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Summary

The two-phase Stefan problems with phase formation and depletion are special cases
of moving boundary problems with interest in science and industry. In this work, we
study a solidification problem, introducing a front-fixing transformation. The result-
ing nonlinear partial differential system involves singularities, both at the beginning
of the freezing process and when the depletion is complete, that are treated with spe-
cial attention in the numerical modelling. The problem is decomposed in three stages,
in which implicit and explicit finite difference schemes are used. Numerical analysis
reveals qualitative properties of the numerical solution spatial monotonicity of both
solid and liquid temperatures and the evolution of the solidification front. Numerical
experiments illustrate the behaviour of the temperatures profiles with time, as well
as the dynamics of the solidification front.

KEYWORDS:
Two-phase Stefan problem, Nonlinear partial differential system, Numerical modelling, Finite difference,
Numerical analysis.

1 INTRODUCTION

Free boundary problems are used to model a wide scenario of applications coming from biophysics, chemistry, astronomy,
materials science and ecology1. These problems are characterized by the fact that the moving boundary is an unknown part
of the problem,2. A subset of these kind of models are the so-called Stefan problems describing several phenomena in nature,
science and society, such as the dentritic solidification problem3, cryosurgical treatment of tumors in medicine4, American
option pricing problem5, desalination of sea water6 and heat transfer problems with phase changes related to melting and
freezing problems7. Exact analytical solution of these problems is only available in some particular cases stated in a semi-infinite
domain, for instance the well known Lamé-Clapeyron-Stefan problem, see1, chapter 3. Analytic solutions for two-phase Stefan
problems using similarity solutions have been proposed in8, including source terms in the problem formulation. Apart from the
analytical methods, a wide class of semianalytical methods have been proposed to solve more general problems,9,10,11,12, method
of perturbation,13,14.

Concerning the treatment of the moving boundary there are two main types of methods,15. The front-tracking method is based
on the continuous updating of the moving boundary, see chapter 4 of1; inside this method, it is important to mention the variable
space grid method16, the variable time step method17 and the heat balance integral method18. Another approach is to use a fixed
domain formulation or front-fixing based on a transformation of the original problem, for instance the boundary immobilization
method,19, chapter 5 of1, isotherm migration method,20,21, and enthalpy method,9,22,23. Both approaches the front-tracking and
the front-fixing have been performed using finite difference or finite elements schemes.
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The application of the front-fixing technique to a two-phase problem presents two challenges due to the appearance of singu-
larities in the transformed partial differential equations (PDEs): Firstly, the correct initialization when the first phase initially has
zero thickness, and on the other hand, the treatment of the depletion of the second phase close to the extinction time. The authors
in15, consider the one-phase problem by using front-fixing approaches together with explicit finite difference schemes, overcome
the initialization difficulty taking the analytic solution of the semi-infinite problem in this starting stage for the temperature as
well as for the evolution of the moving boundary from the starting zero thickness. The correct initialization and depletion of the
two-phase Stefan problem has been recently addressed by24 by using the Keller box implicit difference scheme, see25.

The numerical modelling proposed in this paper does not need the analytic solution of the underlying semi-infinite problem
but only the hypothesis of the

√
𝑡-law behaviour of the moving boundary in the initialization of the problem. The treatment of

the depletion is also addressed through a split of the process in three stages: the first one related to the initialization, the second
one embracing almost the entire process of solidification and the third stage dealing with the depletion of the liquid phase until
extinction. As the best model can be wasted with a disregarded analysis, it motivates to pay attention to the numerical analysis.
In this address we study qualitative properties of the numerical solution and stability. In fact, we construct an implicit difference
scheme in the first stage and we give a stability condition in terms of the stepsizes of the discretized variables. Furthermore, the
scheme mirrors the property that the temperature in the solid phase is greater than the one in the left end and smaller than the
phase-change temperature. In addition, in the liquid phase, the temperatures described by the numerical solution lies between the
phase-change temperature and the initial temperature of the liquid. Otherwise, in the next stages we use an explicit conditionally
stable difference scheme and monotonicity properties are studied, i.e., as the material is cooling at the left end, the temperature
grows with the space at every temporal level. It is important to point out that this advantage of getting information about
qualitative properties arises from the explicit difference scheme versus other approaches such as implicit schemes, finite-element,
meshless methods, etc.

Apart from the numerical analysis, this numerical modelling approach has the potential application of dealing with more
complicated problems where the analytic solution of the corresponding semi-infinite problem is not available.

Consider the two-phase model describing the freezing of a liquid in one spatial dimension occupying initially the region
0 ≤ 𝑥 ≤ 𝑎. At the initial time, the temperature of the material is uniform, 𝑇ℎ, higher than the phase-change temperature, written
as 𝑇𝑓 . The material is cooled at the point 𝑥 = 0 by imposing a constant temperature 𝑇𝑐 , lower than the phase-change temperature,
𝑇𝑓 .

The continuous model with phase formation and depletion is formulated as,

𝜌𝑐𝑠
𝜕𝑇𝑠
𝜕𝑡

= 𝜅𝑠
𝜕2𝑇𝑠
𝜕𝑥2

, 0 < 𝑥 < 𝑆(𝑡), 𝑡 > 0, (1)

𝜌𝑐𝑙
𝜕𝑇𝑙
𝜕𝑡

= 𝜅𝑙
𝜕2𝑇𝑙
𝜕𝑥2

, 𝑆(𝑡) < 𝑥 < 𝑎, 𝑡 > 0. (2)

The boundary conditions are expressed as
𝑇𝑠(0, 𝑡) = 𝑇𝑐 , 𝑡 > 0, (3)

𝑇𝑠(𝑆(𝑡), 𝑡) = 𝑇𝑙(𝑆(𝑡), 𝑡) = 𝑇𝑓 , 𝑡 > 0, (4)
and

𝜕𝑇𝑙
𝜕𝑥

(𝑎, 𝑡) = 0, 𝑡 > 0. (5)
Note that Dirichlet boundary condition (3) means an isothermal cooling at the left end of the domain while the homogeneous
Neumann boundary condition (5) expresses that the right end of the domain is perfectly insulated so there is not heat flow. The
initial conditions are given by

