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Abstract

In this paper, we consider the problem of solving Initial Value Problems and Bound-
ary Value Problems through the point of view of its continuous form. It is well
known that in most cases these types of problems are solved numerically by perform-
ing a discretization and applying the finite difference technique to approximate the
derivatives, transforming the equation into a finite-dimensional nonlinear system of
equations. However, we would like to focus on the continuous problem, and there-
fore we try to set the domain of existence and uniqueness for its analytic solution.
For this purpose, we study the semilocal convergence of a Newton-type method with
frozen first derivative in Banach spaces. We impose only the assumption that the
Fréchet derivative satisfies the Lipschitz continuity condition and that it is bounded
in the whole domain in order to obtain appropriate recurrence relations so that we
may determine the domains of convergence and uniqueness for the solution.
Our final aim is to apply these theoretical results to solve applied problems that
come from integral equations, ordinary differential equations and boundary value
problems.

KEYWORDS:
Nonlinear equations, order of convergence, iterative methods, semilocal convergence, computational
efficiency.

1 INTRODUCTION

The problem of solving a nonlinear equation of the form F (x) = 0 typically appears when we encounter some kind of differential
equation, integral equation, or system of nonlinear equations. One can citemany areas of application, among them being chemical
reaction problems, electrical circuits, heat conduction, and signal transmission. These differential and integral equations, in most
cases, cannot be solved analytically, thus necessitating a need for proper numerical methods in order to transform the problem
into a nonlinear system and to subsequently solve it via iterative techniques.
In the last decade researchers in numerical analysis have designed a great variety of iterative methods to solve nonlinear

systems. Most of these invoke the philosophy of the well-known Newton’s method, which reaches quadratic convergence and is
defined by the following algorithm:

x0 given in Ω, xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, 2…

All of these methods must be compared in terms of the efficiency, a combined effect relating both the speed of convergence
and the computational cost. When we choose an iterative method to solve F (x) = 0, we must carefully apply the measurements
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of the efficiency, introduced by Traub17 and Ostrowski14: the efficiency index (EI) and the computational efficiency (CE),
which are respectively defined by

EI = �1∕d and CE = �1∕p,
where � is the order of convergence of the method, d represents the number of functional evaluations necessary to apply the
method and p is the number of operations (products and divisions) that are needed to compute each iteration of the method.
In1 the authors propose a multistep iterative method to solve F (x) = 0, the functional iteration of this method referred to as

(NMIM), which is defined by:
yn = xn − ΓnF (xn),
zn = yn − ΓnF (yn),
wn = zn − ΓnF (zn),
un1 = ΓnF (wn),
uni = ΓnF

′(wn)uni−1, i = 2,⋯ , 5

xn+1 = wn −
21
4
un1 + 11u

n
2 −

23
2
un3 + 6u

n
4 −

5
4
un5,

(1)

with xn ∈ Ω, n ⩾ 0, where Γn = F ′(xn)−1. This method reaches ninth-order convergence, making it a very efficient method
since it uses a frozen Jacobian in all steps where solving a linear system is required. Therefore the cost for obtaining theL andU
factors of F ′(xn), which are used to solve the lower and upper triangular systems of equations, is taken into account only once.
It should be noted that each iteration of NMIM requires only two Jacobian evaluations, and only one of them is used for solving
associated linear systems.
It is well known that one can use iterative methods to obtain an approximation of a root x∗ for F (x) = 0. In1 the authors

use (1) for approximating the solution of some IVP’s and BVP’s by using the finite difference technique and obtaining a finite-
dimensional nonlinear system. Our aim is to prove the existence of the analytical solution by treating the problem as one between
Banach spaces and obtaining the domain of existence and uniqueness for this solution. For this purpose we analyze a semilocal
convergence study of the iterative method. We use information about the initial value to start obtaining iterates, and analyze
the nonlinear operator which, together with the assumed conditions, guarantees the convergence of the method and gives us the
domain of existence and uniqueness to the solution.
In this paper we will devote ourselves to studying the approximation, from the semilocal point of view, to the solution x∗ of

the equation F (x) = 0, where F ∶ Ω ⊆ X → Y , on an open convex set Ω of a Banach space X with values in a Banach space
Y . The paper is organized as follows. First we introduce some preliminary results in section 2.1 that involve the analysis of the
first steps and the construction of auxiliary functions in order to perform the semilocal convergence study. We then set the main
results in section 2.2, with section 3 devoted to numerical exploration.

