CONVERGENT DISCRETE NUMERICAL SOLUTIONS OF STRONGLY COUPLED MIXED PARABOLIC SYSTEMS

L. Jódar and M.C. Casabán
Instituto de Matemática Multidisciplinar
Universidad Politécnica de Valencia, Spain
\{ljodar,macabar\}@mat.upv.es

Abstract

This paper deals with the construction of convergent discrete numerical solutions of strongly coupled parabolic partial differential systems. The proposed method is based on the application of a discrete separation of variables technique to the discretized problem and its further exact solution which avoids the solution of large algebraic systems.

Keywords: Difference schemes, strongly coupled system.

1 Introduction

Coupled partial differential systems with coupled boundary value conditions are frequent in quantum mechanical scattering problems [2, 14], chemical physics, thermoelastoplastic modelling, diffusion problems [8], nerve conduction problems [13], mechanics [16] and other fields. This paper deals with coupled parabolic systems of the form

$$
\begin{array}{rlc}
u_{t}(x, t)-A u_{x x}(x, t)-B u(x, t) & =0, & 0<x<1, \quad t>0 \\
A_{1} u(0, t)+B_{1} u_{x}(0, t) & =0, & t>0 \\
A_{2} u(1, t)+B_{2} u_{x}(1, t) & =0, & t>0 \\
u(x, 0) & =F(x), & 0 \leqslant x \leq 1, \tag{4}
\end{array}
$$

[^0]where $u=\left(u_{1}, \ldots, u_{s}\right)^{T}$ y $F=\left(f_{1}, \ldots, f_{s}\right)^{T}$ are s-dimensional vectors, elements of \mathbb{C}^{s}, and A_{i}, B_{i}, for $i=1,2$ are $s \times s$ complex matrices, elements of $\mathbb{C}^{s \times s}$.

We assume that

$$
\mathcal{A}=\left[\begin{array}{ll}
A_{1} & B_{1} \tag{5}\\
A_{2} & B_{2}
\end{array}\right] \text { and } A_{1} \text { are invertible matrices }
$$

Strongly coupled partial differential systems of the type (1)-(4) appear in Geomechanics [18], the study of the Hodgkin-Huxley nerve conduction equation $[7,13]$, in ignition of a single component nonreacting gas in a closed cylindrical vessel with with conservation of mass [12], or in the study of sudden cardiac death as a consequence of ventricular fibrillation [20].

Analytic-numerical solutions of problem (1)-(4) have been given in [9] for the case where $B=0$, and in [17] for the case where $B_{2}=B_{1}=0$ and A_{2} is invertible. In this paper convergent discrete numerical solutions of problem (1)-(5) are constructed using difference schemes, a discrete separation of variables method and solving explicitely the mixed partial difference discretized problem. Particular cases of the above problem have been recently treated in $[8,11]$. It is important to point out that method proposed here avoids the solution of large algebraic systems as it occurs using standard difference methods.

This paper is organized as follows. Section 2 deals with the study of the boundary partial difference problem resulting from the discretization of problem (1)-(3) using forward difference schemes under hypothesis (5). Section 3 deals with the construction of convergent discrete solutions of problem (1)-(5) using a discrete separation of variables method and results of section 2. Finally section 4 includes an illustrative example.

Throughout this paper, the set of all eigenvalues of a matrix D in $\mathbb{C}^{s \times s}$ is denoted by $\sigma(D)$. The spectral radius of D denoted by $\rho(D)$ is the maximum of the set $\{|z| ; z \in \sigma(D)\}$. We denote by D^{H} the conjugate transpose of D and by D^{\dagger} the Moore-Penrose pseudoinverse of D. The kernel of D, denoted by ker D coincides with the image of the matrix $I-$ $D^{\dagger} D$ denoted by $\operatorname{Im}\left(I-D^{\dagger} D\right)$, see [4]. We say that a subspace E of \mathbb{C}^{s} is invariant by the matrix A of $\mathbb{C}^{s \times s}$ si $A(E) \subset E$. Hence, property $A(\operatorname{ker} G) \subset \operatorname{ker} G$ is equivalent to the condition $G A\left(I-G^{\dagger} G\right)=0$. The 2 -norm of D will be denoted by

$$
\|D\|=\sup _{v \neq 0} \frac{\|D v\|_{2}}{\|v\|_{2}}
$$

where for a vector v in $\mathbb{C}^{s},\|v\|_{2}=\left(v^{H} v\right)^{1 / 2}$ is the Euclidean norm of v, see [6]. If $D=D^{H}$ is an Hermitian matrix.

2 The discretized partial difference boundary problem

Let us divide the domain $[0,1] \times[0, \infty[$ into equal rectangles of sides $\Delta x=h$ and $\Delta t=k$, introduce coordinates of a typical mesh point $(m h, n k)$ and let us represent $U(m, n)=u(m h, n k)$. Approximating the partial derivatives appearing in (1) by the forward difference approximations

$$
\left.\begin{array}{rl}
u_{t}(m h, n k) & \approx \frac{U(m, n+1)-U(m, n)}{k} \tag{6}\\
u_{x x}(m h, n k) & \approx \frac{U(m+1, n)-2 U(m, n)+U(m, n-1)}{h^{2}}
\end{array}\right]
$$

substituting (6) into (1)-(4) and denoting

$$
\begin{equation*}
r=\frac{k}{h^{2}}, \quad h=\frac{1}{M}, \tag{7}
\end{equation*}
$$

one gets the partial difference system:

$$
\begin{align*}
& \left.\begin{array}{c}
U(m, n+1) \\
=r A[U(m+1, n)+U(m-1, n)]+\left(I+\frac{r B}{M^{2}}-2 r A\right) U(m, n) \\
1 \leq m \leq M-1, n \geq 0,
\end{array}\right], \tag{8}\\
& A_{1} U(0, n)+M B_{1}[U(1, n)-U(0, n)]=0, \quad n \geq 0 \tag{9}\\
& A_{2} U(M, n)+M B_{2}[U(M, n)-U(M-1, n)]=0, \quad n \geq 0 \tag{10}\\
& U(m, 0)=F(m h)=f(m), \quad 0 \leq m \leq M . \tag{11}
\end{align*}
$$

The difference scheme (8) is consistent with equation (1) in the sense of [19, p.19], see section 3 of [11]. Let us seek nontrivial solutions $\{U(m, n)\}$ of the boundary problem (8)-(10) of the form

$$
\begin{equation*}
U(m, n)=G(n) H(m), \quad G(n) \in \mathbb{C}^{s \times s}, \quad H(m) \in \mathbb{C}^{s} \tag{12}
\end{equation*}
$$

Substituting (12) into (8) and taking into account section 3 of [11] one gets that $\{U(m, n)\}$ given by (12) satisfies (8) if $\{G(n)\},\{H(m)\}$ satisfy

$$
\begin{equation*}
G(n+1)-\left(I+\frac{r B}{M^{2}}+\rho A\right) G(n)=0, \quad n \geq 0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
H(m+1)-\left(\frac{2 r+\rho}{r}\right) H(m)+H(m-1)=0, \quad 1 \leq m \leq M-1 \tag{14}
\end{equation*}
$$

where ρ is a real number. Note that the solution of (13) satisfying $G(0)=I$, is given by

$$
\begin{equation*}
G(n)=\left(I+\frac{r B}{M^{2}}+\rho A\right)^{n}, \quad n \geq 0 \tag{15}
\end{equation*}
$$

