
Master´s Thesis for the Attainment of the Degree

Master in Mechanical Engineering and Management

at the Faculty of Mechanial Engineering of the Technische Universität München

Analytically evaluating task sharing and
sequencing in an unpaced flow line on the
operational level using an analytical model

Referent: Prof. Dr. Martin Grunow
Production and Supply Chain Management
Technische Universität München

Betreuer: M.Sc. Lena Böttcher

Studiengang: Master in Mechanical Engineering and Management

Eingereicht von:
Javier Dolz Cifre
Plaza de los Santos Niños 6 , 1A
28801 Madrid
Matrikelnummer: 03709613

Eingereicht am: 1. October 2020

i

Task sharing helps to reduce imbalances in mixed-model lines, derived from block-
ing and starving stations. On the other hand, intelligent sequencing also gives us the
possibility to face these waiting times and increase the efficiency of our line. Even
though both techniques have been widely studied in the past, no attention was paid
to the interaction of both of them. This thesis focuses on the influences that task
sharing and sequencing have between each other when studying the makespan in a
mixed model assembly line.

Keywords : task sharing, sequencing,mixed−model lines, unpaced flow lines

Table of Contents ii

Table of Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Review of Literature and Research 3
2.1 Definition of task sharing in literature 3

2.1.1 Relevant classification of task sharing systems 4
2.2 Sequencing on Mixed Model Assembly lines 9

2.2.1 Sequencing with limited buffers 11
2.2.2 Grouping and spacing . 14

2.3 Task sharing at the operational level with offline sequencing 15
2.3.1 Research gap and research questions 16

3 Methodology 18
3.1 Building a basic model . 19

3.1.1 Sets and Parameters . 19
3.1.2 Modelling an unpaced flow line 21

3.2 Create fixed sequences . 23
3.2.1 Creating a model to balance the workload 24

3.2.1.1 Sets and Parameters 24
3.2.1.2 Constraints and objective function 24
3.2.1.3 Model . 25

3.3 Adding task sharing to the basic model 25
3.4 Adding sequencing to the basic model 28

4 Results 31
4.1 Case study . 31
4.2 Parameters used in the study . 32
4.3 Basic model . 32
4.4 Adding task sharing to the basic model 34
4.5 Adding sequencing to the basic model 37
4.6 Basic model + sequencing + task sharing 37

5 Conclusion 40

Bibliography 41

Table of Contents iii

Appendix 47

List of Figures iv

List of Figures

2.1 Representation of the task sharing system 4
2.2 An example of a bucket brigade manufacturing system 5
2.3 This thesis setting . 17

3.1 Methodology Flow Chart . 18
3.2 Sets and parameters . 20

4.1 Workloads per station and product . 32
4.2 Makespan for different sequences and product mixes 33
4.3 Selection procedure for choosing shareable tasks 34
4.4 Product Mix 30 per cent with task sharing. Makespan in minutes and

shared tasks in percentage . 35
4.5 Product Mix 70 per cent with task sharing. Makespan in minutes and

shared tasks in percentage . 36
4.6 Product Mix 10 per cent with task sharing. Makespan in minutes and

shared tasks in percentage . 36
4.7 Makespan table including intelligent sequencing 37
4.8 Product Mix 30 per cent with sequencing and task sharing. Makespan

in minutes and shared tasks in percentage 38
4.9 Product Mix 70 per cent with sequencing and task sharing. Makespan

in minutes and shared tasks in percentage 38
4.10 Product Mix 10 per cent with sequencing and task sharing. Makespan

in minutes and shared tasks in percentage 39

5.1 Overview of tasks and its characteristics 47
5.2 Precedence graph for product 1 . 48
5.3 Precedence graph for product 2 . 49
5.4 Precedence graph for product 3 . 50
5.5 Graphical representation of the 3 different product mixes 51

List of Tables v

List of Tables

2.1 Relevant classification of task sharing systems 8
2.2 Different task sharing approaches . 8
2.3 Different task sharing lines . 9
2.4 Summary of the authors and solving processes 14

1 Introduction 1

1 Introduction

The main source of imbalance in mixed model lines is different tasks and differ-
ent task times for different models (Bukchin et al.,1997). Also, imbalance can be
caused by the variability due to operators or machine breakdowns (Gel et al., 2002).
Results of unbalanced assembly lines are, for example, starving and blocking sta-
tions. If tasks are finished at a station while other tasks are being performed at
the downstream station, the upstream station gets blocked, as it is not possible to
pass the product downstream. On the other hand, when the downstream station has
completed its tasks before the upstream station is finished, the downstream station
starves (Conway et al., 1988).

Task sharing provides an opportunity for reducing this unbalance through the as-
signment of shared tasks between stations, individually for each model in a se-
quence. To decide which tasks can be shared, this thesis will distinguish between
fixed and shareable tasks. Fixed tasks are tasks that can only be performed in a par-
ticular station, as they require tools that can only be available at one of the stations.
Shareable tasks are tasks that can be performed in more than one station. Shareable
tasks create a degree of freedom in an assembly line that allows to decide where to
perform a task in order to optimize the production in the line according to a given
objective (for example, minimizing the makespan, maximizing fairness, minimiz-
ing cost and operational complexity, etc.). Another strategy to reduce starving and
blocking times is the implementation of buffers (Conway et al. 1988; McClain et
al., 2000), which are included in the system investigated in this thesis.

On the other hand, we can also reduce waiting times by finding sequences that make
the system more efficient (Freiheit and Li, 2017). By a proper resequencing of the
products that are about to enter the production line, we can help to avoid bottlenecks
and distribute the workload between stations so that we obtain a continuous flow and
maximize the efficiency of the line.

Existing literature mainly focuses in paced lines (Hudson et al., 2015), where the
impact of the workers on the work pace is very restricted (Gosh et al., 1989, p.652).
This Master thesis will focus in an unpaced flow line with consecutive workstations
that is used as a mixed-model line, where distinct models of a product are produced
on the same assembly line without changeovers.

The main objective of this Master thesis is to evaluate the effects of task sharing
and sequencing in an unpaced flow line on the operational level using an analytical
model. In order to achieve this main objective, a research in the existing literature

1 Introduction 2

will be done. This literature research will focus on previous cases of task sharing,
to give a general definition of the concept and to look at examples where task shar-
ing or sequencing were suggested to solve problems in the industry, together with
the limitations that other studies faced when studying task sharing. The literature
research will not only derive the research gap of the thesis, but will also help for-
mulate several research questions to be adressed within the content of this work.
Thanks to the literature research, we will not only understand how have task shar-
ing and sequencing been used independent from one another before, but also we
will have a first insight on how a combination of both strategies looks like.

The optimization of the assembly line will be progressively analyzed by solving
different models. Starting from a basic model that measures the makespan of the
unpaced flow line, different sequencing formats and different degrees of task shar-
ing will be combined to have a global scope on the effects of both sequencing and
task sharing on the line, as well as the mutual interaction of both strategies.

The results are analysed and compared with the literature research to understand
the viability of the solution and its possibilities to be directly applied in the in-
dustry, deriving managerial insights on the benefits of task sharing to improve the
performance of the line for the given objectives

2 Review of Literature and Research 3

2 Review of Literature and Research

In this section, a review of the previous work in task sharing and sequencing is
made to show the state-of-the-art in this field. Section 2.1 shows the definition of
task sharing in literature and its classification, together with previous cases where
task sharing was applied to solve problems in the past. Section 2.2 shows previous
studies about sequencing in Mxed Model Assembly Lines. Section 2.3 focuses in
the combination of sequencing and task sharing, concluding in the research gap and
research questions raised after this literature research.

2.1 Definition of task sharing in literature

Task sharing is a process where two or more people collaborate and share the re-
sponsibility for the performance of their work. Task sharing groups usually repre-
sent a mix of skills and know-how so that each individual can work on different
tasks. The main reasons for task sharing are the need for acceleration during a pro-
cess or the need for teamwork when one of the group members cannot complete his
or her tasks. To create a collaborative system, we need that the group members can
clearly understand their portion of work and their allocation in the whole process.
Also, task sharers need to understand and agree upon their commitments and mu-
tual responsibility and they need to be communicated beforehand who is going to
make the decisions on which tasks to be shared according to the situation, as well as
supporting and coaching each other because individual failure leads to team failure.

In traditional assembly lines, work sharing is not allowed. Consequently, the cycle
time is determined by the amount of work performed in the most loaded station
[Anuar and Bukchin (2006)]. Task sharing refers to the ability to perform a certain
task in more than one station or by more than one worker, which helps to balance
the line by decreasing the load in the station with a bigger workload. To make this
sharing possible, workers need to be cross-trained, because some tasks can now be
performed either last in station i or first in station i+1. Task sharing was not studied
until the 1990s. A review on the previous studies in task sharing is done along the
following sections.

To understand how task sharing is going to be implemented in this thesis we need
to describe the environment of our task sharing system. This thesis focuses on
an unpaced mixed-model flow line in the manufacturing industry. In a flow line,
several stations stand next to each other in series. This means that each product

2 Review of Literature and Research 4

that enters the line follows the same path. In other words, it must go through every
station consecutively [Pinedo (2010)]. When buffer stocks are placed between these
stations to allow the accumulation of workpieces, the production line is described
as unpaced. Each station is surrounded by one upstream buffer and one downstream
buffer, except the first and the last. Therefore, a worker takes a product upstream,
he performs the required tasks for this product in this station and sends the product
downstream. The term mixed-model line refers to a production line where different
variants of the same product can be manufactured without requiring big set up times.
The different products entering the line will receive mostly the same type of tasks
and will be differentiated by a fewer number of more specific tasks, which will also
create a difference in their processing times.

Figure 2.1: Representation of the task sharing system

As shown in figure 2.1, five workers are assigned to five work stations. For produc-
ing an incoming product, nine tasks, A, B, C, D, E, F, G, H, I are performed one
after the other. In this flow line, each worker has to work in his corresponding fixed
task, A for worker one, C for worker two, E for worker three, G for worker four and
I for worker five. Also, these workers share the shared tasks B, D, F and H. This
means that task B can be done by worker one or worker two, task D can be done by
the second or third worker, task F can be done by the third or the fourth worker and
task H can be performed by the fourth or the fifth worker.

2.1.1 Relevant classification of task sharing systems

There are different approaches in the literature regarding the sharing of tasks [Bratcu et al.
(2009)]. To classify task sharing in its different approaches, several distinctions
need to be made.
First, workers could be moving or they could be fixed in their station. When a
worker is fixed at a work station, this worker is called stationary.
Another criterium is the staffing level, in other words, how many workers do we
have per station [Xu et al. (2011)]. In this context, we classify the staffing level in
three different orders. When the staffing level is below 100 per cent it means that
there are fewer workers than workstations. If the staffing level is 100 per cent, the

2 Review of Literature and Research 5

system has as many workers as workstations, in other words, there is one worker per
station. If the staffing level is above 100 per cent, the flow line has more workers
than workstations.
Also, some authors allow self-balancing and collaboration between workers from
different stations in their models. When collaboration takes place, several work-
ers are allowed to work simultaneously at the same station. Self-balancing occurs
in systems where there are fewer workers than stations (staffing level below 100
per cent). Therefore, workers in self-balancing systems are allowed to move along
the different work stations. This type of production systems are usually ruled by a
bucket brigade method that aims to balance the workload itself. A bucket brigade is
a linear production line in which each worker picks up a job and processes it at each
station until he gets interrupted by a downstream worker [Armbruster et al. (2007)].
Figure 2.2 has been added to support the explanation.