2 SEMILOCAL CONVERGENCE

Let X, Y be Banach spaces and F ∶ Ω ⊆ X → Y be a nonlinear first Fréchet differentiable operator in an open convex domain
Ω. For solving the system F (x) = 0, we will consider the multistep iterative method with frozen first derivative defined in (1).
We start from an initial estimate x0 ∈ Ω for which F ′(x0)−1 exists. We denote Γ0 = F ′(x0)−1, and assume that the following

conditions are verified:

(C1)‖Γ0‖ ≤ �0, ‖Γ0F (x0)‖ ≤ �0,
(C2)‖F ′(x) − F ′(y)‖ ≤ K‖x − y‖ for all x, y ∈ Ω and K ≥ 0,
(C3)‖F ′(x)‖ ≤ C for all x ∈ Ω and C ≥ 0.

Henceforth we define ℎ0 = �0K�0.
Under these conditions we establish recurrence relations in order to obtain the semilocal convergence for the iterative method

mentioned.
The following lemma will be used to guarantee the existence and boundedness of the inverse of a matrix.

Lemma 1. (Banach’s Lemma): Let A ∈ L(X,X) and ‖A‖ < 1 then I − A is an invertible matrix and ‖I − A‖−1 < 1
1 − ‖A‖

.
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The lemma below provides us an expression of the remainder of the Taylor expansion of the operator F which will be used in
subsequent proofs.

Lemma 2. If F has continuous derivatives up to order k + 1 in a convex open set Ω, for all x ∈ Ω, then if x0 ∈ Ω,

F (x) =
k
∑

j=0

1
k!
F (k)x0(x − x0)k + Rx0,k(x − x0)

where the remainder can be expressed as

Rx0,k(x − x0) =
1
k!

1

∫
0

[F ′(x0 + �(x − x0)) − F ′(x0)]d�(x − x0)

The next result guarantees that each iteration in the iterative method under consideration is well defined.

Lemma 3. Under the above mentioned conditions (C1) − (C3), let us assume that there exists 1 < R < 1
ℎ0

for which xn, yn, zn
and xn+1 ∈ B(x0, R�0) with B(x0, R�0) ⊂ Ω, for n ≥ 0 and n ∈ N , then the iterative process (1) is well defined.

Proof. Obviously, F (xn) is well defined, since xn ∈ B(x0, R�0) ⊂ Ω, for all n ∈ N and n ≥ 0.
On the other hand, it is necessary that Γn = [F ′(xn)]−1 exists for all n ∈ N . For that purpose we obtain:

‖I − Γ0F ′(xn)‖ ≤ ‖Γ0‖‖F ′(xn) − F ′(x0)‖ ≤ �0K‖xn − x0‖ < ℎ0R.

Then, as �ℎ0 < 1 we apply lemma 1 and deduce the existence of Γn and it verifies:

‖Γn‖ ≤ �
1 − ℎ0R

.

2.1 Auxiliary functions
In Lemma 3 we have assumed the existence of a value R which gives us a ball where we can obtain the iterates from our model,
but now we must obtain this value. For this purpose we must analyze the method step by step and, using the boundary conditions
(C1)−(C3), we obtain some restrictions that provide us a procedure to obtainR. Since we are analyzing a high order method, we
need to establish a high number of parameters and auxiliary functions that are necessary to study our model (1). Let us denote:

G0(s) = 1 +
1
2
ℎ0 +

1
2
ℎ20s +

1
2
ℎ30s

2P0 (2)

Q0(s) = 1 + P0L0 +
1
4
ℎ40s

2P 20 (3)

g0(s) =
ℎ30s

2Q0(s)
2(1 − ℎ0s)

(4)

G1(t, s) = 1 +
1
2
t + 1

2
t2s + 1

2
t3s2P1(t, s) (5)

Q1(t, s) = 1 + P1L1(s) +
1
4
t41s

2P1(s)2 (6)

g1(t, s) =
t3s2Q1(t, s)

2
(7)

with

L0 = �0C (8)

P0 =
21
4
+ L0(11 +

23
2
L0 + 6L20 +

5
4
L30) (9)

L1(s) =
�0C

1 − ℎ0s
(10)

P1(s) =
21
4
+ L1(s)[11 +

23
2
L1(s) + 6L1(s)2 +

5
4
L1(s)3)] (11)
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where t ∈ [0, ℎ0] and s ∈ [0,
1
ℎ0
[.

We establish properties of the auxiliary functions mentioned above with the following lemma.

Lemma 4. Under the conditions of Lemma 3 and (C1) − (C3) it follows:

(i) Function g0(s) is increasing and there exists r1 ∈ [0,
1
ℎ0
[ such that

g0(s)
1 − ℎ0s

≤ 1, ∀s ∈ [0, r1].

(ii) Function g1(t, s) is increasing with respect to t, considering fixed s, and for t = ℎ0 there exists r2 ∈ [0, r1[ such that
g1(ℎ0, s) ≤ 1, ∀s ∈ [0, r2].

