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Abstract: In this work, two Traub-type methods with memory are introduced using accelerating
parameters. To obtain schemes with memory, after the inclusion of these parameters in Traub’s
method, they have been designed using linear approximations or the Newton’s interpolation
polynomials. In both cases, the parameters use information from the current and the previous
iterations, so they define a method with memory. Moreover, they achieve higher order of convergence
than Traub’s scheme without any additional functional evaluations. The real dynamical analysis
verifies that the proposed methods with memory not only converge faster, but they are also more
stable than the original scheme. The methods selected by means of this analysis can be applied
for solving nonlinear problems with a wider set of initial estimations than their original partners.
This fact also involves a lower number of iterations in the process.

Keywords: nonlinear dynamics; iterative methods with memory; multidimensional dynamics;
accelerator parameter

1. Introduction

Finding the solution of a nonlinear equation f (x) = 0 has been and still is present in many fields
of Technology and Science. Because many of these equations cannot be solved analytically, the solution
of this kind of problems is approximated by using iterative methods. Among them, the best-known is
Newton’s scheme, with quadratic convergence under some conditions.

The role of iterative processes for solving nonlinear problems of many branches of science and
engineering has increased exponentially in recent years. This is due to the applicability of these
algorithms to real life problems. For instance, Shacham et al. [1,2], described the fraction of the
nitrogen-hydrogen feed that gets converted to ammonia (this fraction is known as fractional conversion)
in the form of nonlinear scalar equation. On the other hand, Shacham [3] described the fractional
conversion in a chemical reactor also by using a scalar equation. Moreover, Shacham and Kehat [4]
gave several examples of real life problems which are modeled by means of nonlinear scalar equation
such as: chemical equilibrium calculations problem, energy or material balance problem in a chemical
reactor problem, isothermal flash problem, azeotropic point calculation problem, calculation of gas
volume from Beattie Bridgeman problem, adiabatic flame temperature problem, liquid flow rate in
pipe problem, pressure drop in a converging diverging nozzle problem, etc.

There is an extensive literature related to iterative methods for solving nonlinear equations.
The design of new efficient methods is an ongoing issue for scientists. Recently, this design goes
hand to hand with the dynamical analysis [5–9], allowing the knowledge of the stability of the
methods involved.

Mathematics 2020, 8, 274; doi:10.3390/math8020274 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9116-2870
https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0002-7903-8591
https://orcid.org/0000-0002-9893-0761
http://www.mdpi.com/2227-7390/8/2/274?type=check_update&version=1
http://dx.doi.org/10.3390/math8020274
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 274 2 of 16

Kung and Traub conjectured in [10] that iterative methods without memory which use d functional
evaluations per iteration cannot have order of convergence higher than 2d−1. The inclusion of the
memory in the iterative methods is a powerful technique, since it increases the order of convergence
of the method without adding new functional evaluations. Traub designed the first method with
memory [11] based on the Steffensen’s one [12], increasing the order of convergence from 2 to 2.41.
Several authors have modified the iterative methods to include memory, as done in [13] for methods
with derivatives, or [14–16] for derivative-free ones.

In this work, we focus on the order of convergence of two Traub-type methods when we modify
its iterative expression to obtain methods with memory. Moreover, the dynamical analysis is performed
in a similar way as done in [17–20].

To analyze the order of convergence of each method with memory, we use the following result [21]:

Theorem 1. Let ϕ be an iterative method with memory that generates a convergent sequence {xk} of
approximations of a zero α of function f . Let us assume a nonzero constant τ and positive numbers pi,
i = 0, 1, . . . , m, such that

|ek+1| ≤ τ
m

∏
i=0
|ek−i|pi

holds. Then, the R-order of convergence of ϕ satisfies

OR(ϕ, α) ≥ p,

being p the only positive root of the polynomial

pm+1 −
m

∑
i=0

pi pm−i.

The rest of this manuscript is organized as follows. In Section 2, the basic concepts of dynamics for
both one-dimensional and multidimensional real cases are remembered, since the analysis of iterative
methods with memory requires the multidimensional dynamics for real variable. Based on Traub’s
method, Section 3 collects the construction of two new methods with memory. The first scheme needs
two previous iterations, while the second one also needs an intermediate point. The convergence of
the methods without and with memory is also performed. To analyze the stability of the introduced
methods, Section 4 is devoted to the dynamical study. Finally, some discussion and conclusions about
the results are presented in Section 5.