Figure 2.2: An example of a bucket brigade manufacturing system

Figure 2.2 shows a system with five work stations, where three workers move along
the flow line to do tasks A to E in their correspondent station. In this example,
the first worker covers stations 1 to 3, the second worker covers stations 2 to 4 and
the last one covers stations 3 to 5. However, each worker is allowed to move to
any station although each of them is assumed to be usually working within their
designated area. A common situation in this system could be the following: the
first worker finishes the task A at station one. Then he continues working on the
product at station two, performing task B. However, while he is approaching station
3, he gets interrupted by worker two, who has already finished task C for a previous
job and was moving backwards in the line to reach worker one and take over a new
job. Worker two performs task C for the new job, while worker one is moving back
to station one to start another job and moves to station 4 but he is interrupted by
worker three, who was moving backwards after finishing task E for the previous job
at station 5. Worker three performs tasks D and E to finish the job.

2 Review of Literature and Research 6

The bucket brigade system is a great example to show the importance of the worker
know-how as he can perform very different tasks and the importance of his speed.
It has been studied by Bartholdi et al. (1999) that if workers can be sequenced
from slowest to fastest so that each worker is faster than his predecessor at every
point along the line, the bucket brigade system helps the line balance itself and this
will yield optimal throughput. Based on his work together with the contribution of
Zavadlav et al. (1996), it is understood that, even though work sharing lead to bene-
fits in this system, this only happens with a calculated overlap which leads to sharing
less than the half of tasks. An excess of shared tasks leads to a decrease in efficiency.
Further research on this system has been done by Buzacott (2002). His work showed
that optimality of bucket brigades systems depends on the preemption of tasks (the
concept of preemption and is explained at the end of this section together with some
examples). Without preemption, the full theoretical advantages of dynamic task
sharing would be hard to achieve in practice. Further research was done by Arm-
bruster et al. (2007) who studied the influence that a new untrained worker would
have in a bucket brigade system and Bratcu et al. (2009) presented their Normative
Model where they did not add the restriction regarding the infinite backward ve-
locity of workers and they developed a simulation model in Matlab/Simulink. The
most recent work on this topic was done by Pratama et al. (2018). They stressed the
importance of collaboration between workers in the bucket brigade system. Collab-
oration means that several workers are allowed to work at the same station at the
same time. Collaboration makes sense with staffing levels of at least 100 per cent
and it appears in every system where the staffing level is above 100 per cent. Buza-
cott (2004) created models that suggest that the advantage of teams lies specially in
the structure that enables faster and better workers to help out others. Hopp et al.
(2004) also suggested that allowing only one worker to perform tasks at a station at
any given time in Bucket Brigade systems tends to cause blocking. Sennott et al.
(2006) included the figure of floating worker in their research. This is an experi-
enced and cross-trained worker that is ready to help in any station that is slowing
the whole line down at a particular moment. Ahn et al. (2006) concluded in their
research in dynamic load balancing with flexible workers that under general con-
ditions there is a tendency for workers to work together under the optimal policy.
Therefore, the collaboration between workers is helpful. The paper also reminds
us of the importance of establishing sharing rules between the collaborative work-
ers so that they know who should be doing each task or who must lead the action.
An interesting research about collaboration in Tandem Lines was performed by An-
dradottir et al. (2001), Andradottir et al. (2005) and Andradottir et al. (2007) with
a total of three papers where they examined flow lines in different types of sys-
tems with different staffing levels and they ended up comparing the performance of
these collaborative systems with systems that have extra flexibility obtaining similar
results for both cases.

On the other hand, task sharing approaches can be grouped by its characteristics in

2 Review of Literature and Research 7

online task sharing, offline task sharing and preemptive task sharing. Online task
sharing systems refer to those where the complete sequence is not known in advance
and decisions about the assignment of tasks to stations are made while the produc-
tion is running. Most of the papers in this field reference the work of Ostalaza et al.
(1990) and McClain et al. (1992) as first approaches. Online task sharing was then
studied by Gel et al. (2002), who solved a task sharing problem using a Markov
decision process formulation in a flow line with two stations and one shareable op-
eration between both. The same procedure with Markov decision formulation was
used by Gel et al. (2007), where only one of the workers in the line was cross-trained
to perform different tasks. New task sharing decision rules involving the starvation
of the line and design aspects of the system was introduced by Askin et al. (2006)
to test the performance with different amounts of cross-trained workers.
Offline task sharing refers to systems where the decisions are not made in real-time
and the solution is more related to the intelligent sequencing of the line. Offline task
sharing has mainly been modelled in flow lines with two stations. The first example
of this is the research done by Gupta et al. (2004), where they faced the classi-
cal problem of minimizing the makespan in a two-machine flow shop including a
shareable task between both machines. A two-station flow line was also modelled
by Gultekin (2012). He examined two stations with different processing times, in
contrast to the model from Gupta et al. (2004) and he concluded that most of the
benefits respect to reducing the makespan are achieved with a relatively small level
of flexibility. His work can be extended by increasing the number of stations of the
flow line or considering other objective functions other than the makespan. After-
wards, Uruk et al. (2013) investigated the two-station flow line with the objectives
of minimizing both the makespan and the manufacturing costs, allowing worker
collaboration and considering the controllability of the processing times of each
operation on these machines. Lin et al. (2017) showed the last approach, where
multiple objectives were pursued by dynamic programming algorithms subject to a
fixed job sequence, for example, they proved the NP-hardness of the problem under
study.
Preemptive task sharing systems are those where a task can be started in a machine
and finished in the next one, allowing more flexibility to the solution. Burdett and
Kozan (2001) examined them, creating a general model suitable for modelling any
task sharing scenario in a flow line and leaving their work open for future research in
the direction of assembly line balancing. Their research was followed by Bultmann
et al. (2018a), who focused on flow shop problems where processing times where
not fixed in advance but chosen with flexibility. They introduced a general model
in which processing times can be distributed freely if the machines have some pre-
defined boundaries in their possible processing times. The paper proposes different
variants of flow shop models such as no-wait flow shops, blocking flow shops and
synchronous flow shops. In the same year, Bultmann et al. (2018b) focused their
research on synchronous flow shop scheduling problems for flow shops with pliable

2 Review of Literature and Research 8

jobs and showed that, while minimizing the makespan in standard synchronous two-
machine flow shops can be done in polynomial time, the problem becomes NP-hard
whenever pliable jobs appear.
The following tables are a summary of the information exposed above.

Table 2.1: Relevant classification of task sharing systems

Authors Workers Staffing level Task sharing

Bartholdi et al. (1999) Moving <100 Self-balancing
Zavadlavet al. (1996) Moving <100 Self-balancing
Buzacott (2002) Moving <100 Self-balancing
Armbruster et al. (2007) Moving <100 Self-balancing
Bratcu et al. (2009) Moving <100 Self-balancing
Pratama et al. (2018) Moving <100 Self-bal./Collab.

Andradottir et al. (2001) Moving 100 Collaboration
Buzacott (2004) Moving 100 Collaboration
Hopp et al. (2004) Moving 100 Collaboration
Andradottir et al. (2005) Moving >100 Collaboration
Ahn et al. (2006) Moving 100 Collaboration
Sennott et al. (2006) Moving >100 Collaboration
Andradottir et al. (2007) Moving >100 Collaboration

Ostalaza et al.(1990) Stationary 100 Online
McClain et al.(1992) Stationary 100 Online
Gel et al. (2002) Stationary 100 Online
Askin et al. (2006) Stationary 100 Online
Gel et al. (2007) Stationary 100 Online

Gupta et al. (2004) Stationary 100 Offline
Gultekin (2012) Stationary 100 Offline
Uruk et al. (2013) Moving >100 Offline/Collaboration
Lin et al. (2017) Stationary 100 Offline

Table 2.2: Different task sharing approaches

Authors Objectives Methodology Decisions

Ostalaza et al.(1990) max TH Simulation Share task or not
McClain et al.(1992) max TH Simulation Share task or not
Gel et al. (2002) max TH MDP Share task or not
Askin et al. (2006) max TH Simulation Share task or not

Gupta et al. (2004) min Makespan MILP Flexible task assignment
Gultekin (2012) min Makespan MIP Flexible task assignment
Uruk et al. (2013) min Makespan MIP Flexible task assignment
Lin et al. (2017) various DP Flexible task assignment

2 Review of Literature and Research 9

Table 2.3: Different task sharing lines

Authors Stations Single-model line

Ostalaza et al.(1990) 2 to 5 Yes
McClain et al.(1992) 2 to 5 Yes
Gel et al. (2002) 2 Yes
Askin et al. (2006) 2 Yes

Gupta et al. (2004) 2
Gultekin (2012) 2 Yes
Uruk et al. (2013) 2 Yes
Lin et al. (2017) 2

2.2 Sequencing on Mixed Model Assembly lines

In some production processes like the assembling of cars, where there is a variety
of products coming into the line, Mixed Model Assembly Lines are used to keep
a high throughput and reduce idle times. Mixed Model Assembly Lines create a
problem of sequencing, where the sequence of the next few products entering the
production line is to be determined.
Sequencing has been a matter of study for many years, we can find some pioneer-
ing work in the studies done by Dar-el and Cother (1975) or Nick T. Thomopoulos
(1967)), where they already focused in different objectives such as minimizing cost
or reducing the blocking in the line. The literature review about sequencing is exten-
sive and shows an immense variety of approaches. However, inside the Just-in-time
context two main objectives take place [Bard et al (2007)]:
Work overload: an increase in the variety of products usually implies an increase in
the number of different processing times, for example, cars with a sunroof require
higher processing times than cars without one. If several cars with a sunroof enter
the flow line consecutively waiting times probably increase as the work overload
has suddenly increased drastically. If this happens, the operations on one of the cars
may not be finished within their corresponding station boundaries and compensa-
tion is required (for example, a collaboration between workers or stopping the line).
Therefore, work overload objectives pursue to find the right sequence that alternates
products requiring higher and lower processing times to avoid this blocking.
Just-in-Time objectives: They focus on deviating material requirements. A great
variety of models require a proper kitting of the working stations with the tools
needed for processing the tasks required for each product. The Just-in-Time objec-
tives focus on evenly smoothing the material requirements according to the produc-
tion sequence over the planning horizon. For this reason, we need a sequence that
adjusts the actual consumption rates of materials as much as possible to the target
rates.
Both objectives were taken up by three alternative sequencing approaches Boysen
et al. (2009b). Concerning work overload, in literature, we can find information on