If ρ satisfies

$$
\begin{equation*}
-4 r<\rho<0 \tag{16}
\end{equation*}
$$

then the algebraic equation

$$
\begin{equation*}
z^{2}-\left(\frac{2 r+\rho}{r}\right) z+1=0 \tag{17}
\end{equation*}
$$

has two different solutions z_{0}, z_{1} given by

$$
\left.\begin{array}{c}
z_{0}=\frac{2 r+\rho}{2 r}+i\left(1-\left(\frac{2 r+\rho}{2 r}\right)^{2}\right)^{\frac{1}{2}}=e^{i \theta}, \\
z_{1}=\frac{2 r+\rho}{2 r}-i\left(1-\left(\frac{2 r+\rho}{2 r}\right)^{2}\right)^{\frac{1}{2}}=e^{-i \theta}, \tag{18}\\
0<\theta<\pi, \quad \cos \theta=\frac{2 r+\rho}{2 r}, \quad \rho=-4 r \sin ^{2}\left(\frac{\theta}{2}\right), \quad i^{2}=-1
\end{array}\right]
$$

Since vector equation (14) has scalar coefficients, its solution can be written in the form

$$
\begin{equation*}
H(m)=\cos (m \theta) c+\sin (m \theta) d, \quad c, d \in \mathbb{C}^{s}, \quad 1 \leq m \leq M-1 \tag{19}
\end{equation*}
$$

Under hypothesis (5), premultiplying the boundary condition (2) by A_{1}^{-1} one gets a new condition where matrix appearing in the left upper block is the identity matrix. Thus we assume that $A_{1}=I$. Using (12), the boundary condition (9) takes the form

$$
\begin{equation*}
G(n) H(0)+M B_{1} G(n)[H(1)-H(0)]=0, \quad n \geq 0 \tag{20}
\end{equation*}
$$

By (19) one gets $H(0)=c$ and considering (20) for $n=0$, it follows that

$$
\begin{equation*}
\left[I-(1-\cos \theta) M B_{1}\right] c=-(M \sin \theta) B_{1} d \tag{21}
\end{equation*}
$$

Premultiplying (19) by $\left[I-(1-\cos \theta) M B_{1}\right]$ and taking into account (21) one gets

$$
\begin{gather*}
{\left[I-(1-\cos \theta) M B_{1}\right] H(m)} \tag{22}\\
=-M B_{1} \cos (m \theta) \sin \theta d+\sin (m \theta)\left[I-(1-\cos \theta) M B_{1}\right] d \\
=\left[\sin (m \theta) I-2 M B_{1} \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 m-1}{2}\right) \theta\right)\right] d \\
1 \leq m \leq M-1 .
\end{gather*} .
$$

By the spectral mapping theorem [5, p.569] the eigenvalues of matrix I -$(1-\cos \theta) M B_{1}$ are $\left\{1-(1-\cos \theta) M w ; w \in \sigma\left(B_{1}\right)\right\}$ and the real part of these eigenvalues are

$$
1-(1-\cos \theta) M w_{1} ; \quad w=w_{1}+i w_{2} \in \sigma\left(B_{1}\right)
$$

If $w_{1} \leq 0$ then $1-(1-\cos \theta) M w_{1} \neq 0$. If $w_{1}>0$, taking

$$
M>\frac{1}{(1-\cos \theta) w_{1}},
$$

one gets $1-(1-\cos \theta) M w_{1}<0$. Thus, taking M large enough so that

$$
\begin{equation*}
M>\frac{1}{(1-\cos \theta) \gamma\left(B_{1}\right)}, \tag{23}
\end{equation*}
$$

where

$$
\gamma\left(B_{1}\right)=\left\{\begin{array}{l}
\min \left\{w_{1} ; w=w_{1}+i w_{2} \in \sigma\left(B_{1}\right), w_{1}>0\right\}, \text { if } \tag{24}\\
\exists w \in \sigma\left(B_{1}\right), \operatorname{Re}(w)>0 \\
(1-\cos \theta)^{-1}, \text { if } \operatorname{Re}(w) \leq 0 \quad \forall w \in \sigma\left(B_{1}\right),
\end{array}\right.
$$

one gets that

$$
\begin{equation*}
I-(1-\cos \theta) M B_{1} \quad \text { is invertible } \tag{25}
\end{equation*}
$$

and then for $1 \leq m \leq M-1$

$$
\begin{equation*}
H(m)=\left[\sin (m \theta) I-2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 m-1}{2}\right) \theta\right) B_{1}\right] d \tag{26}
\end{equation*}
$$

is also a solution set of equation (14) for every vector $d \in \mathbb{C}^{s}$. Taking into account (14) for $m=1$, (26) for $m=1,2$, that $\cos \theta=\frac{2 r+\rho}{2 r}$ together with (20), one gets

$$
\begin{equation*}
H(0)=-(M \sin \theta) B_{1} d \tag{27}
\end{equation*}
$$

Substituting (15), (26) and (27) into (20), for $n>0$ one gets

$$
\begin{equation*}
-M \sin \theta\left[\left(I+\frac{r B}{M^{2}}+\rho A\right)^{n} B_{1}-B_{1}\left(I+\frac{r B}{M^{2}}+\rho A\right)^{n}\right] d=0, n>0 \tag{28}
\end{equation*}
$$

Since $\sin \theta \neq 0$ because $\theta \in] 0, \pi[$, by (18) we have

$$
\begin{equation*}
w=\frac{r}{M^{2} \rho}=\frac{-1}{M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)} \neq 0 \tag{29}
\end{equation*}
$$

and (28) can be written in the form

$$
\begin{equation*}
\left[(I+\rho(A+w B))^{n} B_{1}-B_{1}(I+\rho(A+w B))^{n}\right] d=0, \quad d \in \mathbb{C}^{s}, \quad n>0 \tag{30}
\end{equation*}
$$

Considering (14) for $m=M-1$, one gets

$$
\begin{equation*}
H(M)=\left[\sin (M \theta) I-2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right) B_{1}\right] d, \quad d \in \mathbb{C}^{s} \tag{31}
\end{equation*}
$$

By imposing to $U(m, n)$, given by (12), the boundary condition (10) for $n \geq 0$ and using (15), (26) and (31) one gets

$$
\begin{gather*}
\left\{A_{2}(I+\rho(A+w B))^{n} \sin (M \theta)\right. \\
-2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right) A_{2}(I+\rho(A+w B))^{n} B_{1} \\
+2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right) B_{2}(I+\rho(A+w B))^{n} \\
\left.+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \sin ((M-1) \theta) B_{2}(I+\rho(A+w B))^{n} B_{1}\right\} d=0, \quad n \geq 0 . \tag{32}
\end{gather*}
$$

Substituting (30) into (32) for $n>0$ and using (32) for $n=0$, it follows that for $n \geq 0$

$$
\begin{align*}
& \left\{A_{2} \sin (M \theta)-2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right) A_{2} B_{1}\right. \\
& \quad+2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right) B_{2} \\
& \left.\quad+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \sin ((M-1) \theta) B_{2} B_{1}\right\}(I+\rho(A+w B))^{n} d=0 \tag{33}
\end{align*}
$$

