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Abstract: The mortality structure of a population usually reflects the economic and social
development of the country. The purpose of this study was to identify moments in time and
age intervals at which the observed probability of death is substantially different from the pattern of
mortality for a studied period. Therefore, a mortality model was fitted to decompose the historical
pattern of mortality. The model residuals were monitored by the T2 multivariate control chart to
detect substantial changes in mortality that were not identified by the model. The abridged life tables
for Colombia in the period 1973–2005 were used as a case study. The Lee–Carter model collects
information regarding violence in Colombia. Therefore, the years identified as out-of-control in the
charts are associated with very early or quite advanced ages of death and are inversely related to the
violence that did not claim as many victims at those ages. The mortality changes identified in the
control charts pertain to changes in the population’s health conditions or new causes of death such
as COVID-19 in the coming years. The proposed methodology is generalizable to other countries,
especially developing countries.
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1. Introduction

The analysis of mortality and its temporal trends allows a country to understand the dynamics of
its population and provides a fundamental guide for establishing economic and social policy. There are
a wide variety of mortality models to understand those dynamics. According to Alexopoulos et al. [1],
the best-known mortality model, and the most successful in terms of generating extensions, is the
Lee–Carter (LC) model. This model was built to decompose the historical pattern, obtaining the trends
of mortality and its relationship with the population’s age.

The LC model proposed in 1992 by Lee and Carter [2] and its different extensions or variants have
been applied for modeling and forecasting mortality in insurance and population studies. In this sense,
most applications have been done in developed countries. Callot et al. [3] proposed a modification of
the LC model that facilitates the separation of the deterministic and stochastic dynamics; and empirical
illustrations of mortality data for the United States, Japan, and France were provided to demonstrate
the advances of the modified model. Carfora, Cutillo, and Orlando [4] proposed a quantitative
comparison of the leading mortality models (including the basic LC model) to evaluate both their
goodness of fit and their forecasting performance on Italian population data. Booth et al. [5] compared
five variants or extensions of the Lee–Carter method for mortality forecasting for populations of 10
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developed countries (Australia, Canada, Denmark, England, Finland, France, Italy, Norway, Sweden,
and Switzerland). Salhi and Loisel [6] proposed a multivariate approach for forecasting pairwise
mortality rates of related populations and realized a comparison with the classical LC model for data
for England and Wales. Recently, some research proposed alternative procedures to the classic LC
model to obtain the mortality rate. Postigo-Boix et al. [7] presented polynomial functions where the
amount of data required to establish the mortality rate is considerably reduced.

There are also successful applications of the LC model and its different versions for the mortality
data of Central America and South America. Examples include the works by Andreozzi [8] and
Belliard and Willians [9] for Argentina; García-Guerrero [10] for Mexico; Lee and Rofman [11] for Chile;
Aguilar [12] for Costa Rica; and Díaz et al. [13] for Colombia. These papers show the usefulness of the
LC models in analyzing and modeling mortality in developing countries.

As noted, until now, most of the papers have focused on modeling the dynamics of mortality.
However, the Lee–Carter model will capture the overall pattern of mortality behavior of the population
in the age profile and over time with an excellent or regular fit. The analyst can describe this pattern and
the changes in mortality when analyzing the estimates obtained for the model parameters. Typically,
the model does not correctly reproduce observed mortality, and some of the information on that
phenomenon may remain in the residuals vector. It is precisely here that the control chart plays an
important role: attempting to discover some other substantial changes in mortality behavior which
have not already been collected by the model.

Therefore, in this paper, we go beyond modeling mortality and propose the use of the residuals of
LC models to monitor and identify situations of substantial change in the mortality trend. The purpose
of the study was to determine whether death probability changed significantly over a studied period.
Therefore, times (years) and age intervals with death probabilities which significantly differ from the
trend pattern determined by the LC models were identified. For this task, we used a T2 control chart
implemented on the residuals of LC models complemented with the Mason, Tracy, and Young (MTY)
decomposition [14] to detect the age range where the change occurred.

A control chart is a straightforward graphical tool, initially proposed by Shewhart in 1927 [15],
to verify the temporal stability of a parameter of interest in the probability distribution of a random
variable. In this way, the univariate control chart monitors a single variable. Then, in 1947,
Hotelling [16] extended the application of control charts for simultaneous control of two or more
random variables, creating the T2 multivariate control chart.