2 Review of Literature and Research 10

Mixed-model sequencing and Car sequencing.
Mixed-Model sequencing: The objective is to minimize the total work overload
based on a detailed schedule that takes the operation times, the movement of work-
ers, the boundaries between stations and other operational characteristics of the flow
line [Bolat (1997), Celano et al. (2004); Scholl (1999)]. The balancing of an MMAL
is usually determined by the precedence graphics of the line, where the processing
times that diverge from the different models are averaged [Boysen et al. (2009a);
van Zante-de Fokkert and de Kok (1997)] and, to avoid an excess in capacity, the
cycle time is also established as an average of the different cycle times for the differ-
ent models. The consequence of is that some models require higher cycle times tan
the average, while others require lower cycle times. If several models with high cy-
cle times appear consecutively, the work overload problem mentioned above takes
place, as the worker moves out of the boundaries of his station and he will not have
time to move to the beginning of his station before the new model arrives at his
position. To counterattack this overload, different compensation actions can take
place [Scholl (1999); Wild (1972)]. For example, the flow line can be stopped until
every worker has finished their actual job, a collaboration between workers can take
place by the use of utility workers that help the worker who is suffering a work
overload or the unfinished jobs are finished offline after going through the whole
line. These actions are costly and should be avoided with a correct sequencing of
the mixed models alternating between high intensive and less intensive jobs in each
station. Therefore, it is needed to represent in the modelling the different stations,
cycle times, processing times, movement of workers and station boundaries.
Car Sequencing Problem CSP: The car sequencing problem focuses on minimizing
the number of rule violations in an assembly line. These rules are the so-called Ho:
No sequencing rules, which imply that from the N jobs happening next in the se-
quence only Ho occurrences of a certain option o are allowed. When a sequence that
does not violate the rules is found, then we can avoid the work overload or if at least
the violation of rules is as low as possible the work overload can still be decreased.
[Gagné et al. (2006); Parrello et al. (1986); Smith et al. (1996)]. Car sequencing
is not based on a detailed schedule as in Mixed Model Sequencing, but it considers
and controls the successive models that include highly intensive options, for exam-
ple, the cars with a car roof mentioned above, to minimize the work overload [Meyr
(2004); Pil and Holweg (2004); Röder and Tibken (2006)]. Sequencing rules are
usually determined by approaches based on the operational characteristics of the
assembly line or by the experience coming from previous practical applications of
the CSP in the car industry, that derive in the so-called rules of thumb, for example,
from every three consecutive models, only one of them can be a model that requires
a sunroof. Concerning the Just-In-Time objectives, in literature, we can find infor-
mation on Level Scheduling. Level Scheduling: to follow the JIT philosophy, target
consumption rates are established and a sequence is created to minimize the devia-
tion between the actual and the target consumption rates [Aigbedo (2004); Bautista

2 Review of Literature and Research 11

et al. (1996)]. Level scheduling has been widely studied as part of the well-known
Toyota Production System [Dhamala (2015); Kubiak (1993)], which is focused in
the avoidance of waste and reducing the inventory as much as possible.

2.2.1 Sequencing with limited buffers

In the previously mentioned approaches the following have been assumed (Boysen
et al. (2009b)):

• There are no buffers between stations. This means that the production se-
quence is determined before starting the production.

• The workpieces have a fixed position on the transportation system and only
their orientation can be changed

• The model-mix in the planning horizon is already known and no changes are
possible (static problem), so that rush orders are not possible.

• Multiple models are made of different materials and they require different
tasks with individual processing times. This means that the material require-
ment and the capacity utilization on every station can change from one model
to the other

• Resequencing is not allowed as it is supposed that there are no disturbances,
like machine breakdowns or material stock-outs [Ding and Sun (2004); Inman
(2003)].

As a consequence of the restrictions above mentioned there are some aspects of
sequencing that are not mentioned in literature and, therefore, limit the resolution
of real-life problems in assembly lines.

Focusing on the first restriction, most of the literature in sequencing assumes that
the buffering capacity is infinite between workstations. However, in the real pro-
duction systems, there is always a limited capacity due to the physical necessity
that the jobs need to wait before being processed in a station every time this station
is already full with a previous job being processed on it. This limitation becomes
more relevant as the volume of jobs increase or the size of the workpieces or lots
processed increases. The existence of buffers with a limited capacity between sta-
tions creates a whole new sequencing problem. For example, the Johnson algorithm
is not a guarantee of optimality anymore and it is known that the starting time of
the different jobs will always be equal or higher than when considering unlimited
capacity between stations.
Leisten (1990) shows that sequencing problems can be described in four different
types regarding their capacity: problems with unlimited capacity, problems with a
limited capacity greater than cero, problems with no capacity (blocking scheduling)
and no-wait scheduling problems.

2 Review of Literature and Research 12

Blocking scheduling takes place when it is considered that there is no storage ca-
pacity between stations. Therefore, if a job has finished his operation in one station,
it can only move to the next station if the next one is free. Otherwise, blocking
takes place and the job needs to wait until the next station is free. On the other
hand, no - wait scheduling problems create an additional constraint for each job be-
cause the completion time of any job at one machine must coincide with the starting
time of the same job at the next machine so that no job needs to wait while moving
through the flow shop. Previous examples of these sequencing problem types can
be found in the literature. Pioneering work in flow shops with a limited capacity
is found in the paper of Dutta and Cunningham (1975), where a two-machine flow
shop problem has been solved by dynamic programming. Afterwards, Papadim-
itriou and Kanellakis (1980) proved that the problem with limited buffer capacity
was NP-complete. This was a reference point for a growing interest in this research
field. These authors created a heuristic to solve the two-machine flow shop problem.
Leisten (1990) was the first to create a general model for the flow shop with limited
capacity scheduling problem and his work was followed by Smutnicki (1998) and
Nowicki (1999). Their work is based on a flow line where only sequences based
on permutation between jobs are allowed, where the processing times between ma-
chines can be denoted as pij > 0. Some basic assumptions were considered for this
problem, for example, jobs can not be interrupted, every machine processes only
one job at a time or a job can only be processed at one machine at a time. Between
every two machines j-1 and j there is a buffer Bj with size b(j) where a FIFO disci-
pline is followed. Every job goes through the buffer Bj when finishing in machine
j-1 and moving to machine j. This means that, once a job is finished in machine j-1,
it can only move to the buffer Bj if it is not full. In case Bj was full, the job needs
to wait in the machine until there is a free spot in the buffer and, until this happens,
machine j-1 is blocked and no other job can be processed on it. The starting times
of every job i in machine j are described as Sij and the completion times are de-
scribed as Cij. Therefore, a constraint for starting every job in the next machine can
be defined as:

Sij >= Si j-1 + pi j-1 = Ci j-1

This means that the starting job for job i in machine j needs to be higher or equal
than the starting time of the same job in the previous machine plus the processing
time for this job in that machine, what is equal to the completion time of job i in ma-
chine j-1. Nowicki (1999) denoted in his formalization of the problem with using a
graph as type V or Vertical relationships. On the other hand, it is also needed a con-
straint that ensures that the starting time of job i in machine j is greater or equal than
the starting job of the previous job in the same machine plus the processing time of
that job in this machine, what is equal to the completion time of job i-1 in machine j.

2 Review of Literature and Research 13

Sij >= Si-1 j + pi-1 j = Ci-1

This type of relationships are called H type or Horizontal relationships. However,
when there are capacity limitations in the existing buffers between stations a new
type of relationship appears. The starting time of job i in machine j must only take
place if there is a free spot for this job in the buffer b(j+1). This is represented in
the constraint:

Sij >= S[i-b(j+1)-1] j+1

Therefore, a job can not start in a machine if job [i-b(j+1)*1] has not started in
the next machine. Nowicki (1999) denotes this type of relationships as type D or
Diagonals. Thanks to the three previous relationships it is possible to compute the
value of Sij and the problem gets reduced to solving the sequence of the permutation
of i so that the makespan Cmax is minimized, being Cmax= SN M + pN M (starting plus
processing of the last job in the last machine). Also, To represent the time in the
buffer or blocking times, Pinedo (2010) defines Dij like the moment when job i fi-
nally leaves machine j. In this sense Dij = Cij in lines with unlimited buffer capacity
but Dij >= Cij in Flow shops with limited buffers between stations, because of the
blocking effect. This is represented in the following equation:

Dij = max (Cij, S[i-b(j+1)] j+1)

In the article from Leisten (1990), a study where eleven different heuristic rules
are tested, one of the rules being extracted from the work of Papadimitriou and
Kanellakis (1980) or the NEH rule of Nawaz et al. (1983), together with other rules
are applied in direct and inverse order of the machines. Leisten (1990) concludes
that NEH was the best heuristic rule exposed. In the papers from Smutnicki (1998)
and Nowicki (1999), a graph is used to solve the sequencing problem, where the
nodes j and i , corresponding to machine and job, represent the starting time of each
job i in machine j a have the same weight as the processing time pij. Every arch has
value cero except those that represent the relationships coming from the buffers that
have a negative value for the processing time P[i-b(j+1)-1]j+1]. Thanks to their graphs,
a quick implementation was done to compute the makespan of a determined se-
quence. Then, they develop a Tabu search algorithm based on the relationships
mentioned above to find the best permutations. The previous model was extended
in Brucker et al. (2003) for general flow shops which do not impose that the permu-
tation must be the same for every machine. A Tabu Search Algorithm is also used
here. The same sequencing problem is addressed by Wang et al. (2006). However, a
genetic algorithm is implemented here to study the effects of the buffer sizes in the
makespan. Other papers using metaheuristics for this problem are Norman (1999),
who solves the problem by Tabu Search and considers set up times dependant from

2 Review of Literature and Research 14

the sequence. Liu et al. (2006) who used Particle Swarm Optimization. Hsieh et al.
(2009) with an immune based approach. Qian et al. (2009) with a differential evolu-
tion algorithm. Pan et al. (2011) with a chaotic algorithm of harmonic search. Rossi
and Lanzetta (2013) with an ant colony optimization or Abdollahpour and Rezaeian
(2015) with an algorithm based in immune systems.

Table 2.4: Summary of the authors and solving processes

Authors Solving Process

Dutta and Cunningham (1975) Dynamic Prog.
Papadimitriou and Kanellakis (1980) Heuristic
Leisten (1990) Heuristics
Smutnicki (1998) Tabu Search
Nowicki (1999) Tabu Search
Norman (1999) Tabu Search
Brucker et al. (2003) Tabu Search
Wang et al. (2006) Genetic Algor.
Liu et al. (2006) Particle Swarm Optim.
Hsieh et al. (2009) Immune Based Approach
Qian et al. (2009) Differential Evolution Algor.
Pan et al. (2011) Chaotic Algor. Harmonic Search
Rossi and Lanzetta (2013) Ant Colony Optim.
Abdollahpour and Rezaeian (2015) Immune System

2.2.2 Grouping and spacing

The solution methodologies have been generally divided into two main methodolo-
gies known as priority rule-based approaches and analytical approaches. Analytical
are approaches are then divided into exact and approximate approaches. [Black-
stone et al. (1982)].