2. Real Dynamics

The study of the dynamical properties of the rational operator associated with an iterative scheme
on low degree polynomials, gives interesting information about the stability of this method. This study
is usually carried out applying tools of complex dynamics. However, as stated in [22], the knowledge
of the complex dynamics is not included in the study of the real dynamics, since the behavior can
be different. Therefore, when we have an iterative method with memory, the fundamentals of the
complex dynamics can be applied, but they must be particularized for the real variable case.

The aim of this paper is to compare an iterative scheme without memory with other two schemes
with memory that have been obtained from the first one. Then, we will focus on tools of real
dynamics distinguishing the one-dimensional case, used for real dynamics without memory, from the
multidimensional case, used in real dynamics of methods with memory.

When an iterative method is applied on a nonlinear equation f (x) = 0, we obtain a rational
function whose dynamics are unknown. Now we recall some basic concepts of real dynamics for the
one-dimensional case. To expand these contents see, for example [23,24].

Let R : R −→ R be the rational function obtained when an iterative scheme is applied on a
polynomial f (x). Then, the orbit of a point x0 ∈ R is given by {x0, R(x0), R2(x0), . . .}. A fixed point xF
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of R satisfies R(xF) = xF. It is called strange fixed point when it does not coincide with a root of f (x).
Moreover, a point x0 is a T-periodic point when RT(x0) = x0 but Rt(x0) 6= x0, t < T, where T, t ∈ N.
A fixed point is T-periodic with T = 1.

The stability of the fixed points depends on the multiplier of the fixed point, |R′(x)|, when R′ denotes
the derivative of function R. Therefore, if xF ∈ R is a fixed point of R, it is called attracting when
|R′(xF)| < 1; repelling if |R′(xF)| > 1; superattracting if |R′(xF)| = 0; and neutral when |R′(xF)| = 1.
A critical point xC holds R(xC) = 0, and it is called free critical point when it is different from the roots
of f (x).

When xF is an attracting fixed point, we define the basin of attraction as the set of pre-images of
any order such that

A(xF) = {x0 ∈ R : Rn(x0) −→ xF, n −→ ∞}.

Iterative schemes which use two previous iterations to calculate the following iterate have the
general form xk+1 = h(xk−1, xk), k ≥ 1, being x0 and x1 two initial estimations. To carry out the
dynamical study of a method with memory, we need to build an associated discrete dynamical
system [17]. For this purpose, we consider the auxiliary function G : R2 −→ R2 defined as

G(xk−1, xk) = (xk, xk+1) = (xk, h(xk−1, xk)), k ≥ 1.

Please note that this definition can be easily adapted to schemes with memory which use more
than two previous iterations in each step.

As we did in the one-dimensional case, we recall on some dynamical concepts. A point (z, x) ∈ R2

is a fixed point of G when it satisfies G(z, x) = (z, x). So, it must verify z = x and x = h(z, x). When a
fixed point (z, x) does not agree with a root of f (x), it is called strange fixed point.

As in complex dynamics, the orbit of a point x0 ∈ R2 is composed of its successive images by G

{x0, G(x0), . . . , Gm(x0), . . .},

and its dynamical behavior can be classified depending on its asymptotical behavior. Hence, x0 ∈ R2

is a T-periodic point when GT(x0) = x0 but Gt(x0) 6= x0, for t < T.
The stability of the fixed points of G can be analyzed using the following result [25]:

Theorem 2. Let G : Rn −→ Rn be of class C2 and xT a T-periodic point. Let λ1, λ2, . . . , λn be the eigenvalues
of G′(xT), where G′ is the Jacobian matrix of G.

(a) If |λj| < 1, for j = 1, 2, . . . , n, then xT is attracting.
(b) If one eigenvalue λj0 has |λj0 | > 1, then xT is repelling or saddle.
(c) If |λj| > 1, for j = 1, 2, . . . , n, then xT is repelling.

Moreover, if |λj| 6= 1, for j = 1, 2, . . . , n, xT is hyperbolic. In particular, if there exists an eigenvalue
such that |λi| < 1 and another such that |λj| > 1, the hyperbolic point is called saddle point. Please
note that for T = 1, the T-periodic point is recalled as fixed point, and it is denoted by xF.