Although control charts were initially proposed to monitor industrial processes (statistical
quality control), many papers evidenced their application to other areas of knowledge. For example,
in medicine, Woodall [17] mentioned that control charts are linked to health care surveillance.
The recent review work of Vetter and Morrice [18] proposed the use of control charts as a tool
that allows health professionals to understand and communicate performance data and improve
quality for patient care, anesthesiology, perioperative medicine, critical care, and pain management.
Some papers report their use to monitor hospital performance indicators [19], clinical variables in
patients [20], and chronic and infectious diseases [21–23], and for monitoring the effectiveness of
surgical procedures [24].

Additionally, the literature has evidenced the use of control charts for mortality data.
Chamberlin et al. [25] proposed using control charts to determine whether the severity of illnesses
of patients and mortality rates changed significantly over the five years from 1986 to 1990. Marshall
and Mohammed [26] used control charts to monitor mortality rates after coronary artery bypasses.
More recently, Urdinola and Rojas-Perilla [27] proposed to use this approach to identify the
under-registration of adult mortality in Colombia.

Studies on mortality are important for countries like Colombia, considering that it is in the group
of Latin American countries with the highest mortality rates [28]. In addition, its rapid increase in
violent crime over the last century must be taken into account. According to Gaviria [29], the homicide
rate began its upward trend in the late 1970s and had more than tripled by the early 1990s. For this
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period, the homicide rate in Colombia was three times those of Brazil and Mexico, seven times that of
the United States and 50 times that of a typical European country.

In our context, the fitted mortality models for abridged life tables are designed to simultaneously
predict a vector of mortality rates. Therefore, each time a prediction is made, a vector of estimated
mortality rates is obtained, one for each age interval, and consequently, a residual vector is generated.
The residuals measure the departures between the current mortality rate and the expected rate
according to the model. A high residual indicates that the current mortality does not correspond to the
observed trend. Consequently, it is suspected that there is a change in the population’s mortality for a
specific age range.

According to this, life table monitoring is a multivariate control problem which consists of
simultaneously monitoring p random variables (each observed residual is a random variable).
Therefore, we propose to monitor the residuals of the mortality model with a T2 control chart, and only
for the years identified as out-of-control, use the first term of the MTY decomposition to identify the
age range involved in the out-of-control signal.

The proposed methodology is illustrated with the mortality data of Colombia, obtained from
“The Latin America Human Mortality Database“ [30]. Primarily, Colombia has presented a series
of demographic phenomena in the last 60 years, such as the progressive increase of the population,
which is reflected by a change of the population pyramid, and an increase in life expectancy, which is
primarily associated with the drop in mortality rate and the aging of the population. Although the
methodology is illustrated through this particular case, our proposal is standard and generalizable to
other similar contexts that require sociodemographic explanations of the “anomalies“ detected with
control charts.

This paper has the following structure: Section 2 presents the methodology, including definitions
of life tables, Lee–Carter models, and standardized deviance residuals, and descriptions of the control
charts that were used and the MTY decomposition. Section 3 describes Colombian mortality data,
and the results obtained in the monitoring of those data; and Section 5 provides the main conclusions
of the paper.

2. Methodology

In this section, we briefly describe the life tables and Lee–Carter (LC) and Lee–Carter with
two terms (LC2) models. Then, more carefully, we present the T2 Hotelling chart for individual
observations and the MTY decomposition. These theoretical elements support our proposal to study
substantial changes in the mortality of developing countries.

2.1. Life Tables

Period life tables, also known as mortality tables, are a demographic analysis tool that summarizes
the information of mortality incidence for a population for a given period. Life tables are classified
according to the length of the age interval in which the data are presented: “complete“ when containing
data for every single age from birth to the last applicable age, and “abridged“ when containing data
at age intervals, generally 5 years of age for most of the age range [31]. The basic life table functions
are mx, qx, lx, dx, Lx, Tx, and ex. However, the life table does not always publish all of these functions.
The interpretation of the life table functions in a complete table would be as follows [32]:

• The death rate or mortality rate mx; the occurrence of deaths expressed per person-year at each
age x.

For a fictitious cohort with an incidence of mortality according to the mortality rates that have
been defined:

• The probability of death qx is the likelihood that deaths occur in a certain period at each age x.
• The number of survivors lx is the number of individuals from the fictitious cohort that reach the

age of x.
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• The number of deaths dx is the number of deaths within the fictitious cohort at each age x.
• The stationary population Lx is the total time lived for all individuals of the fictitious generation

that are x years old.
• The total years lived Tx is the total amount of years lived for all individuals of the fictitious

generation aged x or more.
• The life expectancy at birth ex is the average number of years that survivors have left to live at

age x.

