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Summary

This paper provides a comprehensive probabilistic analysis of a full randomization
of SIR-type epidemiological models based on Discrete-Time Markov Chain for-
mulation. The randomization is performed by assuming that all input data (initial
conditions, the contagion and recovering rates involved in the transition matrix) are
random variables instead of deterministic constants. In a first part of the paper, we
determine explicit expressions for the so called first probability density function of
each subpopulation identified as the corresponding states of the Markov chain (sus-
ceptible, infected and recovered) in terms of the probability density function of each
input random variable. Afterwards, we obtain the probability density functions of
the times until a given proportion of the population remains susceptible, infected
and recovered, respectively. The theoretical contribution of this paper is completed
by computing explicit expressions of important randomized epidemiological quanti-
ties, namely, the basic reproduction number, the effective reproduction number and
the herd immunity threshold. All this theoretical information is derived under very
general assumptions and taking extensive advantage of the Random Variable Trans-
formationmethod via appropriate transformations for each one of the aforementioned
target probability density functions. The second part of the paper is devoted to apply
our theoretical findings to study, from a probabilistic standpoint, the dynamics of
the pandemic influenza using real data from Egypt. The probabilistic study of pan-
demic influenza in Egypt is complemented by providing valuable information which
is seldom displayed in epidemiological models.

KEYWORDS:
Randomized Discrete-Time Markov Chains, SIR epidemiological model, First probability density func-
tion, Random Variable Transformation method, Simulations

1 INTRODUCTION AND MOTIVATION

Markov chains have demonstrated to be useful tools to model important problems appearing in medicine. In particular, they have
been successfully applied to model the dynamics of epidemics, i.e., the rapid spread (transmission) of an infectious disease to a

0Abbreviations: 1-PDF, first probability density function; PDF, probability density function; RVT, random variable transformation; DTMC, discrete-time Markov
chain
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large number of individuals in a given population. Since the transmission of a disease is usually subject to complex factors whose
nature is uncertain, and whose current state depends upon the previous levels of the disease, the application of probabilistic mod-
els, such as Markovian chains, is a natural and powerful approach. One important type of Markovian epidemiological models
to describe the dynamics of a disease is the so-called SIR model formulated via Discrete-Time Markov Chains (DTMC)1, ch. 2.
In the DTMC SIR epidemic model time is assumed to be discrete, t = 01, 2,…, while random variables, defining the different
states of the Markov chain, are discrete. Specifically, in the SIR model individuals of the population are categorized into one of
the following three groups: Susceptible (S), Infected (I) and Recovered (R). The SIR model is appropriate when the following
assumptions hold: the population is fixed, i.e., remains constant over the time; the only way an individual can leave the suscepti-
ble group is to become infected (S → I) and, in the classical SIR model, the probability of being infected is independent of age,
sex, social status, etc.; the only way an individual can leave the infected subpopulation is to recover from the disease (I → R);
once an individual has recovered, he/she develops permanent immunity. So, the class R represents individuals that are perma-
nently immune. In addition, there is no inherited immunity, i.e., the whole population is susceptible to be infected. In the SIR
model, homogeneous mixing hypothesis is also assumed, i.e., each individual has the same interactions with one another to the
same degree2. Some diseases whose dynamics have been described using the SIR model include measles, mumps, chickenpox,
smallpox, influenza, etc.2,3,4,5,6. In Figure 1 , we show the flow diagram associated to this Markovian epidemiological model,
where � > 0 denotes the infectious rate, i.e., the transition rate to pass from S to I , and � > 0 is the transition rate from I to R.

FIGURE 1 Flow diagram to SIR epidemiological model.

Given an initial vector (s0, i0, r0)⊤, the SIR Markovian model can be formulated by

⎛

⎜

⎜

⎝

sn+1
in+1
rn+1

⎞

⎟

⎟

⎠

= T
⎛

⎜

⎜

⎝

sn
in
rn

⎞

⎟

⎟

⎠

, n = 0, 1, 2,… , (1)

where sn, in and rn are the proportion of susceptible, infected and recovered subpopulations in cycle n, respectively. According
to the classical homogeneous Markovian chain theory, we assume that sn+ in+ rn = 1, that is all the states form a closed system
at every cycle n. This means that any individual can neither leave nor join the system, hence keeping the total population size
constant over the time. Then, the initial cohort can be taken as (s0, i0, 1 − s0 − i0)⊤. Without loss of generality, we can assume
that the transition matrix T is given by

T =
⎛

⎜

⎜

⎝

e−� 0 0
1 − e−� e−� 0
0 1 − e−� 1

⎞

⎟

⎟

⎠

, (2)

since e−� and e−� lie in the interval ]0, 1[ when �, � ∈]0,+∞[, so each entry of transition matrix T represents a probability and
the sum of each column is 1. The way that this matrix has been represented in expression (2) can be interpreted from another
view point using the Poisson distribution. It is well-known that the Poisson distribution represents the probability of a given
number of events occurring in a fixed interval of time, whenever these events occur with a constant rate and independently of
the time since the last event happened. The probability of observing k events in an interval is given by

ℙ[k; �] = e−� �
k

k!
,

where � > 0 is the average number of events per interval. In our case, taking k = 0 and � = �, the probability of not being
infected is e−� , which corresponds to the element (1, 1) of transition matrix T . The element (3, 1) represents the probability of
the transition S → R, which is zero. Then, the element (2, 1) is given by 1 − e−� , since the sum of the columns must be 1.
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Analogously for the transition rate � and for the elements in second column of matrix T . Finally, if an individual reaches the R
state it can not leave it since R is an absorbent state and the probability of staying in it is 1.
On the one hand, an aspect that confers classical homogeneous Markovian chains certain rigidity, in dealing with epidemio-

logical models, is the fact that probabilities included in the transition matrix are assumed to be constants. As we have previously
explained, in our context these probabilities represent the transmission rates of being infected (�) and recovered (�). Obviously,
these parameters depend upon complex factors involving certain degree of randomness, such as age, sex, social status, genetic,
weather, etc. This is a key aspect that, as previously indicated, in the classical homogeneous Markovian chains approach is
neglected. On the other hand, the initial proportions, s0 (susceptibles) and i0 (infected), of the whole population are rarely known
in an exact (deterministic) way but via surveys, so involving sampling errors. These facts aim us at treating both the transmission
rates, �, �, and the initial conditions, s0 and i0, as random variables rather than deterministic constants.
Hereinafter, we will therefore assume that s0(!), i0(!), �(!) and �(!), ! ∈ Ω, are independent and absolutely continuous

random variables defined on a complete probability space (Ω, ,ℙ), being fs0 , fi0 , f� and f� their probability density functions
(PDFs), respectively. The hypothesis of independence between the input data is realistic from a practical standpoint and it also
facilitates computations and notational aspects throughout subsequent analysis, anyway it is worth pointing out that our approach
can be entirely developed working with a joint PDF fs0,i0,�,� instead. Given a random variable, say x(!), henceforth its domain
will be denoted by (x(!)).
To conduct our probabilistic study, we will take extensive advantage of the RandomVariable Transformation (RVT) technique