Finally, the basin of attraction of a T-periodic point xT is defined as:

A(xT) = {x0 ∈ Rn : Gm(x0) −→ xT, m→ ∞}.

3. Traub-Type Methods with Memory

The well-known Traub’s method [11] has the iterative expression
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yk = xk −
f (xk)

f ′(xk)
,

xk+1 = yk −
f (yk)

f ′(xk)
.

(1)

The next result shows the order of convergence of the method from its error equation.

Theorem 3. Let us consider a real function f : I ⊂ R −→ R, sufficiently differentiable in an open interval I.
If α ∈ I is a simple zero of f and x0 is near enough to α, then sequence {xk} generated by Traub’s method (1)
converges to α with order of convergence 3, being its error equation:

ek+1 = 2c2
2e3

k +O(e
4
k).

where ek = xk − α and cj =
f (j)(α)
j! f ′(α) , j ≥ 2.

Although in Traub’s scheme is not possible to increase the order of convergence, some changes
on its iterative expression allow us the inclusion of memory, obtaining methods with higher order
of convergence.

To improve the order in Traub’s method, we start by adding an accelerator parameter δ in the first
step of its iterative scheme, so we obtain:

yk = xk −
f (xk)

f ′(xk) + δ f (xk)
,

xk+1 = yk −
f (yk)

f ′(xk)
.

(2)

The order of convergence of the resulting family is set in the following result.

Theorem 4. Let us consider a real function f : I ⊂ R −→ R, sufficiently differentiable in an open interval I.
If α ∈ I is a simple zero of f and x0 is near enough to α, then the iterative family (2) converges to α with order of
convergence 3 for any value of parameter δ, being its error equation

ek+1 = 2c2(c2 + δ)e3
k +O(e

4
k), (3)

where ek = xk − α and cj =
f (j)(α)
j! f ′(α) , j ≥ 2.

Proof. By using Taylor series expansions, f (xk) can be expressed as

f (xk) = f ′(α)
[
ek + c2e2

k + c3e3
k + c4e4

k

]
+O(e5

k),

and its derivative
f ′(xk) = f ′(α)

[
1 + 2c2ek + 3c3e2

k + 4c4e3
k

]
+O(e4

k).

By using these expansions, we have

yk − α = ek −
f (xk)

f ′(xk) + δ f (xk)
= (c2 + δ) e2

k +
(
−2c2δ− 2c2

2 + 2c3 − δ2
)

e3
k +O(e

4
k),

and
f (yk) = f ′(α)

[
yk − α + c2(yk − α)2 + c3(yk − α)3]+O((yk − α)4)

= f ′(α)
[
(c2 + δ)e2

k +
(
−2c2δ− 2c2

2 + 2c3 − δ2) e3
k
]
+O(e4

k).
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Then, we obtain the following error equation

ek+1 = yk − α− f (yk)

f ′(xk)
= 2c2(c2 + δ)e3

k +O(e
4
k).

We study how to increase the order of the class by analyzing its error equation. If δ = −c2 =

− f ′′(α)
2 f ′(α)

the order increases in, at least, one unit. Unfortunately, α is not known. Therefore, we need to

approximate f ′(α) and f ′′(α) transforming the iterative schemes in other ones with memory.
If the following linear approximations are applied

f ′(α) ≈ f ′(xk), f ′′(α) ≈ f ′(xk)− f ′(xk−1)

xk − xk−1
, (4)

the accelerator parameter gets into

δk ≈ −
1
2

f ′(xk)− f ′(xk−1)

(xk − xk−1) f ′(xk)
. (5)

Then, we have an iterative scheme with memory whose order of convergence is analyzed below.
For simplicity, the Traub-type method with memory (2) with δk defined by (5) will be denoted by TM1.

Theorem 5. Let us consider a real function f : I ⊂ R −→ R, sufficiently differentiable in an open interval I.
If α ∈ I is a simple zero of f and x0 is near enough to α, then the iterative method TM1 converges to α with
order of convergence p ≈ 3.30, and its error equation is:

ek+1 = −3c2c3ek−1e3
k +O4(ek, ek−1),

whereO4(ek, ek−1) indicates that the sum of the exponents of ek and ek−1 in the rejected terms of the development
is at least 4.

Proof. From the error Equation (3), the following relation is satisfied

ek+1 ∼ 2c2(c2 + δk)e3
k +O(e

4
k).