(iii) Function G1(t, s) is increasing with respect to t, with fixed s. Moreover, with fixed t = ℎ0, we have that G0(s) ≤
G1(ℎ0, s) ∀s ∈ [0, 1

ℎ0
[.

Proof. It is obvious that functions G0, g0, G1 and g1 are increasing, by construction in their domain. To demonstrate the second
part of (i), we define the function p1(s) =

g0(s)
1 − ℎ0s

− 1, where it holds that p1(0) = −1 and p1(
1
ℎ0
) → +∞ which indicates that

there is at least one positive root in ]0, 1
ℎ0
[. We take the smallest one, let it be r1. Then, ∀s ∈ [0, r1] the function

g0(s)
1 − ℎ0s

≤ 1.
In case (ii), we define the function p2(s) = g1(ℎ0, s) − 1, where p2(0) = −1 and p2(+∞) → +∞ and, analogously to the case

(i), we find the smallest possible root r2 ∈]0,+∞[. Then, ∀s ∈ [0, r2] the function g1(ℎ0, s) ≤ 1.
Now, (iii) holds by noting that P1(s) > P0 ∀s ∈ [0, 1

ℎ0
[ and L1(s) > L0 ∀s ∈ [0, 1

ℎ0
[.

2.1.1 Analyzing the first steps
For n = 0, we have already defined �0, �0, ℎ0, through our choice of the starting point x0.
By using the first step from (1) we have:

‖y0 − x0‖ = ‖Γ0F (x0)‖ ≤ �0. (12)

Now, by considering the Taylor expansion with remainder given in Lemma 2, for F (y0) around x0 and, using first step of (1),
we have:

F (y0) =

y0

∫
x0

[F ′(z) − F ′(x0)]dz =

1

∫
0

[F ′(x0 + �(y0 − x0)) − F ′(x0)]d�(y0 − x0),

then, by taking norms and using (C2) we get:

‖F (y0)‖ ≤ 1
2
K�0‖y0 − x0‖,

so, for the second step it follows that

‖z0 − y0‖ ≤ ‖Γ0‖‖F (y0)‖ ≤ 1
2
ℎ0�0, (13)

and by using the triangle inequality, (12), and (13), we can write

‖z0 − x0‖ ≤ ‖z0 − y0‖ + ‖y0 − x0‖ ≤ (1 + 1
2
ℎ0)�0. (14)

In the same way, we bound F (z0) by a similar process.

F (z0) =

z0

∫
y0

[F ′(z) − F ′(x0)]dz =

1

∫
0

[F ′(y0 + �(z0 − y0)) − F ′(x0)]d�(z0 − y0),

and, by taking norms and using (C2), we get:

‖F (z0)‖ ≤ KR�0‖z0 − y0‖, (15)
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where we have used that y0 + �(z0 − y0) ∈ B(x0, R�0), since, by the assumption made in Lemma 3, y0, z0 ∈ B(x0, R�0) and we
have applied the convexity property. By using this bound we have in the third step:

‖w0 − z0‖ ≤ ‖Γ0‖‖F (z0)‖ ≤ ℎ0R‖z0 − y0‖ ≤ 1
2
ℎ20R�0, (16)

and, using (14) and (16), we have

‖w0 − x0‖ ≤ ‖w0 − z0‖ + ‖z0 − x0‖ ≤
(

1 + 1
2
ℎ0 +

1
2
ℎ20R

)

�0. (17)

We then find the bound of F (w0), using the previous process, obtaining:

F (w0) =

w0

∫
z0

[F ′(z) − F ′(x0)]dz =

1

∫
0

[F ′(z0 + �(w0 − z0)) − F ′(x0)]d�(w0 − z0),

and, by similarly applying (C2), we get:

‖F (w0)‖ ≤ KR�0‖w0 − z0‖, (18)

where we have used the same conditions as in (15).
From (18) and (C1) we can obtain ‖u01‖ = ‖Γ0F (w0)‖ ≤ 1

2
ℎ30R

2�0 and, by the definition of the iterative method (1), ‖uni ‖ ≤
‖ΓnF ′(wn)uni−1‖ for i = 2,⋯ , 5 and we then have in the last step of the first iteration:

‖x1 −w0‖ ≤ ‖

21
4
u01 + 11u

0
2 +

23
2
u03 + 6u

0
4 +

5
4
u05‖

≤ 21
4
‖u01‖ + 11L0‖u

0
1‖ +

23
2
L20‖u

0
1‖ + 6L

3
0‖u

0
1‖ +

5
4
L40‖u

0
1‖

≤ P0‖u
0
1‖ =

1
2
ℎ30R

2�0P0.