𝑇𝑙(𝑥, 0) = 𝑇ℎ, 0 ≤ 𝑥 ≤ 𝑎, 𝑆(0) = 0. (6)
Finally, the so-called Stefan condition, expressing the heat balance on the interface, takes the form

𝜌𝐶𝑚
𝑑𝑆
𝑑𝑡

= 𝜅𝑠
𝜕𝑇𝑠
𝜕𝑥

− 𝜅𝑙
𝜕𝑇𝑙
𝜕𝑥

, 𝑥 = 𝑆(𝑡), 𝑡 > 0. (7)

Here, 𝑇𝑠 denotes the solid phase temperature, 𝜅𝑠 is the thermal conductivity of the solid, 𝑐𝑠 is the specific heat capacity of the
solid phase. Analogously, using the same notation for the liquid phase, 𝑇𝑙 denotes the liquid phase temperature, 𝜅𝑙 the thermal
conductivity of the liquid and 𝑐𝑙 the specific heat capacity of the liquid phase. Regarding the mass density of the material, it is
assumed to have the same value 𝜌, both in solid and liquid state. The value 𝐶𝑚 represents the latent heat of fusion. 𝑆(𝑡) indicates
the location of the solidification front.
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Comparing the scenario of the freezing problem (1)-(7), where we have an isothermal cooling at the left solid end (3), together
with an insulated right liquid end (5), then the solidification front 𝑆(𝑡) is an increasing function and thus,

𝜌𝐶𝑚
𝑑𝑆
𝑑𝑡

> 0, 𝑡 > 0. (8)

To transform our problem into a dimensionless one, the following nondimensional variables in space and time are used:

𝑦 = 𝑥
𝑎
, 𝑡 =

𝜅𝑙𝑡
𝜌𝑐𝑙𝑎2

, 𝑆̃(𝑡) = 𝑆(𝑡)
𝑎

. (9)

Consider an arbitrarily small value 𝑆0, 0 < 𝑆0 < 𝑎, a relative quantity 𝑅0 = 𝑆0∕𝑎 and let us introduce the new temporal
variable and the transformed solidification front, respectively

𝜏 = 𝑡∕𝑅2
0, 𝜎(𝜏) = 𝑅(𝜏)∕𝑅0, 𝑅(𝜏) = 𝑆̃(𝑡). (10)

Also, the unknowns for the temperatures in the solid and liquid phases, respectively, are expressed as

𝑈̂𝑠 =
𝑇𝑠 − 𝑇𝑓
𝑇𝑓 − 𝑇𝑐

, 𝑈̂𝑙 =
𝑇𝑙 − 𝑇𝑓
𝑇ℎ − 𝑇𝑓

. (11)

After these changes, and simplifying the notation by using the parameters

𝜅 =
𝜅𝑙𝑐𝑠
𝜅𝑠𝑐𝑙

, 𝐾 =
𝜅𝑠(𝑇𝑓 − 𝑇𝑐)
𝜅𝑙(𝑇ℎ − 𝑇𝑓 )

, 𝛽 =
𝐶𝑚

𝑐𝑙(𝑇ℎ − 𝑇𝑓 )
, (12)

the problem (1)-(7) becomes

𝜕𝑈̂𝑠

𝜕𝜏
=

𝑅2
0

𝜅
𝜕2𝑈̂𝑠

𝜕𝑦2
, 0 < 𝑦 < 𝑅0𝜎(𝜏), 𝜏 > 0, (13)

𝜕𝑈̂𝑙

𝜕𝜏
= 𝑅2

0
𝜕2𝑈̂𝑙

𝜕𝑦2
, 𝑅0𝜎(𝜏) < 𝑦 < 1, 𝜏 > 0, (14)

subject to the boundary conditions
𝑈̂𝑠(0, 𝜏) = −1, 𝜏 > 0, (15)

𝑈̂𝑠(𝑅0𝜎(𝜏), 𝜏) = 𝑈̂𝑙(𝑅0𝜎(𝜏), 𝜏) = 0, 𝜏 > 0, (16)
and

𝜕𝑈̂𝑙

𝜕𝑦
(1, 𝜏) = 0, 𝜏 > 0, (17)

and the new initial conditions
𝑈̂𝑙(𝑦, 0) = 1, 0 ≤ 𝑦 ≤ 1, 𝜎(0) = 0. (18)

Finally, the Stefan condition is written as

𝑑𝜎
𝑑𝜏

=
𝐾𝑅0

𝛽
𝜕𝑈̂𝑠

𝜕𝑦
−

𝑅0

𝛽
𝜕𝑈̂𝑙

𝜕𝑦
, 𝑦 = 𝑅0𝜎(𝜏), 𝜏 > 0. (19)

The main Section 2 begins with the front-fixing transformation of the moving boundary problem. Then, the numerical mod-
elling is developed by splitting the solidification process in three stages: initialization, progress stage and depletion. In both
stages, discretization, numerical analysis, including the study of qualitative properties of the numerical solution, the stability
and simulation are performed. Illustrative numerical experiments are also included. The paper ends with a conclusion section.

2 FRONT-FIXING TRANSFORMATION AND NUMERICAL MODELLING

The correct initialization of the solidification front requires that 𝑆(0) = 0, i.e. 𝜎(0) = 0, where

𝜎(𝜏) = 𝑅(𝜏)∕𝑅0. (20)



4

Let us consider the front-fixing transformation (1,19)

𝑧(𝑦, 𝜏) =

⎧⎪⎪⎨⎪⎪⎩

𝑦 − 𝜎(𝜏)𝑅0

𝜎(𝜏)𝑅0
, 0 ≤ 𝑦 ≤ 𝜎(𝜏)𝑅0, 𝜏 ≥ 0,

𝑦 − 𝜎(𝜏)𝑅0

1 − 𝜎(𝜏)𝑅0
, 𝜎(𝜏)𝑅0 ≤ 𝑦 ≤ 1, 𝜏 ≥ 0.