The abridged life table shows estimates based on mortality data from vital statistics and population
size obtained from population censuses. Censuses are conducted approximately every 10 years in
some countries, such as Argentina, Brazil, and Mexico, among others, and some censuses are carried
out with intervals longer than 10 years, as is the case in Colombia [33]. Developing countries, due to
misstatements regarding vital registrations related to age during mortality collection, often build the
mortality table with age intervals.

In an abridged life table, the interpretation of the functions is similar to the case of the complete
life table, except that the nmx, nqx, ndx, and nLx values relate to age interval [x, x + n):

• The probability of death nqx is calculated from the death rate nmx:

nqx =
n · nmx

1 + (n− nax) · nmx
, where ax is the average number of years lived by individuals dying in

the age interval and n is the amplitude of the age interval.
• The number of deaths ndx is the number of individuals from the fictitious generation who died

during the age interval [x, x + n).
• The stationary population nLx is the total time lived for all individuals of the fictitious generation

of [x, x + n) years old.

The intervals commonly used to group ages in an abridged life table are
[0; 1); [1; 5); [5; 10); [10; 15); . . . ; until the final open interval, because usually preferred ages are
those which end in multiples of five in a declaration of death. To ensure a broader view of the
dynamics of mortality in a population, it is additionally necessary to visualize the temporal trend of
the incidence of mortality. For this, dynamic life tables are used, which correspond to the collection of
period life tables, complete or abridged, obtained for each year of a time interval. Hereafter, the total
number of age intervals for each period will be denoted by p, and the total number of periods analyzed
will be denoted by m.

2.2. Lee–Carter Models

Lee and Carter [2] proposed a simple method for modeling and forecasting mortality: a model of
age-specific death rates with a time component and a fixed relative age component, and a time series
model (an autoregressive integrated moving average (ARIMA)) of the time component. This method
offers three significant advantages: it is a parsimonious demographic model combined with standard
statistical time-series methods, forecasting is based on persistent long-term trends, and probabilistic
confidence intervals are provided for the forecasts [34].

The Lee–Carter model (LC) expresses the age-specific death rate as a measure depending on both
the age of individuals, x, and the time period, t. The classical LC model is expressed as follows:

ln (mxt) = ax + bxkt + εxt, (1)

where ax is an age-specific parameter that is independent of time (it describes the general mortality
profile according to age), bx is an age-specific parameter that represents how rapidly or slowly mortality
at each age varies when the general level of mortality changes, and kt is the general mortality index
which depends on time and reflects the general level of mortality. The errors εxt are assumed to be
independent, identically distributed N(0, σ2) random variables.
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The LC model has a structure which is invariant under some linear transformations of the
parameters. For example, for any value of constant c, it is verified that

(ax, bx, kt) 7→ (ax, bx/c, ckt)

(ax, bx, kt) 7→ (ax + cbx, bx, kt − c).

To ensure the identifiability of the model, Lee and Carter [2] proposed including the following
constraints in the model: ∑x bx = 1 and ∑t kt = 0.

A modification to the Lee–Carter model, called the Lee–Carter model with two terms (LC2),
was developed by Renshaw and Haberman [35]. They indicated that the interaction between age and
time can be better captured by adding terms to the LC model. The LC2 model is expressed as follows:

ln (mxt) = ax + b1
xk1

t + b2
xk2

t + εxt. (2)

In this paper, we adjust Equations (1) and (2) with the adequacy proposed by Debón, Montes and
Puig [36], who suggest modeling the logit death probability qxt considering a binomial distribution for
the death rate. Thus, the LC model is expressed as:

logit(qxt) = ln
(

qxt

1− qxt

)
= ax + bxkt + εxt

with constraints ∑x bx = 1, kt0 = 0; and the LC2 model

logit(qxt) = ax + b1
xk1

t + b2
xk2

t + εxt

with constraints ∑x bi
x = 1 (i = 1, 2) and k1

t0
= k2

t0
= 0. Details about this fitting using R can be found

in Debón et al. [37]. Finally, the LC models are based on historical mortality patterns, and if the trends
do not continue to hold, then the models will no longer be valid [38].

2.3. Standardized Deviance Residuals

Residuals are the basis of most diagnostic methods and are often used to analyze the goodness of
fit of mortality models. However, as we mentioned before, residuals can identify moments in time
and age intervals at which the observed probability of death is substantially different from the pattern
of mortality for a period of time. With this objective, we propose using a Hotelling T2 multivariate
control chart.

