

Assignment Submission Cover Sheet

Please complete all sections and attach to your assignment. You can find these details on your

Assessment Statement

Student Name:

Student Number:

If this is a group submission the details of the student responsible for submitting the work is to be entered above

and the name and student number of other group members below.

Course Title:

Module Title:

Module Code:

Tutor:

Assignment Title:

Deadline:

Declaration

I confirm that this assessment is my own work and that I have duly acknowledged and correctly referenced the

work of others. I am aware of and understand that any breaches to the Code of Academic Conduct will be

investigated and sanctioned in accordance with the Academic Conduct Regulation, found on shuspace| Rules

and Regulations| Conduct and Discipline

Signature:

Date Submitted:

--

Learning contracts

If you have a learning contract recommendation for adjusted marking you will need to use blue stickers to alert

the tutor to this.

You must attach a blue sticker on all your assignments and exam scripts. If you submit work electronically you

must type the wording of the sticker in blue on the front of your assignment where tutors can easily see it.

GOMEZ HORTELANO RAFAEL - 23326705J Firmado digitalmente por GOMEZ HORTELANO RAFAEL - 23326705J
Fecha: 2020.04.25 15:53:11 +02'00'

Acknowledgements

To my family, which helped and supported me in this little Erasmus adventure that has concluded

with this project.

To Lyuba Alboul, that guided me through my stay at the Sheffield Hallam University and always

trusted me.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

3

Contents
1. Introduction .. 7

1.1. Preface.. 7

1.2. Abstract .. 8

1.3. Motivation .. 10

2. Objectives ... 11

3. Literature Review ... 12

3.1. Robots vs. Humans ... 12

3.2. Related researches ... 13

3.3. Other Solutions .. 14

4. Tools Review ... 16

4.1. Programming and Software ... 16

4.1.1. Robot Operating System (ROS) ... 16

4.1.2. MATLAB ... 19

4.1.3. Virtual Box and Linux ... 19

4.2. Human Vision ... 20

4.3. Machine Vision ... 20

4.3.1 Introduction.. 20

4.3.2. Vision System Components ... 21

4.4. Colour Detection .. 23

4.5. Hardware: Fetch Robot and Robot Movement .. 26

5. Methodology .. 28

5.1. Programming .. 28

5.1.1. ROS Topics ... 28

5.1.2. MATLAB environment with ROS ... 29

5.1.3. MATLAB scripts.. 30

5.2. Simulation .. 31

5.2.1. Goal of the simulation ... 31

5.2.2. Setup of the simulation ... 31

5.3. Real test .. 34

6. Results ... 36

6.1. Simulation results ... 36

6.2. Simulation full programs .. 38

6.2. Real tests results .. 39

7. Conclusions ... 40

8. Future work .. 41

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

4

References .. 42

Appendix ... 44

Process Initialisation.. 44

Process Script .. 47

Process Shutdown ... 51

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

5

List of figures

Figure 1. IRB 140 from ABB [9] .. 13

Figure 2. Pick&place of croissants [12] ... 14

Figure 3. Example of a tracking system [13] ... 15

Figure 4. ROS Master Node [15] .. 16

Figure 5. Publisher and Subscriber Graph [15] ... 17

Figure 6. Services [15] ... 18

Figure 7. Actions [15] .. 18

Figure 8. Human Eye. [20] ... 20

Figure 9. Converging and Diverging Lenses (Google Images) ... 21

Figure 10. Lighting techniques [23] ... 22

Figure 11. Fetch's head [25] .. 23

Figure 12. RGB (Google Images) .. 23

Figure 13. HSV colour space [24] .. 24

Figure 14. Flux diagram of colour detection ... 25

Figure 15. Fetch Robot [25] ... 26

Figure 16. Fetch Robot Joints [26] ... 27

Figure 17. Rosinit instruction .. 29

Figure 18. Successful connection .. 29

Figure 19. Part of the topics we can access .. 29

Figure 20. Initial Position ... 30

Figure 21. Flux Diagram of the Process ... 31

Figure 22. Virtual Box Main Page .. 32

Figure 23. Net Configuration ... 32

Figure 24. Configuration in VM (Ubuntu 18.04).. 32

Figure 25. Configuration in Host Operating System (Windows 10) .. 33

Figure 26. Gazebo simulation.launch .. 33

Figure 27. Gazebo playground.launch .. 33

Figure 28. Acknowledging the safe place for the test ... 34

Figure 29. Prismatic piece vs Two pounds coin. .. 35

Figure 30. Fetch Robot with the prism picked up ... 35

Figure 31. Power On (left) – Pre-pick position (right) ... 36

Figure 32. Camera position (head moved) .. 37

Figure 33. Place position (right of the robot) .. 37

Figure 34. First program. Single cube .. 38

Figure 35. Aerial schematic view. Single cube. ... 38

Figure 36. Second program. Four cubes ... 39

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

6

List of Tables

Table 1. Joint Limits [26] ... 27

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

7

1. Introduction

1.1. Preface
The title of the dissertation is “Design and implementation of an artificial intelligence

module in a Fetch Robot. Application: Pick&place operation using colour detection”. The