(21)

As a result of trasform (21), the moving boundary problem (13)-(19) turns into another one that is posed in a fixed immobilized
domain, −1 ≤ 𝑧 ≤ 1, 𝜏 ≥ 0, that causes difficulties in the initialization and in the depletion. Indeed, the transformation (21)
involves singularities when 𝜏 = 0, 𝜎(0) = 0, and when 𝜎(𝜏) = 𝑅−1

0 . The difficulty about 𝑡 = 0 can be overcome without
considering the analytic solution of the corresponding semi-infinite two-phase Lamé-Clapeyron-Stefan problem,1,26, but only
assuming that the solidification front in the nondimensional problem follows the behaviour 𝐶

√
𝜏 in a small neighbourhood

close to 𝜏 = 0, where 𝐶 is obtained throughout numerical modelling specified later. Another important issue is the numerical
treatment of the problem close to the extinction time 𝜏𝑒,26, without using the solution of the semi-infinite problem. In fact, in
agreement with the comment by the authors of24, p. 270, we neglect the liquid phase starting from a time 𝜏1 < 𝜏𝑒. The selection
of this critical time 𝜏1 is performed in order to guarantee the numerical stability of the solution.

Thus, the numerical modelling of the problem is developed in three stages. The first stage corresponds to the correct initial-
ization of the solidification process, that is performed using an implicit scheme for both purposes, the estimation of 𝐶 as well
as obtaining the temperature of the solid and the liquid phases until a time 𝜏0 such that the solidification front has reached the
relative value 𝑅0.

Then, the second stage corresponds to the evolution of the two-phase problem until we reach time 𝜏1. Note that in this second
stage we need to compute both the temperature of solid and liquid phases, as well as the solidification front. This computation
is performed using an explicit method that, apart from being quick and no requiring initialization guess, as it occurs with the
implicit methods, it will be particularly convenient to study numerical properties of the numerical solution.

Finally, in the last stage we neglect the liquid phase and we study the behaviour of the solidification front and the temperature
of the solid region until the extinction time, continuing with the explicit scheme.

Let us choose an arbitrarily small value 𝑆0 > 0 and denote 𝑡0 > 0 the time such that 𝑆(𝑡0) = 𝑆0, following the
√
𝑡-law, see

equation (3.10) of page 102 of1 and equation (12) of page 188 of26. Taking 𝜏0 the corresponding transformed time throughout
(10) one gets,

𝜎(𝜏0) = 𝜎0 =
𝑅(𝜏0)
𝑅0

=
𝑎𝑆̃(𝑡0)
𝑆0

= 1. (22)

Therefore, we assume that the solidification front follows a behaviour 𝜎(𝜏) = 𝐶
√
𝜏 in a short first stage 0 ≤ 𝜏 ≤ 𝜏0, dependent

on the initial prefixed value 𝑆0. From (9)-(20), one gets

𝜎(𝜏) = 𝐶
√
𝜏, 0 ≤ 𝜏 ≤ 𝜏0 =

𝑡0
𝑅2

0

= 1
𝐶2

, (23)

and the value 𝐶 is obtained numerically as it will be explained later. Note that, during this stage, 0 ≤ 𝜎(𝜏) ≤ 1. Hereinafter the
tilde in 𝑡 is dropped.

Hence, from the above variable change (20), transformation (21) and the relationships

𝑈̂𝑠(𝑦, 𝜏) = 𝑈𝑠(𝑧, 𝜏), 𝑈̂𝑙(𝑦, 𝜏) = 𝑈𝑙(𝑧, 𝜏), (24)

problem (13)-(19) takes the form
𝜕𝑈𝑠

𝜕𝜏
= 𝜎′(𝜏)(1 + 𝑧)

𝜎(𝜏)
𝜕𝑈𝑠

𝜕𝑧
+ 1

𝜅𝜎2(𝜏)
𝜕2𝑈𝑠

𝜕𝑧2
, −1 < 𝑧 < 0, 𝜏 > 0, (25)

𝜕𝑈𝑙

𝜕𝜏
=

𝜎′(𝜏)𝑅0(1 − 𝑧)
1 − 𝜎(𝜏)𝑅0

𝜕𝑈𝑙

𝜕𝑧
+

𝑅2
0

(1 − 𝜎(𝜏)𝑅0)2
𝜕2𝑈𝑙

𝜕𝑧2
, 0 < 𝑧 < 1, 𝜏 > 0, (26)

satisfying the boundary conditions

𝑈𝑠(−1, 𝜏) = −1, 𝜏 > 0, (27)

𝑈𝑠(0, 𝜏) = 𝑈𝑙(0, 𝜏) = 0, 𝜏 > 0, (28)
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and
𝜕𝑈𝑙

𝜕𝑧
(1, 𝜏) = 0, 𝜏 > 0, (29)

together with the initial conditions

𝑈𝑠(𝑧, 0) = −1, −1 ≤ 𝑧 ≤ 0, 𝑈𝑙(𝑧, 0) = 1, 0 ≤ 𝑧 ≤ 1, 𝜎(0) = 0, (30)

and the Stefan condition at the solidification front

𝑑𝜎
𝑑𝜏

= 𝐾
𝛽𝜎(𝜏)

𝜕𝑈𝑠

𝜕𝑧
−

𝑅0

𝛽(1 − 𝜎(𝜏)𝑅0)
𝜕𝑈𝑙

𝜕𝑧
, 𝑧 = 0, 𝜏 > 0. (31)

2.1 First stage numerical modelling
In the first stage, 0 ≤ 𝜏 ≤ 𝜏0, using the

√
𝜏-law (23) for the dynamics of the solidification front, problem (25)-(31) becomes

𝜕𝑈𝑠

𝜕𝜏
= 1 + 𝑧

2𝜏
𝜕𝑈𝑠

𝜕𝑧
+ 1

𝜅𝐶2𝜏
𝜕2𝑈𝑠

𝜕𝑧2
, −1 < 𝑧 < 0, 0 < 𝜏 < 𝜏0, (32)

𝜕𝑈𝑙

𝜕𝜏
=

𝐶𝑅0(1 − 𝑧)

2
√
𝜏(1 − 𝐶𝑅0

√
𝜏)

𝜕𝑈𝑙

𝜕𝑧
+

𝑅2
0

(1 − 𝐶𝑅0
√
𝜏)2

𝜕2𝑈𝑙

𝜕𝑧2
, 0 < 𝑧 < 1, 0 < 𝜏 < 𝜏0, (33)

together with boundary and initial conditions (27)-(29) and (30), respectively, and the Stefan condition with
√
𝜏-law