(19)

By using the previous bounds (17), (19), and the defined auxiliary functions, one gets:

‖x1 − x0‖ ≤ ‖x1 −w0‖ + ‖w0 − x0‖

≤
(

1 + 1
2
ℎ0 +

1
2
ℎ20R +

1
2
ℎ30R

2P0
)

�0 = G0(R)�0.
(20)

Now, using the Taylor expansion of F (x1) around w0, we have:

F (x1) = F (w0) + F ′(w0)(x1 −w0) +

x1

∫
w0

[F ′(z) − F ′(w0)]dz

= F (w0) + F ′(w0)(x1 −w0) +

1

∫
0

[F ′(w0 + �(x1 −w0))

− F ′(w0)]d�(x1 −w0),

and, by taking norms and applying (18), (19), (C2) − (C3), and the definition of L0, we get:

‖F (x1)‖ ≤ ‖F (w0)‖ + ‖F ′(w0)(x1 −w0)‖ +
1
2
K‖x1 −w0‖

2

≤ ‖F (w0)‖ + ‖F ′(w0)‖P0‖u01‖ +
1
8
Kℎ60R

4�20P
2
0

≤ ‖F (w0)‖(1 + P0L0) +
1
8
Kℎ60R

4�20P
2
0

≤ 1
2
Kℎ20R

2�20(1 + P0L0) +
1
8
Kℎ60R

4�20P
2
0

≤ K
2
ℎ20R

2(1 + P0L0 +
1
4
ℎ40R

2P 20 )�
2
0 =

K
2
ℎ20R

2Q0(R)�20 .

(21)
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Next we analyze the second iteration of the method (1), that is we set n = 1. First of all, from Lemma (3), we have the existence
of Γ1 = F ′(x1)−1 and denote

‖Γ1‖ ≤ �
1 − ℎ0R

≡ �1. (22)

Using (21), (22), and the value of �1 we have:

‖y1 − x1‖ ≤ ‖Γ1F (x1)‖ (23)

≤ �1
K
2
ℎ20R

2Q0(R)�20 =
ℎ30R

2Q0(R)
2(1 − ℎ0R)

�0 = �1,

obtaining a new value of the recurrence relations, �1 = g0(R)�0.
Later, by using the triangle inequality, (20), and (23), we can write

‖y1 − x0‖ ≤ ‖y1 − x1‖ + ‖x1 − x0‖,
≤ (g0(R) + G0(R))�0.

(24)

Then, once parameters �1 and �1 have been obtained, and by following with the previous notation, we have analogous
conditions as those in the previous step; that is:

⎧

⎪

⎨

⎪

⎩

‖Γ1‖ ≤ �1,
‖Γ1F (x1)‖ ≤ �1,
ℎ1 = �1K�1.

(25)

Therefore, by the same reasoning as before, we establish for the first step of (1) the following:

F (y1) =

y1

∫
x1

[F ′(z) − F ′(y1)]dz =

1

∫
0

[F ′(x1 + �(y1 − x1)) − F ′(x1)]dτ(y1 − x1).

Then by taking norms and using (C2) we get:

‖F (y1)‖ ≤ 1
2
K�1‖y1 − x1‖,

so that, for the second step, we have:

‖z1 − y1‖ ≤ ‖Γ1‖‖F (y1)‖ ≤ 1
2
ℎ1�1. (26)

Applying (24) and (26), we see that

‖z1 − x0‖ ≤ ‖z1 − y1‖ + ‖y1 − x0‖ ≤ [(1 + 1
2
ℎ1)g0(R) + G0(R)]�0. (27)

We bound F (z1) by a similar process:

F (z1) =

z1

∫
y1

[F ′(z) − F ′(x1)]dz =

1

∫
0

[F ′(y1 + �(z1 − y1)) − F ′(x1)]d�(z1 − y1),

and, by taking norms, using (C2), and assuming (as we will prove after determining R) now that

y1, z1 ∈ B(x1, R�1) (28)

and, by its convexity property, we have that y1 + �(z1 − y1) ∈ B(x1, R�1), so that we have:

‖F (z1)‖ ≤ 1
2
KRℎ1�

2
1 ,

By using this bound we have in the third step:

‖w1 − z1‖ ≤ ‖Γ1‖‖F (z1)‖ ≤ 1
2
ℎ21R�1, (29)

from which we deduce:

‖w1 − x0‖ ≤ ‖w1 − z1‖ + ‖z1 − x0‖ ≤
[(

1 + 1
2
ℎ1 +

1
2
ℎ21R

)

g0(R) + G0(R)
]

�0, (30)
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and so we find for the third step a bound on F (w1), using the previous process, showing that

‖F (w1)‖ ≤ KR�1‖w1 − z1‖ ≤ (1
2
Kℎ21R

2�1)�1. (31)

Now from (31) and (C2), we can obtain ‖u11‖ = ‖Γ1F (w1)‖ ≤ 1
2
ℎ31R

2�1 with ‖uni ‖ ≤ ‖ΓnF ′(wn)uni−1‖ for i = 2,⋯ , 5, and we
have in the last step of the second iteration of (1):