(see Theorem 1 later). Using this key result, we will be able to compute explicit expressions to the first probability density
function (1-PDF) of the solution of the randomized DTMC SIR-type model, i.e., of the stochastic processes describing the
dynamics of susceptibles, infected and recovery subpopulations.Wewill also be able to determine the PDFs of important random
variables modelling relevant information of the disease. This is a relatively new approach that provides richer information
about the dynamics of SIR-type epidemiological model. The RVT technique has been successfully applied to deal with both
discrete and continuous models. In the former context, RVT method has been applied to perform a comprehensive probabilistic
analysis of binary Markov chains with applications to model the spread of a new technology7 and to model stroke disease
using real data8, for instance. In the latter framework, the RVT has been served to study relevant epidemiological continuos
models formulated via random differential equations, namely, the SI and SIS-type models9,10. Recently, some of the authors have
proposed a probabilistic analysis of the SIR-type continuous model11. In a sense, our study can be regarded as a complement
of that contribution11 since now we deal with its discrete counterpart. Besides, we now apply the randomized DTMC SIR-type
model to study the dynamics of a disease using real data rather than just performing simulations. Finally, we stress that the RVT
technique has also been applied to study other important problems in Biology and Engineering,12,13,14,15,16,17,18,19.
The main goals of this paper are twofold: First to perform a comprehensive analysis of the randomized SIR Markovian model

(1)–(2) by computing important probabilistic distributions associated to the dynamics of epidemics. Second, we will apply our
theoretical findings to model the dynamics of pandemic influenza using real-world data from Egypt. To achieve these objectives,
the paper is organized as follows: In Section 2, we will determine the 1-PDFs of each subpopulations. In Section 3, we will
calculate the PDFs of the time until a certain proportion of the population remains susceptible, infected and recovered. Section
4 is devoted to complete the previous analysis by calculating the PDF of some key randomized epidemiological quantities as
the basic reproduction number (R0), the effective reproduction number (Re) and the so-called herd immunity threshold (HIT).
Section 5 is addressed to carry out some simulations and tomodel pandemic influenza using data fromEgypt. To conduct this real
application, we assign plausible parametric probabilistic distributions to every input data and then we determine the values of the
parameters so that the mean of each subpopulation of the randomized SIRmodel, computed via its corresponding 1-PDF, adjusts
the available real data using amean square error as goodness-of-fitmeasure. Once the parameters of the probabilistic distributions
allocated for each input random variable have been computed, we construct punctual (via the mean) and probabilistic (via
confidence intervals) predictions for susceptible, infected and recovered subpopulations. Specifically, we construct the PDFs
of each subpopulation, the PDFs of the times until a given proportion of the population remains in each state, as well as the
PDFs ofR0,Re and HIT. Finally, detailed interpretations of these key epidemiological quantities, in the context of the pandemic
influenza in Egypt, are provided to stress the usefulness of computing them. Conclusions are outlined in Section 6.
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2 FIRST PROBABILITY DENSITY FUNCTION OF EACH SUBPOPULATION

This section is devoted to provide explicit expressions for the 1-PDF of susceptibles, infected and recovered subpopulations of
the randomized Markovian chain SIR model (1)–(2). The key tool to calculate these 1-PDFs is the RVT method, which is stated
in the following theorem. Observe that this result allows us to calculate the PDF, fy(y), of an absolutely continuous random
vector, y(!), which results from mapping another absolutely continuous random vector, x(!), whose the PDF, fx(x), is known.

Theorem 1 (Multidimensional RVT method20). Let x(!) = (x1(!),… , xm(!)) and y(!) = (y1(!),… , ym(!)) be two m-
dimensional absolutely continuous random vectors defined on a complete probability space (Ω, ,ℙ). Let r ∶ ℝm → ℝm be a
one-to-one deterministic transformation of x(!) into y(!), i.e., y(!) = r(x(!)), for each ! ∈ Ω. Assume that r is continuous in
x(!) and has continuous partial derivatives with respect to x(!), for each ! ∈ Ω. Then, if fx(x) denotes the probability density
function of the absolutely continuous random vector x(!), and s = r−1 = (s1(y1,… , ym),… , sm(y1,… , ym)) denotes the inverse
of r = (r1(x1,… , xm),… , rm(x1,… , xm)), the probability density function of the absolutely continuous random vector y(!) is
given by

fy(y) = fx(s(y)) |J | , (3)
where |J |, which is assumed to be different from zero, denotes the absolute value of the Jacobian defined by the determinant

J = det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

)s1(y1,… , ym)
)y1

⋯
)sm(y1,… , ym)

)y1
⋮ ⋱ ⋮

)s1(y1,… , ym)
)ym

⋯
)sm(y1,… , ym)

)ym

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The following technical lemma is a direct consequence of Theorem 1 and it will be required later to calculate the 1-PDFs of
each subpopulation of the randomized Markovian SIR model (1)–(2).

Lemma 1. Let x(!) be a positive absolutely continuous random variable with probability density function, fx(x). Then, the
probability density function of the absolutely continuous random variable y(!) = 1 − e−x(!) is given by

fy(y) = fx(− ln(1 − y))
1

1 − y
. (4)

Proof. For each ! ∈ Ω, let us define the following transformation y = r(x) = 1 − e−x, x > 0, whose inverse mapping
s ∶]0, 1[→]0,+∞[ and Jacobian J are given by

x = s(y) = − ln(1 − y), J = 1∕(1 − y),

respectively. Then applying Theorem 1, one obtains the PDF of y(!) given in (4).

Observe that the solution stochastic process of the randomized Markovian model (1)–(2) is

⎛

⎜

⎜

⎝

sn(!)
in(!)
rn(!)

⎞

⎟

⎟

⎠

= (T (!))n
⎛

⎜

⎜

⎝

s0(!)
i0(!)

1 − s0(!) − i0(!)