𝐶
2
√
𝜏
= 𝐾

𝛽𝐶
√
𝜏

𝜕𝑈𝑠

𝜕𝑧
+

𝑅0

𝛽(1 − 𝐶𝑅0
√
𝜏)

𝜕𝑈𝑙

𝜕𝑧
, 𝑧 = 0, 0 < 𝜏 < 𝜏0, (34)

that is going to be used to estimate numerically the value of 𝐶 .
In order to circumvent the singularity of equations (32)-(33) at 𝜏 = 0, we use a fully implicit scheme, backward in time and

centred in space. The numerical domain is partitioned by the grid

Ω = {(𝑧𝑗 , 𝜏𝑛), −𝑀 ≤ 𝑗 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑛0}, (35)
with ℎ = Δ𝑧 = 1∕𝑀 ; Δ𝜏 = 𝜏0∕𝑛0, and 𝑧𝑗 = 𝑗ℎ, 𝜏𝑛 = 𝑛Δ𝜏, where 𝑀 and 𝑛0 are positive integers. Numerical approximations
of the unknowns are denoted by: 𝑢𝑛𝑠,𝑗 ≈ 𝑈𝑠(𝑧𝑗 , 𝜏𝑛), 𝑢𝑛𝑙,𝑗 ≈ 𝑈𝑙(𝑧𝑗 , 𝜏𝑛), 𝜎𝑛 ≈ 𝜎(𝜏𝑛).

To preserve the second order accuracy at the solidification front 𝑧 = 0, we take left and right side approximations with three
points, for the solid and liquid phase, respectively:

3𝑢𝑛𝑠,0 − 4𝑢𝑛𝑠,−1 + 𝑢𝑛𝑠,−2
2ℎ

≈
𝜕𝑈𝑠

𝜕𝑧
(0, 𝜏𝑛),

−3𝑢𝑛𝑙,0 + 4𝑢𝑛𝑙,1 − 𝑢𝑛𝑙,2
2ℎ

≈
𝜕𝑈𝑙

𝜕𝑧
(0, 𝜏𝑛). (36)

Boundary conditions (27)-(29) are discretized as

𝑢𝑛𝑠,−𝑀 = −1, 𝑢𝑛𝑠,0 = 𝑢𝑛𝑙,0 = 0,
𝑢𝑛𝑙,𝑀−1 − 𝑢𝑛𝑙,𝑀+1

2ℎ
= 0, 0 ≤ 𝑛 ≤ 𝑛0, (37)

where 𝑧𝑀+1 = (𝑀 + 1)ℎ is an artificial mesh point and the value 𝑢𝑛𝑙,𝑀+1 is eliminated under the standard assumption that the
equation (33) is also satisfied at the boundary 𝑧𝑀 = 1,27 .

From the above comments, one gets a tridiagonal algebraic system⎧⎪⎨⎪⎩
𝐴𝑛+1𝑈 𝑛+1

𝑠 = 𝑈 𝑛
𝑠 ,

0 ≤ 𝑛 ≤ 𝑛0 − 1,
𝐵𝑛+1𝑈 𝑛+1

𝑙 = 𝑈 𝑛
𝑙 ,

(38)

where 𝑈 𝑛
𝑠 = [𝑢𝑛𝑠,−𝑀 , 𝑢𝑛𝑠,−𝑀+1,… , 𝑢𝑛𝑠,0]

𝑇 , 𝑈 𝑛
𝑙 = [𝑢𝑛𝑙,0, 𝑢

𝑛
𝑙,1,… , 𝑢𝑛𝑙,𝑀 ]𝑇 , and

𝐴𝑛 = 𝐴𝑛(𝐶) =
(
𝐴𝑛

𝑖,𝑗

)
−𝑀≤𝑖,𝑗≤0 , 𝐵𝑛 = 𝐵𝑛(𝐶) =

(
𝐵𝑛
𝑖,𝑗

)
0≤𝑖,𝑗≤𝑀 , (39)

are tridiagonal matrices of size (𝑀 + 1) × (𝑀 + 1), whose nonzero entries are

𝐴𝑛
−𝑀,−𝑀 = 𝐴𝑛

0,0 = 1,

𝐴𝑛
𝑗,𝑗−1 = −(𝑎𝑛 − 𝑐𝑛𝑗 ); 𝐴𝑛

𝑗,𝑗 = 1 + 2𝑎𝑛; 𝐴𝑛
𝑗,𝑗+1 = −(𝑎𝑛 + 𝑐𝑛𝑗 ),

−𝑀 + 1 ≤ 𝑗 ≤ −1,

(40)
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𝐵𝑛
0,0 = 1; 𝐵𝑀,𝑀−1 = −2𝑏𝑛, 𝐵𝑀,𝑀 = 1 + 2𝑏𝑛,

𝐵𝑛
𝑗,𝑗−1 = −(𝑏𝑛 − 𝑑𝑛

𝑗 ); 𝐵𝑛
𝑗,𝑗 = 1 + 2𝑏𝑛; 𝐵𝑛

𝑗,𝑗+1 = −(𝑏𝑛 + 𝑑𝑛
𝑗 ),

1 ≤ 𝑗 ≤ 𝑀 − 1.

(41)

Coefficients appearing in (40)-(41), depending on the step sizes ℎ and Δ𝜏, have the form:

𝑎𝑛 = 1
𝜅𝐶2𝑛ℎ2

, 𝑐𝑛𝑗 =
𝑧𝑗 + 1
4𝑛ℎ

,

𝑏𝑛 =
𝑅2

0Δ𝜏

ℎ2(1 − 𝐶𝑅0

√
𝑛Δ𝜏)2

, 𝑑𝑛
𝑗 =

𝐶𝑅0

√
Δ𝜏(1 − 𝑧𝑗)

4
√
𝑛ℎ(1 − 𝐶𝑅0

√
𝑛Δ𝜏)

.
(42)

𝐴𝑛+1 and 𝐵𝑛+1 of (38) have all the row sums positive from (40)-(41). Note that if

C1 ∶ 𝑎𝑛+1 − 𝑐𝑛+1𝑗 ≥ 0, C2 ∶ 𝑏𝑛+1 − 𝑑𝑛+1
𝑗 ≥ 0, 0 ≤ 𝑛 ≤ 𝑛0 − 1, (43)

respectively, matrices 𝐴𝑛+1 and 𝐵𝑛+1 are Z-matrices, i.e., they have all entries nonpositive out of the main diagonal. Then,
under conditions C1 and C2, matrices 𝐴𝑛+1 and 𝐵𝑛+1 are nonsingular M-matrices and their inverses (𝐴𝑛+1)−1 and (𝐵𝑛+1)−1 are
nonnegative,28 and29, chap. 6. This property guarantees that the sign of the vector solution of system (38) is preserved.