Let p be the degree of the minimal polynomial of the matrix $A+w B$, then by Cayley-Hamilton theorem, see [15, p. 206], for $n \geq p$ the powers $(A+$
$w B)^{n}$ are expressed in terms of $I, A+w B,(A+w B)^{2}, \ldots,(A+w B)^{p-1}$. Since $w \neq 0$, condition (33) holds if:

$$
\begin{align*}
& \left\{2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right)\left(B_{2}-A_{2} B_{1}\right)+A_{2} \sin (M \theta)\right. \\
& \left.\quad+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \sin ((M-1) \theta) B_{2} B_{1}\right\}(A+w B)^{n} d=0, \quad 0 \leq n<p \tag{34}
\end{align*}
$$

In order to guarantee that $\{U(m, n)\}$ is a nontrivial solution, vectors d appearing in (34) must be nonzero. By (34), there are nonzero vectors d satisfying (34) if

$$
\begin{align*}
L(\theta) & =2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right)\left(B_{2}-A_{2} B_{1}\right)+A_{2} \sin (M \theta) \\
& +4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \sin ((M-1) \theta) B_{2} B_{1} \text { is singular, } 0<\theta<\pi . \tag{35}
\end{align*}
$$

Note that $L(\theta)$ can be written in the form:

$$
\begin{align*}
L(\theta) & =2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right)\left[\left(B_{2}-A_{2} B_{1}\right)+\frac{A_{2}}{M}\right] \\
& +\sin ((M-1) \theta)\left[A_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) B_{2} B_{1}\right] . \tag{36}
\end{align*}
$$

By the properties of the Schur complement of a matrix, see [3], together with hypothesis (5) with $A_{1}=I$, it follows that

$$
\begin{equation*}
B_{2}-A_{2} B_{1} \quad \text { is invertible. } \tag{37}
\end{equation*}
$$

By (37) and the Banach lemma, see [6], it follows that

$$
\begin{equation*}
\left(B_{2}-A_{2} B_{1}\right)+\frac{A_{2}}{M} \quad \text { is invertible if } \quad M>\left\|A_{2}\right\|\left\|\left(B_{2}-A_{2} B_{1}\right)^{-1}\right\| \tag{38}
\end{equation*}
$$

If M satisfies (38) and $0<\theta<\pi$ makes that $L(\theta)$ defined by (36) is singular, then we obtain that $\sin ((M-1) \theta) \neq 0$. Thus $L(\theta)$ is singular if and only if

$$
\begin{aligned}
A_{2}+ & 4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) B_{2} B_{1}+ \\
& +\frac{2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right)}{\sin ((M-1) \theta)}\left[\left(B_{2}-A_{2} B_{1}\right)+\frac{A_{2}}{M}\right] \text { is singular, (39) }
\end{aligned}
$$

or the equivalent condition

$$
\begin{gather*}
\frac{\sin (M \theta)}{\sin ((M-1) \theta)}\left(B_{2}-A_{2} B_{1}\right)^{-1} A_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(B_{2}-A_{2} B_{1}\right)^{-1} B_{2} B_{1}+ \\
\frac{2 M \sin \left(\frac{\theta}{2}\right) \cos \left(\left(\frac{2 M-1}{2}\right) \theta\right)}{\sin ((M-1) \theta)} I, \text { is singular, } 0<\theta<\pi \tag{40}
\end{gather*}
$$

Let us introduce the matrices

$$
\begin{equation*}
\widehat{A}_{2}=\left(A_{2} B_{1}-B_{2}\right)^{-1} A_{2}, \quad \widehat{B}_{2}=\left(A_{2} B_{1}-B_{2}\right)^{-1} B_{2}=\widehat{A}_{2} B_{1}-I . \tag{41}
\end{equation*}
$$

Using matrices $\widehat{A}_{2}, \widehat{B}_{2}$ defined in (41) and the spectral mapping theorem condition (39) means that

$$
\left.\begin{array}{c}
M\left(\frac{\sin (M \theta)}{\sin ((M-1) \theta)}-1\right) \quad \text { is an eigenvalue of the matrix } \\
\frac{\sin (M \theta)}{\sin ((M-1) \theta)} \widehat{A}_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\widehat{A}_{2} B_{1}^{2}-B_{1}\right), \quad 0<\theta<\pi \tag{42}
\end{array}\right]
$$

Let us assume that

$$
\left.\begin{array}{l}
\text { There exist } \alpha \in \sigma\left(\widehat{A}_{2}\right) \cap \mathbb{R} ; \beta \in \sigma\left(B_{1}\right) \cap \mathbb{R} \text { and } v \in \mathbb{C}^{s} \sim\{0\} \tag{43}\\
\text { such that }\left(\widehat{A}_{2}-\alpha I\right) v=\left(B_{1}-\beta I\right) v=0
\end{array}\right]
$$

By (43) it follows that

$$
\begin{aligned}
& {\left[\frac{\sin (M \theta)}{\sin ((M-1) \theta)} \widehat{A}_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\widehat{A}_{2} B_{1}^{2}-B_{1}\right)\right] v=} \\
& \quad=\left[\frac{\sin (M \theta)}{\sin ((M-1) \theta)} \alpha+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\alpha \beta^{2}-\beta\right)\right] v, \quad 0<\theta<\pi
\end{aligned}
$$

or

$$
\left.\begin{array}{c}
v \text { is an eigenvector of the matrix } \tag{44}\\
\frac{\sin (M \theta)}{\sin ((M-1) \theta)} \widehat{A}_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\widehat{A}_{2} B_{1}^{2}-B_{1}\right) \\
\text { associated to the real eigenvalue } \\
\frac{\sin (M \theta)}{\sin ((M-1) \theta)} \alpha+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\left(\alpha \beta^{2}-\beta\right)
\end{array}\right] .
$$

Taking M large enough so that

$$
M>\alpha
$$

condition (42) and (44) makes possible to find solutions of the scalar equation

$$
\frac{\sin (M \theta)}{\sin ((M-1) \theta)}=\frac{M}{M-\alpha}+4 M^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \frac{\left(\alpha \beta^{2}-\beta\right)}{M-\alpha}, \quad 0<\theta<\pi
$$

or

$$
\begin{array}{r}
\cot ((M-1) \theta)=-\cot \theta+\frac{M}{M-\alpha}\left[\frac{1}{\sin \theta}+2 M\left(\alpha \beta^{2}-\beta\right) \tan \left(\frac{\theta}{2}\right)\right] \tag{45}\\
0<\theta<\pi .
\end{array}
$$

For each integer δ with $1 \leq \delta \leq M-1$, in the interval $\left.J_{\delta}=\right] \frac{(\delta-1) \pi}{M-1}, \frac{\delta \pi}{M-1}[$ one satisfies

$$
\left.\begin{array}{c}
\lim _{\theta \rightarrow \frac{(\delta-1) \pi}{M-1}+} \cot ((M-1) \theta)=+\infty \tag{46}\\
\lim _{\theta \rightarrow \frac{\delta \pi}{M-1}-} \cot ((M-1) \theta)=-\infty ; \cot ((M-1) \theta) \text { decreases in } J_{\delta},
\end{array}\right]
$$

because

$$
\frac{d}{d \theta}(\cot ((M-1) \theta))=-\frac{M-1}{\sin ^{2}((M-1) \theta)}<0
$$