document presented here aims to describe the work developed in the Department of

Engineering and Mathematics and Centre for Automation and Robotics Research at

Sheffield Hallam University during the second semester of the academic year 2019/2020

as part of my Master Dissertation.

El título del Proyecto es “Diseño e Implementación de un módulo de inteligencia artificial

en un robot Fetch. Aplicación: Operación de pick&place utilizando detección de color”.

El presente documento pretende describir el trabajo realizado en el Departamento de

Ingeniería y Matemáticas y Centro de Automatización e Investigación Robótica de la

Universidad de Sheffield Hallam durante el segundo semestre del año académico

2019/2020 como parte de mi Trabajo de Final de Máster.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

8

1.2. Abstract
Sometimes, and every day more, we need flexibility in industrial environments. Humans

can adapt to certain changes in these environments and can take actions quickly and

effectively. But humans can get tired and may not have the same accuracy as a robot

could have. Because of that, making the robots capable of acting in some of these

changing environments would result in an increase of productivity and a great

improvement in industry.

The goal is to make the robot be capable of handling a group of different objects that

may have not been yet pre-processed (not being in a database) so the robot must decide

what to do with every object depending on their colour. For this, we are going to make

a pick&place application that uses some information from the outside to help the robot

make decisions.

A Fetch robot from Fetch Robotics [1] is used for simulation and verification of this

application, which is useful because it was built as an industrial robot. It has a base that

can move and a manipulator arm with 7 degrees of freedom that can perform various

tasks. It has many sensors like a laser scan at the base which can be useful for obstacle

detection and a camera at the head which can get images of what is seeing the robot.

These images will be processed and with the right coding the robot will achieve the goal

of the project.

The simulation environment has been chosen to be Gazebo and the programming has

been done in ROS using MATLAB as the coding and communication environment.

Keywords: robot, pick&place, colour detection, decision making, artificial intelligence,

ROS, MATLAB.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

9

De vez en cuando, y cada vez más, se necesita flexibilidad en entornos industriales. Los

humanos se pueden adaptar a ciertos cambios en este entorno y pueden responder

rápida y eficazmente, pero nos cansamos y no tenemos la misma precisión que un robot.

Por ello, conseguir que los robots puedan responder a algunos de estos escenarios

resultaría en un aumento de la productividad y una gran mejora en la industria.

El objetivo es conseguir que el robot sea capaz de manejar un grupo de objetos diferentes

que no tienen por qué estar en una base de datos preprogramada y este debe decidir

qué hacer con cada objeto en función del color que tengan. Para ello, se realizará una

aplicación de pick&place que utilizará información del exterior para ayudar al robot a

tomar decisiones.

El robot Fetch de la empresa Fetch Robotics será el utilizado para similar y verificar la

aplicación, lo cual es ideal pues es un robot de índole industrial. Este robot tiene una base

móvil y un brazo manipulador con 7 grados de libertad. Además, cuenta con sensores

láser para la detección de obstáculos y una cámara situada en la cabeza con la que se

pueden obtener imágenes de lo que ve el robot. Las imágenes obtenidas de esta manera

serán las que, mediante un algoritmo, se utilizarán para conseguir el objetivo del

proyecto.

El entorno de simulación será Gazebo y la programación se hará siguiendo la

arquitectura ROS utilizando MATLAB como entorno para dicha programación y para la

comunicación.

Palabras clave: robot, pick&place, detección de color, toma de decisiones, inteligencia

artificial, ROS, MATLAB.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

10

1.3. Motivation
Robotics is a huge and interesting world in which we have learned a lot and still have a

lot more to learn. Robots are very useful in many parts of our lives, carrying tasks that

we do not want, or just cannot perform, making our life easier and granting also

economic benefits. [1-4]

I have worked before with robots but in a “safer” environment with less programming

complexity and I really liked it. But I knew that there are more things that can be done

with robots. So, with this project, I decided to tackle this world more ambitiously and

start learning more about hardware, software, and procedures to interact with robots

and make them useful in every way possible.