⎞

⎟

⎟

⎠

, T (!) =
⎛

⎜

⎜

⎝

e−�(!) 0 0
1 − e−�(!) e−�(!) 0

0 1 − e−�(!) 1

⎞

⎟

⎟

⎠

. (5)

For the sake of simplicity, we will denote the probabilities in matrix T (!) as k(!) ∶= 1 − e−�(!) and p(!) ∶= 1 − e−�(!). Then
carrying out computations, the following explicit expressions for each subpopulation are straightforwardly obtained,

sn(!) = (1 − k(!))ns0(!),

in(!) = (1 − p(!))ni0(!) +
((1 − k(!))n − (1 − p(!))n) k(!)s0(!)

p(!) − k(!)
,

rn(!) = 1 − (1 − p(!))ni0(!) +
((1 − p(!))nk(!) − (1 − k(!))np(!)) s0(!)

p(!) − k(!)
.

(6)
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1-PDF, fs(s, n), of susceptibles subpopulation
Let n be a fixed cycle, and, for each ! ∈ Ω, define the deterministic mapping r ∶ ℝ2 → ℝ2

x1 = r1(s0, k) = (1 − k)ns0,
x2 = r2(s0, k) = k.

The inverse mapping s ∶ ℝ2 → ℝ2 of r is
s0 = s1(x1, x2) = x1(1 − x2)−n,
k = s2(x1, x2) = x2,

being its Jacobian J = (1 − x2)−n. Then applying Theorem 1, the PDF of the absolutely continuous random vector x(!) =
(x1(!), x2(!)) is

fx(x1, x2) = fs0,k(x1(1 − x2)
−n, x2)(1 − x2)−n.

Notice that 1 − x2(!) > 0, since x2(!) = k(!) = 1 − e−�(!), being �(!) > 0, for each ! ∈ Ω, so we do not need to add the
absolute value in the Jacobian term as indicated in the general formula (3).
As s0(!) and �(!) are assumed to be independent random variables, s0(!) and k(!) are independent too21, Th. 3, p.9. Then,

fs0,k(s0, k) = fs0(s0)fk(k). Marginalizing with respect to x2(!) = k(!) and taking n arbitrary, we obtain the 1-PDF of the
susceptible subpopulation, x1(!) = sn(!)

fs(s, n) = ∫
(k(!))

fs0(s(1 − k)
−n)fk(k)(1 − k)−n dk, (7)

where, as it was indicated previously,(k(!)) denotes the domain of random variable k(!). Now, we express this representation
of fs(s, n) in terms of the data. In this regard, recall that we are assuming that the PDF, f�(�), of the absolutely continuous input
random variable �(!) is given and that k(!) = 1 − e−�(!). So, applying Lemma 1, we can express the PDF fk(k), appearing in
(7), in terms of f�(�). This yields

fs(s, n) = ∫
(1−e−�(!))

fs0(s(1 − k)
−n)f�(− ln(1 − k))(1 − k)−(n+1) dk. (8)

1-PDF, fi(i, n), of infected subpopulation
Following a similar reasoning to the one exhibited previously for susceptibles, but using another appropriate mapping r, it can
be shown, by applying the Theorem 1, that the 1-PDF, fi(i, n), of the infected subpopulation is given by

fi(i, n) = ∫
(1−e−�(!))

∫
(1−e−�(!))

∫
(i0(!))

fs0

(

(i − i0(1 − p)n)(−k + p)
((1 − k)n − (1 − p)n) k

)

fi0(i0)f�(− ln(1 − k))

×f�(− ln(1 − p))
|

|

|

|

|

(1 − k)−1(1 − p)−1(−k + p)
((1 − k)n − (1 − p)n) k

|

|

|

|

|

di0 dk dp.

(9)

For the sake of clarity in the presentation, the technical details are reported in the Appendix.

1-PDF, fr(r, n), of recovered subpopulation
The explicit expression to the 1-PDF, fr(r, n), of the recovered subpopulation is given by

fr(r, n) = ∫
(1−e�(!))

∫
(1−e�(!))

∫
(i0(!))

fs0

(

(−1 + r + i0(1 − p)n)(−k + p)
(1 − p)nk − (1 − k)np

)

fi0(i0)

×f�(− ln(1 − k))f�(− ln(1 − p))
|

|

|

|

|

(1 − k)−1(1 − p)−1(−k + p)
(1 − p)nk − (1 − k)np

|

|

|

|

|

di0 dk dp.

(10)

In Appendix, we show the mathematical development to obtain this expression by applying Theorem 1 and choosing an
appropriate mapping r.
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3 PDF OF THE TIME UNTIL A GIVEN PROPORTION OF THE POPULATION REMAINS
IN EACH STATE

From an applied point of view it is very helpful to know when the percentage of susceptibles, infected or recovered in the
population will attain a specific level. Since these times will obviously depend on random initial subpopulations, s0(!) and i0(!),
and on random parameters, �(!) and �(!), the aforementioned times will be random themselves. In this section, we determine
the PDFs of the times until a given proportion of the population remain susceptibles, infected and recovered. Bearing in mind
this goal, let us fix a proportion of population remaining susceptible, infected or recovered, �s, �i and �r, respectively. In the
following we will obtain the PDF of these times in each one of the three states by applying the RVTmethod stated in Theorem 1.

PDF, fns(n), of random time for susceptibles
Let us denote by ns(!) the time until a given proportion of the population, �s ∈ (0, 1), remains susceptible. Then, isolating ns(!)
from the solution of susceptible subpopulation, given in (6), and taking into account that k(!) = 1 − e−�(!), we obtain

ns(!) =
1

�(!)
ln
(

s0(!)
�s

)

.

Now, we apply Theorem 1 to the mapping r ∶ ℝ2 → ℝ2, whose components are defined by

x1 = r1(s0, �) =
1
�
ln
(

s0
�s

)

,

x2 = r2(s0, �) = �.

The inverse mapping s ∶ ℝ2 → ℝ2 of r is
s0 = s1(x1, x2) = ex1x2 �s,
� = s2(x1, x2) = x2,

being the absolute value of the Jacobian of this transformation: |J | = �sx2 ex1x2 . Then, applying Theorem 1, and considering
�s ∈ (0, 1), the joint PDF of the absolutely continuous random vector x(!) = (x1(!), x2(!)) is given by

fx(x1, x2) = �sx2fs0,�(�s e
x1x2 , x2) ex1x2 .

