could explain the poor

performance for the Mancha and Middle subbasins. Alarcon

shows the highest performance due to the good agreement

shown between E-HYPE modeled streamflows and Jucar River

naturalized observations. The other subbasins (expect from

Mancha and Middle) show similar performance despite the

number of inputs used, highlighting both the added value of fuzzy

logic in forecast postprocessing and the adequacy of the fuzzy

logic system setup. As expected, the KGEM values decrease in

the evaluation period compared to the training period, for all

subbasins, with the Alarcon subbasin showing again the highest

performance during evaluation. The most distinct loss in the

performance between training and evaluation period is found in

the Albaida subbasin, due to a concentration of high naturalized

observations after January 2008. However, its performance level

was still found to be adequate, with the exception of those peaks.

e. Postprocessed forecasts skill assessment
We next evaluate the skill of E-HYPE seasonal streamflow

forecasts after postprocessing. Figure 8 presents the percent-

age of postprocessed forecasts showing skill. Forecasts for the

headwaters of the Jucar (Alarcon and Contreras) show skill

until lead month 2 in spring and lead month 1 in the other

seasons, which is the same period with skill as raw forecasts. It

should be noted that the periods showing skill increase in

Contreras after postprocessing, reaching leadmonth 2 in spring

and lead month 1 in summer and autumn. Postprocessed

forecasts for the middle Jucar show lower periods with skill

than raw forecasts in winter (no skill) and spring (skill only in

leadmonth 0), while in leadmonth 0 skill losses are observed in

all seasons except autumn. An increase in the forecasting skill

is observed in lead month 1 for the middle Jucar during sum-

mer and autumn; however, this is not significant to consider the

forecasts skillful. A slight loss of skill is also found in the lower

parts of the Jucar, with lower periods with skill during winter

(skill only in lead month 0) and summer (no skill in lead month

0 and a slight skill in leadmonths 1 and 2), as well as lower skills

for lead month 0. A slight increase in skill is found in spring for

lead month 1 and lead month 2.

A complementary comparison is shown in Fig. 9, which

presents the percentage of postprocessed forecasts with skill

using raw forecasts as benchmark. This comparison provides a

direct estimation of the impact of postprocessing on forecast-

ing skill, although it is not able to measure if both, one, or no

alternative offers reliable forecasts. Postprocessed forecasts

show a loss in skill during winter, in particular for the upper and

middle Jucar, while only slight changes are found during the

rest of the seasons. However, this loss in skill does not imply, in

the case of Alarcon and Contreras, a reduction in the periods for

which skillful forecasts are provided, as found comparingFig. 6 and

Fig. 8. Forecasts in Contreras tend to show increased skills after

postprocessing during spring, as well as Alarcon forecasts during

summer. Postprocessed forecasts for the center of the Jucar show

in general a slight increase, driven by the lack of skill of raw

forecasts for the Cofrentes E-HYPE catchment. Furthermore,

postprocessed forecasts for the lower Jucar show both increases

and decreases of skill, although the lowest lead months (0 and 1)

tend to show decreases.

f. Added value of fuzzy postprocess in comparison to

quantile mapping
We next compare the results of the proposed postprocess

method against quantile mapping computing the CRPSS using

the latter as reference (Fig. 10). Results show a general prev-

alence of fuzzy postprocessed forecasts in the Jucar River ba-

sin, with some exceptions that mostly refer to its lowest part

(Lower, Magro, and Albaida subbasins) and concentrate in

winter and spring. In general, the comparison shows small

differences between bothmethods. The improvements of fuzzy

logic with respect to quantile mapping are found in all seasons

but spring, and almost systematically in the Mancha, Middle,

and Contreras subbasins. The results indicate that the meth-

odology proposed is capable of providing skillful seasonal

streamflow forecasts, outperforming quantile mapping in the

Jucar River basin.

5. Discussion

a. Continental forecasting services tailored to the regional
conditions

Continental climate services deal with regional needs at

domains which are under strong hydroclimatic gradients and

TABLE 3. KGEM and r terms (in brackets) for candidate input E-HYPE catchments and Jucar River subbasins. Postprocessing input

catchments are shown in bold.