Furthermore the function $e_{M}(\theta)$ describing the right hand side of (45) is continuous and increasing in $] 0, \pi[$ if

$$
\begin{equation*}
\left.M>\max \left\{\frac{\alpha}{1-\cos \theta}, \alpha\right\}, \quad \theta \in\right] 0, \pi[\tag{47}
\end{equation*}
$$

and some of the following conditions are satisfied

$$
\left.\begin{array}{l}
\beta=0, \tag{48}\\
\alpha \beta=1, \\
\beta>0 \text { and } \alpha \beta>1, \\
\beta<0 \text { and } \alpha \beta<1 .
\end{array}\right] .
$$

Then by (46)-(48) there exists only one solution θ_{δ} of (45) in the interval J_{δ}, satisfying

$$
\left.\begin{array}{c}
=-\cot \theta_{\delta}+\frac{M}{M-\alpha}\left[\frac{1}{\sin \theta_{\delta}}+2 M\left(\alpha \beta^{2}-\beta\right) \tan \left(\frac{\theta_{\delta}}{2}\right)\right] \tag{49}\\
1 \leq \delta \leq M-1, \quad \theta_{\delta} \in J_{\delta}
\end{array}\right] .
$$

Hence condition (34) can be written in the form

$$
\begin{align*}
& S\left(\alpha, \beta, \theta_{\delta}\right)\left(A+w_{\delta} B\right)^{n} d_{\delta}=0 \tag{50}\\
& \quad 0 \leq n \leq p(\delta)-1, \quad 1 \leq \delta \leq M-1
\end{align*}
$$

where

$$
\begin{align*}
S\left(\alpha, \beta, \theta_{\delta}\right)= & \frac{\sin \left(M \theta_{\delta}\right)}{\sin \left((M-1) \theta_{\delta}\right)} \widehat{A}_{2}+4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right)\left(\widehat{A}_{2} B_{1}^{2}-B_{1}\right)+ \\
& -\left[\frac{\sin \left(M \theta_{\delta}\right)}{\sin \left((M-1) \theta_{\delta}\right)} \alpha+4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right)\left(\alpha \beta^{2}-\beta\right)\right] I \tag{51}
\end{align*}
$$

$p(\delta)$ is the degree of the minimal polynomial of the matrix $A+w_{\delta} B$, being θ_{δ} the solution of (49) and

$$
\begin{equation*}
w_{\delta}=\frac{-1}{4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right)}, \quad 1 \leq \delta \leq M-1 \tag{52}
\end{equation*}
$$

Let us introduce the block matrix defined by

$$
T\left(\alpha, \beta, \theta_{\delta}\right)=\left[\begin{array}{c}
B_{1}\left(A+w_{\delta} B\right)-\left(A+w_{\delta} B\right) B_{1} \tag{53}\\
B_{1}\left(A+w_{\delta} B\right)^{2}-\left(A+w_{\delta} B\right)^{2} B_{1} \\
\vdots \\
B_{1}\left(A+w_{\delta} B\right)^{p(\delta)-1}-\left(A+w_{\delta} B\right)^{p(\delta)-1} B_{1} \\
S\left(\alpha, \beta, \theta_{\delta}\right) \\
S\left(\alpha, \beta, \theta_{\delta}\right)\left(A+w_{\delta} B\right) \\
S\left(\alpha, \beta, \theta_{\delta}\right)\left(A+w_{\delta} B\right)^{2} \\
\vdots \\
S\left(\alpha, \beta, \theta_{\delta}\right)\left(A+w_{\delta} B\right)^{p(\delta)-1}
\end{array}\right],
$$

Then vectors d_{δ} satisfy (50) and the corresponding to (30), i.e.,

$$
\begin{equation*}
\left[\left(A+w_{\delta} B\right)^{n} B_{1}-B_{1}\left(A+w_{\delta} B\right)^{n}\right] d_{\delta}=0, \quad 0<n<p(\delta), \tag{54}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
T\left(\alpha, \beta, \theta_{\delta}\right) d_{\delta}=0, \quad 1 \leq \delta \leq M-1, \quad d_{\delta} \in \mathbb{C}^{s} \sim\{0\} \tag{55}
\end{equation*}
$$

Note that if vectors $\left\{d_{\delta}\right\}_{\delta=1}^{M-1}$ are chosen so that

$$
\begin{equation*}
\left(B_{1}-\beta I\right) d_{\delta}=\left(\widehat{A}_{2}-\alpha I\right) d_{\delta}=0, \quad d_{\delta} \in \mathbb{C}^{s} \sim\{0\}, \quad 1 \leq \delta \leq M-1 \tag{56}
\end{equation*}
$$

and

$$
\begin{align*}
&\left\{\left(A+w_{\delta} B\right)^{n} d_{\delta} ; 1 \leq n \leq p(\delta)-1\right\} \subset \operatorname{ker}\left(\widehat{A}_{2}-\alpha I\right) \cap \tag{57}\\
& \operatorname{ker}\left(B_{1}-\beta I\right) \\
& 1 \leq \delta \leq M-1
\end{align*}
$$

then vectors d_{δ} satisfy (50) and (54), or equivalently (55). Replacing θ by θ_{δ} into (15) and (26), by (12) it follows that

$$
\begin{align*}
& U_{\delta}(m, n)=\left[I-r\left(4 \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right) A-\frac{B}{M^{2}}\right)\right]^{n} \\
& \cdot\left[\sin \left(m \theta_{\delta}\right)-2 M \beta \sin \left(\frac{\theta_{\delta}}{2}\right) \cos \left(\left(\frac{2 m-1}{2}\right) \theta_{\delta}\right)\right] d_{\delta} \tag{58}
\end{align*}
$$

for $1 \leq m \leq M-1, n \geq 0$, define nonzero solutions of problem (8)-(10).
Summarizing the following result has been established:
Theorem 2.1 Let us consider the boundary value problem (8)-(10) under hypothesis (5) with $A_{1}=I$, let $\widehat{A}_{2}=\left(A_{2} B_{1}-B_{2}\right)^{-1} A_{2}$ and let $M>0$ be a large enough positive integer so that (23) and (38) hold.
(i) Assume condition (43) and take M satisfying (47). Then there exist solutions θ_{δ} of (49), $\left.\theta_{\delta} \in\right] \frac{(\delta-1) \pi}{M-1}, \frac{\delta \pi}{M-1}\left[=J_{\delta}, 1 \leq \delta \leq M-1\right.$, making the matrix $L\left(\theta_{\delta}\right)$ defined by (36) singular.
(ii) Under hypothesis of (i), let d_{δ} be vectors in \mathbb{C}^{s} satisfying (56) and (57) for $1 \leq \delta \leq M-1$, then $\left\{U_{\delta}(m, n)\right\}$ given by (58) defines nontrivial solutions of problem (8)-(10).