From (42) it is easy to check that conditions (43) are verified for all 𝑗 and 𝑛 if step sizes satisfy the condition

ℎ ≤ min{ℎ1, ℎ2}, ℎ1 =
4

𝜅𝐶2
, ℎ2 =

4𝑅0

√
Δ𝜏

𝐶
. (44)

Apart from the sign stability, the implicit scheme (38) guarantees the ‖ ⋅ ‖∞-stability of the solution, in the sense that ‖𝑈 𝑛
𝑠 ‖∞

and ‖𝑈 𝑛
𝑙 ‖∞ remain bounded for all 𝑛. In fact, matrices 𝐴𝑛+1 and 𝐵𝑛+1 have the property that all their row sums are equal to one.

It is easy to check that then, their positive inverses also satisfy the same property and ‖(𝐴𝑛)−1‖∞ = ‖(𝐵𝑛)−1‖∞ = 1. In fact,‖𝑈 𝑛+1
𝑠 ‖∞ = ‖(𝐴𝑛+1)−1𝑈 𝑛

𝑠 ‖∞ ≤ ‖(𝐴𝑛+1)−1‖∞‖𝑈 𝑛
𝑠 ‖∞. (45)

Then, ‖𝑈 𝑛
𝑠 ‖∞ ≤ ‖𝑈 0

𝑠 ‖∞ = 1, 0 ≤ 𝑛 ≤ 𝑛0, (46)
and analogously, ‖𝑈 𝑛

𝑙 ‖∞ ≤ ‖𝑈 0
𝑙 ‖∞ = 1, 0 ≤ 𝑛 ≤ 𝑛0. (47)

Furthermore, from (46)-(47) and taking into account that 𝑈 𝑛
𝑠 ≤ 0, 𝑈 𝑛

𝑙 ≥ 0, one gets

−1 ≤ 𝑢𝑛𝑠,𝑗 ≤ 0, −𝑀 ≤ 𝑗 ≤ 0; 0 ≤ 𝑢𝑛𝑙,𝑗 ≤ 1, 0 ≤ 𝑗 ≤ 𝑀, (48)

for all time steps 0 ≤ 𝑛 ≤ 𝑛0.
This means that the numerical solution preserves the property that the temperature in the solid phase is greater than the

boundary value, and for the liquid phase, the temperature is below the initial temperature at the right boundary.
In order to estimate the value of the constant 𝐶 related to the

√
𝜏-law, i.e 𝜎(𝜏) = 𝐶

√
𝜏, we take the first time step of the system

(38) together with the linking discretization of Stefan condition (34), building a system of 2𝑀+3 nonlinear algebraic equations,⎧⎪⎪⎨⎪⎪⎩

𝐴1𝑈 1
𝑠 = 𝑈 0

𝑠 ,
𝐵1𝑈 1

𝑙 = 𝑈 0
𝑙 ,

𝐶
2

= 𝐾
𝛽𝐶

Δ𝑢1𝑠,0 +
𝑅0

√
Δ𝜏

𝛽(1 − 𝐶𝑅0

√
Δ𝜏)

Δ𝑢1𝑙,0,
(49)

where

Δ𝑢1𝑠,0 =
3𝑢1𝑠,0 − 4𝑢1𝑠,−1 + 𝑢1𝑠,−2

2ℎ
, Δ𝑢1𝑙,0 =

−3𝑢1𝑙,0 + 4𝑢1𝑙,1 − 𝑢1𝑙,2
2ℎ

, (50)

on the 2𝑀 + 3 unknowns {
{𝑢1𝑠,𝑗 , −𝑀 ≤ 𝑗 ≤ 0}, {𝑢1𝑙,𝑗 , 0 ≤ 𝑗 ≤ 𝑀}, 𝐶

}
. (51)

Solving the system (49)-(50) with the MATLAB optimization algorithm Fsolve, one gets the temperature at the mesh points
in the first time level 𝑛 = 1 as well as the value of 𝐶 . It is clear that the value of 𝐶 depends on the parameters ℎ, Δ𝜏 for a fixed
chosen solidified fraction 𝑅0 of the material at the end of the first stage. In the Table 1, we show that for different choices of the
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ℎ 0.0050 0.0040 0.0030 0.0020 0.0010
Δ𝜏 0.0480 0.0325 0.0200 0.0100 0.0026
𝐶 0.7762 0.7728 0.7684 0.7616 0.7596

TABLE 1 Dependence of 𝐶 on the step sizes when the parameters of the model are 𝜅 = 𝐾 = 𝛽 = 1.

step sizes discretizations verifying the stability condition (43), one gets values of the constant 𝐶 close to the theoretical value
of the semi-infinite two-phase Lamé-Clapeyron-Stefan problem, see1, equation (3.11), p. 102.

Next example illustrates the temperature profile in both phases solid and liquid, obtained by the numerical scheme (38) at the
end of the fist stage.

Example 1 Numerical solution of system (38) for the last time step 𝑛0 of this first stage such that 𝜏0 = 𝑛0Δ𝜏, is shown in
Figure 1 . The parameters are 𝜅 = 𝐾 = 𝛽 = 1; Δ𝜏 = 0.01, ℎ = 0.002, 𝑅0 = 0.03 and the value 𝐶 , previously obtained, is
𝐶 = 0.7616. Note that 𝑅0 = 0.03 means that 3% of the material has solidified. From (23), 𝜏0 = 1.72404.
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FIGURE 1 Numerical solutions for example 1 at the end of the first stage.