Therefore, the PDF of the absolutely continuous random variable ns(!) is the marginal PDF of fx(x1, x2)with respect to x2(!) =
�(!) and, as s0(!) and �(!) are assumed to be independent random variables, one obtains

fns(n; �s) = �s ∫
(�(!))

�fs0
(

�s en�
)

f� (�) en� d�. (11)

PDF, fni(n), of random time for infected
To compute the PDF of the time ni(!) until a given proportion of the population, �i ∈ (0, 1), remains infected, first observe
that the first equation in (6) can be expressed as �s = (1 − k(!))ns0(!) and, taking into account that k(!) = 1 − e−�(!) and
p(!) = 1 − e−�(!), then the second equation in (6) writes

�i = e−n�(!) i0(!) +

(

�s − e−�(!)n s0(!)
)

(1 − e−�(!))
e−�(!) −e−�(!)

.

Now, isolating ni(!) one obtains

ni(!) =
1

�(!)
ln
(

e�(!) i0(!) + e�(!)+�(!) s0(!) − e�(!)(i0(!) + s0(!))
e�(!) �i + e�(!)+�(!) �s − e�(!)(�i + �s)

)

.
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We apply Theorem 1 (see details in Appendix) to obtain the following expression to the PDF, fni(n), of the time until a given
proportion of the population remains infected, ni(!),

fni(n; �s, �i) = ∫
(i0(!))

∫
(�(!))

∫
(�(!))

fs0

(

e−�
−1 + e�

(

e�n
(

−e�
(

�i + �s
)

+ e�
(

�i + e� �s
))

+
(

−e� +e�
)

i0
)

)

×fi0(i0)f�(�)f�(�)
|

|

|

|

|

e(−1+n)� �
−1 + e�

(

−e�
(

�i + �s
)

+ e�
(

�i + e� �s
))

|

|

|

|

|

d� d� di0.

(12)

PDF, fnr(n), of random time for recovered
As before, we obtain nr(!) in terms of the fixed proportions �s and �r from the third equation of expression (6) as

�r = 1 − e−�n i0(!) +
e−�n(1 − e−�)s0 − �s(1 − e−�)

e−� −e−�
.

Then, isolating nr(!), one gets

nr(!) =
1

�(!)
ln
(

e� i0 + e�+� s0 − e�(i0 + s0)
e�(1 − �r − �s) − e�(1 − �r − e� �s)

)

.

Now, the PDF , fnr(n), of the time until a given proportion of the population remains recovered, nr(!), can be calculated by
applying Theorem 1 (see details in the Appendix)

fnr(n; �s, �r) = ∫
(i0(!))

∫
(�(!))

∫
(�(!))

fs0

(

e−�
−1 + e�

(

e�n
(

e�
(

−1 + �r
)

+ e�+� �s + e�
(

1 − �r − �s
))

+
(

e� −e�
)

i0
)

)

×fi0(i0)f�(�)f�(�)
|

|

|

|

|

e(−1+n)� �
−1 + e�

(

e�
(

−1 + �r
)

+ e�+� �s + e�
(

1 − �r − �s
))

|

|

|

|

|

d� d� di0.

(13)

4 PDF OF SOME KEY RANDOMIZED QUANTITIES IN EPIDEMIC THEORY

This section is addressed to determine the expression of the PDF of some key randomized quantities in Epidemiology: the basic
reproduction number, R0, the effective reproduction number, Re and the herd immunity threshold, HIT. These quantities, and
other reproduction quantities related to them, are useful in designing control strategies22.

Basic reproduction number, R0: This quantity is used to measure the transmission of a disease. From R0 we can determine
whether the disease dies out or it spreads out. Then, we have information about if we are dealing with a pandemic. A pandemic
occurs if the number or infected individuals increases more than the recovered. The epidemiological definition of R0 is the
average number of secondary cases produced by one infected individual introduced into a population of susceptible individuals23.
Therefore, taking into account Figure 1 , R0 can defined as

R0 =
�
�
,

being � the rate of infection and � the rate of recovery. Thus, the disease spreads out when R0 > 1 (� > �) and it will die out if
R0 < 1 (� < �) when the time passes. Observe that these conditions are very intuitive. As we have motivated in the introduction
section, in this paper we assume that parameters � and � are absolutely continuous random variables. Then,R0(!) =

�(!)
�(!)

is also
a random variable. To discuss, from a probabilistic standpoint, how the epidemic will evolve in the long-run, we will compute
the PDF of R0 taking advantage of the the RVT method stated in Theorem 1. To this end, we define the deterministic mapping
r ∶ ℝ2 → ℝ2

x1 = r1(�, �) = �∕�,
x2 = r2(�, �) = �.

The inverse mapping s ∶ ℝ2 → ℝ2 of r is
� = s1(x1, x2) = x1x2,
� = s2(x1, x2) = x2.
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The absolute value of its Jacobian is |J | = x2 since � > 0. Then applying Theorem 1, the PDF of the absolutely continuous
random vector x(!) = (x1(!), x2(!)) is

fx(x1, x2) = f�,�
(

x1x2, x2
)

x2.
Then, marginalizing with respect to the random variable x2(!) = �(!) and assuming that �(!) and �(!) are independent random
variables, the PDF of R0(!) is obtained

fR0(r) = ∫
(�(!))

f�(r�)f�(�)� d�. (14)

As it was pointed before, in the deterministic theory if R0 > 1 we are dealing with an epidemic (the disease spreads out). In
the probabilistic scenario, we can calculate the probability that this event occurs

ℙ0 = ℙ
[

{! ∈ Ω ∶ R0(!) > 1
}

] =

∞

∫
1

fR0(r)dr, (15)

where fR0(r) is given by (14).
Effective reproduction number, Re: It is rare to find a disease where the total population is susceptible. There exists always a
percentage of the population which is immune to the disease. For example, immunity may be the result of a previous vaccine.
The effective reproduction number (also termed replacement number) considers this circumstance. It is the average number of
secondary cases per infectious case in a population made up of both susceptible and non-susceptible hosts, and it is defined by
Re = R0x, being R0 the basic reproduction number and x the fraction of the host population that is susceptible. In this case,
if Re > 1 the number of cases will increase, such as at the start of an epidemic. If Re = 1 the disease is endemic, that is, the
disease usually affects a particular region. The number of cases decreases when Re < 1, and then the disease tends to disappear.
In this paper we consider that the percentage of susceptible population is not necessarily one. Then, there is a percentage

of the initial population that is infected or recovered. This fact allows us to contemplate the possibility of immunity. Immune
persons fit perfectly in the initial recovered subpopulation. Thus, in this case x is s0, being

Re = R0s0 =
�s0
�
. (16)

As in the case of the basic reproduction number, we consider that parameters s0, � and � are absolutely continuous random
variables. Then, Re(!) =

�(!)s0(!)
�(!)

and we apply the RVT to determine the following expression for its PDF

fRe
(r) = ∫

(�(!))
∫

(�(!))

fs0

(

r�
�

)

f�(�)f�(�)
�
�
d� d�.