In the goodness-of-fit analysis of mortality models, deviance residuals are often used [36,39,40],
taking into account that patterns in the residuals could indicate that the model does not adequately
describe all the characteristics of the data [41]. The deviance residuals based on a binomial distribution
for the number of deaths at age x are as follows:

rxt = sign(dxt − d̂xt)

√
2
φ̂

[
dxt log

(
dxt
ˆdxt

)
+ (lxt − dxt) log

(
lxt − dxt

lxt − d̂xt

)]
,

where dxt denotes the observed number of deaths, d̂xt is the deaths estimated by the model, lxt is the
number of persons living at the beginning of the indicated age interval, and φ̂ is an empirical scaling
factor estimated by the expression

φ̂ =
D(dxt, d̂xt)

(m · p)− ν
.

Further, D(dxt, d̂xt) is the total model deviance, m · p is the number of observations in the data,
and ν is the effective number of parameters [41].
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The deviance residuals are usually symmetrical, but their variance and scale are not standard.
Therefore, to correct these situations, deviance residuals are usually standardized.

The standardized deviance residuals are defined by

strxt =
rxt√

(1− hxt)

where hxt is the leverage, the distance between an observation (x, t) and the center of the observations.
The standardized deviance residuals are distributed by a standard normal distribution with

unit variance when the fitted model is satisfactory. For this reason, the values of these residuals
will generally lie between −2 and 2 [42]. Moreover, these residuals satisfied the assumptions of the
Hotelling T2 control charts. Given the above, the standardized deviance residuals were used to monitor
the mortality trend.

2.4. Hotelling T2 Control Charts for Standardized Deviance Residuals

The control charts are useful to determine whether a process has been in a state of statistical
control by examining historical data [43]. Specifically, the multivariate control charts are used for
process-monitoring problems in which several related variables are of interest.

Hotelling [16] proposed the T2 control chart to meet the objective of simultaneous monitoring
of p ≥ 2 random variables, which generally have some non-negligible degree of association.
Under the assumption that the vector X = (X1, X2, . . . , Xp)′ follows a p-variate normal distribution,
X v Np(µ, Σ), with known mean vector µ = (µ1, µ2, . . . , µp)′ and covariances matrix Σ, the statistic:

T2 = (X − µ)′Σ−1(X − µ) (3)

follows a chi-square distribution with degrees of freedom p.
The T2-chart is then a chart of the statistic T2 vs. the observation number, with an upper control

limit (UCL) located at χ2
(α,p), which represents the upper α percentile of the chi-square distribution.

Here, α is the desired type I error probability.
Since µ and Σ are often unknown, these parameters should be estimated from a reference sample

composed by m observations of X. The sample mean vector (X̄) and covariance matrix (S), obtained
from the reference sample, are the estimators of µ and Σ, respectively, for Equation (3).

According to Tracy [44], when µ and Σ are estimated, the Hotelling T2 statistic

T2 = (X − X̄)′S−1(X − X̄) v
(m− 1)2

m
B(p/2,(m−p−1)/2),

where B(p/2,(m−p−1)/2) represents a beta distribution with parameters p/2 and (m − p − 1)/2.
This distribution depends on the number of variables p and the sample size m, which must satisfy
m > p + 1 [45].

Therefore, the upper control limit (UCL) for the T2-chart should be located at:

UCL =
(m− 1)2

m
B(α,p/2,(m−p−1)/2),

where B(α,p/2,(m−p−1)/2) is the upper α percentile of a beta distribution with parameters p/2 and
(m− p− 1)/2.

When a point exceeds the upper control limit in a T2 chart, it is interpreted as a signal of change
in the distribution of X. Then, it is recommended to carry out an investigation to find the causes that
produce the signal or apply some procedure to identify the causal variable(s) of the signal, as the T2

chart itself cannot do this.
In our proposal, the changes in the dynamics of mortality are evaluated through monitoring

the p-dimensional vector of standardized deviance residuals Rt = (str1t, str2t, . . . , strxt, . . . , strpt)′,
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which was obtained from a Lee–Carter model adjusted for a reference sample of m consecutive periods
(t = 1, 2, 3, . . . , m). In this particular application, the mean vector R̄t and the covariance matrix SR are
estimated from the reference sample of the m historical standardized residuals vectors. Under this
approach, the Hotelling’s T2 statistic takes the form:

T2 = (R− R̄)′SR
−1(R− R̄).

In this application context, an observation that exceeds the control limit of Hotelling’s T2 chart is
interpreted as a departure from the mortality trend pattern reproduced by fitting any Lee–Carter model.
Consequently, this period is labeled as out-of-control, a substantial change in mortality dynamics is
suspected, and the second phase of analysis investigates the age intervals that may be involved in the
out-of-control diagnosis.