Approximate approaches have been shown in the table that closes section 2.2.1.
These are methods that do not reach optimal but reach very good solutions in af-
fordable run time [Blazewicz et al. (2009)]. They can be split into heuristics if they
face a particular decision problem, or metaheuristics if the objective is to create a
generic procedure applicable in different contexts.

Exact approaches focus on finding the optimal solution of the respective objective
function. Some examples are the branch-and-bound algorithm for integer problems
or dynamic and mixed-integer programming [Blazewicz (2009) et al.]. While ap-
proximate approaches are generally seen in industrial approaches, where the math-
ematical modelling is softened to get a faster solution, exact approaches are usually
seen in small-sized problems to avoid NP-hardness where the objective is to find the
best solution possible. It is common to read in literature papers where the problem
is faced at first as an exact approach and it becomes approximate afterwards to be
implemented in the industry.

2 Review of Literature and Research 15

Priority rule-based approaches are those where several rules are created to build
a sequence according to the priority value that every job receives. They can be used
for building a sequence before the production has started or during the production as
dispatching rules, deciding which job comes next in the line. Some examples of pri-
ority rules are the shortest processing time (SPT), the longer processing time (LPT),
the first-in-first-out rule (FIFO) or the earliest due date (EDD). More examples are
listed on the work of [Blackstone et al. (1982), Haupt et al. (1989), Jayamohan et
al. (2000)]. We can also find in these papers a classification of the different rules
to cluster them according to the properties of the rule. Rules involving process-
ing time, Rules involving due dates, Rules involving shop or job characteristics,
etc. Priority rules are used daily and take part of the most of the sequencing liter-
ature even if they are not explicitly mentioned, as random sequences are usually a
vague approach that may lead to confusion in strongly sequent-dependent flow or
job shops.

2.3 Task sharing at the operational level with offline
sequencing

At the operational level, scheduling decisions are necessary for a production sys-
tem. The scheduling problem becomes the sequencing in a permutation flow shop
as long as we are not studying a no-wait system. The sequencing decisions needs to
be decoupled in time between production and customer demands. In other words,
we need to allow that the production of the different jobs deviates in time from the
customer orders. In case we do not, the sequence would be explicitly determined
by the products due dates and lead times of these orders as in a traditional make-to-
order production scheduling [Yu et al.(2015)]. Section 2.2 provides a foundation for
the more efficient sequencing in the assembly operations associated with a MMAL.
The basis of them is the reduction of the idle time inefficiencies that arise as a result
of upstream and downstream blocking of stations and the utilisation of the avail-
able multi-skilled workforce Burdett and Kozan (2001). These inefficiencies can
have a huge effect on the makespan even if a good sequence is found. However,
as mentioned in Section 2.1, with multi-skilled workers it is possible to reduce idle
times and consequently the makespan by sharing tasks between them. It is then
assumed that workers know how to perform tasks for adjacent stations or that they
will be trained for it. Also, they need to have the tools needed to perform the share-
able tasks in their workstation. After reviewing the literature in sequencing along
section 2.2, it is seen that in the previous studies to improve the efficiency of the as-
sembly line, the utilisation and modelling of human labour interaction has not been
usually addressed. Stationary workers frequently were expected to work in closed
stations and to perform several tasks that are fixed to their station. Still, most of the
papers in sequencing have been done for paced flow lines, where the worker moves

2 Review of Literature and Research 16

with the conveyor assembly line. However, as exposed in [Buzacott et al.(1990)],
paced lines have been abandoned in the automobile assembly systems where most
of the tasks are performed by human operators. Burdett and Kozan (2001) inves-
tigated the effects of applying the task redistribution approach for the sequencing
problem by applying two solution approaches, the first by a two-step NEH [Nawaz
et al. (1983)] - Simulated Annealing approach, solving first the sequence and then
the task redistribution. Second, a two-step Simulated Annealing approach starting
with the task redistribution and solving the sequencing in the second step. There is
very few literature that focused on the combination of task sharing and sequencing
and the mutual benefits both techniques could reach. One possibility is that the ben-
efits of task sharing could have implications on sequencing rules. This means that
task sharing could help to reduce the restrictions established in a Car Sequencing
Problem, by a lower Ho: No ratio. The importance of workloads in the spacing
approaches has been introduced before by Lesert et al. (2011), as the Ho: No
are usually created after considering the variants in workload for different models.
Therefore, we can distinguish between high work-intensive and low work-intensive
model variants. Thanks to task sharing and the possibility to shift tasks between
adjacent stations, the workload can be smoothed and this could allow a lower Ho:
No ratio. Also, the Ho: No ratio is no longer fixed but variable depending on the
task sharing case achieving more flexibility regarding sequence building. Car se-
quencing constraints are differentiated between soft and hard [Solnon et al. 2008].
Hard constraints must be satisfied to avoid a critical stoppage of the production and
soft constraints can be violated for a certain cost. The introduction of task sharing
might enable some of these hard constraints so be changed to soft constraints.

2.3.1 Research gap and research questions

Research gap: The main focus of this thesis is the analysis and evaluation of task
sharing and sequencing in an unpaced mixed model flow line at the operational
level using a deterministic model. In general terms, literature has focused on single-
model lines with two work stations and authors have used simulation as a research
approach with stochastic processing times and have used state-dependent task shar-
ing decision rules. This thesis studies a mixed- model line with five consecutive
workstations to show the full effect of task sharing. Also, attention is paid to find-
ing the best sequence of jobs entering the flow line. Very few research has been
conducted combining both task sharing and sequencing and studying the effects of
both approaches together to maximize the efficiency of the line. This thesis focuses
in the interaction that sequencing and task sharing have between each other.

Research questions

1. How can an unpaced flow line with limited buffer capacity be modelled to
include task sharing?

2 Review of Literature and Research 17

Can we reduce the makespan? How much?

How does the quantity of task shared affect the results?

2. How can the sequencing problem be included in an unpaced flow line where
task sharing is allowed?

How much does the sequence given affect the benefits of task sharing?

Can a good sequence neglect the benefits of task sharing?

How does the quantity of task shared affect the results?

3. How does the interaction of task sharing and intelligent sequencing look like?

How much is the makespan reduced by intelligent sequencing compared
with the initial model without task sharing?

Does the combination of both deliver better results for different sequences?
What is the percentual gain?

Are these benefits (in case there are any) worth assuming both costs?

Figure 2.3: This thesis setting

3 Methodology 18

3 Methodology

The methodology in this thesis is presented in the following flow chart:

Figure 3.1: Methodology Flow Chart

Step 1: Basic model with random sequences.

The first step is to create a generic sequencing model for unpaced flow lines. The
model can then be tested with random sequences to see the effect of task sharing in
the efficiency of the line for a given objective and it will serve as base case for every
comparison with the future models.

Step 2: Create fixed sequences.

Once the model has been tested with random sequences to prove its functionality as
an example of a case scenario where we can not choose the sequence, a sequenc-

3 Methodology 19

ing logic is built. In this new scenario, the line has a resequencing buffer available
before the first workstation so that our sequence is not totally dependant on the pre-
vious line but we have the possibility to build more efficient sequences by applying
a simple and generic logic that will be explained in detail. Creating good sequences
will be crucial to understand the effects of task sharing and intelligent sequencing
in the following steps. If we would like to compare different scenarios, it would be
unfair to use random sequences as we can never be sure if the benefits obtained in
our models are a consequence of either task sharing or intelligent sequencing or a
consequence of choosing a random sequence that provokes a loss of eficiency in the
base case.

Step 3: Basic model + task sharing.

We have obtained the first results for our model after the first two steps, building
the current base case for the new solutions that this thesis proposes. It is now time
to evaluate the effect of task sharing for the created sequences and to analyze the
variations in the makespan.

Step 4: Basic model + sequencing.

This step will help us understand the difference between using a generic sequencing
logic and adding sequencing to your model to find the optimal sequence for your
specific conditions. Step 4 represents a crucial moment in this thesis, as it allows
us to compare the benefits of task sharing, obtained in Step 3, with the benefits of
intelligent sequencing. If we would like to compare this two approaches, it would
not be reasonable to directly compare the makespans obtained in both experiments.
As we have mentioned before, the sequence chosen plays a great role in this result.
However, it is reasonable to compare each of this scenarios with the base case. If
we measure the efficiency increase to the base case in both cases separatedly, we are
collecting data that may help us take the decision on choosing either to allow task
sharing in our system or to focus on building optimal sequences in the resequencing
buffer

Step 5: Basic model + task sharing + sequencing

The last step explores the scenario where both systems are included. We obtain
optimal sequences while task sharing between stations is allowed. This scenario is
once again compared to the base case to measure improvement and to be compared
with previous steps.

3.1 Building a basic model

3.1.1 Sets and Parameters

The research approach of this thesis begins with the need for a mathematical model
that simplifies the real system that is studied in this work. This simplification is

3 Methodology 20

needed because the real system of an unpaced flow line working as a mixed model
assembly line is too complex in reality to represent it precisely with all its compo-
nents and possibilities. The thesis focuses on finding optimal solutions to different
scenarios where task sharing and sequencing are used to be able to compare them
and understand the benefits of including both solutions in assembly lines. As the fo-
cus lies on evaluating the effect of these techniques in simplified environments once
they reach optimality and keeping the validation effort low, an analytical/determin-
istic model is chosen. Then, an optimization programming language is chosen to
implement the model.

Before going into the mathematical formulation, the Sets and parameters that will
be part of the different models are presented in the following figure.

Figure 3.2: Sets and parameters

Sets

J - Jobs (1,2,..J) Every item that enters the assembly line to be processed is consid-
ered a job. This labelling is independent of the type of product entering the line. In
other words, the next job entering the line after job j will always be j+1.

T - Tasks (1,2,..T) Every job receives different tasks to be processed throughout the
station, tasks are classified in this problem as fixed tasks or flexible tasks depending
on their availability. If task t is a fixed or a flexible task this is represented by the
values of its parameter Pjt. Once a task is started in one station, the worker must
finish this task before passing the job to the next station.

M - Stations (1,2,..M) The flow line is composed by M consecutive stations, where
every station contains one worker that can work in only one job at the same time
and every job goes through every station (Even if the job does not receive any task t
in station m). In that case, the job is considered to go through the station at infinite
velocity. A worker can only start a new job once he has sent the previous job to the
buffer located right after his station.

3 Methodology 21

P - Products (1,2,..P) In a mixed model assembly lines, different types of products
are processed. While all jobs entering the station receive similar tasks, depending
on the type of product they are the job will receive some particular tasks associated
with its product type.

JP p - Jobs Set of type Product p in P This set represents the connection between
every job that enters the station and its product type. This is done by studying for
every type of product, which of the incoming jobs are of his product type. For
example, if jobs two and four are of type product one JP 1 (2,4)

PSP pt - Precedence Set for all t in T for Product p in P This set takes into account
the precedence of tasks concerning the type of product that is travelling the flow
line. For example, if task one needs to be performed before tasks three and five for
product one: PSP 1 1 (3,5). Tasks three and five are then direct successors of task 1

Parameters

Amt = 1 if task t can be done at station m
0 otherwise

Not every task can be done at every station as it makes no sense to provide every sta-
tion with all the tools and materials that every type of task requires. The parameter
Amt gives information about which tasks could be performed in which stations.