The Centre for Automation and Robotics Research (CARR) at the University of Sheffield

Hallam is a great place to start learning. I have the opportunity to work with a mobile

robot manipulator and deepen my knowledge of ROS (Robotic Operating System). Some

steps may require some great effort as it may be the first time using some

software/hardware, but it will sure be worth it.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

11

2. Objectives

Before starting, the objectives, goals, and features that our final pick&place application

must have or accomplish must be set.

First, since this application will be used in an industrial environment, some problems

may be encountered there and must be considered. Although the robot will not be

working near other operators, it must have some security measures and its paths must

be smooth enough so it cannot hurt other tools in the working area or even itself.

Now, with the security issues solved, the application should be as efficient as it could

using the resources available. Unnecessary moves should be avoided and lose the less

time possible in every step of the work.

Moreover, as the robot is complex with many different tools installed, the application

should be developed taking into consideration that it could be applied in different

industrial environments and could be useful in lots of them.

Finally, this project represents the Master Dissertation done by the researcher at the

Sheffield Hallam University as part of an Erasmus Exchange from the Universidad

Politécnica de Valencia, finishing with it my last year in the Master en Ingeniería

Industrial.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

12

3. Literature Review
First, there must be done a literature review of the current situation at the industry and

learn from other researches what have been done in industrial robotics.

3.1. Robots vs. Humans
At the beginning of the history of the industry, humans were the ones that did most of

the repetitive and less specialised work exposing themselves not only to injures because

of the (sometimes heavy) machinery that was used, but also because humans got tired

and their accuracy was reduced after working for a long period of time. [5]

Many years later, after some industrial revolutions, this fact triggered the beginning of

the creation and programming of other machines (robots) that could take on those jobs.

These lead to a massive increase in efficiency and become a revolution in industry as

many authors have described in their researches in this area. [6]

Nevertheless, even nowadays, some processes are still be done by humans entirely. This

is inefficient and sometimes potentially harmful. These processes are the perfect

candidates for an upgrade.

Depending on the nature of the process there are many ways to improve it. If the

process is simple enough, the human operator could be removed and instead a robot

can take place to perform the task in a programmed way, and/or let the human controls

when this robot executes its program.

However, there are processes that still need the presence of a human. This is mostly

because automatisation is not powerful enough or because the nature of the process

involves a task that only can be performed by humans. In this case, the solution may go

by using collaborative robots that interact with the human in a safe way and help them

get the job done. [7-8]

One example of a process that can be improved, and is related to the project here, is a

cheese industry in which one of these pick&place operations was performed. Here, the

human operator, picked pieces of three kinds of cheese and had to decide where to put

them differentiating the cheese by its kind. This process involves two key concepts: (1)

identify things and (2) place them based on a feature they have.

This example is not isolated and there are a lot of other places where a solution to it

could be applied with minor changes. So that is why solving this problem could lead to

an improvement in industry.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

13

3.2. Related researches
Pick&place applications are not new in robotics and there are a lot of robots (even more

simple that the one proposed in the introduction) that can perform the task given the

order. However, these robots have their program fixed in terms that they cannot change

the path or the destination. They have no intelligence and cannot decide for themselves.

There is a lot of work in this area as it is the most common starting point for every

student that begins learning robotics. A robotic arm as the one showed below is the

most common tool to perform these operations.

Figure 1. IRB 140 from ABB [9]

On the other hand, there is machine vision. Machine vision is a more sophisticated field

in which there is still some work to do and it covers a wide range of applications: from

printing images, to helping autonomous cars, performing colour detection in the in most

of applications.

In relation to the project and to highlight the importance of machine vision, there must

be mentioned some other research works done by students at the Centre for

Automation and Robotics Research (CARR) at the University of Sheffield Hallam.

In the project carried out by Sohail Saeed, machine vision was used to allow a

collaborative robot to work with a human operator detecting where the operator was

and avoiding hitting them [10].

This is a clear example that the pick&place operation can be improved in great ways with

information received from the outside.

There is also the project of Armando Arturo Sánchez Alcázar in which a transport system

based on a mobile manipulator was designed to help the nurses work at a hospital. [11]

The work proposed a machine vision system to help the robot guide itself through the

hospital and reach required destinations.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

14

With that being said, it can be concluded that the combination of manipulation and

machine vision has got many possibilities and applications. With this idea in mind and

focusing just on the industry, our goal will be to design a more generic application that

will use information from the outside to perform the desired actions. Also, we will aim

to a generic solution that could be applied in many situations with a few changes in the

parameters to adapt to the objects and the environment.

3.3. Other Solutions
Making use again of the example of the cheese industry, the goal of automatizing the

cell of the process, which makes the selection of the cheese, could be reached by some

different paths and they are going to be discussed here.