2.2 Second stage numerical modelling
Once the initialization difficulties have been overcome, we address the second stage, where an explicit scheme is used for the
numerical solution of equations (25)-(26) with the Stefan condition (31). For this stage, let us take a time step 𝑘 and the discretized
temporal variable 𝜏𝑛 = 𝜏0+(𝑛−𝑛0)𝑘, 𝑛0 ≤ 𝑛 ≤ 𝑛1, where 𝑛1 is the final time level to be determined by the stability requirements.
Note that here, the discretized initial conditions coincide with the final ones of the first stage, while the boundary conditions
remain unaltered, (37). For the spatial step ℎ and the time step 𝑘, the explicit scheme for the interior points takes the form

𝑢𝑛+1𝑚,𝑗 = 𝑎𝑛𝑚,𝑗𝑢
𝑛
𝑚,𝑗−1 + 𝑏𝑛𝑚,𝑗𝑢

𝑛
𝑚,𝑗 + 𝑐𝑛𝑚,𝑗𝑢

𝑛
𝑚,𝑗+1, 𝑚 = 𝑠, 𝑙, 𝑛0 ≤ 𝑛 ≤ 𝑛1 − 1, (52)
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where
𝑎𝑛𝑠,𝑗 = 𝛼𝑛 − (1 + 𝑧𝑗)𝛽𝑛, 𝑏𝑛𝑠,𝑗 = 1 − 2𝛼𝑛, 𝑐𝑛𝑠,𝑗 = 𝛼𝑛 + (1 + 𝑧𝑗)𝛽𝑛,

𝛼𝑛 = 𝑘
ℎ2𝜅(𝜎𝑛)2

, 𝛽𝑛 = 𝜎𝑛+1 − 𝜎𝑛

2ℎ𝜎𝑛 ;

𝑎𝑛𝑙,𝑗 = 𝛾𝑛 − (1 − 𝑧𝑗)𝛿𝑛, 𝑏𝑛𝑙,𝑗 = 1 − 2𝛾𝑛; 𝑐𝑛𝑙,𝑗 = 𝛾𝑛 + (1 − 𝑧𝑗)𝛿𝑛,

𝛾𝑛 = 𝑘
ℎ2(𝜌0 − 𝜎𝑛)2

, 𝛿𝑛 = 𝜎𝑛+1 − 𝜎𝑛

2ℎ(𝜌0 − 𝜎𝑛)
;

(53)

and
𝜌0 =

1
𝑅0

. (54)

In the above notation, 𝑚 = 𝑠 or 𝑚 = 𝑙, where 𝑠 holds for the material in the solid phase and 𝑙 for the liquid phase. Note that for
the solid phase −𝑀 +1 ≤ 𝑗 ≤ −1, while for the liquid phase 1 ≤ 𝑗 ≤ 𝑀 , involving the value 𝑢𝑛𝑙,𝑀+1 at the fictitious mesh point
𝑧𝑀+1. Finally, the discretization of the Stefan-like condition (31) for obtaining the evolution of the solidification front takes the
form

𝜎𝑛+1 − 𝜎𝑛

𝑘
= 𝐾

𝛽𝜎𝑛Δ𝑢
𝑛
𝑠,0 −

1
𝛽(𝜌0 − 𝜎𝑛)

Δ𝑢𝑛𝑙,0, 𝑛0 ≤ 𝑛 ≤ 𝑛1 − 1, (55)

where

Δ𝑢𝑛𝑠,0 =
3𝑢𝑛𝑠,0 − 4𝑢𝑛𝑠,−1 + 𝑢𝑛𝑠,−2

2ℎ
, Δ𝑢𝑛𝑙,0 =

−3𝑢𝑛𝑙,0 + 4𝑢𝑛𝑙,1 − 𝑢𝑛𝑙,2
2ℎ

, (56)

are the second order approximations of the involved one-sided partial derivatives in (31).
Now we study sufficient conditions for the positivity of coefficients in (52), because this fact guarantees the preservation of

the sign of the solutions (negative for the solid phase and positive for the liquid one). From (52)-(53), the increasing behaviour
of the solidification front and (22), the coefficient 𝑏𝑛𝑠,𝑗 becomes positive if

𝑘 < 𝜅ℎ2

2
. (57)

Using (53), Stefan condition (55) and the fact that both expressions ℎΔ𝑢𝑛𝑙,0 and ℎΔ𝑢𝑛𝑙,0 are (ℎ), it holds

𝛽𝑛

𝛼𝑛 = 𝜅ℎ𝜎𝑛(𝜎𝑛+1 − 𝜎𝑛)
2𝑘

= 𝜅ℎ
2𝛽

(
𝐾Δ𝑢𝑛𝑠,0 −

𝜎𝑛

𝜌0 − 𝜎𝑛Δ𝑢
𝑛
𝑙,0

)
= (ℎ). (58)

Thus, 𝛽𝑛 < 𝛼𝑛 for small enough values of ℎ, and from 0 < 1 + 𝑧𝑗 < 1, one gets the positivity of 𝑎𝑛𝑠,𝑗 , while 𝑐𝑛𝑠,𝑗 > 0
unconditionally. In an analogous way, the positivity of coefficients 𝑎𝑛𝑙,𝑗 and 𝑐𝑛𝑙,𝑗 in the liquid phase scheme can be proved. Positivity
of 𝑏𝑛𝑙,𝑗 holds under the step sizes condition

𝑘 <
ℎ2(𝜌0 − 𝜎𝑛)2

2
, 𝑛0 ≤ 𝑛 ≤ 𝑛1. (59)

Note that (57) guarantees the inequality (59) when 𝜅 < (𝜌0 − 𝜎𝑛)2. This means that the solidification front must satisfy 𝜎𝑛 <
𝜌0 −

√
𝜅 and hence the integer 𝑛1 defining the final time level of the second stage is

𝑛1 = max
{
𝑛 ∶ 𝜎𝑛 < 𝜌0 −

√
𝜅, ; 𝑛 ≥ 𝑛0

}
. (60)

Note that the final of the second stage depends on the problem data and the initialization of the solid phase, i.e. of 𝑅0.
Once the positivity of coefficients in (52) for 𝑚 = 𝑠, 𝑙 has been shown under condition (57) for all time levels 𝑛0 ≤ 𝑛 ≤ 𝑛1,

where 𝑛1 is given by (60), the stability of the temperatures sign comes from (53), obtaining the identity