Pmt - Processing time of task t for station m

Every task needs time to be processed. Some of the tasks will be labelled as fixed
and others as flexible, but every task requires a processing time.

Rjt = 1 if task t is required for job j 0 otherwise

Depending on the type of product that job j is, the required tasks for this job may
vary. This parameter is obtained after a pre-processing of the manufacturer’s data,
where information of the tasks required for every product p is received, i.e. Rpt if
task t is required for product p.

Bm - Buffer Size in Station m

There is a buffer located after every station m. However, there is no buffer after the
last station as the finished products are then moved to another station. Therefore,
the buffer size in the last station has an unlimited capacity. To reduce computational
effort, the last buffer can be considered of a size equal to the total number of jobs
that are processed in this line for a particular case study.

3.1.2 Modelling an unpaced flow line

The first step in our model will be to model a traditional unpaced flow line. In
this initial model, every task is fixed to one station and the sequence is given as a
parameter. To model this line, two decision variables are included:

3 Methodology 22

Smj = starting of job j at station m

This decision variable will measure the time at which every job starts at each station.
It is important to remember here that in this flow line every job will necessarily go
through every station. In the implementation, it is considered by default that S1 1=0,
there will be no need to impose this constraint.

Cmj = Completion time of job j at station m

This is the time when each one of the jobs is completed at the different machines
and is moved to the buffer. Note that the completion time of job j at station m is not
necessarily equal to the starting time of job j+1 at station m because the job may
need to wait in the buffer until the next machine is available.

Next, the objective of the model needs to be decided. In this case, we are aiming
to optimize the assembly flow line studied. In other words, we want the jobs going
through the line to be assembled as fast as possible, this can be understood as a
maximization of the throughput or minimization of the makespan. The makespan
is the time the last job leaves the system. Therefore, we would like to minimize the
completion time of the last job in the last machine.

In our model:

Min Cmax = Min CMJ

Finally, the constraints that model this system are enumerated. Some of them will
sound familiar as a model for this type of system has been exposed in section 2.2.1
of the literature review. Therefore, similarities between these constraints and the
once found in the work of Nowicki (1999) are naturally given.

Smj ≥ Cm j-1 ∀m ∈M, j > 1 ∈ J

A job can only be started at one machine if the previous job in the sequence has
already been processed. Job j can never overtake job j-1 in a flow line.

Smj ≥ Cm-1 j ∀m > 1 ∈M, j ∈ J

A job can only start at one machine after it has been completed in the previous
machine. As mentioned above, every job goes consecutively through every station.

Smj ≥ Sm+1 j-1-Bm ∀m ∈M(6= M), j > 1 +Bm ∈ J

A job can only start at one machine if this machine is available. We know that in
this system, there is only one worker at every station working on a particular job.
This worker needs to complete a job to take a new one from the upstream buffer,
as exposed in constraint 1. However, this is not a sufficient condition to start a new
job in the same station. As we have mentioned before, the worker moves the job to
the downstream buffer after finishing with its processing. Therefore, there must be

3 Methodology 23

enough space in the buffer to the worker to do so or the job will remain to wait in
the station and the station will be blocked and no new job will be able to be started.
We know that if the job (j-1-Bm) has started in the next machine, there is for sure a
spot for the job (j-1) in the buffer of station m and station m will be ready to receive
job j (it will not be blocked anymore). As an example, considering a buffer size of
one unit this would mean that job three can not start in machine one until job one
has already started in machine two. Otherwise, job one would still be in the buffer
after the first machine and job two would be in station one waiting to be moved to
the buffer while blocking the station.

To sum up, the starting time of every job at every station will be

Smj = max(Cm j-1, Cm-1 j, Sm+1 j-1-Bm)

The other decision variable described was the completion time

Cmj = Smj +
∑T

t Pmt ∗Rjt ∀m ∈M, j ∈ J

The completion time of every job at every station is equal to the starting time plus
the processing time of all the required tasks at this station. Every task in this initial
model is a fixed task and the parameter Rjt ensures that only the required tasks for
each job are processed.

3.2 Create fixed sequences

This section focus on building a sequencing logic that will help us find good se-
quences to our model. Having good sequences and following the same sequencing
logic every time reduces the influence that the sequence has in our objective func-
tion. The sequencing logic attempts to find good sequences by focusing only on the
different products that come into the line. This keeps the computational effort re-
ally low and creates sequences that, despite not being optimal, provide better results
than random sequences and are independent of the number of stations, number of
tasks or any other specific requirements of the line.

What is the sequencing logic followed in this thesis? As our objective is to minimize
the makespan and we are talking about unpaced flow lines, we already know that
a reduction in the makespan comes along with avoiding or reducing starving and
blocking times. Blocking and starving are also known as line imbalances. These
are moments when the flow of products through the line is interrupted and produc-
tivity is lost, as we will have some workers waiting downstream to receive a job
(starving) or waiting to find a free space in the buffer after finishing with one job to
be able to start with the next one (blocking). For this reason, this section searches
for sequences with a focus in workload balancing. This means dividing the line in
several intervals and focusing on balancing the workload in each interval, as we will
explain now in detail by showing the model.

3 Methodology 24

3.2.1 Creating a model to balance the workload

3.2.1.1 Sets and Parameters

Following the same procedure as in the previous section, we will start the model by
defining any new sets and parameters that are needed for this model.

Sets

N - Interval (1,2...N) We are going to evaluate the workload in several intervals, so
that the the whole sequence gets balanced.

Parameters

Dp - Demand in units for product p.
After choosing one Product mix, we will have a resulting demand for every type of
product that will determine the assignment of products to different jobs.
PRODTIMEp - Processing time of product p.
When multiplying, in a preprocessing phase, the Processing time for each task in
each station by the Required tasks per each type of product, we obtain the process-
ing times of the task that are performed for each product. By adding them up, we
compute the processing time for each product in every station m. The average of
these m processing times lead to this parameter, which shows the average process-
ing time per station for every product p.
w - Length of the interval
AV GW - Average workload of interval of size w. The value for the average work-
load of 1 interval is preprocessed in Excel.

3.2.1.2 Constraints and objective function

Constraints∑P
p Zpj = 1 ∀j ∈ J

Only one product can be assigned to every job j.∑J
j Zpj = Dp ∀p ∈ P

Each product must fulfill its demand.

Y n =
∑k<=n+w−1

k>=n

∑P
p PRODTIMEp ∗ Zkp ∀k ∈ J∀n ∈ N

For every interval, we compute the value of the sum of processing times of every
product belonging to the interval.

Y n = AV GW +W1n −W2n ∀n ∈ N

We compare the value obtained in every interval with the average workload, so that
we obtain either a positive or a negative deviation.

Objective

3 Methodology 25

Min
∑N

n W1n +W2n

The objective is to minimize the total deviations to the average workload, so that
every interval remains close to the average as we manage to balance the whole line.

3.2.1.3 Model

Let us have a look at the whole model:

Objective

Min
∑N

n W1n +W2n

Decision Variables

Zpj = 1 if product p is in position of job j
0 Otherwise

Y n = Sum of processing times in position n

W1n = negative deviation from the average for position n

W2n = positive deviation from the average for position n

Sets

J - Jobs (1,2,..J)

P - Products (1,2,..P)

N - Position in the sequence

Parameters

AV GW = Average workload of interval of size w

Dp - Demand in units for product p

PRODTIMEp = Processing time of product p

wm - Length of the interval

Constraints∑P
p Zpj = 1 ∀j ∈ J∑J
j Zpj = Dp ∀p ∈ P

Y n =
∑k<=n+w−1

k>=n

∑P
p PRODTIMEp ∗ Zkp ∀k ∈ J∀n ∈ N

Y n = AV GW +W1n −W2n ∀n ∈ N

3.3 Adding task sharing to the basic model

It is at this point where task sharing is included in the system by the allowance of
flexible tasks. We need a new decision variable:

3 Methodology 26

Xmtj = 1 if job j receives task t at station m 0 otherwise

This variable is responsible for the assignment of flexible tasks to a station to make
the best decisions to fulfil the objective.

Also, new constraints need to be written to include this flexibility to the model

Xmtj ≤ Amt ∀m ∈M, t ∈ T, j ∈ J

While the availability of the resources to perform the different tasks was included
in the parameter containing the processing times for the previous model, the flex-
ibility that task sharing brings in needs to be constrained by the parameter Amt.
This parameter will then give input to the model on which tasks can be shared be-
tween what stations and which tasks need to remain fixed. Due to this constraint,
the parameter Amt will have a huge influence on the effect of task sharing, as this
parameter restricts the flexibility that the system may have. Depending on this pa-
rameter the system can allow only upstream task sharing, downstream task sharing,
task sharing in both directions, etc. for every station.∑M

m Xmtj = Rjt ∀t ∈ T, j ∈ J

Every task in the set is unique. This means that it can only be assigned at most once
to a job throughout the different stations. However, if this task is not required it can
never be assigned to the job throughout the stations.

Cmj = Smj +
∑T

t Pmt ∗Xmtj ∀m ∈M, j ∈ J

With the addition of task sharing the constraint to compute the completion time is
changed. The tasks are not anymore just characterized by their fixed processing
time. Now they can either be considered as fixed or flexible and they depend on
their assignment done by the decision variable Xmtj and their processing time will
only contribute to the completion time of a job if the decision to perform this task
in this particular station is done (the task could also be performed in an adjacent
station as it is a flexible task).

∑M
m m ∗Xm t1 j ≤

∑M
m m ∗Xm t2 j ∀t1 ∈ T, t2 ∈ PSP [p][t1], j ∈ JP [p]

This constraint is created to control the precedence of tasks. It ensures that if t2
is a direct successor of t1, it can never be performed before t1 along the process.
The constraint is formed for the different job sets because depending on the type of
product the precedence set may be different.

To sum up, How can an unpaced flow line with limited buffer capacity be modelled
to include task sharing?

3 Methodology 27

Moreover, the model described below works both as a replica for the basic model
and as the basic model + task sharing. The decision to solve one model or the
other is made by the input data introduced for the parameter Amt. When we only
allow tasks to be performed at their original station, we will be solving the basic
model. However, when we allow tasks to be solved in more than one station, we are
introducing task sharing to the degree we decide to do so. We will explore this in
detail in the next chapter (Results).