Remark 2.1 The case where apart from the invertibility of \mathcal{A} one has $B_{1}=I$ can be treated in an analogous way taking into account the properties of the Schur complement, see [3]. Considering the change $m \rightarrow M-m$, the cases where $A_{2}=I$ or $B_{2}=I$ can be transformed into the previous cases.

3 The mixed problem

This section deals with the construction of exact solutions of the mixed difference problem (8)-(10). Assume the notation and hypotheses of theorem 2.1-(i) and (ii). By superposition of solutions of the boundary problem (8)-(10) one gets

$$
\left.\begin{array}{c}
U(m, n) \\
=\sum_{\delta=1}^{M-1}\left[I-r\left(4 \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right) A-\frac{B}{M^{2}}\right)\right]^{n} \\
\cdot\left[\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(m \theta_{\delta}\right)-\beta M \cos \left(m \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right] d_{\delta} \tag{59}\\
\rho_{\delta}=-4 r \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right), \quad 1 \leq \delta \leq M-1
\end{array}\right]
$$

By imposing to $\{U(m, n)\}$ given by (59) that satisfies the initial condition (11), implies that vectors d_{δ} appearing in (59) must verify

$$
\begin{equation*}
f(m)=\sum_{\delta=1}^{M-1}\left[\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(m \theta_{\delta}\right)-\beta M \cos \left(m \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right] d_{\delta} \tag{60}
\end{equation*}
$$

Let $f_{q}(m)$ and $d_{\delta, q}$ be the q-th component of vectors $f(m)$ and d_{δ} respectively. Consider the scalar Sturm-Liouville problem

$$
\left.\begin{array}{r}
-h(m+1)+2 h(m)-h(m-1)=-\frac{\rho}{r} h(m) \\
h(0)=\frac{\beta M}{\beta M-1} h(1) \tag{61}\\
h(M)=\frac{M(\alpha \beta-1)}{\alpha+M(\alpha \beta-1)} h(M-1)
\end{array}\right\}, \quad 1 \leq m \leq M-1
$$

By [1, chap. 11] problem (61) has exactly $M-1$ eigenvalues given by $\left\{\frac{-\rho_{\delta}}{r}\right\}_{\delta=1}^{M-1}$, where $\rho_{\delta}=-4 r \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right)$ and θ_{δ} satisfies (49). For each eigenvalue $\frac{\rho_{\rho}}{r}$ there exists one eigenfunction sequence

$$
\begin{equation*}
\left\{h_{\delta}(m)\right\}=\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(m \theta_{\delta}\right)-\beta M \cos \left(m \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\} \tag{62}
\end{equation*}
$$

and these eigenfunctions are orthogonal with respect to the weight function $w(m)=1$, for $1 \leq m \leq M-1$. The q-th component of equation (60) takes the form

$$
\begin{equation*}
f_{q}(m)=\sum_{\delta=1}^{M-1}\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(m \theta_{\delta}\right)-\beta M \cos \left(m \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\} d_{\delta, q} \tag{63}
\end{equation*}
$$

By the orthogonality of eigenfunctions $\left\{h_{\delta}(m)\right\}$ appearing in (60) and the theory of discrete Fourier series, see [1, chap. 11], it follows that

$$
\begin{array}{r}
d_{\delta, q}=\frac{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(\nu \theta_{\delta}\right)-\beta M \cos \left(\nu \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\} f_{q}(\nu)}{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(\nu \theta_{\delta}\right)-\beta M \cos \left(\nu \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\}^{2}}, \tag{64}\\
1 \leq \delta \leq M-1, \quad 1 \leq q \leq s,
\end{array}
$$

or in vectorial form

$$
\begin{array}{r}
d_{\delta}=\frac{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(\nu \theta_{\delta}\right)-\beta M \cos \left(\nu \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\} f(\nu)}{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta M \rho_{\delta}}{2 r}\right) \sin \left(\nu \theta_{\delta}\right)-\beta M \cos \left(\nu \theta_{\delta}\right) \sin \left(\theta_{\delta}\right)\right\}^{2}} \tag{65}\\
1 \leq \delta \leq M-1
\end{array}
$$

Expression (65) for vectors d_{δ} must be compatible with conditions (56), (57). This means that $\{f(m)\}$ must satisfy

$$
\begin{equation*}
\left(B_{1}-\beta I\right) f(m)=\left(\widehat{A}_{2}-\alpha I\right) f(m)=0, \quad 1 \leq m \leq M-1 \tag{66}
\end{equation*}
$$

and if w_{δ} is given by (52),
$\left\{\left(A+w_{\delta} B\right)^{n} f(m), 1 \leq n \leq p(\delta)-1\right\} \subset \operatorname{ker}\left(\widehat{A}_{2}-\alpha I\right) \cap \operatorname{ker}\left(B_{1}-\beta I\right)$,
for $1 \leq m \leq M-1,1 \leq \delta \leq M-1$.
If $\{f(m)\}_{m=1}^{M-1}$ satisfies (66), (67) then $\{U(m, n)\}$ defined by (59) where d_{δ} is given by (65) is a solution of problem (8)-(11). Note that conditions (66) and (67) are satisfied if

$$
\begin{equation*}
f(m) \in \operatorname{ker}\left(\widehat{A}_{2}-\alpha I\right) \cap \operatorname{ker}\left(B_{1}-\beta I\right), \quad 1 \leq m \leq M-1 \tag{68}
\end{equation*}
$$

and

$$
\begin{align*}
& \operatorname{ker}\left(\widehat{A}_{2}-\alpha I\right) \cap \operatorname{ker}\left(B_{1}-\beta I\right) \text { is an invariant subspace } \tag{69}\\
& \text { by the matrix } A+w_{\delta} B, \quad 1 \leq \delta \leq M-1 .
\end{align*}
$$

Using lemma 1 of [9], conditions (68) and (69) can be written in the form

$$
\begin{gather*}
f(m) \in \operatorname{Im} L(\alpha, \beta), \quad 1 \leq m \leq M-1 \tag{70}\\
\left(I-L(\alpha, \beta) L(\alpha, \beta)^{\dagger}\right)\left(A+w_{\delta} B\right) L(\alpha, \beta)=0, \quad 1 \leq \delta \leq M-1 \tag{71}
\end{gather*}
$$

where

$$
\begin{align*}
& \left.L(\alpha, \beta)=\left(I-P_{\alpha}^{\dagger} P_{\alpha}\right)\left\{I-\left[Q_{\beta}\left(I-P_{\alpha}^{\dagger} P_{\alpha}\right)\right]^{\dagger}\left[Q_{\beta}\left(I-P_{\alpha}^{\dagger} P_{\alpha}\right)\right]\right\}\right] \tag{72}\\
& P_{\alpha}=\widehat{A}_{2}-\alpha I, \quad Q_{\beta}=B_{1}-\beta I,
\end{align*}
$$