As can be seen, the proposal for multivariate control is more flexible in its assumptions than
the usual analysis of residuals, since the condition of complete independence imposed on the error
term is now relaxed. Under the multivariate control approach, each set of p-residuals, associated
with the p-intervals of age for a particular year, form a vector of random p-variables that are not
necessarily independent, nor identically distributed. Therefore, the multivariate control chart allows
the methodology to be applied even when the model presents local fitting problems. Note that a
particular case of the multivariate strategy is constituted when the p-residuals are independent and
identically distributed.

Another difference between these strategies for identifying anomalies is related to the number
of assessments made in the hypothesis test. In the residuals analysis, each residual is checked
individually against tolerable limits of variation, which implies making a set of m× p comparisons.
Conversely, under the multivariate approach, the comparison against the control limit is done for
each p-dimensional observation: that is, a comparison for each year. Then, the multivariate control
chart reduces the number of comparisons to m, which reduces the probability of global type I error.
As is known, the probability of global error increases exponentially according to the overall number of
comparisons made simultaneously [45].

Finally, it should be noted that the performance of a Hotelling T2 control chart is related to
the number of periods m that make up the observation period to which Lee–Carter’s model fits.
For the Hotelling T2 control chart, m defines the sample size used to estimate the parameters of the
multivariate probability distribution of standardized residuals vector. In this sense, through simulation
studies, Champ and Jones-Former [46] showed that when the sample size m is small, the true-false
alarm rate of multivariate control charts is usually substantially higher than the established nominal
rate. A recommendation of these authors is to use broader control limits. The estimation error effect on
the false alarm rate is absorbed without substantially affecting the chart’s performance in detecting
changes.

2.5. MTY Decomposition

Several approaches are presented for the problem of interpreting a multivariate signal. Mason,
Tracy, and Young [14] proposed the MTY method of decomposition to find the causes that produce
the signal. The MTY method decomposes the T2 Hotelling statistics into p additive orthogonal
components, each of which reveals the contribution of the individual process variable and the relative
joint contribution of the same process variable.

For the case of p variables, there are p! different possible MTY decompositions. One such
decomposition is given by

T2 = T2
1 + T2

2.1 + T2
3.1,2 + . . . + T2

p.1,2,...,p−1 = T2
1 +

p

∑
j=2

T2
j.1,2,...,j−1.
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The first term of decomposition is called the unconditional term and corresponds to the T2 statistic
calculated for the variable j = 1, 2, 3, . . . , p. The expression is the following:

T2
j =

(
strj − µ̂j

σ̂j

)2

where µ̂j and σ̂j are the mean and standard deviation estimates of the standardized deviance residuals
strj obtained with the m historical observations of strj. In our context, the unconditional term measures
the standardized distance between observed mortality in an age interval and the expected pattern
according to the model. Thus, when a signal of change is emitted by the T2 statistic, the unconditional
term’s high value indicates that the signal of change may be related to the age range j.

The other terms, called the conditional terms, are calculated as

T2
j.1,2,...,k =

(
strj − µ̂j|1.2,...,k

σ̂j|1.2,...,k

)2

where µ̂j|1.2,...,k and σ̂j|1.2,...,k are the mean and conditional standard deviation estimates of
strj, respectively.

These parameters can be estimated through the estimation of a linear regression model (strj as
a response variable and str1, str2, . . . , strk as predictors) with the m historical observations of the
standardized deviance residuals vector. When the unconditional term’s calculation yields a high value,
this is an indication that the signal may be associated with a change in the correlation structure of the
variables being monitored. In our application context, where the monitoring variables correspond to
the standardized deviance residuals of a Lee–Carter model, the interpretation of this kind of change
does not make practical sense. For this reason, their analysis is not considered in our proposal.

An appropriate F distribution can describe the probability distribution for the unconditional term
on the MTY decompositions:

T2
j ∼

(
m + 1

m

)
F(1,m−1).

Using these distributions, for a specified α level and a reference sample of size m, the upper
control limits for the unconditional term are obtained as follows:

UCL =

(
m + 1

m

)
F(α,1,m−1)

where F(α,1,m−1) is the upper α percentile of the F distribution with degree of freedom (1, m− 1).
As a result, one can use the F distribution to determine when an individual unconditional term of

the decomposition is significantly broad and contributes to the signal. In essence, a significant value
for an unconditional term implies that the designated variable is out-of-control [45]. For our proposal,
we use only the unconditional term of the MTY decomposition to identify the age range involved in
the mortality change signal.