Objective

Min Cmax = Min CMJ

Decision Variables

Smj = starting of job j at station m

Cmj = Completion time of job j at station m

Xmtj = 1 if job j receives task t at station m 0 otherwise

Sets

J - Jobs (1,2,..J)

T - Tasks (1,2,..T)

P - Products (1,2,..P)

JP p - Jobs Set of type Product p in P

PSP pt - Precedence Set for all t in T for Product p in P

Parameters

Amt = 1 if task t can be done at station m 0 otherwise

P jt - Processing time of task t for station m

Rjt = 1 if task t is required for job j 0 otherwise

Bm - Buffer Size in Station m

Constraints

Xmtj ≤ Amt ∀m ∈M, t ∈ T, j ∈ J

∑M
m Xmtj = Rjt ∀t ∈ T, j ∈ J

Smj ≥ Cm j-1 ∀m ∈M, j > 1 ∈ J

Smj ≥ Cm-1 j ∀m > 1 ∈M, j ∈ J

Smj ≥ Sm+1 j-1-Bm ∀m ∈M(6= M), j > 1 +Bm ∈ J

3 Methodology 28

Cmj = Smj +
∑T

t Pmt ∗Xmtj ∀m ∈M, j ∈ J

∑M
m m ∗Xm t1 j ≤

∑M
m m ∗Xm t2 j ∀t1 ∈ T, t2 ∈ PSP [p][t1], j ∈ JP [p]

3.4 Adding sequencing to the basic model

As mentioned in the introduction to the chapter, this section aims to find the best
sequence possible for the incoming jobs. This time, we will directly focus in the ba-
sic model to include the sequencing in it so that we obtain the best solution possible
to our specific parameters. It is important to remark here that, from an operational
point of view, this is a more complicated solution. While the workload balancing
solution results generally in a good sequence for most types of lines, the optimal
sequence obtained here will not necessarily be an optimal sequence for different
types of lines, but just for this one. This means that the resequencing buffer must be
right before the line (if you have enough physical space for this) and we may need
to resequence again for following lines. On the other hand, we aim to find better
solutions with this model than with the workload balancing example. Let us take
a look at the new sets, parameters, decision variables and constraints for this new
model, which shares some of the nomenclature with the workload balancing model:

New sets

There are not new sets for this model. However JP p does not exist anymore. We
will assign the type of product to each job position when solving the model.

New parameters

Dp - Demand in units for product p.
This parameter was also needed for the workload balancing model.

M - Big number

Rpt = 1 if task t is required for product p 0 otherwise

We do not know the assignment of tasks to jobs anymore because the Job set is not
a parameter now, but part of the solution. However, we still know the nature of each
product and which tasks t will be required for product p.

New decision variables

Zpj = 1 if product p is assigned to job j. 0 otherwise This is the same decision
variable we used for the workload balancing model.

New constraints

3 Methodology 29

∑M
m Xmtj =

∑P
p Rpt∗Zpj ∀t ∈ T, j ∈ J

We need to adapt the constraint to the new parameter to have the same effect as we
did before. If a product p is assigned to a job j and task t is required for job j, then
we can obtain once again the information about which tasks t are required for each
job j.∑M

m m ∗Xm t1 j ≤
∑M

m m ∗Xm t2 j + (1−
∑P

p Zpj ∗Rpt1 ∗Rp t2) ∗M ∀t1 ∈
T, t2 ∈ PSP [p][t1], j ∈ J

We need to adapt this constraint. As we have deleted the Job Set, we do not want
the constraint to be binding for every job, but only for those situations where tasks
t1 and t2 are both required. Therefore, we use the Big M formulation.∑P

p Zpj = 1 ∀j ∈ J

Only one product can be assigned to every job j. This contraint was not needed
before because the sequence was included in the Job Set.∑J

j Zpj >= Dp ∀p ∈ P

Each product must fulfill its demand. The demand was included in the Job set in
previous models.

Let us have a look at the whole new model

Objective

Min Cmax = Min CMJ

Decision Variables

Smj = starting of job j at station m

Cmj = Completion time of job j at station m

Xmtj = 1 if job j receives task t at station m 0 otherwise

Zpj = 1 if product p is assigned to job j. 0 otherwise

Sets

J - Jobs (1,2,..J)

T - Tasks (1,2,..T)

P - Products (1,2,..P)

PSP pt - Precedence Set for all t in T for Product p in P

Parameters

Amt = 1 if task t can be done at station m 0 otherwise

P jt - Processing time of task t for station m

Bm - Buffer Size in Station m

3 Methodology 30

Dp - Demand in units for product p.
This parameter was also needed for the workload balancing model.

M - Big number

Rpt = 1 if task t is required for product p 0 otherwise

Constraints

Xmtj ≤ Amt ∀m ∈M, t ∈ T, j ∈ J

∑M
m Xmtj =

∑P
p Rpt∗Zpj ∀t ∈ T, j ∈ J

Smj ≥ Cm j-1 ∀m ∈M, j > 1 ∈ J

Smj ≥ Cm-1 j ∀m > 1 ∈M, j ∈ J

Smj ≥ Sm+1 j-1-Bm ∀m ∈M(6= M), j > 1 +Bm ∈ J

Cmj = Smj +
∑T

t Pmt ∗Xmtj ∀m ∈M, j ∈ J

∑M
m m ∗Xm t1 j ≤

∑M
m m ∗Xm t2 j + (1−

∑P
p Zpj ∗Rpt1 ∗Rp t2) ∗M ∀t1 ∈

T, t2 ∈ PSP [p][t1], j ∈ J

∑P
p Zpj = 1 ∀j ∈ J∑J
j Zpj >= Dp ∀p ∈ P

This model leads to a similar situation as the basic model + task sharing, meaning
that we can find two different models in the same structure and the decision remains
in the use of the parameter Amt. We have explained before that the previous model
would solve both the basic model and the basic model + task sharing when modyf-
ing the parameter. In this case, this new model works both as the basic model +
sequencing (when tasks are only allowed to be performed in the original station)
and as the basic model + task sharing + sequencing (when tasks are allowed to be
performed in more than one station).

4 Results 31

4 Results

4.1 Case study

There is currently little literature on task sharing that uses real industry data in their
work. Theoretical data can lead to unrealistic results. However, this thesis bases
its numerical testing in real data from a production system of an engine supplier.
The study is based in a unidirectional unpaced mixed-model permutation flow line,
consisting of 5 stations near the end of the outbound line. This line looks appropriate
for studying task sharing as it is composed of stations that involve many manual
tasks, such as screwing, pinning or clipping. These are tasks that can be learned
after little training and that do not require complex or really specific materials to
be processed. Therefore, it is a good opportunity to figure out the possibility to
share tasks between adjacent stations. Each of the 5 stations is filled by exactly
one worker, this means that there is a 100 per cent staffing level of workers fixed to
their stations. These 5 stations are part of a bigger line but other stations are outside
of the scope of this study. For this reason, we will consider that before the first
station we have got a source of products (every time station 1 is available, 1 new
job will enter the system) and we have got a sink at the end (working as a buffer
with unlimited capacity). In this flow line, three different products can be produced.
Products 1 and 2 are very similar in their total processing times and the tasks that
they require. However, product 3 has different characteristics in those terms. A
table with the diffent tasks and processing times, together with other data, can be
found in the Appendix.

62 different tasks are to be processed in this flow line (5.1). Although not every
product goes through every task as explained in the previous chapter. Table 5.1 was
obtained from the thesis by Hieronymus (2020), who used this same data, and shows
the different types of task, processing times in seconds, the product that requires
each task and the home station for every task when no task sharing is allowed. It
can also be seen in this table that some of the tasks are fixed tasks (marked with F in
the table) that cannot turn shareable as they represent core tasks that must be done
only in their home station.

Product 1 has the highest workload with 19,2 minutes and product 3 has the lowest
workload with 17,47 minutes. About the stations, station 4 has the highest workload
with 231 seconds average and station 1 has the lowest with 201,33 seconds. How-
ever, the workload in a station is mainly influenced by the product volume mix. For

4 Results 32

example, station 2 has a lower average workload than station 3, but station 2 has a
higher average for product 2. This means that in a product mix where product 2 has
the highest volume, we may expect that the workload average for station 2 becomes
higher than for station 3. The data from the engine supplier company also provides
with difference precedence sets, taken from the thesis by Hieronymus (2020) that
can be seen in the Appendix (5.2, 5.3, 5.4) and that will be taken into account, as
we have already seen in the models provided in the methodology.

Figure 4.1: Workloads per station and product

4.2 Parameters used in the study

We will use sequences consisting of 100 jobs, which approximately simulates one
shift at the engine supplier company. There is a buffer for only one job between
every two stations, where station 1 is never starving, as there is no station before the
line in the model, and station 5 never gets blocked, as there is no station behind. As
explained in the previous section, three different types of products will be processed
in the line, with products 1 and 2 having similar characteristics and product 3 being
less workload demanding. We will conduct a study of the makespan in the system
for three different levels of product mixes. The three different levels are 10 per cent,
30 per cent and 70 per cent. The percentage refers to the share of product 3 in the
total volume. Product 1 and 2 divide the rest of the share equally (5.5).

4.3 Basic model

As explained in the Methodology chapter. We will start showing the results obtained
in the thesis by calculating a base case that will help us understand the benefits of
task sharing and sequencing in the upcoming sections. For every model in this
thesis, Microsoft Excel has been used as a data source, as well as a tool for pre-
processing the data to make it accurate for the models. All the models have been
programmed and computed in CPLEX Studio. Let us now compute the makespan

4 Results 33

for the three different product mixes that are evaluated in this thesis. For every mix,
the makespan was calculated for two randomly generated sequences in Excel + the
fixed sequence obtained with the workload balancing model. All the calculations
were done in seconds. However, results will be presented in minutes for a clearer
understanding.

Figure 4.2: Makespan for different sequences and product mixes

As explained in the Methodology chapter. We can observe in these results, that the
workload levelling model provides sequences that are expected to be good, as they
help us balance the flow line. However, they are not necessarily optimal sequences.
This has been proven for the product mix 10 per cent, where we could find a random
sequence that provided a better makespan than the fixed sequence. In a sequence of
jobs with very few type 3 products, the model focuses on alternating some of these
products with type 1 products, as type 1 products have a higher workload. For this
reason, type 2 products are left together in this model. What the workload model
does not include is the fact that products of the same type require the same type of
tasks. Therefore, if we do not alternate them blocking times can increase and that
is exactly what happened in this example. Of course, there are lots of random se-
quences that provide worse results, such as Random 1, but it was interesting to show
here an example where the generic sequencing model provides a higher makespan
than some random sequence. The effectiveness of the workload levelling model
increases with more balanced product mixes, as shown for 30 per cent, where the
fixed sequence provides a better result than most of the random sequences tested.
It is important to note here that one length of interval w must be chosen for the
model. The optimal length could be understood as the shorter possible (the more
intervals we create, the more accurate will the final result be). However, each in-
terval needs space for at least the 3 types of products so that the overall line gets
balanced. Therefore, the length of the interval of 5 jobs was chosen for doing these
calculations. Similar lengths could have also been studied to see their effect.

Every result obtained in the following models will be compared to the makespan
obtained with the fixed sequencing.