By using Taylor series expansions, we have

f (xk) = f ′(α)
[
ek + c2e2

k + c3e3
k + c4e4

k
]
+O(e5

k),

f (xk−1) = f ′(α)
[
ek−1 + c2e2

k−1 + c3e3
k−1 + c4e4

k−1

]
+O(e5

k−1),

and
f ′(xk) = f ′(α)

[
1 + 2c2ek + 3c3e2

k + 4c4e3
k
]
+O(e4

k),

f ′(xk−1) = f ′(α)
[
1 + 2c2ek−1 + 3c3e2

k−1 + 4c4e3
k−1

]
+O(e4

k−1).

Therefore, the accelerator parameter is

δk = −1
2

f ′(xk)− f ′(xk−1)

(ek − ek−1) f ′(xk)

= −c2 −
3
2

c3ek−1 +

(
2c2

2 −
3
2

c3

)
ek + (3c2c3 − 2c4)ek−1ek − 2c4e2

k−1 + (−4c3
2 + 6c2c3 − 2c4)e2

k

+O3(ek, ek−1).
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By taking the lower order terms,

δk + c2 ∼ −
3
2

c3ek−1.

Then, we obtain

ek+1 ∼ 2c2

(
−3

2
c3ek−1

)
e3

k ∼ ek−1e3
k . (6)

Let the R-order of the method be at least p. Then it is satisfied

ek+1 ∼ Dk,pep
k ,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Analogously,

ek ∼ Dk−1,pep
k−1.

Then, we have
ek+1 ∼ Dk,p(Dk−1,pep

k−1)
p = Dk,pDp

k−1,pep2

k−1. (7)

In the same way, relation (6) satisfies

ek+1 ∼ ek−1(Dk−1,pep
k−1)

3 = D3
k−1,pe3p+1

k−1 . (8)

Finally, the exponents of ek−1 in (7) and (8) must be the same, so it is obtained the
following equation:

p2 = 3p + 1.

In the previous equation the only positive solution p ≈ 3.30 gives the order of convergence of
the method.

Based on Theorem 5, the inclusion of memory increases the order of convergence of the family,
since the order of convergence of (1) and (2) has lower values. In Section 4.2 the dynamical study of
this family is performed, to check the stability of its members.

Following an analogous way to proceed as in the TM1 case, two accelerating parameters δ1 and
δ2 are included in Traub’s original method (1) obtaining the iterative scheme

yk = xk −
f (xk)

f ′(xk) + δ1 f (xk)
,

xk+1 = yk −
f (yk)

f ′(xk) + δ2 f (xk)
, k = 0, 1, . . .

(9)

whose error equation is shown in the next result.

Theorem 6. Let us consider a real function f : I ⊂ R −→ R, sufficiently differentiable in an open interval I.
If α ∈ I is a simple zero of f and x0 is near enough to α, then the iterative family (9) has order of convergence 3,
for any values of parameters δ1 and δ2, and its error equation is:

ek+1 = (δ1 + c2)(δ2 + 2c2)e3
k +O(e

4
k), (10)

where ek = xk − α and cj =
f (j)(α)
j! f ′(α) , j ≥ 2.

Proof. By using Taylor series expansions around the root α, f (xk) is expressed as

f (xk) = f ′(α)
[
ek + c2e2

k + c3e3
k + c4e4

k

]
+O(e5

k),
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and its derivative
f ′(xk) = f ′(α)

[
1 + 2c2ek + 3c3e2

k + 4c4e3
k

]
+O(e4

k).

Using these expansions, we have

yk − α = ek −
f (xk)

f ′(xk) + δ1 f (xk)

= (c2 + δ1) e2
k +

(
−2c2δ1 − 2c2

2 + 2c3 − δ2
1

)
e3

k +O(e
4
k).

Expanding f (yk) around α, we obtain

f (yk) = f ′(α)
[
(c2 + δ1)e2

k + (−2c2δ1 − 2c2
2 + 2c3 − δ2

1)e
3
k

]
+O(e4

k).

Then, the error equation becomes

ek+1 = yk − α− f (yk)

f ′(xk) + δ2 f (xk)
= (δ1 + c2)(δ2 + 2c2)e3

k +O(e
4
k).

If we study how to increase the order of convergence of this class, we can easily verify that
if δ1 = −c2 and δ2 = −2c2 the order of convergence can increase, at least, up to 5. We need to
approximate f ′(α) and f ′′(α) and it could be done again by using linear approximations as in the
family TM1. However, if we want to get an order of convergence closer to 5 it is preferable to use
higher order approximations.