This allows us to compute the following probability

ℙe = ℙ
[

{! ∈ Ω ∶ Re(!) > 1
}

] =

∞

∫
1

fRe(r)dr, (17)

that provides key probabilistic information about the likelihood that the number of infected cases increases.
Herd immunity threshold, HIT: This is an important measure used in infectious disease control and immunisation and erad-
ication programmes. Herd immunity happens if a significant percentage of the population is immune, for example they have
been vaccinated. The HIT is defined from the basic reproduction number

HIT = 1 − 1
R0

= 1 −
�
�
.

It represents the percentage of the population that needs to be immune in order for an infectious disease to become stable in case
of no stability, i.e., when � > � (so assuring that, indeed HIT ∈ (0, 1)). Now, we consider that � and � are absolutely continuous
random variables, then HIT(!) = 1 − �(!)

�(!)
is an absolutely continuous random variable and by applying the RVT technique it

can be seen that its PDF is given by
fHIT(ℎ) = ∫

(�(!))

f�(�(1 − ℎ))f�(�) � d�.
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5 APPLYING THE RANDOMIZED DISCRETE-TIME MARKOV CHAIN SIR MODEL TO
REAL DATA

In this section we apply the theoretical results previously established to illustrate how the randomized Markov chain SIR model
given by (1)–(2) can be applied to model the pandemic influenza in Egypt. We take advantage of the real data collected in Figure
2 , which have been excerpted from reference24. In Figure 2 , we have plotted the percentages of Susceptibles (sn), Infected
(in) and Recovered (rn) from pandemic influenza in Egypt corresponding to n = 0, 2, 4, 6,… , 44 time instants (days) during the
year 2006,24.

10 20 30 40
n

0.2

0.4

0.6

0.8

sn

10 20 30 40
n

0.1

0.2

0.3

0.4

0.5
in

10 20 30 40
n

0.2

0.4

0.6

0.8

1.0

rn

FIGURE 2 Percentage of Susceptibles (Left), Infected (Center) and Recovered (Right) in 23 days during the year 2006 for
pandemic influenza in Egypt. Source:24.

First, we must choose appropriate PDFs for the absolutely continuous random inputs s0(!), i0(!), �(!) and �(!). As it has
been said in our previous theoretical development, these random variables are assumed to be independent random variables.
Notice that the random variable s0(!) represents a proportion, thus its values lies between 0 and 1. Therefore, we will assume that
s0(!) has a Uniform distribution on the interval (s0,1, s0,2), where 0 < s0,1 < s0,2 < 1 will be determined later. Based on similar
arguments, the initial condition i0 is assumed to have Uniform distribution on an interval (i0,1, i0,2) with 0 < i0,1 < i0,2 < 1.
On the other hand, �(!) represents the infection rate, which by definition, is the number of infections over the number of those
in a population that are at risk of infection (susceptible). Thus, this value lies also in the unit interval (0, 1). In this case, we
choose a Beta distribution with positive parameters a1, b1 > 0, i.e., �(!) ∼ Be(a1; b1). Since the Beta distribution depends on
two parameters, with this choice we allow for greater flexibility in fitting the model. Based upon the same arguments, since
�(!) also represents a rate, then, we choose �(!) ∼ Be(a2; b2), being a2, b2 > 0. In order to determine the parameters s0,1,
s0,2, i0,1, i0,2, a1, b1, a2 and b2, that best fit the randomized Markov chain SIR model (1)–(2) to data, we will minimize the
mean square error, represented in (18) by the error function e(s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2) (see (18)), between data given
in Figure 2 and the expectation of each one of the states: susceptible, sn(!) ∶= sn(!; s0,1, s0,2, a1, b1); infected in(!) ∶=
in(!; s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2), and recovered rn(!) ∶= rn(!; s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2), evaluated at the time instants
(days) n ∈  = {0, 2, 4, 6,… , 44}. Summarizing, this corresponds to the following optimization programme

min
0 < s0,1 , s0,2 < 1
0 < i0,1 , i0,2 < 1
a1 , b1 , a2 , b2 > 0

e(s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2) =
∑

n∈

(

sn − E
[

sn(!)
])2 +

(

in − E
[

in(!)
])2 +

(

rn − E
[

rn(!)
])2 . (18)

Observe that the expectation for each subpopulation is calculated as follows

E
[

sn(!)
]

= E
[

sn(!; s0,1, s0,2, a1, b1)
]

= ∫ 1
0 sfs(s, n) ds, n ∈  ,

E
[

in(!)
]

= E
[

in(!; s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2)
]

= ∫ 1
0 ifi(i, n) di, n ∈  ,

E
[

rn(!)
]

= E
[

rn(!; s0,1, s0,2, i0,1, i0,2, a1, b1, a2, b2)
]

= ∫ 1
0 rfr(r, n) dr, n ∈  ,

(19)

where fs(s, n), fi(i, n) and fr(r, n) are given by (8), (9) and (10), respectively.
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To optimize programme (18), we have applied the Nelder-Mead algorithm carrying out computations by Mathematica R©

software. We obtain the following values
s0,1 = 0.908819, s0,2 = 0.918742,
i0,1 = 0.046341, i0,2 = 0.054682,
a1 = 206.273096, b1 = 1052.315715,
a2 = 31.252079, b2 = 242.792953.

(20)

Firstly, with these values for the parametric distributions, we check out that the integral of the 1-PDF for each subpopulation,
given in expressions (8), (9) and (10), is one at every time instant n, i.e.,

1

∫
0

fs(s, n) ds = 1,
1

∫
0

fi(i, n) di = 1
1

∫
0

fr(r, n) dr = 1, n ∈  .