Note that condition (71) means that $\operatorname{Im} L(\alpha, \beta)$ is an invariant subspace by the matrix $A+w_{\delta} B$, for $1 \leq \delta \leq M-1$. The solution $\{U(m, n)\}$ of the mixed problem (8)-(11), defined by (59), (65), is stable, i.e. remains bounded as $n \rightarrow \infty$ if $\{f(m)\}$ is bounded and matrices

$$
I-r\left(4 A \sin ^{2}\left(\frac{\theta_{\delta}}{2}\right)-\frac{B}{M^{2}}\right), \quad 1 \leq \delta \leq M-1
$$

are convergent. By theorem 2.1 of [10] this occurs if

$$
\begin{align*}
& x>0 \quad \text { for all } \quad x \in \sigma\left(\frac{A+A^{H}}{2}\right) \tag{73}\\
& y \leq 0 \quad \text { for all } \quad y \in \sigma\left(\frac{B+B^{H}}{2}\right) \tag{74}
\end{align*}
$$

and if $\widetilde{A}_{1}=\frac{A+A^{H}}{2}, \widetilde{B}_{1}=\frac{B+B^{H}}{2}, \widetilde{A}_{2}=\frac{A-A^{H}}{2 i}, \widetilde{B}_{2}=\frac{B-B^{H}}{2 i}$ and θ_{1} is the unique solution of (49) in $] 0, \frac{\pi}{M-1}[, r$ satisfies

$$
\begin{equation*}
r<\frac{M^{2}\left[\left(2 M \sin \left(\frac{\theta_{1}}{2}\right)\right)^{2} \lambda_{\min }\left(\widetilde{A}_{1}\right)-\lambda_{\max }\left(\widetilde{B}_{1}\right)\right]}{\left[4 M^{2} \lambda_{\max }\left(\widetilde{A}_{1}\right)+\rho\left(\widetilde{B}_{1}\right)\right]^{2}+\left[4 M^{2} \lambda_{\max }\left(\widetilde{A}_{2}\right)+\rho\left(\widetilde{B}_{2}\right)\right]^{2}} \tag{75}
\end{equation*}
$$

Summarizing the following result has been established:
Theorem 3.1 Consider the mixed problem (8)-(11) under hypothesis (43) and (5) with $A_{1}=I$. Let $\widehat{A}_{2}=\left(A_{2} B_{1}-B_{2}\right)^{-1} A_{2}$ and let $M>0$ integer large enough so that (23),(38) and (47) hold. Let θ_{δ} be the solution of (49) and w_{δ} be defined by (52) for $1 \leq \delta \leq M-1$. Suppose that $\{f(m)\}$ satisfies conditions (70) and (71) where $L(\alpha, \beta)$ is defined by (72). Then $\{U(m, n)\}$ defined by (59) where d_{δ} is given by (65) is a solution of problem (8)(11). Furthermore, if matrices A, B satisfy conditions (73)-(74), $\{f(m)\}$ is bounded and r is small enough so that (75) holds, then $\{U(m, n)\}$ is stable.

Now we study conditions more general than those considered in theorem 3.1. Let us assume that

$$
\begin{gather*}
\Lambda=\{\alpha(1), \ldots, \alpha(t)\} \subset \mathbb{R} \cap \sigma\left(\widehat{A}_{2}\right) \tag{76}\\
\Omega=\{\beta(1), \ldots, \beta(q)\} \subset \mathbb{R} \cap \sigma\left(B_{1}\right) \tag{77}
\end{gather*}
$$

By lemma 1 of [9] condition

$$
\begin{equation*}
L(\alpha(i), \beta(j)) \neq 0, \quad 1 \leq i \leq t, \quad 1 \leq j \leq q \tag{78}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\operatorname{ker}\left(\widehat{A}_{2}-\alpha(i) I\right) \cap \operatorname{ker}\left(B_{1}-\beta(j) I\right) \neq \emptyset, \quad 1 \leq i \leq t, \quad 1 \leq j \leq q \tag{79}
\end{equation*}
$$

Consider the set $\mathcal{F} \subset \Lambda \times \Omega$ defined by
$\mathcal{F}=\left\{\begin{array}{l}\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right) \in \Lambda \times \Omega \text { satisfying some of the conditions of (48), } \\ \left(\widehat{A}_{2}-\alpha\left(i_{\ell}\right) I\right) v_{\ell}=\left(B_{1}-\beta\left(i_{\ell}\right) I\right) v_{\ell}=0, v_{\ell} \in \mathbb{C}^{s} \sim\{0\}, \\ L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right) \neq 0\end{array}\right\}$
and the block matrix

$$
\begin{equation*}
\mathcal{L}=\left[L\left(\alpha\left(i_{1}\right), \beta\left(j_{1}\right)\right), L\left(\alpha\left(i_{2}\right), \beta\left(j_{2}\right)\right), \ldots, L\left(\alpha\left(i_{p}\right), \beta\left(j_{p}\right)\right)\right] \in \mathbb{C}^{s \times p s} \tag{81}
\end{equation*}
$$

and suppose that $f(m) \in \operatorname{Im} \mathcal{L}$ for $0 \leq m \leq M$, or equivalently

$$
\begin{equation*}
\left(I-\mathcal{L} \mathcal{L}^{\dagger}\right) f(m)=0, \quad 0 \leq m \leq M \tag{82}
\end{equation*}
$$

because $\operatorname{Im} \mathcal{L}=\operatorname{ker}\left(I-\mathcal{L} \mathcal{L}^{\dagger}\right)$. By lemma 1 of [9] one gets

$$
\begin{equation*}
\mathcal{S}_{\ell}=\operatorname{Im} L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right)=\operatorname{ker}\left(\widehat{A}_{2}-\alpha\left(i_{\ell}\right) I\right) \cap \operatorname{ker}\left(B_{1}-\beta\left(j_{\ell}\right) I\right) \tag{83}
\end{equation*}
$$

and by (81), (83), the subspace $\operatorname{Im} \mathcal{L}$ is the direct sum of the subspaces \mathcal{S}_{ℓ},

$$
\begin{equation*}
\operatorname{Im} \mathcal{L}=\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \cdots \oplus \mathcal{S}_{p} \tag{84}
\end{equation*}
$$

Let $\left\{\widehat{f}_{\ell}(m)\right\}_{m=0}^{M}$ be the projection sequence of $\{f(m)\}_{m=0}^{M}$ on the subspace S_{ℓ}, defined by:

$$
\begin{array}{r}
\widehat{f}_{\ell}(m)=\left[0, \ldots, 0, L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right), 0, \ldots, 0\right] \mathcal{L}^{\dagger} f(m) \tag{85}\\
1 \leq \ell \leq p, 0 \leq m \leq M
\end{array}
$$

Since $\widehat{f}_{\ell}(m)$ lies in \mathcal{S}_{ℓ}, by (82) it follows that:

$$
\begin{equation*}
\sum_{\ell=1}^{p} \widehat{f}_{\ell}(m)=\mathcal{L} \mathcal{L}^{\dagger} f(m)=f(m), \quad 0 \leq m \leq M \tag{86}
\end{equation*}
$$