For this purpose, we use the Newton’s interpolation polynomial of second degree, set through
three available approximations xk, xk−1 and yk−1 to interpolate f . Denoted as N2(t; xk, xk−1, yk−1) =

N2(t), it is defined by

N2(t) = f (xk) + f [xk, xk−1](t− xk) + f [xk, xk−1, yk−1](t− xk)(t− xk−1). (11)

Now, if we set the approximations

f ′(α) ≈ N′2(xk), f ′′(α) ≈ N′′2 (xk),

we have the following accelerator parameters:

δ1,k ≈ −
1
2

N′′2 (xk)

N′2(xk)
, δ2,k ≈ −

N′′2 (xk)

N′2(xk)
. (12)

The Traub-type family with memory (9), taking the expression for the two accelerator parameters
in (12), is called TM2 method.

In the next theorem, we prove how much the order has increased with respect to Traub’s method.

Theorem 7. Let us consider a real function f : I ⊂ R −→ R, sufficiently differentiable in an open interval I.
If α ∈ I is a simple zero of f and x0 is near enough to α, then the iterative method TM2 converges to α with
order of convergence p ≈ 3.56.

Proof. From expression (10), we have the following relation

ek+1 ∼ (δ1,k + c2)(δ2,k + 2c2)e3
k . (13)
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Let us denote ek,y = yk − α, for all k. Let N2(t) be defined in (11) and the following Taylor
developments in terms of the errors in each iterative step of the method:

f (xk) = f ′(α)
[
ek + c2e2

k + c3e3
k + c4e4

k

]
+O(e5

k),

f (xk−1) = f ′(α)
[
ek−1 + c2e2

k−1 + c3e3
k−1 + c4e4

k−1

]
+O(e5

k−1),

f (yk−1) = f ′(α)
[
ek−1,y + c2e2

k−1,y + c3e3
k−1,y + c4e4

k−1,y

]
+O(e5

k−1,y).

(14)

Using these developments in N2(t), evaluating the derivatives of N2(t) in the point xk and
rejecting the terms of order higher than 0 of ek, we obtain:

δ1,k = −c2 − c3ek−1,y − c3ek−1 − c4e2
k−1,y − c4e2

k−1 + (−c2c3 − c4)ek−1,yek−1 +O3(ek−1, ek−1,y).

From the previous calculation the following relations are satisfied:

δ1,k + c2 ∼ ek−1

δ2,k + 2c2 = 2(δ1,k + c2) ∼ 2ek−1 ∼ ek−1.
(15)

On the other hand, let the R-order of the method be at least p. So, it is satisfied

ek+1 ∼ Dk,pep
k

where Dk,p tends to Dp, the asymptotic error constant, when k→ ∞.
In the same way,

ek ∼ Dk−1,pep
k−1 (16)

so
ek+1 ∼ Dk,p(Dk−1,pep

k−1)
p = Dk,pDp

k−1,pep2

k−1. (17)

Using relations (15) and (16), in (13):

ek+1 ∼ e2
k−1e3

k ∼ e2
k−1(Dk−1,pep

k−1)
3 ∼ e3p+2

k−1 (18)

Finally, if we match the exponents of (17) and (18), the following equation is obtained:

p2 = 3p + 2

In this problem, the only possible solution for the previous equation is

p ≈ 3.56.

Then, TM2 method has order of convergence p ≈ 3.56.

4. Stability Analysis

4.1. Real Dynamics of Traub’s Method

In [5], Amat et al. carry out a dynamical study about Traub’s method when it is applied
to polynomials of second and third degree. By taking this study on quadratic polynomials as a
reference, we construct and analyze the bifurcation diagrams and the dynamical lines of this method.
This analysis allow us to compare the dynamical features of Traub’s method with the TM1 and TM2
corresponding ones.

Consider the next result that allows the generalization of dynamic study in some iterative schemes.
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Theorem 8 (Scaling theorem). Let f (x) be an analytic function, and let A(x) = αx + β, with α 6= 0, be an
affine map. Let g(x) = λ( f ◦ A)(x), with λ 6= 0. Then, the fixed-point operator M f is analytically conjugated
to Mg by A, i.e., (A ◦Mg ◦ A−1)(x) = M f (x).