Apart from the expectations of each subpopulation, given by (19), the calculation of the 1-PDFs fs(s, n), fi(i, n) and fr(r, n)
allows us to compute their respective variances. For example, for the subpopulation of susceptibles, we use

V
[

sn(!)
]

=

1

∫
0

(s − E
[

sn(!)
]

)2fs(s, n) ds, n ∈  . (21)

Besides the punctual predictions for each subpopulations obtained by means of the above expectations, we can construct proba-
bilistic predictions via confidence intervals for any (1−
)×100% confidence level. For example for the susceptible subpopulation,
fixed 
 ∈ (0, 1), for each n̂ ∈  fixed, we can calculate s1n̂ and s

2
n̂ such that

s1n̂

∫
0

fs(s, n̂) ds =


2
=

1

∫
s2n̂

fs(s, n̂) ds , (22)

where

1 − 
 = ℙ
({

! ∈ Ω ∶ sn̂(!) ∈
[

s1n̂, s
2
n̂

]})

=

s2n̂

∫
s1n̂

fs(s, n̂) ds . (23)

Usually 
 = 0.05 is taken so that 95% confidence intervals are built.
Notice that analogous expressions to (21)–(23) can be given for the percentage of infected and recovered subpopulations by

changing fs(s, n) by fi(i, n), and fr(r, n), respectively.
Furthermore, it is important to point out that the knowledge of the 1-PDF of each subpopulation permits the computation of

key information as the probability that, for n̂ arbitrary but fixed, the percentage of susceptibles (infected/recovered) lies within
a specific interval of interest, say, [s1n̂, s

2
n̂] = [ŝ

1, ŝ2]

ℙ
({

! ∈ Ω ∶ sn̂(!) ∈
[

ŝ1, ŝ2
]})

=

ŝ2

∫
ŝ1

fs(s, n̂) ds . (24)

In Figure 3 the 1-PDFs of susceptible, infected and recovered subpopulations, given in formulas (8)–(10), are represented
for the optimal values given in (20). Although we have data at the time instants (days) n ∈ {0, 2, 4,… , 44}, these probabilistic
functions have been plotted only for the time periods n ∈ {0, 2, 4,… , 32}, since as we can observe in Figure 3 the 1-PDFs
tend to stabilize its behaviour from this last time instant. In addition, fs(s; n) starts to be leptokurtic at n = 32, which makes
its graphical representation difficult. From Figure 3 we observe that the number of susceptible vanishes over time while the
recovered subpopulation tends to be the total population. This circumstance is in agreement with the fact that R is an absorbent
state (see Figure 1 ). With respect to the infected subpopulation, at first it increases but approximately from the 8th day it
decreases to zero.
In Figure 4 we validate the model constructing the mean and confidence intervals. We show the graphical fitting performed

by means of the 1-PDFs for each subpopulation. In this plot, we have represented the real data (points), the mean (solid line) and
the confidence interval (dashed lines) constructed via the expectation plus/minus 1.96 standard deviations at each day where
data is available21. We observe that the data lies within the confidence intervals, hence the model is capable of capturing the
variability of the real data and the model can be validated at 95% confidence level. Furthermore, in Figure 4 the dynamic
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behaviour of three populations can be observed and it is in agreement with the time evolution of the PDFs of each subpopulation
described previously in Figure 3 .
Figure 5 shows the PDF, fns(n; �s), of the time ns until a given proportion, �s, of susceptible subpopulation remains sus-

ceptible. This graphical representation has been performed for different values of parameter �s ∈ {0.1, 0.2,… , 0.9}. From this
PDF, we can calculate the expectation of random variable ns given a fixed value �s,

E[ns] =

∞

∫
0

nfns(n; 0.4) = 5.06116,

where fns(n; �s) is given by (11). Then, approximately the fifth day represents the average time until the 40% of the susceptible
subpopulation will remain at the same state. It can be also seen in Figure 5 . It is worth noting that this result is in agreement with
the graphical representation of the 1-PDF, fs(s; n), shown in Figure 3 (top). In Table 1 , we have computed the expectation
for the following values of �s ∈ {0.1, 0.2,… , 0.9}. The figures collected in this table admit a similar interpretation as the one
previously specified.

�s 0.1 0.2 0.3 0.4

E[ns] 13.5542 9.30767 6.82362 5.06116

�s 0.5 0.6 0.7 0.8 0.9

E[ns] 3.69409 2.57711 1.63272 0.819997 0.165793

TABLE 1 Expectation of the time, ns(!), until a given proportion, �s, of the susceptible subpopulation remains susceptible for
different values of �s ∈ {0.1, 0.2,… , 0.9}.

We can look at expressions (12) and (13) that each PDF, fni(n; �s, �i) and fnr(n; �s, �r), depends on three parameters, the time
n and two proportions, {�s, �i} and {�s, �r}, respectively. Therefore, now we will first plot fni(n; �s, �i) for fixed proportions
of susceptible, �s and of infected, �i, and secondly, we will plot fnr(n; �s, �r) fixing the proportions {�s, �r}. In Figure 6 both
functions are plotted for particular values of the aforementioned proportions. Specifically, on the left, we show the PDF of
the time ni(!) until a given proportion, �i = 0.3, of infected remains infected knowing that the proportion of susceptibles is
�s = 0.15, while on the right, we show the PDF of the time nr(!), until a given proportion, �r = 0.8, of recovered remains
recovered knowing that �s = 0.05. It must pointed out that these plots have been performed on the time intervals [9, 20] and
[14, 30], respectively, where it can be checked that the corresponding integrals have value 1, thus representing the PDFs. For
illustrative purposes only, for example in this second case, we can compute the mean or expectation

E[nr] =

∞

∫
0

nfnr(n; 0.05, 0.8) = 20.6126.

This means that approximately the 21st day represents the average time until the 80% of the recovered subpopulation remains
recovered when 5% of the subpopulation remains susceptible.
Finally, we represent the distribution of the epidemiological randomized quantities described in Section 4. In Figure 7 , we

show the PDFs, fR0 , fRe and fHIT, of the basic reproduction number (left), the effective reproduction number (center) and the
herd immunity threshold (right), respectively. Since random variable s0(!) has a PDF concentrated about the value 0.91 ≈ 1
(recall that s0(!) ∼ U(0.908819, 0.9187742)), then according to (16) the PDFs fR0 and fRe are very similar (see left and center
panels in Figure 7 ). We can calculate the probabilities ℙ0 and ℙe, given in expressions (15) and (17), for each key random
variable R0(!) and Re(!), respectively. We obtain ℙ0 = 0.984957 and ℙe = 0.946996, respectively. Then, there exists a high
likelihood that the epidemic evolves. With regard to plot of PDF fHIT (see Figure 7 , right panel), it is worth nothing that a
piece of its domain is negative because there exists a (small) likelihood that the event {! ∈ Ω ∶ �(!) < �(!)} happens, then
HIT(!) = 1 − �(!)