4 Results 34

4.4 Adding task sharing to the basic model

Once we have a reference value for our initial solution. We are going to evaluate the
effect of task sharing for the different product mixes. The effect on the makespan of
task sharing will depend on the number of shared tasks. For this reason, 8 different
situations will be examined, starting from 5 per cent of the total processing time up
to 40 per cent. As mentioned in the literature research, it has been studied that the
effect of task sharing reaches optimality below the 40 per cent threshold. Out of
the 62 tasks that belong to the flow line, most of them could be shared. Therefore
we need a selection logic to choose which tasks should be shared for every task
sharing degree. It is important to remark that in this thesis we have decided to only
allow downstream task sharing. This means that shareable tasks can be performed
in either station m or station m+1, but not on station m-1. This decision was made
as this is a realistic scenario to work with and it is easier to communicate with the
workers and to create standard procedures. Work from other authors with upstream
task sharing or total flexibility can be found in the literature.
A selection logic was created and follows this scheme:

Figure 4.3: Selection procedure for choosing shareable tasks

We start by calculating the sum of the processing times for every station so that we
can check the potential bottleneck station when every task is processed in its original
station. Note that we call it potential because this will depend on the product mix
and the required tasks per type of product. Then, we choose the potential bottleneck
station and find the shareable task with the highest processing time. This task should
never have been moved before. Otherwise, we will end up moving tasks from station
m to m+2 or higher and this does not make sense in our flow line. Once the shareable

4 Results 35

task is chosen, we move it from station m to m+1 and compute the cumulative sum
of all the moving processing time to see if we have already reached the 40 per cent
objective, if we have not reached it yet, we go back to step 1. While iterating, we
will also reach 5, 10, 15, 20, 25, 30 and 35 per cent and we will know at every stage,
how many tasks have been moved. These moved tasks will represent the shareable
tasks in the original model, the tasks that will be allowed to be performed in either
station m or m+1 when calculating the makespan. After 22 iterations, 40 per cent
was reached and the process ended.

Now, we will compute the makespan for the different product mixes and degrees of
shared tasks, to see the evolution on the makespan if we invest in task sharing. It is
important to understand that, as we are choosing the task in every station because of
its high processing time, there is little difference in the number of tasks between 5
per cent and 10 per cent, while the difference in the number of tasks between 35 per
cent and 40 per cent is much higher and will involve a greater effort to implement
this extra 5 per cent.
Let us begin with the most balanced case, with 30 per cent Product 3.

Product Mix 30 per cent. Makespan in minutes and shared tasks in percentage.

Figure 4.4: Product Mix 30 per cent with task sharing. Makespan in minutes and
shared tasks in percentage

In this graphic, the 0 per cent value corresponds to the base case for this product
mix (400,87 minutes) and we observe two intervals where the increase in the degree
of shared tasks provokes a higher reduction in the makespan. Between 10 and 15
per cent and between 20 and 25 per cent. After 25 per cent, the reduction in the
makespan becomes much smaller even when sharing a higher number of tasks. The
two optimal degrees of task sharing in this case would be 15 per cent (399,80 min-
utes; 0,27 per cent improvement) and 25 per cent (398,51 minutes; 0,59 per cent
improvement), the first one is achieved with a fewer number of shared tasks, so it
is easier and cheaper to implement, while the second one nearly reaches the lowest

4 Results 36

makespan for this case.

Figure 4.5: Product Mix 70 per cent with task sharing. Makespan in minutes and
shared tasks in percentage

For this product mix, a 0,92 per cent improvement in the makespan is observed
after sharing just 5 per cent of the tasks. The first tasks shared where selected
from station 4, where product 3 requires several tasks to be performed. Therefore,
it makes sense that the effect of task sharing is immediate for this product mix.
Between 10 and 15 per cent, we also observe a reduction in the makespan, as we
did for the 30 per cent product mix, in this case reaching 388,65 minutes (1,40 per
cent improvement). The highest reduction lies in the 35 per cent (384,58 minutes;
2,43 per cent improvement) for this mix.

Figure 4.6: Product Mix 10 per cent with task sharing. Makespan in minutes and
shared tasks in percentage

For the 10 per cent product mix, we also observe a decrease in the makespan in the
interval 10 to 15 per cent, reaching 414,03 minutes (0,42 per cent improvement) .

4 Results 37

The next reduction only takes place with a much higher number of shared tasks,
between 35 and 40 per cent, reaching 412,82 minutes (0,71 per cent improvement).

To sum up, a degree of shared tasks of 15 per cent would be beneficial for this flow
line for every product mix. A trade-off cost analysis should be carried to proof if
task sharing is worth value for money in this system. As shown in the graphics, the
makespan can be reduced up to 1,40 per cent (70 per cent mix) by applying a 15 per
cent task sharing degree in the system.
With these results, we verified that lower makespans are obtained when product
3 is predominant. This makes sense as this is the product with the lowest work-
load. However, we also showed that, for the same sequencing logic, the selection of
shared tasks used in this thesis benefits product mixes with higher values of product
type 3. For this reason, we expect to obtain better results on the makespan if we ap-
ply workload balancing and this task sharing logic to job sets with a predominance
of products type 3.

4.5 Adding sequencing to the basic model

Figure 4.7: Makespan table including intelligent sequencing

By including intelligent sequencing in the model, we observe that a lower makespan
is guaranteed for every product mix. Having less impact in the mixes that had a good
balance from the workload levelling model, such as 30 per cent or 70 per cent, and
a greater impact in the 10 per cent Mix, where the previous model was proven not
to be as effective. Moreover, the solution obtained for the 10 per cent product mix
is already better than the optimal solution with task sharing for this mix.

4.6 Basic model + sequencing + task sharing

We have asked ourselves when introducing this thesis if the combination of both
task sharing and intelligent sequencing would ensure the best solution possible.

Let us have a look at the results obtained:

4 Results 38

Figure 4.8: Product Mix 30 per cent with sequencing and task sharing. Makespan
in minutes and shared tasks in percentage

In this case, the reduction in the makespan starts once again after the 10 per cent
degree of shared tasks is reached and continues until reaching 25 per cent, with
a 398,17 minutes makespan (0,33 per cent improvement). We can observe, how
intelligent sequencing has influenced the effect of task sharing. For a 25 per cent
degree of shared tasks , the improvement was settled on a 0,59 per cent for the
previous Product Mix 30 per cent graphic.

Figure 4.9: Product Mix 70 per cent with sequencing and task sharing. Makespan
in minutes and shared tasks in percentage

As explained before, the effect of task sharing is immediate for this product mix.
At a 5 per cent sharing level, the makespan is 388,27 minutes (0,82 per cent im-
provement) We also observe a reduction in the makespan after 35 per cent degree
of shared tasks, up to 385,62 minutes (1,50 per cent improvement).
We can still observe how we got better results for this mix than for the others. How-
ever, the improvement gets once again lowered when using intelligent sequencing.

4 Results 39

Figure 4.10: Product Mix 10 per cent with sequencing and task sharing. Makespan
in minutes and shared tasks in percentage

In this peculiar case, the effect of task sharing goes unnoticed. Even if we can
observe a difference in makespan when 5 per cent task sharing is allowed, this is
just a matter of seconds and the makespan remains constant afterwards. This is
the clearest example of how important a proper sequencing is when minimizing
the makespan. As mentiones before, even with no effect from task sharing, the
makespan reduces when using intelligent sequencing for this product mix.

5 Conclusion 40

5 Conclusion

In this thesis, we started our research by modelling an unpaced flow line with limited
buffer capacity to determine the different starting and completion times of the jobs
at every station to minimize the makespan. This leads us with the initial solution
that the system provided before we included task sharing or sequencing.
We have shown how this flow line can be modelled to include task sharing. The
results obtained illustrate that even for a good sequence, provided by a workload
balancing model created for the purpose, task sharing would have a positive effect
on reducing the makespan up to 2,43 per cent with a degree of shared tasks of 40
per cent (Product mix 70 per cent). Also, it has been proved that task sharing
affects even with a low level of shared tasks. For most of the models, a 15 per cent
degree of shared tasks is already a level at which task sharing has an impact on the
makespan. What is more, with just a 5 per cent degree, tasks sharing starts reducing
the makespan for some product mixes. This also happens when we are not allowed
to resequence before entering the line and we are provided with a random sequence,
although these calculations were not included so that the results offered remained
comparable.
After including intelligent sequencing in the model, we showed how the solution
got more efficient and results on makespan got generally lower. However, we were
able to see here the interaction between both techniques and we understood that
the optimal sequence made task sharing less important in every case. Intelligent
sequencing was proven to even neglect task sharing in some of the cases.
This opens a new direction of research where an optimal combination between both
techniques could be studied to obtain more efficient flow lines, as well as deep
diving in the trade-off that derives from the economic investments of applying these
techniques in the industry. In this case, results should also be considered at a tactical
level to make these balancing decisions.
The models created for this thesis could also be extended or applied for simulations,
focusing on a bigger number of jobs or adding real-life constraints that have not
been considered in this work. Upstream task sharing could also be included for
higher flexibility in the process, together with other objectives such as fairness in
the distribution of tasks for the workers, although it has been studied that fairness
contradicts the makespan objective and, therefore, it was not included in this work.
Also, to be able to adapt task sharing in an industrial application, indirect costs such
as the learning process needed by the workers, or the quality defects that sharing
could create should be considered in the analysis.

Bibliography 41

Bibliography

Abdollahpour, Sana, Javad Rezaeian. 2015. Minimizing makespan for flow shop
scheduling problem with intermediate buffers by using hybrid approach of artifi-
cial immune system. Applied Soft Computing 28 44–56.

Ahn, Hyun-Soo, Rhonda Righter. 2006. Dynamic load balancing with flexible
workers. Advances in Applied Probability 38(3) 621–642.

Aigbedo, Henry. 2004. Analysis of parts requirements variance for a jit supply
chain. International Journal of Production Research 42(2) 417–430.

Andradottir, Sigrun, Hayriye Ayhan. 2005. Throughput maximization for tandem
lines with two stations and flexible servers. Operations Research 53(3) 516–531.

Andradottir, Sigrun, Hayriye Ayhan, Douglas G. Down. 2001. Server assignment
policies for maximizing the steady-state throughput of finite queueing systems.
Management Science 47(10) 1421–1439.

Andradottir, Sigrun, Hayriye Ayhan, Douglas G. Down. 2007. Dynamic assignment
of dedicated and flexible servers in tandem lines. Probability in the Engineering

and Informational Sciences 21(4) 497–538.

Anuar, Rouie, Yossi Bukchin. 2006. Design and operation of dynamic assembly
lines using work-sharing. International Journal of Production Research 44(18-
19) 4043–4065.

Armbruster, Dieter, Esma S. Gel, Junko Murakami. 2007. Bucket brigades with
worker learning. European Journal of Operational Research 176(1) 264–274.

Askin, Ronald G., Jiaqiong Chen. 2006. Dynamic task assignment for through-
put maximization with worksharing. European Journal of Operational Research

168(3) 853–869.

Bartholdi, John J., Leonid A. Bunimovich, Donald D. Eisenstein. 1999. Dynamics
of two- and three-worker “bucket brigade” production lines. Operations Research

47(3) 488–491.

Bautista, J., R. Companys, A. Corominas. 1996. Heuristics and exact algorithms for
solving the monden problem. European Journal of Operational Research 88(1)
101–113.