In addition, it is possible to analyze the dynamics of a family of polynomials with just the analysis
of a few cases.

Theorem 9. Let q(x) = a1x2 + a2x + a3, a1 6= 0, be a generic quadratic polynomial with simple roots.
Then q(x) can be reduced to p(x) = x2 + c, where c = 4a1a3 − a2

2, by means of an affine map. This affine
transformation induces a conjugation between Mq and Mp, the fixed-point operators corresponding to
polynomials q(x) and p(x), respectively.

Traub’s method satisfies the Scaling Theorem, as proved in [5]. Moreover, according to Theorem 9,
the study of the family of polynomials pc(x) = x2 + c can be generalized to any quadratic polynomial.

If we apply Traub’s method on pc(x) = x2 + c, c ∈ R, we obtain the fixed-point operator
Mc : R −→ R which depends on c:

Mc(x) = − c2 + 6cx2 − 3x4

8x3 .

Solving Mc(x) = x we get for all c < 0 two fixed points, xF
1 (c) = −

√
−c and xF

2 (c) =
√
−c,

corresponding to the roots of pc(x), which are superattracting. Moreover, xF
3 (c) = −

√
−c√
5

and

xF
4 (c) =

√
−c√
5

are two repelling strange fixed points of Mc when c < 0, since |M′c(xF
3,4(c))| = 6.

By solving the equation M′c(x) = 0, we get that xC
1 (c) = −

√
−c and xC

2 (c) =
√
−c are the only

critical points of Mc, so Traub’s method does not have any free critical points.
We have plotted in Figure 1 the bifurcation diagrams for the fixed points of Mc. Figure 1a

represents the superattracting fixed points xF
1 (c) and xF

2 (c), while Figure 1b represents the strange
fixed points xF

3 (c) and xF
4 (c). The plots have been generated by iterating Traub’s method taking as

initial estimation the fixed points with a small perturbation. For each c, the successive values of xk are
plotted from the iterate #500 to #700 in order to represent the advanced state of the orbit of each initial
guess. The bifurcation diagrams show values of c where the method has more stability. In all cases,
when c > 0 there is no point because they are complex, so it is verified that c cannot take positive
values for any fixed point. As xF

1,2(c) are superattracting, in Figure 1a all the points converge to one of
the two roots. In Figure 1b it is observed the same behavior because xF

3,4(c) are repelling, so, there are
not strange attracting points.

As represented in [19], the dynamical lines of Traub’s method when it is applied on pc(x) are
shown in Figure 2 for different values of c. Using the software MATLAB R© 2017b, the interval
x0 ∈ [−5, 5] has been divided in 500 points and they have been used as initial estimations to iterate
Traub’s method. When a point in the interval converges to one of the roots of pc(x) it is painted in
orange or blue. Orange points correspond to the basin of attraction of xF

1 (c), while the blue ones belong
to xF

2 (c). It is painted in black the points that do not converge to any root. The stopping criteria are 50
maximum of iterations and a difference between two consecutive iterations of 10−3.
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Figure 1. Bifurcation diagrams for the fixed points of Traub’s method.
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x0

(a) c = −20

-30 -20 -10 0 10 20 30

x0

(b) c = −10
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x0

(c) c = −2
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x0

(d) c = 2

Figure 2. Dynamical lines of Traub’s method on pc(x) = x2 + c for different values of c. Color basins:
xF

1 (c) orange, xF
2 (c) blue, no convergent points in black.

The convergence plane [26] gathers into one graphic the complete behavior of every member of a
family of one-dimensional iterative methods. Figure 3 shows the convergence plane of Traub’s method.
The basins of attraction of the fixed points have been colored in blue or orange taking values for the
parameter c ∈ [−30, 0] and initial estimations for the method in x0 ∈ [−30, 30]. As an added value, the
superattracting fixed points and the strange fixed points are also represented with black and white
lines, respectively, since they depend on the value of c.
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Figure 3. Convergence plane of Traub’s method. Color basins: xF
1 (c) orange, xF

2 (c) blue, no convergent
points in black

For every value of c < 0, each initial guess converges to a superattracting fixed point. Almost
every initial guess of x0 > 0 tends to xF

1 (c), and almost every initial guess of x0 < 0 tends to xF
2 (c).

There is a thin region of initial estimations that converge to the further superattracting fixed point.
The width of this region is set by the value of the strange fixed points xF

3 (c) and xF
4 (c).