�(!)
could take negative values with a small probability.
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FIGURE 3 1-PDFs of susceptible (top), infected (center) and recovered (bottom) subpopulations for the periods n ∈
{0, 2,… , 32} describing the evolution of pandemic influenza in Egypt. Notice that these graphical results are in full agreement
with Figure 2 .
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FIGURE 4 Expectation (solid line) and 95% confidence intervals (dashed lines) in the time interval n ∈ [0, 40] for susceptible
(top), infected (center) and recovered (bottom) subpopulations. These plots describe the probabilistic evolution of pandemic
influenza in Egypt. Notice that these graphical results are in full agreement with Figure 2 .
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FIGURE 5 PDFs of time, ns(!), until a given proportion, �s, of the susceptible subpopulation remains susceptible for the
following values of �s ∈ {0.1, 0.2,… , 0.9}.
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FIGURE 6 Left: PDF of time ni(!) until a given proportion, �i = 0.3, of the infected subpopulation remains infected knowing
that a proportion, �s = 0.15, is susceptible. Rigth: PDF of time nr(!) until a given proportion, �r = 0.8, of the recovered
subpopulation remains recovered knowing that a proportion, �s = 0.05, is susceptible. Both plots correspond to data of pandemic
influenza in Egypt represented in Figure 2 .
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FIGURE 7 PDFs of the basic reproduction number (left), the effective reproduction number (center) and the herd immunity
threshold (right). These plots correspond to data of pandemic influenza in Egypt represented in Figure 2 .
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6 CONCLUSIONS

In this paper we have performed a comprehensive study of a randomized Discrete-Time Markov Chain (DTMC) describing
SIR-type epidemiological models under very general assumptions. The main novelty of this approach consists of considering
that all input data (initial conditions and, contagion and recovering rates) are absolutely continuous random variables instead of
deterministic values, and then determining explicit formulas for important probabilistic information associated to the solution
stochastic process. Specifically, we have determined the first probability density function (1-PDF) of each subpopulation or state
(susceptible, infected and recovered). In this manner, all the one-dimensional moments of the solution, including the mean and
the variance, as well as the probability that the solution lies in a set of particular interest can be straightforwardly computed
via integration of the PDF. Additional key probabilistic information has been determined as the PDF until a given proportion
of the population remains in each state. The probabilistic analysis has been completed by determining explicit expressions for
important epidemiological quantities that play a key role in studying the long-run behaviour of a disease. Our approach allows
more flexibility and credibility than treating model parameters as deterministic values since real data often involves uncertainty
because ignorance and lack of knowledge about the factors determining diseases. This fact has been illustrated by means of the
probabilistic study conducted for the pandemic influenza in Egypt. Our approach can also be useful to provide a comprehensive
analysis of another epidemiological models via their full randomization and then computing the PDF of the solution stochastic
process instead of just computing the mean and the variance as it is usually done instead. Finally, we want to underline that we
plan to consider the full randomization of deterministic inhomogeneous DTMC SIR model, that is, when the probabilities in the
transition matrix depend on time, so dealing with the scenario where these probabilities are treated as stochastic processes rather
than random variables. In this case, we hope to be able to capture uncertainties embedded in the dynamics of the contagion and
recovery rates over the time.
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APPENDIX

Calculation of the 1-PDF, fi(i, n), of infected subpopulation
Let n be a fixed cycle, and for each ! ∈ Ω, define the mapping r ∶ ℝ4 → ℝ4

x1 = r1(s0, i0, k, p) = (1 − p)ni0 +
((1 − k)n − (1 − p)n) ks0

p − k
,

x2 = r2(s0, i0, k, p) = i0,
x3 = r3(s0, i0, k, p) = k,
x4 = r4(s0, i0, k, p) = p.
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The inverse mapping s ∶ ℝ4 → ℝ4 of r is

s0 = s1(x1, x2, x3, x4) =
(x1 − x2(1 − x4)n)(−x3 + x4)
(

(1 − x3)n − (1 − x4)n
)

x3
,

i0 = s2(x1, x2, x3, x4) = x2,
k = s3(x1, x2, x3, x4) = x3,
p = s4(x1, x2, x3, x4) = x4,

being its Jacobian
J =

−x3 + x4
(

(1 − x3)n − (1 − x4)n
)

x3
.

Then applying Theorem 1, the PDF of the random vector x(!) = (x1(!), x2(!), x3(!), x4(!)) is

fx(x1, x2, x3, x4) = fs0,i0,k,p

(

(x1 − x2(1 − x4)n)(−x3 + x4)
(

(1 − x3)n − (1 − x4)n
)

x3
, x2, x3, x4

)

|

|

|

|

|

−x3 + x4
(

(1 − x3)n − (1 − x4)n
)

x3

|

|

|

|

|

.

As by hypothesis, s0(!), i0(!), �(!) and �(!) are independent random variables, then s0(!), i0(!), k(!) and p(!)
too21, Th. 3, p.9. Then, fs0,i0,k,p(s0, i0, k, p) = fs0(s0)fi0(i0)fk(k)fp(p). Now, marginalizing with respect to x2(!) = i0(!), x3(!) =
k(!) and x4(!) = p(!) and taking n arbitrary, we obtain the 1-PDF of the infected subpopulation x1(!) = in(!)

fi(i, n) = ∫
(p(!))

∫
(k(!))

∫
(i0(!))

fs0

(

(i − i0(1 − p)n)(−k + p)
((1 − k)n − (1 − p)n) k

)

fi0(i0)fk(k)fp(p)

×
|

|

|

|

−k + p
((1 − k)n − (1 − p)n) k

|

|

|

|

di0 dk dp.

(1)

Recall that k(!) = 1 − e−�(!) and p(!) = 1 − e−�(!), and that we are assuming that the PDFs f�(�) and f�(�) are known.
Then, Lemma 1 allows us to express the PDF of k(!) and p(!) in terms of the PDFs of �(!) and �(!), respectively. Therefore,
applying twice Lemma 1, first to x(!) = �(!), and second to y(!) = p(!), this yields expression (9) for fi(i, n).

Calculation of the 1-PDF, fr(r, n), of recovered subpopulation
Let n be a fixed cycle, we define the mapping r ∶ ℝ4 → ℝ4

x1 = r1(s0, i0, k, p) = 1 − (1 − p)ni0 +
((1 − p)nk − (1 − k)np) s0

p − k
,

x2 = r2(s0, i0, k, p) = i0,
x3 = r3(s0, i0, k, p) = k,
x4 = r4(s0, i0, k, p) = p.