Finally, it is essential to note that our proposal for mortality surveillance based on implementing
a multivariate control chart presents some advantages with respect to the simple exercise of verifying
model fit through residuals analysis. Usually, the residuals analysis is carried out to validate the
distributional assumptions established a priori about the errors in the mortality model: mean zero,
homoscedasticity, independence, and equality of probability distribution. Under the established
assumptions, the residuals are treated as m× p independent observations of a random variable of zero
mean and constant variance. Implicitly, this is equivalent to assuming that the model’s goodness of fit
is the same for any age interval and any instant in time, which is usually not satisfied in practice. In an
application with real data, the model often fits very well for certain age intervals, but overestimates
or underestimates other intervals’ mortality rates. In these cases, there will be a natural difference in
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error distribution for certain age intervals. Under a residuals analysis, this situation will be identified
as a model fitting problem, limiting its use.

On the other hand, our multivariate control proposal is oriented to identify moments of time and
age intervals, in which the probability of observed death is substantially different from the mortality
pattern that has been collected by the adjusted model. Under this strategy, changes in mortality can be
identified in either the model or the control chart.

3. Analysis of Mortality Data from Colombia

3.1. Description of the Data

The data used in this paper were taken from abridged life tables which we constructed for
Colombia for the period 1973–2005 for both men and women using information available in “The Latin
America Human Mortality Database” [30]. The available population data correspond to the last four
censuses (1973, 1985, 1993, and 2005), and so the information was completed using linear interpolation.
Based on death and population data, it was possible to calculate the functions of the life abridged tables
for Colombia from 1973 to 2005. Ages are grouped accordingly: [0; 1); [1; 5); [5; 10); [10; 15); . . . ; [80; 85)
for each sex. Díaz-Rojo and Debón-Aucejo [47] describe in detail the method of obtaining the abridged
life tables.

3.2. Fitting LC and LC2 Models

In a previous paper [13], different mortality models were fitted, with the Lee–Carter (LC) and
Lee–Carter with two terms (LC2) models providing the best fits. In the statistical software R [48],
the LC models can be fitted using the gnm package [49].

Considering a large number of estimated parameters in the LC and LC2 models for men and
women, the estimates obtained for the parameters of the two models are presented in Figures 1 and 2.
Some characteristics of the mortality and its differences between men and women are noted.

In Figure 1a, the parameter ax shows the usual phases of population mortality: for both sexes,
the probability of death is high in the early years and decreases slowly until age 15, then increases as
the population ages. This parameter also shows the phenomenon known as the “young adult mortality
hump”, which describes the excess mortality for a time period for young adults. For Colombian data,
this hump phenomenon is observed in a very marked way in men between 20 and 40 years of age.

The kt mortality index presents different structures in its behavior during the analyzed period
(see Figure 1b). There is a decline from 1973 to 1978 and then a remarkable rise for 1981. There is also a
peak around 1985. The decrease in mortality is more pronounced for women than men, which can be
explained by improved health and living conditions. For men, this slope is lower because they were
more exposed to the war events of the 80s and 90s. The most considerable difference between the sexes
occurs in the last years of the period analyzed.

The parameter bx indicates how the mortality of each age x responds to changes in kt

(see Figure 1c). In women, bx takes positive values for all ages, indicating that mortality has decreased
for all ages. In men, the parameter takes negative values between the ages of 20 and 40, which means
that despite the trend in the reduction of mortality observed at the general level during the study period,
the subpopulation of men between the ages of 20 and 40 years presented the inverse phenomenon:
their mortality increased, accentuating the hump effect on male mortality. This hump phenomenon
has been mainly associated with the homicides due to the armed conflict [13].
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Figure 1. Parameters for the LC model.

In Figure 2, the parameters of the LC2 model are shown. Comparing Figures 1 and 2 in (a–c),
it is observed that, in general, the parameters ax, kt, and bx exhibit behavior which is similar to both
models. The parameter k2

t presents values close to zero, although the values decrease considerably
in both sexes between 1975 and 1980. This second term only has an effect for a few years at all ages,
improving LC’s fit. The parameter b2

x has higher values at early ages of up to 15 years, then decreases
rapidly, with a peak approaching zero for women around 20 years; for subsequent ages, the value
remains almost constant for both sexes (see Figure 2d,e).
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Figure 2. Parameters for the LC2 model.
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3.3. T2 Chart to Identify Substantial Changes in Mortality Trend

The Hotelling T2 control chart was used retrospectively to identify substantial mortality changes
during the study period that were not collected by the Lee–Carter model. Information on these changes
is found in the model residuals. In this application, the residual associated with each specific age
interval is seen as a random variable. In this way, the p residuals of the Lee–Carter model form a vector
of random variables, and in practice are not necessarily independent.

The monitoring was performed using standardized deviance residuals to guarantee the symmetry
of the residuals’ vector distribution. Hotelling T2 control charts were built using the qcc R package [50].