𝑎𝑛𝑚,𝑗 + 𝑏𝑛𝑚,𝑗 + 𝑐𝑛𝑚,𝑗 = 1, 𝑚 = 𝑠, 𝑙. (61)

In fact, from (52)-(53), (61) and the positivity of coefficients 𝑎𝑛𝑚,𝑗 , 𝑏
𝑛
𝑚,𝑗 , 𝑐

𝑛
𝑚,𝑗 , assuming −1 ≤ 𝑢𝑛𝑠,𝑗 ≤ 0 and 0 ≤ 𝑢𝑛𝑙,𝑗 ≤ 1, one gets

not only the sign preserving but the boundedness property{
−1 ≤ 𝑢𝑛+1𝑠,𝑗 ≤ 0, −𝑀 + 1 ≤ 𝑗 ≤ −1,
0 ≤ 𝑢𝑛+1𝑙,𝑗 ≤ 1, 1 ≤ 𝑗 ≤ 𝑀. (62)

The physics of the problem suggests that the temperatures in both phases increase with the spatial index 𝑗 for each fixed time
level 𝑛, 𝑛0 ≤ 𝑛 ≤ 𝑛1. We show that the numerical solution preserves at this stage the monotonicity property under the stability
and positivity conditions (57), (60) and small enough values of ℎ.
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From equations (52)-(53), positivity of coefficients 𝑎𝑛𝑠,𝑗 , 𝑏
𝑛
𝑠,𝑗 , 𝑐

𝑛
𝑠,𝑗 , and assuming that monotonicity property holds true up to

time level 𝑛, it follows that,

𝑢𝑛+1𝑠,𝑗+1 > (𝛼𝑛 − (1 + 𝑧𝑗+1)𝛽𝑛)𝑢𝑛𝑠,𝑗 + (1 − 𝛼𝑛 + (1 + 𝑧𝑗+1)𝛽𝑛)𝑢𝑛𝑠,𝑗+1, −𝑀 ≤ 𝑗 ≤ −1, (63)
and

𝑢𝑛+1𝑠,𝑗 < (1 − 𝛼𝑛 − (1 + 𝑧𝑗)𝛽𝑛)𝑢𝑛𝑠,𝑗 + (𝛼𝑛 + (1 + 𝑧𝑗)𝛽𝑛)𝑢𝑛𝑠,𝑗+1, −𝑀 + 1 ≤ 𝑗 ≤ −1. (64)
From (63) and (64) it follows that

𝑢𝑛+1𝑠,𝑗+1 − 𝑢𝑛+1𝑠,𝑗 > (𝑢𝑛𝑠,𝑗+1 − 𝑢𝑛𝑠,𝑗)(1 − 2𝛼𝑛 + ℎ𝛽𝑛) > 0, −𝑀 + 1 ≤ 𝑗 ≤ −1. (65)

In analogous way, under previous conditions and small enough values of ℎ, one gets

𝑢𝑛+1𝑙,𝑗+1 > 𝑢𝑛+1𝑙,𝑗 , 0 ≤ 𝑗 ≤ 𝑀 − 1. (66)

Summarizing, the following results have been established in this second stage:

Theorem 1. With previous notation, let 𝑛0 be the positive integer chosen so that 𝜏𝑛0 = 𝜏0 represents the end of the first stage,
and let 𝑛1 be defined by (60). Let ℎ > 0 be the spatial stepsize and 𝑘 > 0 the temporal stepsize, and let 𝛼𝑛 and 𝛽𝑛 defined by
(53) for 𝑛0 ≤ 𝑛 ≤ 𝑛1. If ℎ and 𝑘 satisfy (57) and 𝛽𝑛 < 𝛼𝑛 for 𝑛0 ≤ 𝑛 ≤ 𝑛1 − 1, then the numerical scheme (52)-(53) and (55)
preserves the sign, boundedness and the spatial monotonicity of both solid and liquid temperatures in the second stage, starting
from the end of the first stage at time level 𝑛0 and ending at time level 𝑛1 given by the stability requirement (60).

Next example shows temperature profiles in both phases solid and liquid, at the end of the second stage.
Example 2 Figure 2 depicts numerical temperature distributions with respect to the variable 𝑧 at the end of the second stage,

i.e. 𝜏1 = 940.481, both for the solid and the liquid phase. Model parameters take here the values 𝜅 = 𝐾 = 𝛽 = 1, step sizes
ℎ = 0.05, 𝑘 = 0.001 and 𝑅0 = 0.03. Note that in this instance, the position of the solidification front is given by the expression
𝜎(𝜏1) = 𝜌0 −

√
𝜅 = 32.3333, i.e. the 97% of the material is solidified.
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FIGURE 2 Numerical solutions for example 2 at the end of the second stage.

2.3 Third stage numerical modelling
As it has been shown at the end of the second stage, the depletion of the liquid phase almost occurs and the temperature remains
practically unaltered and close to zero. This fact completes numerically the idea suggested by the authors of24, p. 270, about the
time 𝑡∗ when the liquid phase can be neglected.
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Finally, for the third stage of the problem, within the time range 𝑛1 ≤ 𝑛 ≤ 𝑛2, where 𝑛2 corresponds to the time step such that
𝜎𝑛2 = 𝜌0, i.e. 𝜏𝑛2 = 𝜏𝑒 when the solid phase covers the entire domain. As in Section 2.2, the final conditions of the second stage
are taken as initial conditions for the third one, while the boundary conditions continue unaltered, (37). In this third period, the
formulation of the problem is changed by another, characterized only by the equation regarding the solid phase, (25), and the
Stefan condition, that takes the form

𝑑𝜎
𝑑𝜏

= 𝐾
𝛽𝜎(𝜏)

𝜕𝑈𝑠

𝜕𝑧
, 𝑧 = 0, 𝜏1 < 𝜏 < 𝜏2. (67)

The solution at the interior points at time level 𝑛+ 1, is given by the explicit scheme (52) for 𝑚 = 𝑠, while the liquid phase is
neglected. The properties of the numerical solution established in Theorem 1 remain preserved for the unique solid phase under
that unique condition (57).