4.2. Multidimensional Real Dynamics of TM1 Method

From now on, we apply TM1 scheme on the family of polynomials pc(x) = x2 + c. As TM1 is a
method with memory, its fixed-point function depends on the two previous iterates, xk and xk−1, that
will be denoted by x and z, respectively. Then the fixed-point function is:

Rc(z, x) = (x, g(z, x)) =
(

x,−4x2z4 + 8cx2z2 − 9x6 + 15cx4 − 3c2x2 + c3

2x(c− 3x2)2

)
.

Since a fixed point must satisfy z = x and x = g(z, x), the fixed points are these x such that
Rc(x, x) = (x, x). Solving this equation, the only fixed points for c ≤ 0 are the roots of pc(x),
xF

1,2(c) = (±
√
−c,±

√
−c). When c > 0 all the fixed points are complex, so they are out of this study.

To analyze the behavior of the fixed points, let us consider the Jacobian matrix of Rc(z, x) at the
point xF

1(c) = (−
√
−c,−

√
−c):

Rc
′(−
√
−c,−

√
−c) =

(
0 1
0 0

)
.

The eigenvalues associated with this fixed point are λ1 = λ2 = 0. The same result is obtained with
the fixed point xF

2(c) = (
√
−c,
√
−c). Then, by applying Theorem 2, the two fixed points are attracting.

In Figure 4 some dynamical planes associated with TM1 method for different c are shown.
The implementation of these dynamical planes has followed a similar structure as [27] presents. It has
been used a mesh of 500 × 500 estimations to iterate the method. Finally, each point is painted
according to the root that it has converged to: blue for (−

√
−c,−

√
−c), orange for (

√
−c,
√
−c), and

black in other case. The stopping criteria are 50 maximum of iterations and a difference between two
consecutive iterations of 10−3. An expanding behavior of the basins of attraction can be seen when the
value of c decreases. Let us remark that there is not any periodic orbit in the black region.
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Figure 4. Dynamical planes of TM1 method on pc(x) = x2 + c for different values of c. Color basins:
xF

1 (c) orange, xF
2 (c) blue, no convergent points in black

4.3. Multidimensional Real Dynamics of TM2 Method

As stated in Section 2, methods with memory that use two previous iterates have the expression
xk+1 = g(xk−1, xk). However, as TM2 method uses the interpolation polynomial N2(t; xk, xk−1, yk−1),
the calculation of the estimation xk+1 requires the knowledge of xk, xk−1 and yk−1. Therefore, the
general expression of a method with memory that uses three previous points is

xk+1 = g(xk−1, yk−1, xk), k ≥ 1,

being g its fixed-point function. Moreover, its fixed-point operator G : R3 −→ R3 is defined by
the expression

G(xk−1, yk−1, xk) = (xk, yk, xk+1) = (xk, yk, g(xk−1, yk−1, xk)), k = 1, 2, . . . , (19)

where x0, y0 and x1 are the initial approximations.
It will be denoted x = xk, z = xk−1, xy = yk and zy = yk−1, for all k. Then, (19) defines a discrete

dynamical system whose fixed points (z, zy, x) ∈ R3 must verify

z = zy = x, x = g(z, zy, x). (20)

To compare the stability of TM2 with TM1 and Traub (1) methods, the family of polynomials
pc(x) = x2 + c is used again. The fixed-point operator of TM2 scheme, when it is applied on pc(x), is

Gc(z, zy, x) =
(

x, xy,−2x(−2c3 + 5c2x2 − 8cx4 + x6)

(c− 3x2)2(c− x2)

)
. (21)

Since the conditions (20) are imposed to Gc in order to obtain a real-valued function, the result is a
one-dimensional operator G̃c(x). The analysis of the stability of its fixed points requires the dynamical
analysis. For this purpose, the one-dimensional operator gets the expression

[Gc(z, zy, x)]|z=zy=x
= G̃c(x) = −2x(−2c3 + 5c2x2 − 8cx4 + x6)

(c− 3x2)2(c− x2)
.
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The fixed points of G̃c(x) are the roots of pc(x), xF
1 (c) = −

√
−c and xF

2 (c) =
√
−c, for c < 0. In

addition, xF
3 = 0 is a strange fixed point. When c > 0, all the fixed points of G̃c(x) are complex, so they

are out of the real dynamics analysis. As the Jacobian matrix is of the form

Gc
′(z, zy, x) =

0 0 1
0 0 0
0 0 G̃′c(x)

 ,

the stability of the fixed points can be checked in G̃′c(x), which is given by

G̃′c(x) =
2(2c− 3x2)(c + x2)4

(c− 3x2)3(c− x2)2 .