Let us suppose that $\operatorname{Im} \mathcal{L}\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right)$ in an invariant subspace by the matrix $A+w_{\delta}^{(\ell)} B$, i.e.:

$$
\begin{gather*}
{\left[I-L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right) L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right)^{\dagger}\right]\left(A+w_{\delta}^{(\ell)} B\right) L\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right)=0} \\
w_{\delta}^{(\ell)}=\frac{-1}{4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}^{(\ell)}}{2}\right)}, \quad 1 \leq \delta \leq M-1 \tag{87}
\end{gather*}
$$

where $\theta_{\delta}^{(\ell)}$ is the solution of (49) associated to the pair $\left(\alpha\left(i_{\ell}\right), \beta\left(j_{\ell}\right)\right)$ in J_{δ}. Consider problem (P_{ℓ}) defined by (8)-(10) together with the initial condition

$$
\begin{equation*}
U(m, 0)=\widehat{f}_{\ell}(m), \quad 0 \leq m \leq M, \quad 1 \leq \ell \leq p \tag{88}
\end{equation*}
$$

and note that solution $\left\{U_{\ell}(m, n)\right\}$ of problem $\left(P_{\ell}\right)$ is defined by (59) where $d_{\delta}^{(\ell)}$ is given by

$$
\begin{equation*}
d_{\delta}^{(\ell)}=\frac{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta\left(j_{\ell}\right) M \rho_{\delta}^{(\ell)}}{2 r}\right) \sin \left(\nu \theta_{\delta}^{(\ell)}\right)-\beta\left(j_{\ell}\right) M \cos \left(\nu \theta_{\delta}^{(\ell)}\right) \sin \left(\theta_{\delta}^{(\ell)}\right)\right\} \widehat{f}_{\ell}(\nu)}{\sum_{\nu=1}^{M-1}\left\{\left(1-\frac{\beta\left(j_{\ell}\right) M \rho_{\delta}^{(\ell)}}{2 r}\right) \sin \left(\nu \theta_{\delta}^{(\ell)}\right)-\beta\left(j_{\ell}\right) M \cos \left(\nu \theta_{\delta}^{(\ell)}\right) \sin \left(\theta_{\delta}^{(\ell)}\right)\right\}^{2}} \tag{89}
\end{equation*}
$$

for $1 \leq \delta \leq M-1,1 \leq \ell \leq p, 1 \leq j \leq q$.

$$
\begin{aligned}
& U_{\ell}(m, n)=\sum_{\delta=1}^{M-1}\left[I-r\left(4 A \sin ^{2}\left(\frac{\theta_{\delta}^{(\ell)}}{2}\right)-\frac{B}{M^{2}}\right)\right]^{n} \cdot \\
& \quad \cdot\left[\left(1-\frac{\beta\left(j_{\ell}\right) M \rho_{\delta}^{(\ell)}}{2 r}\right) \sin \left(m \theta_{\delta}^{(\ell)}\right)-\beta\left(j_{\ell}\right) M \cos \left(m \theta_{\delta}^{(\ell)}\right) \sin \left(\theta_{\delta}^{(\ell)}\right)\right] d_{\delta}^{(\ell)} \cdot(90)
\end{aligned}
$$

By linearity and (86), (90) it follows that

$$
\begin{equation*}
U(m, n)=\sum_{\ell=1}^{p} U_{\ell}(m, n), \quad 1 \leq m \leq M-1, \quad n \geq 0 \tag{91}
\end{equation*}
$$

is a solution of problem (8)-(11). Furthermore (91) is a stable solution if (73)-(74) hold and the parameter r verifies
$r<\min _{1 \leq \ell \leq p}\left\{\frac{M^{2}\left[\left(2 M \sin \left(\frac{\theta_{1}^{(\ell)}}{2}\right)\right)^{2} \lambda_{\min }\left(\widetilde{A}_{1}\right)-\lambda_{\max }\left(\widetilde{B}_{1}\right)\right]}{\left[4 M^{2} \lambda_{\max }\left(\widetilde{A}_{1}\right)+\rho\left(\widetilde{B}_{1}\right)\right]^{2}+\left[4 M^{2} \lambda_{\max }\left(\widetilde{A}_{2}\right)+\rho\left(\widetilde{B}_{2}\right)\right]^{2}}\right\}$.
Summarizing the following result is a consequence of theorem 3.1.
Theorem 3.2 Consider problem (8)-(11) under hypothesis (5) with $A_{1}=$ I, assume (76) and (77) and let M be an integer satisfying (23), (38) and

$$
\begin{equation*}
M>\max _{1 \leq \ell \leq p}\left\{\frac{\alpha\left(i_{\ell}\right)}{1-\cos \left(\theta^{(\ell)}\right)}, \alpha\left(i_{\ell}\right)\right\} . \tag{93}
\end{equation*}
$$

Let \mathcal{F} and \mathcal{L} be defined by (80) and (81) respectively, assume that $\{f(m)\}$ is bounded, conditions (73)-(74) are satisfied and r is small enough so that (92) holds. Let $\left\{\widehat{f}_{\ell}(m)\right\}_{m=0}^{M}$ be defined by (85), let $w_{\delta}^{(\ell)}$ be defined by (87) and assume that condition (87) holds. If $\left\{U_{\ell}(m, n)\right\}$ is given by (90) then $\{U(m, n)\}$ defined by (91) is a stable solution of problem (8)-(11).

4 Example

Consider the problem (1)-(4) with data:

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 2 & 0 \\
0 & 2 & 1
\end{array}\right], B=\left[\begin{array}{rrr}
-3 & 2 & 0 \\
0 & -8 & 0 \\
0 & 5 & -3
\end{array}\right], A_{1}=I, \\
B_{1}=\left[\begin{array}{rrr}
3 & 1 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 2 & -\frac{1}{2}
\end{array}\right], A_{2}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & \frac{1}{2} & -1
\end{array}\right], B_{2}=\left[\begin{array}{rrr}
5 & \frac{3}{2} & 0 \\
0 & -2 & 0 \\
0 & -\frac{9}{4} & -\frac{1}{2}
\end{array}\right],
\end{gathered}
$$

$f(m)=F(m h)=\left(f_{1}(m), f_{2}(m), f_{3}(m)\right)^{T}$, and $h=\frac{1}{M}, 1 \leq m \leq M-1$.
Hypothesis (5) is satisfied, $\widehat{A}_{2}=\left(A_{2} B_{1}-B_{2}\right)^{-1} A_{2}=A_{2}$ with

$$
\sigma\left(\widehat{A}_{2}\right)=\{-1,2\}, \quad \sigma\left(B_{1}\right)=\left\{-\frac{1}{2}, 3\right\}
$$

Let $\alpha(1)=-1, \alpha(2)=2, \beta(1)=-\frac{1}{2}, \beta(2)=3$ and note that both pairs $(\alpha(1), \beta(1)),(\alpha(2), \beta(2))$ satisfy (48) and

$$
\begin{aligned}
& v=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad\left(\widehat{A}_{2}-\alpha(1) I\right) v=\left(B_{1}-\beta(1) I\right) v=0, \\
& w=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left(\widehat{A}_{2}-\alpha(2) I\right) w=\left(B_{1}-\beta(2) I\right) w=0 .
\end{aligned}
$$

For the pair $(\alpha(1), \beta(1))=(-1,-1 / 2)$ the matrix $L(\alpha(1), \beta(1))$ defined by (72) takes the value

$$
\left.\begin{array}{c}
L(-1,-1 / 2)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \neq 0 ; \tag{94}\\
I-L(-1,-1 / 2) L(-1,-1 / 2)^{\dagger}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}\right]
$$