Jucar River subbasin naturalized observations

Location name (see Table 1) Alarcon Mancha Contreras Middle Lower Magro Albaida

Estacadilla — 24.43 (0.36) — — — — —

Bellus — — — — 20.52 (0.68) 26.37 (0.45) 20.42 (0.71)
Balazote — 21.65 (0.19) — 20.41 (0.33) — — —

Alarcon reservoir 0.22 (0.87) 22.14 (0.05) 20.18 (0.75) 21.51 (0.08) — — —

Contreras reservoir 0.29 (0.66) 21.87 (0.18) 20.05 (0.61) 21.21 (0.26) — 246.89 (0.53) —

Los Frailes 0.14 (0.86) 22.27 (0.09) 20.27 (0.74) 21.61 (0.13) 20.49 (0.18) 252.82 (0.35) —

Tous reservoir — 24.52 (0.26) — 26.08 (0.36) 23.78 (0.46) 2142.65 (0.58) 235.01 (0.38)

Outlet — — — 28.25 (0.42) 25.37 (0.59) 2183.10 (0.65) 245.36 (0.51)
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human impacts. It is therefore not straightforward to set up a

reliable service for all possible locations. Here, the application

of the pan-European E-HYPE model at the Jucar River basin

is quite challenging due to 1) the presence of distinct regulation

facilities (e.g., reservoirs) that are generally difficult to repre-

sent and predict (e.g., due to variable and complex operating

rules), 2) the intensive groundwater use affecting stream–

aquifer interaction, 3) the generally poor E-HYPE model

performance, and 4) the generally poor skill from the predic-

tive system (ECMWF System 4) in the region.

Overall, the fuzzy postprocess has some negative impact on

the forecasting skill, which can be significant depending on the

season and subbasin, although it still delivers skillful forecasts

for the Jucar River basin. This is due to two main factors. On

one hand, it is caused by the role of the initial conditions, whose

importance is partially lost after postprocessing. This is further

justified given that the seasons with the highest loss in skill

(winter and spring) are the ones in which the difference be-

tween meteorological and hydrological forecast skill is the

highest. On the other hand, we observe a relationship between

the correlation of modeled streamflows and naturalized ob-

servations, the performance of the fuzzy logic systems and the

skill of postprocessed forecasts. However, there are subbasins

whose skill improves after postprocessing (i.e., Contreras

during summer and autumn), which may be due to including as

postprocessing inputs catchments with higher skill than the one

of the closest catchment (e.g., using Alarcon in the post-

processing of Contreras’s forecasts).

The proposed fuzzy postprocessing method increased the

potential of E-HYPE forecasts for the Jucar River basin.

FIG. 7. Fuzzy postprocessed E-HYPE modeled streamflows and

naturalized streamflow observations for the training (1981–2005)

and evaluation (2006–10) periods, and associated KGEM indices

and decomposed terms.
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This justifies the usability of the proposed methodology and

demonstrates a procedure to derive skillful seasonal stream-

flow forecasts from continental models at the regional scale.

The performance of the E-HYPE model varies significantly

over the river basin (good in the Alarcon subbasin and poor in

parts of its middle and lower subbasins), which consequently

results into different fuzzy postprocessing performance. The

linkage found between the performance of fuzzy logic systems

and the resulting forecasting skill indicates the conditions under

which the proposed methodology can be successful. Furthermore,

the added value obtainedwith the proposedmethodology in such a

challenging basin demonstrates its potential for the postprocessing

of hydrological forecasts. Another suggestion is the possibility

to include forecasts from neighboring basins with adequate

skill in order to provide more skillful postprocessed forecasts.

This highlights the potential of the methodology to generate

FIG. 8. Percentage of forecasts with skill of fuzzy postprocessed E-HYPE seasonal streamflow forecasts (positive CRPSS) using

postprocessed modeled streamflows as reference. Percentages above 50% mean skillful forecasts (green tones) while percentages below

50% mean unskillful forecasts (red tones).

FIG. 9. Percentage of forecasts with skill of fuzzy postprocessed E-HYPE seasonal streamflow forecasts (positive CRPSS) using raw

forecasts as reference. Percentages above 50% mean skillful forecasts (green tones) while percentages below 50% mean unskillful

forecasts (red tones).
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skillful forecasts in basins with modeled streamflows but not

forecasts, or when forecasts do not show skill, by including in

their input set forecasts from neighboring basins that show skill.

However, this approach would require historical streamflow

observations in the target basin.

Moreover, forecasts can be provided as anomalies, per-

centiles of their cumulative probability distributions, or as

standardized indices, i.e., the standardized runoff index

(Crochemore et al. 2020; Shukla and Wood 2008). Although

this alternative would be valid in most case studies, its ap-

plication to the Jucar River basin is hindered by the null

values shown by the cumulative probability distributions of

raw E-HYPE streamflow forecasts (11%–28% of null values

depending on the catchment). This issue flattens the cumu-

lative probability distribution, limiting the provision of ac-

curate streamflow forecasts in case forecasts fall into its

lower tail, which corresponds to a drought that affects the

seasonal operation of the Jucar River.