The inverse mapping s ∶ ℝ4 → ℝ4 of r is

s0 = s1(x1, x2, x3, x4) =
(−1 + x1 + x2(1 − x4)n)(−x3 + x4)

x3(1 − x4)n − (1 − x3)nx4
,

i0 = s2(x1, x2, x3, x4) = x2,
k = s3(x1, x2, x3, x4) = x3,
p = s4(x1, x2, x3, x4) = x4,

being its Jacobian
J =

−x3 + x4
x3(1 − x4)n − (1 − x3)nx4

.

Then applying Theorem 1, the PDF of the random vector x(!) = (x1(!), x2(!), x3(!), x4(!)) is

fx(x1, x2, x3, x4) = fs0,i0,k,p

(

(−1 + x1 + x2(1 − x4)n)(−x3 + x4)
x3(1 − x4)n − (1 − x3)nx4

, x2, x3, x4

)

|

|

|

|

−x3 + x4
x3(1 − x4)n − (1 − x3)nx4

|

|

|

|

.
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We know that fs0,i0,k,p(s0, k, p) = fs0(s0)fi0(i0)fk(k)fp(p), then marginalizing with respect to i0(!), k(!) and p(!), and taking
n arbitrary, the 1-PDF of the recovered subpopulation is straightforwardly obtained

fr(r, n) = ∫
(p(!))

∫
(k(!))

∫
(i0(!))

fs0

(

(−1 + r + i0(1 − p)n)(−k + p)
(1 − p)nk − (1 − k)np

)

fi0(i0)fk(k)fp(p)

×
|

|

|

|

−k + p
(1 − p)nk − (1 − k)np

|

|

|

|

di0 dk dp.

(2)

Finally, we apply twice Lemma 1 to express (2) in terms of the data. This yields expression (10) for fr(r, n).

Calculation of the PDF, fni(n), of the time until a given proportion of the population remains infected
Let �s, �i ∈ (0, 1) fixed proportions of susceptible and infected subpopulations, respectively. Notice that 0 < �s + �i < 1. For
each ! ∈ Ω we define the mapping r ∶ ℝ4 → ℝ4

x1 = r1(s0, i0, �, �) =
1
�
ln
(

e� i0 + e�+� s0 − e�(i0 + s0)
e� �i + e�+� �s − e�(�i + �s)

)

x2 = r2(s0, i0, �, �) = i0,
x3 = r3(s0, i0, �, �) = �,
x4 = r4(s0, i0, �, �) = �.

The inverse mapping s ∶ ℝ4 → ℝ4 of r is

s0 = s1(x1, x2, x3, x4) =
e−x4

−1 + ex3
(

ex1x4
(

−ex4
(

�i + �s
)

+ ex3
(

�i + ex4 �s
))

+ (− ex3 +ex4) x2
)

,

i0 = s2(x1, x2, x3, x4) = x2,
� = s3(x1, x2, x3, x4) = x3,
� = s4(x1, x2, x3, x4) = x4,

being its Jacobian

J =
e(−1+x1)x4 x4
−1 + ex3

(

−ex4
(

�i + �s
)

+ ex3
(

�i + ex4 �s
))

.

Then applying Theorem 1, the PDF of the random vector x(!) = (x1(!), x2(!), x3(!), x4(!)) is

fx(x1, x2, x3, x4) = fs0,i0,�,�
( e−x4
−1 + ex3

(

ex1x4
(

−ex4
(

�i + �s
)

+ ex3
(

�i + ex4 �s
))

+ (− ex3 +ex4) x2
)

, x2, x3, x4
)

×
|

|

|

|

|

e(−1+x1)x4 x4
−1 + ex3

(

−ex4
(

�i + �s
)

+ ex3
(

�i + ex4 �s
))

|

|

|

|

|

.

We know that fs0,i0,�,�(s0, �, �) = fs0(s0)fi0(i0)f�(�)f�(�), then marginalizing with respect to i0(!), �(!) and �(!), the PDF,
fni(n; �s, �i), of the time until a given proportion, �i, remains infected is straightforwardly obtained by expression (12).

Calculation of the PDF, fnr(n), of the time until a given proportion of the population remains
recovered
Let �s, �r ∈ (0, 1) fixed proportions of infected and recovered subpopulations, respectively. Notice that 0 < �s + �r < 1. For
each ! ∈ Ω we define the mapping r ∶ ℝ4 → ℝ4

x1 = r1(s0, i0, �, �) =
1

�(!)
ln
(

e� i0 + e�+� s0 − e�(i0 + s0)
e�(1 − �r − �s) − e�(1 − �r − e� �s)

)

.

x2 = r2(s0, i0, �, �) = i0
x3 = r3(s0, i0, �, �) = �
x4 = r4(s0, i0, �, �) = �
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The inverse mapping s ∶ ℝ4 → ℝ4 of r is

s0 = s1(x1, x2, x3, x4) =
e−x4

−1 + ex3
(

ex1x4
(

ex4
(

−1 + �r
)

+ ex3+x4 �s + ex3
(

1 − �r − �s
))

+ (− ex3 +ex4) x2
)

,

i0 = s2(x1, x2, x3, x4) = x2,
� = s3(x1, x2, x3, x4) = x3,
� = s4(x1, x2, x3, x4) = x4,

being its Jacobian

J =
e(−1+x1)x4 x4
−1 + ex3

(

ex4
(

−1 + �r
)

+ ex3+x4 �s + ex3
(

1 − �r − �s
))

.

Then applying Theorem 1, the PDF of the random vector x(!) = (x1(!), x2(!), x3(!), x4(!)) is

fx(x1, x2, x3, x4) = fs0,i0,�,�
( e−x4
−1 + ex3

(

ex1x4
(

ex4
(

−1 + �r
)

+ ex3+x4 �s + ex3
(

1 − �r − �s
))

+ (− ex3 +ex4) x2
)

, x2, x3, x4
)

×
|

|

|

|

|

e(−1+x1)x4 x4
−1 + ex3

(

ex4
(

−1 + �r
)

+ ex3+x4 �s + ex3
(

1 − �r − �s
))

|

|

|

|

|

.

We know that fs0,i0,�,�(s0, �, �) = fs0(s0)fi0(i0)f�(�)f�(�), then marginalizing with respect to i0(!), �(!) and �(!), the PDF,
fnr(n; �s, �r), of the time until a given proportion, �r, remains recovered is straightforwardly obtained by expression (13).
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