The discretization of the Stefan-like condition (67) takes the form
𝜎𝑛+1 − 𝜎𝑛

𝑘
= 𝐾

𝛽𝜎𝑛Δ𝑢
𝑛
𝑠,0, 𝑛1 ≤ 𝑛 ≤ 𝑛2 − 1. (68)

Note that comparing with the discretization of the change of the solidification front given by (55) in the second stage, here
the second term of the right-hand side of (55) corresponding to the influence of the liquid phase into the solid-liquid interface
is deleted.

In the following example, we illustrate the evolution of temperature profiles during all the stages, showing the properties of
spatial monotonicity and stability, as well as the dynamics of the solidification front from the beginning until the extinction time.

Example 3 Figure 3 shows the results for the step sizes discretization ℎ = 0.002 and Δ𝜏 = 0.01 in the first stage, verifying
conditions (43), and ℎ = 0.05 and 𝑘 = 0.001, under the hypothesis of Theorem 1. The solidified fraction at the end of the first
stage is taken 𝑅0 = 0.03 and the parameters of the model are 𝜅 = 𝐾 = 𝛽 = 1. Note that each curve corresponds to a different
time; the first four upper curves correspond to increasing time values in the second stage, while the last one represents the
temperature of the solid phase at the extinction time, i.e. the end of the third stage. The increasing behaviour of the temperatures
is captured by the numerical solution and for the liquid phase the temperature is uniformly close to zero in the second stage.
Figure 3 shows as the solidification front advances with the time and the slope of the temperature curve in the diminishing
liquid phase approaches to zero due to the right end homogeneous Neumann boundary condition.
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FIGURE 3 Numerical solutions for example 3 for different fractions of the extinction time. Dash-dot lines represent solid phase
temperatures 𝑈̂𝑠 and continuous lines show temperatures of the liquid phase 𝑈̂𝑙.

Figure 4 shows the evolution of the solidification front. It agrees with the results of24 using the Keller box scheme. The
cooling impact in the advance speed of the solidification front is tempered by the effect of the liquid phase.
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FIGURE 4 Numerical solidification front of example 3 as a function of time.

Table 2 contains a set of points covering the last quarter of the solidification process to study the change of behaviour of the
original 𝐶

√
𝑡-law due to the influence of the liquid phase.

Time 𝑡 0.6375 0.6800 0.7225 0.7650 0.8075 0.8500
Solidification front 𝑆̃(𝑡) 0.7884 0.8288 0.8674 0.9043 0.9398 0.9741

TABLE 2 Solidification front 𝑆̃(𝑡) for large values of time.

These points (𝑡, 𝑆̃(𝑡)) have been matched to a curve of the form 𝑆̃(𝑡) = 𝑏𝑡𝛼 . A least square approach shows the optimal values
𝑏 = 1.09955 and 𝛼 = 0.73464. The resulting coefficient of determination is 𝑅2 = 0.99963.

The following Table 3 and Table 4 show, for different values of the temporal step size 𝑘, the relative error RE and the
convergence rate 𝛾 , obtained for the numerical solutions of the solid and liquid temperatures 𝑈̂𝑠 and 𝑈̂𝑙 at points 𝑦𝑠 = 0.28082
and 𝑦𝑙 = 0.78082, located in the midpoint of each subdomain, at the instant 𝑡 = 0.42399 when half of the 2𝑛𝑑 stage has elapsed.

𝑘3 = 0.0005 𝑘1 = 0.001 𝑘2 = 0.00075
RE 1.47402e-06 7.03169e-07
𝛾 - 1.82545

TABLE 3 Relative error RE and convergence rate 𝛾 for the solid temperature solutions, taking 𝑘3 = 0.0005 as the reference
step size and ℎ = 0.05 in all cases.
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𝑘3 = 0.0005 𝑘1 = 0.001 𝑘2 = 0.00075
RE 9.69036e-05 4.56845e-05
𝛾 - 1.85456

TABLE 4 Relative error RE and convergence rate 𝛾 for the liquid temperature solutions, taking 𝑘3 = 0.0005 as the reference
step size and ℎ = 0.05 in all cases.

Although the first and third stages are qualitative relevant due to the issues of initialization and depletion, it is important to
point out that both from the spatial and temporal points of view both stages have a reduced quantitative significance versus the
second stage. This facts are illustrated in Figure 5 , where 𝑅0 = 0.03, 𝑡𝑒 = 0.881195 and 𝜏𝑒 = 979.106 for the data in this
example.

FIGURE 5 Above: Spatial stages distribution. Below: Time stages distribution.

Next example illustrates the fact that both the extinction time and temperatures in the solid phase for complete depletion does
not change significantly for changes in a small enough 𝑅0.

Example 4 Let us take three chosen values of the fraction 𝑅0. For the model parameters 𝜅 = 𝐾 = 𝛽 = 1 and taking ℎ = 0.002,
Δ𝜏 = 0.01 in the first stage, ℎ = 0.05, 𝑘 = 0.001 in the second and third stage, Table 5 shows the times 𝑡0 when finishes the
first stage, 𝑡1 at the end of the second stage and 𝑡𝑒, as well as the root mean squared error (RMSE) of the distribution of the
temperature of the solid at 𝑡𝑒 with respect to the lower value of 𝑅0 = 0.01.

𝑅0 𝑡0 𝑡1 𝑡𝑒 % 2nd stage RMSE CPU time
(seconds)

0.05 0.004750 0.820648 0.876230 93.11 0.0228 79.79
0.03 0.001557 0.846433 0.881195 95.88 0.0127 205.09
0.01 0.000103 0.873104 0.885353 98.60 —— 2067.11

TABLE 5 Dependence of 𝑡0, 𝑡1, 𝑡𝑒 and RMSE of temperatures on the fraction 𝑅0, when the parameters of the model are
𝜅 = 𝐾 = 𝛽 = 1.
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CONCLUSION

In this paper two-phase solidification Stefan problems in a finite domain are treated numerically, including the formation and
depletion stages. Numerical solutions obtained with the proposed schemes become stable and preserve the qualitative properties
of the theoretical solutions. In particular, the spatial monotonicity of the temperatures at all temporal levels is shown.
The treatment does not require the knowledge of the analytical solution of the problem into a semi-infinite medium, allowing the
possibility of potential application to more complex problems such as cryosurgery, where cancer cells may be destroyed under
extremely cold temperatures.
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