‖x2 −w1‖ ≤ ‖

21
4
u11 + 11u

1
2 +

23
2
u13 + 6u

1
4 +

5
4
u15‖

≤ 21
4
‖u11‖ + 11L1(s)‖u

1
1‖ +

23
2
L1(s)2‖u11‖ + 6L1(s)

3
‖u11‖ +

5
4
L1(s)4‖u11‖

≤ 1
2
ℎ31R

2�1P1(R),

(32)

Using (30) and (32), we have

‖x2 − x0‖ ≤ ‖x2 −w1‖ + ‖w1 − x0‖ ≤ (G1(ℎ1, R)g0(R) + G0(R))�0. (33)

We now use the Taylor expansion of F (x2) around w1. For the beginning step of the third iteration it holds that:

F (x2) = F (w1) + F ′(w1)(x2 −w1) +

x2

∫
w1

[F ′(z) − F ′(w1)]dz

= F (w1) + F ′(w1)(x2 −w1) +

1

∫
0

[F ′(w1 + �(x2 −w1))

− F ′(w1)]dτ(x2 −w1),

and, by taking norms and using (31), (32), (C2) − (C3) and the definition of L1(s), we get:

‖F (x2)‖ ≤ ‖F (w1)‖ + ‖F ′(w1)(x2 −w1)‖ +
1
2
K‖x2 −w1‖

2

≤ ‖F (w1)‖ + P1‖u1‖‖F ′(w1)‖ +
1
8
Kℎ61R

4�21P
2
1

≤ ‖F (w1)‖(1 + P1L1(s)) +
1
8
Kℎ61R

4�21P
2
1

≤ K
2
ℎ21R

2(1 + P1L1(s) +
1
4
ℎ41R

2P 21 )�
2
1 =

K
2
ℎ21R

2Q1(ℎ1, R)�21 ,

(34)

hence

‖Γ2F (x2)‖ ≤ �2
K
2
ℎ21R

2Q1(ℎ1, R)�21 ≤
ℎ31R

2

2
Q1(ℎ1, R)�1 = �2

thus we get �2 = g1(ℎ1, R)�1.
Therefore we have similar conditions as in the previous step; that is:

⎧

⎪

⎨

⎪

⎩

‖Γ2‖ ≤ �2,
‖Γ2F (x2)‖ ≤ �2,
ℎ2 = �2K�2.

(35)

2.1.2 Recurrence relations
As a consequence of the previous study we are now in a position to define the recurrence relations necessary to prove the
semilocal convergence of iterative process (1). We work under conditions (C1) − (C3) with parameters and auxiliary functions
already defined.
Due to the above analysis we can declare the following system of recurrence relations:
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�n = �1 n ≥ 1
�n = g1(ℎn−1, R)�n−1 n ≥ 2
ℎn = �nK�n n ≥ 2,

(36)

With the following lemma, we obtain a basic property for the last scalar sequence defined in the recurrence relations.

Lemma 5. Sequence {ℎn} generated by (36) with ℎ0 and ℎ1 defined previously by (22) is decreasing.

Proof. We prove this result by an induction process. For k = 1, using (22) and Lemma 4 (i) we have

ℎ1 = �1K�1 =
ℎ30R

2Q0(R)
2(1 − ℎ0R)2

ℎ0 =
g0(R)
1 − ℎ0R

ℎ0 ≤ ℎ0.

For k = 2, using (35) and Lemma 4 (ii) one gets:

ℎ2 = �2K�2 =
ℎ31R

2Q1(ℎ1, R)
2

ℎ1 = g1(ℎ1, R)ℎ1 ≤ ℎ1,

therefore ℎ2 ≤ ℎ1 ≤ ℎ0.
Now by the induction hypothesis assume that ℎ0 ≥ ℎ1 ≥ ℎ2 ≥ ⋯ ≥ ℎn−2 ≥ ℎn−1. Using that g1(t, R) is an increasing function

in t, by Lemma 4 (ii) we have:

ℎn = g1(ℎn−1, R)ℎn−1 ≤ g1(ℎ1, R)ℎn−1 ≤ ℎn−1 (37)

This completes the induction process.