Bolat, A. 1997. Stochastic procedures for scheduling minimum job sets on mixed
model assembly lines. Journal of the Operational Research Society 48(5) 490–
501.

Bibliography 42

Boysen, Nils, Malte Fliedner, Armin Scholl. 2009a. Assembly line balancing: Joint
precedence graphs under high product variety. IIE Transactions 41(3) 183–193.

Boysen, Nils, Malte Fliedner, Armin Scholl. 2009b. Sequencing mixed-model as-
sembly lines: Survey, classification and model critique. European Journal of

Operational Research 192(2) 349–373.

Bratcu, A. I., A. Dolgui. 2009. Some new results on the analysis and simulation
of bucket brigades (self-balancing production lines). International Journal of

Production Research 47(2) 369–387.

Brucker, Peter, Silvia Heitmann, Johann Hurink. 2003. Flow-shop problems with
intermediate buffers. OR Spectrum 25(4) 549–574.

Bultmann, Matthias, Sigrid Knust, Stefan Waldherr. 2018a. Flow shop scheduling
with flexible processing times. OR Spectrum 40(3) 809–829.

Bultmann, Matthias, Sigrid Knust, Stefan Waldherr. 2018b. Synchronous flow shop
scheduling with pliable jobs. European Journal of Operational Research 270(3)
943–956.

Burdett, R. L., E. Kozan. 2001. Sequencing and scheduling in flowshops with task
redistribution. Journal of the Operational Research Society 52(12) 1379–1389.

Buzacott, John A. 2002. The impact of worker differences on production system
output. International Journal of Production Economics 78(1) 37–44.

Buzacott, John A. 2004. Modelling teams and workgroups in manufacturing. An-

nals of Operations Research 126(1-4) 215–230.

Celano, Giovanni, Antonio Costa, Sergio Fichera, Giovanni Perrone. 2004. Human
factor policy testing in the sequencing of manual mixed model assembly lines.
Computers & Operations Research 31(1) 39–59.

Dar-el, E. M., R. F. Cother. 1975. Assembly line sequencing for model mix. Inter-

national Journal of Production Research 13(5) 463–477.

Ding, F.-Y., H. Sun. 2004. Sequence alteration and restoration related to sequenced
parts delivery on an automobile mixed-model assembly line with multiple depart-
ments. International Journal of Production Research 42(8) 1525–1543.

Dutta, Sujit K., Andrew A. Cunningham. 1975. Sequencing two-machine flow-
shops with finite intermediate storage. Management Science 21(9) 989–996.

Gagné, Caroline, Marc Gravel, Wilson L. Price. 2006. Solving real car sequenc-
ing problems with ant colony optimization. European Journal of Operational

Research 174(3) 1427–1448.

Gel, Esma S., Wallace J. Hopp, Mark P. Van Oyen. 2002. Factors affecting oppor-
tunity of worksharing as a dynamic line balancing mechanism. IIE Transactions

34(10) 847–863.

Bibliography 43

Gel, Esma S., Wallace J. Hopp, Mark P. Van Oyen. 2007. Hierarchical cross-training
in work-in-process-constrained systems. IIE Transactions 39(2) 125–143.

Gultekin, Hakan. 2012. Scheduling in flowshops with flexible operations: Through-
put optimization and benefits of flexibility. International Journal of Production

Economics 140(2) 900–911.

Gupta, Jatinder N.D., Christos P. Koulamas, George J. Kyparisis, Chris N. Potts,
Vitaly A. Strusevich. 2004. Scheduling three-operation jobs in a two-machine
flow shop to minimize makespan. Annals of Operations Research 129(1-4) 171–
185.

Hopp, Wallace J., Mark P. Van Oyen. 2004. Agile workforce evaluation: a frame-
work for cross-training and coordination. IIE Transactions 36(10) 919–940.

Hsieh, Y.-C., P.-S. You, C.-D. Liou. 2009. A note of using effective immune based
approach for the flow shop scheduling with buffers. Applied Mathematics and

Computation 215(5) 1984–1989.

Inman, Robert R. 2003. Asrs sizing for recreating automotive assembly sequences.
International Journal of Production Research 41(5) 847–863.

Kubiak, Wieslaw. 1993. Minimizing variation of production rates in just-in-time
systems: A survey. European Journal of Operational Research 66(3) 259–271.

Leisten, Rainer. 1990. Flowshop sequencing problems with limited buffer storage.
International Journal of Production Research 28(11) 2085–2100.

Lin, Bertrand M. T., F. J. Hwang, Jatinder N. D. Gupta. 2017. Two-machine flow-
shop scheduling with three-operation jobs subject to a fixed job sequence. Jour-

nal of Scheduling 20(3) 293–302.

Liu, Bo, Ling Wang, Yi-hui Jin, De-xian Huang. 2006. An effective pso-based
memetic algorithm for tsp. De-Shuang Huang, Kang Li, George William Ir-
win, eds., Intelligent Computing in Signal Processing and Pattern Recognition,
Lecture Notes in Control and Information Sciences, vol. 345. Springer Berlin
Heidelberg, 1151–1156.

Meyr, Herbert. 2004. Supply chain planning in the german automotive industry. OR

Spectrum 26(4).

Nawaz, Muhammad, E. Emory Enscore, Inyong Ham. 1983. A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. Omega 11(1) 91–95.

Nick T. Thomopoulos. 1967. Line balancing-sequencing for mixed-model assem-
bly. Management Science 14(2) 59–75.

Norman, Bryan A. 1999. Scheduling flowshops with finite buffers and sequence-
dependent setup times. Computers & Industrial Engineering 36(1) 163–177.

Nowicki, Eugeniusz. 1999. The permutation flow shop with buffers: A tabu search
approach. European Journal of Operational Research 116(1) 205–219.

Bibliography 44

Pan, Quan-Ke, Ling Wang, Liang Gao. 2011. A chaotic harmony search algorithm
for the flow shop scheduling problem with limited buffers. Applied Soft Comput-

ing 11(8) 5270–5280.

Papadimitriou, Christos H., Paris C. Kanellakis. 1980. Flowshop scheduling with
limited temporary storage. Journal of the ACM (JACM) 27(3) 533–549.

Parrello, Bruce D., Waldo C. Kabat, L. Wos. 1986. Job-shop scheduling using
automated reasoning: A case study of the car-sequencing problem. Journal of

Automated Reasoning 2(1).

Pil, Frits K., Matthias Holweg. 2004. Linking product variety to order-fulfillment
strategies. Interfaces 34(5) 394–403.

Pinedo, Michael. 2010 Scheduling: Theory, algorithms, and systems. Fifth edition

Pratama, Aditya Tirta, Katsuhiko Takahashi, Katsumi Morikawa, Keisuke Naga-
sawa, Daisuke Hirotani. 2018. Integration of bucket brigades and worker collab-
oration on a production line with discrete workstations. Industrial Engineering

& Management Systems 17(3) 514–530.

Qian, Bin, Ling Wang, De-xian Huang, Wan-liang Wang, Xiong Wang. 2009. An
effective hybrid de-based algorithm for multi-objective flow shop scheduling with
limited buffers. Computers & Operations Research 36(1) 209–233.

Röder, Axel, Bernd Tibken. 2006. A methodology for modeling inter-company
supply chains and for evaluating a method of integrated product and process doc-
umentation. European Journal of Operational Research 169(3) 1010–1029.

Rossi, Andrea, Michele Lanzetta. 2013. Scheduling flow lines with buffers by ant
colony digraph. Expert Systems with Applications 40(9) 3328–3340.

Scholl, Armin. 1999. Balancing and sequencing of assembly lines. 2nd ed. Contri-
butions to management science, Physica-Verlag, Heidelberg and New York.

Sennott, Linn I., Mark P. Van Oyen, Seyed M.R. Iravani. 2006. Optimal dynamic
assignment of a flexible worker on an open production line with specialists. Eu-

ropean Journal of Operational Research 170(2) 541–566.

Smith, Kate, M. Palaniswami, M. Krishnamoorthy. 1996. Traditional heuristic ver-
sus hopfield neural network approaches to a car sequencing problem. European

Journal of Operational Research 93(2) 300–316.

Smutnicki, Czesław. 1998. A two-machine permutation flow shop scheduling prob-
lem with buffers. OR Spectrum 20(4) 229–235.

Uruk, Zeynep, Hakan Gultekin, M. Selim Akturk. 2013. Two-machine flowshop
scheduling with flexible operations and controllable processing times. Computers

& Operations Research 40(2) 639–653.

van Zante-de Fokkert, Jannet I., Ton G. de Kok. 1997. The mixed and multi model
line balancing problem: a comparison. European Journal of Operational Re-

search 100(3) 399–412.

Bibliography 45

Wang, Ling, Liang Zhang, Da-Zhong Zheng. 2006. An effective hybrid genetic al-
gorithm for flow shop scheduling with limited buffers. Computers & Operations

Research 33(10) 2960–2971.

Wild, Ray. 1972. Mass-production management: The design and operation of pro-

duction flow-line systems. John Wiley & Sons, London and New York.

Xu, J., X. Xu, S. Q. Xie. 2011. Recent developments in dual resource constrained
(drc) system research. European Journal of Operational Research 215(2) 309–
318.

Zavadlav, Emil, John O. McClain, L. Joseph Thomas. 1996. Self-buffering, self-
balancing, self-flushing production lines. Management Science 42(8) 1151–1164.

Appendix

47

Figure 5.1: Overview of tasks and its characteristics

48

Figure 5.2: Precedence graph for product 1

49

Figure 5.3: Precedence graph for product 2

50

Figure 5.4: Precedence graph for product 3

51

Figure 5.5: Graphical representation of the 3 different product mixes

Declaration of authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references.

I am aware that the thesis in digital form can be examined for the use of unauthorized aid
and in order to determine whether the thesis as a whole or parts incorporated in it may
be deemed as plagiarism. For the comparison of my work with existing sources I agree
that it shall be entered in a database where it shall also remain after examination, to enable
comparison with future theses submitted. Further rights of reproduction and usage, however,
are not granted here.

This paper was not previously presented to another examination board and has not been
published.

Madrid, 1. October 2020

Javier Dolz Cifre

	Table of contents
	List of Figures
	List of Tables
	Introduction
	Review of Literature and Research
	Definition of task sharing in literature
	Relevant classification of task sharing systems

	Sequencing on Mixed Model Assembly lines
	Sequencing with limited buffers
	Grouping and spacing

	Task sharing at the operational level with offline sequencing
	Research gap and research questions

	Methodology
	Building a basic model
	Sets and Parameters
	Modelling an unpaced flow line

	Create fixed sequences
	Creating a model to balance the workload
	Sets and Parameters
	Constraints and objective function
	Model

	Adding task sharing to the basic model
	Adding sequencing to the basic model

	Results
	Case study
	Parameters used in the study
	Basic model
	Adding task sharing to the basic model
	Adding sequencing to the basic model
	Basic model + sequencing + task sharing

	Conclusion
	Bibliography
	Appendix