Applying this methodology to additional river basins would

require the collection of streamflow observations for the lo-

cations at which forecasts are desired; the acquisition of sea-

sonal forecasts and modeled streamflows from the continental

service in a preset of candidate input catchments for the

hindcast period of the forecasting service; the choice of input

catchments for each desired location comparing the obser-

vations with the modeled streamflows; the training and val-

idation of postprocessing fuzzy logic systems mapping the

input modeled streamflows to the observations for each lo-

cation; and the assessment of skill of the postprocessed

streamflow forecasts. It will require the existence of ade-

quate streamflow observations for the desired locations and

the finding of catchments from the continental service that

share a relationship with them.

b. Fuzzy postprocessing versus quantile mapping
The prevalence of fuzzy logic over quantile mapping is due

to the mapping provided by the method and its possibility to

incorporate to the input set forecasts with adequate skill from

the neighboring areas. While quantile mapping methods map

forecasts using the probability distribution, fuzzy logic maps

modeled streamflows and naturalized observations preserv-

ing the temporal dependence structure of the time series.

However, this mapping can be challenged by strong devia-

tions between E-HYPEmodeled streamflows and naturalized

observations. Nevertheless, there are some exceptions in the

middle parts of the Jucar (Mancha and Middle subbasins) in

which fuzzy postprocessing outperforms quantile mapping

although fuzzy logic systems show low performance levels.

This may be explained by the fact that the hydrological

functioning of these subbasins (with a very strong ground-

water component) also poses a distinct challenge to quantile

mapping, which cannot correct systematic timing errors due

to misrepresented processes.

Compared to quantile mapping, the proposed method nei-

ther depends on assumptions nor calculations of probability

distributions. The postprocessed approach is not tailored to a

particular forecasting service, since the fuzzy logic systems’

building requires only modeled streamflows. Fuzzy logic can

also accommodate more input catchments, if needed, which is

not straightforward when using quantile mapping. Finally, the

method requires careful input choice and analysis to take ad-

vantage of the possibilities offered by fuzzy logic.

6. Summary and conclusions
A methodology is proposed for postprocessing continental

seasonal hydrological forecasts, tailoring the forecasts to the

regional hydrological regime. This procedure relies on building

FIG. 10. Percentage of forecasts with skill of fuzzy postprocessed E-HYPE seasonal streamflow forecasts (positive CRPSS) using as

reference quantile mapping postprocessed forecasts. Percentages above 50% mean skillful forecasts (green tones) while percentages

below 50% mean unskillful forecasts (red tones).

2386 JOURNAL OF HYDROMETEOROLOGY VOLUME 21



fuzzy logic systems that map seasonal hydrological forecasts

from a continental model to streamflow forecasts at target lo-

cations. Fuzzy logic systems are trained and evaluated using

modeled hydrological streamflows obtained from a continental

model and naturalized observations at target locations. Fuzzy

postprocessed seasonal streamflow forecasts from the pan-

European E-HYPE model over the Jucar River basin (Spain)

highlighted the improvements in skill over the commonly used

quantile mapping approach. In particular, the following re-

marks are concluded:

d Streamflow forecasts from continental existing services (the

pan-European E-HYPE model) in the Jucar River basin can

deliver skillful forecasts up to lead month 3 depending on

season and location. However, raw forecasts from these

services may not be used directly due to significant differ-

ences between the model setup and the Jucar River basin

features, requiring the use of postprocessing methods.
d Fuzzy logic has proven to be a suitable method to postprocess

forecasts from E-HYPE, although the process implies in

general some loss of skill. This loss ranges between a slight

decrease in the headwaters of the Jucar (even showing an

increase in skill in specific areas) and distinct losses in the rest

of the river basin, although still delivering skillful forecasts.

The skill of postprocessed forecasts is linked to the perfor-

mance shown by the fuzzy logic systems built for the process.
d Fuzzy-based postprocessed forecasts show in general higher

skill than quantile mapping based postprocessed forecasts.

Nevertheless, the difference in skill between both methods is

not very large. Overall, we highlight the potential of fuzzy

logic as a suitable postprocessing method, and also stress the

necessity to analyze additional postprocessing methods to

address the full potential of continental forecasting services.
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