Lemma 6. Under the conditions assumed in Lemma 3, and after analyzing the first steps of the iterative method defined by (1),
we establish the following inequalities ∀n ∈ N, n ≥ 1.

a) ‖yn − xn‖ ≤ �n

b) ‖yn − x0‖ ≤ �n +
n−1
∑

i=1
G1(ℎi, R)�i + G0(R)�0

c) ‖zn − yn‖ ≤ 1
2
ℎn�n

d) ‖zn − x0‖ ≤ (1 + 1
2
ℎn)�n +

n−1
∑

i=1
G1(ℎi, R)�i + G0(R)�0

e) ‖wn − zn‖ ≤ 1
2
ℎ2nR�n

f ) ‖wn − x0‖ ≤ (1 + 1
2
ℎn +

1
2
ℎ2nR)�n +

n−1
∑

i=1
G1(ℎi, R)�i + G0(R)�0

ℎ) ‖xn+1 −wn‖ ≤ 1
2
ℎ3nR

2�nP1(R)

i) ‖xn+1 − xn‖ ≤ (1 + 1
2
ℎn +

1
2
ℎ2nR +

1
2
ℎ3nR

2P1)�n = G1(ℎn, R)�n

j) ‖xn+1 − x0‖ ≤
n
∑

i=1
G1(ℎi, R)�i + G0(R)�0.

Proof. The proof follows by an induction procedure. We have verified these conditions for k = 0, 1. We assume that the
inequalities follow for k = n − 1, then by the reasoning made in first steps one can obtain the inequalities for k = n.
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2.2 Main result
After obtaining the recurrence relation system and the bounds for all the steps and successive iterations, we are in a position to
establish our main result. That is, for completing the semilocal convergence study we have to prove the assumed assertions that
we have made in our previous dissertation, (see Lemma 3), by defining the parameter R.

Theorem 1. Let F be a nonlinear operator, F ∶ Ω ⊆ X ←→ Y , defined on a nonempty open convex domain Ω of a Banach
space X with values in a Banach space Y . Suppose that conditions (C1)–(C3) are satisfied and take into consideration the
functions G0, Q0, g0, G1, Q1 and g1 defined in (2.1) and values r1, r2 defined in Lemma 4. Assume that the equation

s = G1(ℎ0, s)
(

1 + g0(s)
1

1 − g1(ℎ0, s)

)

, (38)

has at least one positive real root, denote the smallest one by r3, and take R = min{r1, r2, r3} if R > 1 and B(x0, R�0) ⊂ Ω.
Then the iterative process given by (1), starting at x0, satisfies yn, zn, wn, xn+1 ∈ B(x0, R�0) ∀n ∈ N , converges to a solution x∗
of the equation F (x) = 0, and x∗ ∈ B(x0, R�0). Moreover the solution is unique in B(x0,

2
K�
− R�0) ∩ Ω.

Proof. First we need to develop the next summation, for which, we use the fact that g1 is increasing in its domain and the
sequence ℎn is decreasing, as we stated in Lemmas 4 and 5 respectively, so we get:

n
∑

i=0
�i = �0 + g0(R)�0 + g1(ℎ1, R)�1 + g1(ℎ2, R)�2 +⋯ + g1(ℎn−1, R)�n−1

≤ [�0 + g0(R)�0 + g1(ℎ0, R)�1 + g1(ℎ0, R)2�1 + g1(ℎ0, R)3�1
+⋯ + g1(ℎ0, R)n−1�1]
= �0 + g0(R)�0[1 + g1(ℎ0, R) + g1(ℎ0, R)2 + g1(ℎ0, R)3

+⋯ + g1(ℎ0, R)n−1]

≤
[

1 + g0(R)
1

1 − g1(ℎ0, R)

]

�0,

where in the last inequality we recognize a geometric progression with common ratio g1(ℎ0, R) < 1.
Now, in order to prove yn, zn, wn, xn+1 ∈ B(x0, R�0), we observe that, for being R > 1 by assumption in Lemma 3 we have

that
‖y0 − x0‖ = ‖Γ0F (x0)‖ ≤ �0 < R�

and for n ≥ 1, and by Lemma 6 it follows:

‖yn − x0‖ ≤ �n +
n−1
∑

i=1
G1(ℎi, R)�i + G0(R)�0

≤ G1(ℎ0, R)�n +
n−1
∑

i=1
G1(ℎ0, R)�i + G1(ℎ0, R)�0

≤ G1(ℎ0, R)
n
∑

i=0
�i ≤ G1(ℎ0, R)

[

1 + g0(R)
1

1 − g1(ℎ0, R)

]

�0 = r3� ≤ R�

where in the first inequality we have used that G1(ℎ0, R) > 1 by construction and G0(R) < G1(ℎ0, R) by (iii) of Lemma 4,
and in the last inequality we use the definition of R given by equation (38).
By using similar reasoning we have that:

‖zn − x0‖ ≤ (1 + 1
2
ℎn)�n +

n−1
∑

i=1
G1(ℎi, R)�i + G0(R)�0

≤ G1(ℎn, R)�n +
n−1
∑

i=1
G1(ℎ0, R)�i + G1(ℎ0, R)�0

≤ G1(ℎ0, R)
n
∑

i=0
�i ≤ G1(ℎ0, R)