To estimate the upper control limit for the Hotelling T2 control chart, α∗ was adjusted (false alarm
probability for each point). Since we represent a fixed set of m points in the chart, in this case with the
years (m = 33), α∗ was calculated as follows:

α∗ = 1− (1− α)
1
m

where α is the total probability of false alarm (set a priori at 0.05).
In Figures 3 and 4, the Hotelling T2 control charts for the residual vector of the LC and LC2

models are shown. The years whose residuals are outside the control limits can be observed.
Figure 3 shows that the LC model identifies the year 1991 as out-of-control for men, while two

years are identified for women: 1979 and 1991.
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Figure 3. Hotelling T2 control chart for residuals of the LC model.

For the residual vector of the LC2 models, the year 1991 is out-of-control for men, and for women,
the years 1976 and 1991 were detected (see Figure 4).
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Figure 4. Hotelling T2 control chart for residuals of the LC2 model.

In summary, the Hotelling T2 control chart with LC and LC2 models identifies the year 1991 as
out-of-control for both sexes. Moreover, the year 1979 is identified for women with the LC model and
the year 1976 is identified for women with the LC2 model (see Table 1).
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Table 1. T2 values for out-of-control points.

Model Sex Year T2 Values

LC
Men 1991 29.67

Women 1979 27.01
1991 29.99

LC2
Men 1991 27.74

Women 1976 27.47
1991 29.59

α = 0.05, UCL = 26.99.

In this context, the out-of-control signal should be interpreted as a change in mortality not
captured by the Lee–Carter model. Therefore, when the chart does not generate out-of-control signals,
it should not be interpreted as meaning that no changes in mortality occur, but rather that these
changes were most likely already captured by the model.

3.4. MTY Decomposition to Interpret the Out-Of-Control Signals

The ages related to the signals were explored by applying the MTY decomposition over the
Hotelling T2 control chart over the out-of-control signals.

Table 2 shows a summary of the information obtained from the unconditional term of the MTY
decomposition of signaling points for the residual vector of LC and LC2 models. For men, the residuals
of both mortality models point to 1991 as outside the limits of control, where infant ages cause this
alarm. In women, the LC model’s residuals indicate the years 1979 and 1991 as out-of-control; in both
years, infant ages have a strong influence, in addition to the ages [70–75) and [80–85) for the year 1979.

The residuals of the LC2 model indicated the years 1976 and 1991 as outside the limits of control,
and very young ages are related to this alarm. It should be noted that although the year 1976 was
identified by the Hotelling T2 control chart as being outside the control limits, no related ages were
detected with the MYT decomposition, which could indicate a false alarm or an error of the MYT
test [45].

Table 2. Unconditional terms of the MTY decomposition for out-of-control points.

LC LC2

Men Women Men Women

Age Interval 1991 1979 1991 1991 1976 1991

[0–1) 4.80 * 4.78 * 5.27 * 3.68 0.15 12.58 *
[1–5) 3.79 7.21 * 1.39 17.38 * 0.28 14.47 *
[5–10) 15.42 * 0.85 9.95 * 18.80 * 0.01 22.06 *
[10–15) 0.83 0.76 0.39 2.20 0.01 0.27
[15–20) 1.60 0.19 0.55 0.02 0.17 0.00
[20–25) 3.44 0.11 0.04 0.76 0.15 0.33
[25–30) 3.69 0.82 0.01 1.39 0.83 1.41
[30–35) 2.88 0.37 0.49 0.31 0.55 0.01
[35–40) 2.37 0.24 0.02 0.10 0.04 0.79
[40–45) 2.13 0.44 1.03 0.08 1.38 0.07
[45–50) 0.69 0.83 0.38 0.05 1.85 0.11
[50–55) 2.86 1.01 0.00 1.13 1.49 0.15
[55–60) 1.47 0.27 0.76 0.13 0.21 0.22
[60–65) 2.03 4.10 0.08 0.24 0.51 0.10
[65–70) 0.04 0.49 0.69 0.46 0.21 1.11
[70–75) 0.45 6.05 * 0.63 0.41 3.36 0.02
[75–80) 0.24 0.01 0.50 0.00 3.34 0.11
[80–85) 0.06 9.25 * 0.52 0.69 0.64 0.20

α = 0.05, UCL = 4.27, * Denotes significance.
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It may also be noted that the change identified in the year 1976 was not generated by an abnormal
variation in mortality in any of the specific age ranges; the anomaly was generated by a multivariate
movement contrary to the correlation structure between the residuals of this year. This type of change
has no practical interpretation, and therefore, its exploration is discarded in the proposed methodology.