Let $\left\{\theta_{\delta}^{(1)}\right\}_{\delta=1}^{M-1}$ be the solutions of (49) corresponding to the pair $(-1,-1 / 2)$ and let

$$
w_{\delta}^{(1)}=\frac{-1}{4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}^{(1)}}{2}\right)}, \quad 1 \leq \delta \leq M-1
$$

Hence

$$
A+w_{\delta}^{(1)} B=\left[\begin{array}{ccc}
1-3 w_{\delta}^{(1)} & -1+2 w_{\delta}^{(1)} & 0 \tag{95}\\
0 & 2-8 w_{\delta}^{(1)} & 0 \\
0 & 2+5 w_{\delta}^{(1)} & 1-3 w_{\delta}^{(1)}
\end{array}\right]
$$

By (94) and (95) it follows that

$$
\begin{array}{r}
{\left[I-L(-1,-1 / 2) L(-1,-1 / 2)^{\dagger}\right]\left(A+w_{\delta}^{(1)} B\right) L(-1,-1 / 2)=0} \tag{96}\\
1 \leq \delta \leq M-1
\end{array}
$$

Let us consider now the pair $(\alpha(2), \beta(2))=(2,3)$. Computing one gets

$$
L(2,3)=\left[\begin{array}{lll}
1 & 0 & 0 \tag{97}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq 0 \text { and } I-L(2,3) L(2,3)^{\dagger}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let $\left\{\theta_{\delta}^{(2)}\right\}_{\delta=1}^{M-1}$ be the solutions of (49) corresponding to the pair $(2,3)$ and let

$$
w_{\delta}^{(2)}=\frac{-1}{4 M^{2} \sin ^{2}\left(\frac{\theta_{\delta}^{(2)}}{2}\right)}, \quad 1 \leq \delta \leq M-1
$$

Note that

$$
A+w_{\delta}^{(2)} B=\left[\begin{array}{ccc}
1-3 w_{\delta}^{(2)} & -1+2 w_{\delta}^{(2)} & 0 \\
0 & 2-8 w_{\delta}^{(2)} & 0 \\
0 & 2+5 w_{\delta}^{(2)} & 1-3 w_{\delta}^{(2)}
\end{array}\right]
$$

Computing the matrix $\mathcal{L}=[L(\alpha(1), \beta(1)), L(\alpha(2), \beta(2))]$ one gets

$$
\mathcal{L}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Condition (82) is satisfied by any vector function $\{f(m)\}$ of the form

$$
f(m)=\left(f_{1}(m), 0, f_{3}(m)\right)^{T}
$$

The projections $\left\{\widehat{f}_{1}(m)\right\},\left\{\widehat{f}_{2}(m)\right\}$ defined by (85) take the form

$$
\begin{align*}
& \widehat{f}_{1}(m)=[L(\alpha(1), \beta(1)), 0] \mathcal{L}^{\dagger} f(m)=\left[\begin{array}{c}
0 \\
0 \\
f_{3}(m)
\end{array}\right], \tag{98}\\
& \widehat{f}_{2}(m)=[0, L(\alpha(2), \beta(2))] \mathcal{L}^{\dagger} f(m)=\left[\begin{array}{c}
f_{1}(m) \\
0 \\
0
\end{array}\right] . \tag{99}
\end{align*}
$$

Note that

$$
\begin{gathered}
\frac{A+A^{H}}{2}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & 0 \\
-\frac{1}{2} & 2 & 1 \\
0 & 1 & 1
\end{array}\right], \sigma\left(\frac{A+A^{H}}{2}\right)=\left\{\frac{1079}{396}, \frac{297}{1079}, 1\right\} \\
\frac{B+B^{H}}{2}=\left[\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -8 & \frac{5}{2} \\
0 & \frac{5}{2} & -3
\end{array}\right], \sigma\left(\frac{B+B^{H}}{2}\right)=\left\{-\frac{1211}{132},-3,-\frac{1729}{947}\right\}
\end{gathered}
$$

and thus the stability conditions (73), (74) are satisfied. Taking small enough values of r satisfying (92), M verifying (23), (38) and (92) by theorem 3.2 the vector function

$$
U(m, n)=\sum_{\ell=1}^{2} U_{\ell}(m, n)
$$

where $\left\{U_{\ell}(m, n)\right\}$ are defined by (89), (90) and $\left\{\widehat{f}_{\ell}(m)\right\}$ by (98)-(99) is a stable solution of the mixed problem (8)-(11) with the above data.

References

[1] R.P. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker, (1992).

2] M.H. Alexander and D.E. Manolopoulos, A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory, J. Chem. Phys. 86, 2044-2050, (1987).

3] O. Axelsson, Iterative Solution Methods, Cambridge Univ. Press., Cambridge, (1996).
[4] S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Pitman, London, (1979).
[5] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, (1957).
[6] G. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins Univ. Press, Baltimore, M.D., (1989).
[7] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its applications to conduction in the giant axon of Loligo, J. Physiol., Vol. 117, pp. 500-544, (1952).
[8] L. Jódar and J.A. Sánchez, Constructive stable numerical solutions of strongly coupled diffusion mixed partial differential systems, Int. J. Computer Math. 73 No.2, 225-242, (1999).
[9] L. Jódar, E. Navarro and J.A. Martín, Exact and analytic-numerical solution of strongly coupled mixed diffusion problems, Proc. Edinburgh Math. Soc. 43, 269-293, (2000).
[10] L. Jódar and M.C. Casabán, Convergent matrix pencils, Applied Math. Lett. 14 (5), 549-551, (2001).
[11] L. Jódar and M.C. Casabán, Convergent discrete numerical solution of coupled mixed partial differential systems, Math. Comput. Model. 34, 283-297, (2001).
[12] R.J. Kee and L.R. Petzold, A differential/algebraic equation formulation of the method of lines solution to systems of partial differential equations, Tech. Rep. SAND86-8893, Sandia National Laboratories, (1986).
[13] M. Mascagni, A initial-boundary value problem of physiological significance for equations of nerve conduction, Commun. Pure Appl. Math., Vol. XLII, pp. 213-227, (1989).
[14] V.S. Melezhik, I.V. Puzhynin, T.P. Puzhynina and L.N. Somov, Numerical solution of a system of integrodifferential equations arising from the quantum-mechanical three-body problem with Coulomb interaction, J. Comput. Phys. 54, 221-236, (1984).
[15] L. Mirsky, An Introduction to Linear Algebra, Dover, New York, (1990).
[16] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, Tokio, (1953).
[17] E. Navarro, E. Ponsoda and L. Jódar, A matrix approach to the analytic-numerical solution of mixed partial differential systems, Computers Math. Appl. 30 (1), 99-109, (1995).
[18] D. Sheng and K. Axelsson, Uncoupling of coupled flow in soil. A finite element method, Int. J. Numer. and Analytical Meth. in Geomechanics, Vol. 19, pp. 537-553, (1995).
[19] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Chapman and Hall, (1989).
[20] A.T. Winfree, Heart Muscle as a Reaction-Diffusion Medium: the Roles of Electrical Potential Diffusion, Activation Front Curvature, and Anisotropy, Int. J. Bif. Chaos 7, 487-526, (March 1997).

[^0]: *This work has been partially supported by the Spanish D.G.I.C.Y.T. grant BMF 2000-0206-C04-04.