[

1 + g0(R)
1

1 − g1(ℎ0, R)

]

�0 = r3� ≤ R�
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and that it similarly holds for wn, xn+1 ∈ B(x0, R�0).
We have proven that the iterates remains in the ball centered at the starting iterate x0, that is, the sequence given by (1) is

well-defined. We now have to prove that it is a Cauchy sequence.
By using Lemmas 4, 5, 6, (36), and the sum of a finite geometric progression with common ratio g1(ℎ0, R), we have

‖xn+m − xn‖ ≤
m
∑

j=1
‖xn+j − xn+j−1‖ ≤

m
∑

j=1
G1(ℎn+j−1, R)�n+j−1

≤ G1(ℎ0, R)
m
∑

j=1
�n+j−1 ≤ G1(ℎ0, R)

m−1
∑

p=0
�n+p

≤ G1(ℎ0, R)
m−1
∑

p=0
[g1(ℎ0, R)]n+p�0

≤ G1(ℎ0, R)
[g1(ℎ0, R)]n − [g1(ℎ0, R)]n+m

1 − g1(ℎ0, R)
�0

As the last term tends to zero we have that {xn} is a Cauchy sequence and is therefore convergent. Now, if lim
n→∞

xn = x∗, it
follows that F (x∗) = 0 from the continuity of the operator F , since

‖F (xn)‖ ≤ ‖F (wn−1)‖ + ‖F (wn−1)(xn −wn−1)‖ +
1
2
K‖xn −wn−1‖

≤ 1
2
Kℎ2n−1R

2Q1(ℎn−1, R)�2n−1 ≤
1
2
Kℎ20R

2Q1(ℎ0, R)[(g1(ℎ0, R))n−1�0]2,

and (g1(ℎ0, R))n−1 → 0 when letting n→∞.
To prove the uniqueness, let us assume some other solution z∗ of F (x) = 0 in B(x0,

2
K�

− R�) ∩ Ω. From the Taylor
approximation

F (z∗) − F (x∗) =

1

∫
0

F ′(x∗ + �(z∗ − x∗))d�(z∗ − x∗) = 0

we have to prove that the operator ∫ 1
0 F

′(x∗ + �(z∗ − x∗))d� is invertible and therefore z∗ = x∗. We check it by applying the
Banach Lemma:

‖Γ0

1

∫
0

F ′(x∗ + �(z∗ − x∗))d� − I‖ ≤ ‖Γ0‖

1

∫
0

‖F ′(x∗ + �(z∗ − x∗)) − F ′(x0)‖d�

≤ K�

1

∫
0

‖x∗ + �(z∗ − x∗) − x0‖d� ≤ K�

1

∫
0

(

(1 − t)‖x∗ − x0‖ + �‖z∗ − x∗‖
)

d� < 1,

and so, it follows that [∫ 1
0 F

′(x∗ + �(z∗ − x∗))d�]−1 exists.

3 NUMERICAL RESULTS

In this section we complete our study by demonstrating the effectiveness of the semilocal convergence analysis with some
numerical examples. As we discuss in the introduction our aim is to prove the existence of the solution of some IVP’s and BVP’s
in their analytical form by treating the problem as one between Banach spaces. We also compare the radius obtained with our
method and the radius obtained by23 in exercise number four. The numerical solution of the problem produced by using the
finite difference technique and obtaining a finite-dimensional nonlinear system has been performed in1.
In each example we have performed some calculations for expressing the problem as an equivalent integral equation, see22.
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Example 1. Consider the Lane-Emden Equation, presented in1 :

x′′(t) + 2
t
x′(t) + x(t)p = 0

x(0) = 1
x′(0) = 0

over the time interval [0, 1] and for p = 3. The solution can be written in terms of the integral equation

x(t) =

t

∫
0

(

s2

t
− s

)

xp(s)ds

with x(t) ∈ C([0, 1]). We define the nonlinear operator F between Banach spaces Ω = B(0, 1) ⊆ C([0, 1]) as follows:

F (x) = x(t) −

t

∫
0

(

s2

t
− s

)

xp(s)ds.

The Frechet derivative is the linear operator defined by

[F ′(x)]v = v(t) −

t

∫
0

(

s2

t
− s

)

pxp−1v(s)ds.

Example 2. Consider the Bratu Problem, presented in1 :

x′′(t) + �ex(t) = 0
x(0) = 0
x(1) = 0

over the time interval [0, 1] with � = 1. The solution can be written in terms of the integral equation

x(t) =

1

∫
0

−�G(s, t)ex(s)ds,

where

G(s, t) =

{

s(t − 1), 0 ≤ s < t ≤ 1
t(s − 1), 0 ≤ t < s ≤ 1.