By evaluating the fixed points in |G̃′c(x)|, xF
1 (c) and xF

2 (c) are superattracting, and xF
3 is repelling,

because |G̃′c(x)| = 4.
Computing G̃′c(x) = 0, four critical points are obtained: the roots of pc and two free critical points,

xC
1 (c) = −

√
2
3 c and xC

2 (c) =
√

2
3 c, when c > 0.

Following the same procedure as in Traub’s method, in Figure 5 the bifurcation diagrams for the
fixed points have been plotted. On the one hand, Figure 5a confirm that xF

1,2(c) are superattracting
fixed points when c < 0. On the other hand, Figure 5b illustrates that xF

3 is a repelling point because if
it is taken with a small perturbation as an initial estimation of the method, the successive iterates do
not converge to it and they converge to the roots of pc(x).

-5 -4 -3 -2 -1 0 1

c

-2

-1

0

1

2

x k

(a) xF
1 (c) (green), xF

2 (c) (blue)

-5 -4 -3 -2 -1 0 1

c

-2

-1

0

1

2

x k

(b) xF
3

Figure 5. Bifurcation diagrams for the fixed points of TM2 method.

The parameter lines of a method show the final orbit of each critical point depending on c. As each
point of the lines represents a particular method, they allow the choice of the value of the parameter
that guarantees convergence to any of the roots, i.e., the selection of the more stable methods of the
family. TM2 method only has critical points when c > 0. However, in this case there are no fixed points.
For this reason, the parameter lines in TM2 method do not give us information about the stability of
the family.

Figure 6 shows the dynamical lines of TM2 method when it is applied on pc(x) varying the value
of c. The parameters of the representation follow the same structure as the dynamical lines of Figure 2.
Figure 6a–c show that for every c < 0, the orbit of each initial x0 converges to a root of pc(x). Moreover,
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negative initial guesses converge to xF
1 (c) and the positive ones converge to xF

2 (c). As expected, TM2
method does not converge when c is positive as shown in Figure 6d.

-30 -20 -10 0 10 20 30

x0

(a) c = −20

-30 -20 -10 0 10 20 30

x0

(b) c = −10

-30 -20 -10 0 10 20 30

x0

(c) c = −2

-30 -20 -10 0 10 20 30

x0

(d) c = 2

Figure 6. Dynamical lines of TM2 method on pc(x) = x2 + c for different values of c. Color basins:
xF

1 (c) orange, xF
2 (c) blue, no convergent points in black.

To analyze the dynamical behavior of the complete family, Figure 7 plots the convergence plane
of TM2 method. According to the notation followed in Figure 3, now there is a white line which
represents xF

3 . The strange fixed point splits the plane into two half-planes, each one containing a
different basin of attraction.

o -+-_____ ...__ _____ ,...._ ____ ....,,. 

-10

t.) - 5

-25

-30 --------.------.--------

-30 -20 -10 10 20 30 

Figure 7. Convergence plane of TM2 method. Color basins: xF
1 (c) orange, xF

2 (c) blue, no convergent
points in black

5. Conclusions

In this paper, two Traub-type iterative schemes are designed by introducing accelerating
parameters in the iterative expression of Traub’s scheme. The use of memory in these parameters
originates TM1 and TM2 methods, whose convergence analysis and stability have been carried out to
compare them with Traub’s scheme.

In the dynamical study, Traub and TM1 methods have strange fixed points but their bifurcation
diagrams show that they are repelling. In addition, it can be checked in the bifurcation diagrams that
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the roots of pc(x) are superattracting points because the iterates, although they are close to a strange
fixed point, converge to one of them.

In the analysis of the order of convergence in Traub, TM1 and TM2 methods, the use of memory
guarantees higher order of convergence than the original method without any additional functional
evaluations. Moreover, the convergence plane in Figure 7 verifies that methods with memory have
greater stability than the corresponding ones without memory.

These good properties shown, as in order of convergence as in stability, of the proposed methods
allows application of them on practical problems relaxing the usually strong conditions on the initial
estimations used.
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