4. Discussion

The obtained results were compared to a series of events registered in Colombia from a
socio-demographic perspective.

The alert detected with the residuals can be related to a change in the causes of death from an
epidemiological point of view. Cristancho [51] mentions that according to the National Administrative
Department of Statistics (DANE), homicide became the leading cause of death for men in the 1980s.
In that decade, there was also an increase in mortality due to non-infectious diseases and external
causes. External causes, especially for men, were associated with violence and accidents.

It should be noted that in the 1990s, the so-called emerging diseases increased in Colombia.
In 1990, there was a massive dengue epidemic with a 40% fatality rate: its intensity decreased in
1991–1995 [52]. Additionally, in 1991 there was an epidemic outbreak of cholera [53].

In analyzing facts related to public health in Colombia, two crucial events were identified as
out-of-control and related to the detected years. In 1975, the National Health System was established;
in the period from 1990–2000, there were changes in mortality related to this Health System Reform.

On the other hand, with the Political Constitution of 1991, a new political administrative division
was created in Colombia, creating new departments, which benefited the collection of information
in the country’s southern region. The exhaustive work of this division in recovering information
increased the number of registered deaths.

5. Conclusions

This paper demonstrates the usefulness of control charts as a tool to detect substantial changes
in mortality behavior by monitoring residuals from mortality models. In some developing countries,
data are presented in age groups because of misstatements related to age; usually, there is a preference
for the declaration of the age of death to occur in multiples of five, and there are various other
registration difficulties. Therefore, a question of interest in the demographic and actuarial fields is the
use of residuals of a model to monitor the mortality of abridged life tables.

Previous works such as Urdinola and Rojas-Perilla [27] use control charts with only one measure
per unit of time to monitor mortality data, which involves building numerous control charts and
increasing the false alarm rate (out-of-control points). Instead, in this paper, we use a Hotelling T2

multivariate control chart, which simultaneously monitors p random variables (age intervals) per
unit of time, which dramatically reduces the number of charts to build. Further, this multivariate
control chart considers the relationships between the residuals associated with different age intervals.
The methodology we propose considers that mortality is a phenomenon that is not stable over time,
but instead exhibits trends collected through Lee–Carter models. Consequently, the control charts
applied to the residuals of these models can detect the other types of mortality changes that were not
previously collected by the models.

The LC and LC2 mortality models identified the principal characteristics of mortality in Colombia.
The infant mortality is high and decreases slowly until the age of 15, after which it increases
progressively as the population ages. The hump phenomenon is recorded in young adults, mainly in
men. This phenomenon has been described before in other papers [13,54] and is mainly explained
by the homicides related to internal armed conflict [55] and illicit activities such as illegal drug
markets [29], as well as the availability of firearms [28].

The Hotelling T2 control chart is an exciting option to monitor the residuals of the mortality
models and thus identify the years in which the mortality differs from the patterns that are collected by
the mortality model. With the combined use of Hotelling T2 and MTY decomposition, the years and
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age range of that atypical pattern were identified. Two years were identified as out-of-control: 1991 for
the residuals of both models for both men and women with an influence of very young ages, and the
year 1979 for residuals from the Lee–Carter model for women with the influence of very young ages
and very advanced ages.

The Lee–Carter model collects information regarding the phenomenon of violence in Colombia.
Therefore, the years identified as out-of-control in the charts are associated with very early or quite
advanced ages, which are inversely related to violence that did not claim as many victims at those ages.
Besides, the mortality changes identified in the control charts pertain to changes in the population’s
health conditions, or new causes of death such as COVID-19 in future investigations. Future studies to
evaluate this combined methodology by adding information from new censuses for Colombia would
be interesting.

Nevertheless, our proposal for mortality surveillance consists of two analysis tools that work
sequentially; therefore, this study has limitations regarding models and control charts. In the
first place, the model captures the time trend and the age profile of mortality in the population.
Subsequently, the Hotelling T2 control chart and the MTY decomposition identify those years and age
ranges whose death probabilities differ substantially from the model trend. Therefore, the T2 chart
out-of-control signals are interpreted as possible changes in mortality according to the model trend.
For example, the LC model is more straightforward than the LC2 one, as the LC2 model includes more
particular additional change structures. The selection of one or the other model will entail a different
characterization of the mortality trend, and consequently, a variation in the Hotelling T2 control chart
diagnosis.

Finally, we would like to point out that although this paper only applied control charts to the
Colombian abridged life tables, the methodology can be extended to abridged life tables in any
developing country. It might be useful to look at other datasets and examine whether conclusions are
consistent for different countries.
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