We define the nonlinear operator F between Banach spaces Ω = B(0, 1) ⊆ C([0, 1]) as follows:

F (x) = x(t) +

1

∫
0

�G(s, t)ex(s)ds.

The Frechet derivative is the linear operator defined by

[F ′(x)]v = v(t) +

1

∫
0

�G(s, t)ex(s)v(s)ds.

Example 3. Consider the Frank-Kamenetskii Problem, presented in1 :

x′′(t) + 1
t
x′(t) + �ex(t) = 0

x′(0) = 0
x(1) = 0

over the time interval [0, 1] with � = 0.2. The solution can be written in terms of the integral equation

x(t) =

1

∫
0

−�sex(s)G(s, t)ds,
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where

G(s, t) =

{

ln(t), 0 ≤ s < t ≤ 1
ln(s), 0 ≤ t < s ≤ 1.

We define the nonlinear operator F between Banach spaces Ω = B(0, 1) ⊆ C([0, 1]) as follows:

F (x) = x(t) +

1

∫
0

�sex(s)G(s, t)ds.

The Frechet derivative is the linear operator defined by

[F ′(x)]v = v(t) +

1

∫
0

�sex(s)G(s, t)v(s)ds.

We can obtain the bounds verifying conditions (C1) − (C3) for each case, which can be see in Table 1. In Table 2 we can see
the different values for the restrictions of the radius for the domain of existence of the solution.

Ex x0 �0 K �0 C

F1 0.100 1.0027 1.5000 0.1004 1.2739
0.010 1.0000 1.5000 0.0100 1.2739
0.125 1.0043 1.5000 0.1259 1.2739

F2 0.250 1.1356 0.0428 0.4662 1.1738
0.125 1.1264 0.0378 0.3003 1.1738
0.500 1.1565 0.0550 0.8166 1.1738

F3 0.050 1.1696 0.5437 0.3044 1.2332
0.000 1.1647 0.5437 0.2329 1.2332
0.010 1.1657 0.5437 0.2417 1.2332

TABLE 1 Bounding constants.

Ex x0 R1 R2 R3 R r
F1 0.750 1.9928 1.9303 1.7720 1.7720 0.1780

1.000 38.7280 36.5890 1.0078 1.0078 0.0101
1.125 1.4587 1.4166 1.3075 1.3075 0.1646

F2 0.250 22.6696 21.4800 1.0124 1.0124 0.4720
0.500 45.9738 43.3455 1.0066 1.0066 0.3023
0.750 7.7876 7.4461 1.0394 1.0394 0.8488

F3 0.150 1.2462 1.2105 1.1178 1.1178 0.3402
0.200 1.8226 1.7648 1.6185 1.6185 0.3770
0.250 1.6768 1.6248 1.4924 1.4924 0.3688

TABLE 2 Semilocal convergence radius.

In order to compare our study with other semilocal convergence studies of high order we perform this example:
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Example 4. Consider the following example, presented in23 :

x(s) = 1 + 1
3

1

∫
0

G(s, t)x(t)4dt, (39)

where x ∈ X. Here X = C[0, 1] is the space of continuous functions on [0, 1] with the norm

∥ x ∥= max
s∈[0,1]

∣ x(s) ∣ .

The Kernel G is the Green’s function

G(s, t) =

{

t(1 − s), t ≤ s
s(1 − t), s ≤ t.

Solving (39) is equivalent to solving F (x) = 0, where F ∶ Ω ⊆ C[0, 1]→ C[0, 1] defined by

[F (x)](s) = x(s) − 1 − 1
3

1

∫
0

G(s, t)x(t)4dt, s ∈ [0, 1],

where Ω is a suitable nonempty open convex domain. The integral equation is a Hammerstein integral equation of the second
kind24. The first derivative of the operator F is given by

[F ′(x)]v = v(s) − 4
3

1

∫
0

G(s, t)x(t)3v(t)dt.

We consider Ω = B(0, 2) ⊆ X as an open convex nonempty domain and choose x0(s) = 1, thereby obtaining the bounds
verifying conditions (C1) − (C3), which for this example are as follows: � = 6

5
, � = 1

20
, K = 2, C = 7

3
.

For the method given in (1), these parameters produce radii of R1 = 0.9775, R2 = 0.9545, R3 = 2.0903, and hence we
take the final radius R = min{R1, R2, R3} = 0.9545. Alternately, using the method given in23, we get a radius of R = 1.2240,
which is a bit bigger than ours, because our method (1) is of higher order and this usually causes the radius of convergence to
decrease.

4 CONCLUSION

The semilocal convergence of a ninth-order method used for solving nonlinear equations in Banach spaces is established by
using recurrence relations under the assumption that the first Fréchet derivative satisfies the Lipschitz continuity. The existence
domain for the solution is established for multiple examples including both differential and integral equations, and convergence
balls for each of them are derived.
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