In this project, the use of a Fetch Robot is proposed that combines the robotic arm to

perform the pick&place operation and the machine vision system through a camera to

identify the objects. But there are other possibilities.

First, both modules of operation (pick&place module and machine vision module) could

be separated; having a machine vision system that tracks the objects and a robotic arm

that picks them at the position ordered by the camera. This is a solution that has been

used in a sweet factory in Spain. [12]

Figure 2. Pick&place of croissants [12]

This solution has the advantage and disadvantage of having two systems. They must

interact with each other which adds another problem to solve. But on the other hand,

as they are separate, one camera could interact with more than one robotic arm (lifting

the budget, of course), giving flexibility that could patch the connectivity problems.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

15

Another solution that could be valid for certain production distributions would be to

introduce a mechanism that drives the object into the desired box while it is still going

on the conveyor. This solution would work if the objects are being put into a box but

without order, just tossing them there, or just accumulating them in a platform for being

processed later by another cell. In this case, we would not need an arm to properly pick

up them, just a way to divert the flux of objects.

Again, a tracking system using a camera would identify the object and giving the order

to deliver the object into one path or another [13]. The figure below illustrates an

example of this tracking system:

Figure 3. Example of a tracking system [13]

As it is been said, this system, while it is cheaper in some scenarios, can only be applied

in those scenarios, so it is not generic enough for the scope of the project.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

16

4. Tools Review

4.1. Programming and Software
This section will describe all the software needed in this project.

4.1.1. Robot Operating System (ROS)
Robot Operating System (from now on, ROS) is a flexible open source software. It is a

collection of tools, libraries, and conventions that aim to simplify the task of creating

complex and robust robot behaviour across a wide variety of robotic platforms.

It does not replace the operating system but instead, it works alongside it and provides

services, such as low-level device control, hardware abstraction layer, message-passing

between processes, implementation of commonly used functionality, and package

management. [14-17]

This architecture works in distributed computation. It is a great advantage as robotic

systems tend to rely on multiple software processes that are run in multiple computers

with different operation systems. Also, this software allows to have a user interface in a

mobile device, laptop or computer that communicates with the robot and it is an

extension of the robot’s software.

ROS can be used for a variety of styles: mobile robots, swarm robots, robotic arm

manipulators and manipulator combined with a mobile base.

For this project, the distribution used is ROS Melodic. To be installed, the tutorials in the

official website have been followed. Below is a brief overview of the different parts of

this software.

ROS Master Node

The ROS Master Node is responsible for providing registration and naming services to

the rest of the nodes in the robot operating system. It keeps track of subscribers and

publishers to topics as well as services and actions, which is described later. The main

job of the ROS-Master Node is to enable each node to locate one another. Once they

locate each other, then the communication is set peer-to-peer as shown in figure no 1.

Figure 4. ROS Master Node [15]

ROS Node

A node is a single process that performs computation. All nodes are combined into a

graph and they communicate with each other via topics, services, and action services.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

17

As a node typically controls a single part of a robot system, robot systems normally have

got many nodes that may communicate between them.

As the full system is divided into many nodes, it gives fault tolerance to the system if one

node crashes, as the whole system will keep on working or even know the error and stop

before hurting anyone. This helps maintain a high level of security in robot manipulators

for example.

ROS Topics, Publishers and Subscribers

Topics are the channels of communication where nodes can exchange information with

each other. Generally, the nodes are unaware of ‘whom’ they are talking to. Publishers

generate data and publish them to relevant topic and subscribers subscribe to the

relevant topic to receive those data, but they do not necessarily know what is sending

or receiving the information. To a single topic, multiple publishers can publish data and

several subscribers can access that data.

Figure 5. Publisher and Subscriber Graph [15]

ROS Service, Service Server and Client

Publisher-subscriber model is a flexible and robust communication model; it is one-way

many-to-many communication. But it is not appropriate for a remote procedure call,

which is often required in a distributed system. Request and replying to this request are

done via a “Service”, the message that is sent is divided into two parts: one for the

request and one for the reply. Service Server is a node offering a service under a string

name and can be called by a client node by sending the request message and waiting for

the reply.

To summarize, Services can be taken as Functions like in Python, C++, or any other coding

language. These are called by a node with a set of parameters and return their result to

another node in the net.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

18

Figure 6. Services [15]

ROS Action, Action Server, and Client

Actions are like services in terms of functionality except actions are asynchronous while

services are synchronous. The difference comes when talking about waiting for a

response. When a node calls an action server, the caller does not necessarily have to

wait for the action to complete, while, at services, the caller must wait until the service

finishes.

Figure 7. Actions [15]

Gazebo Package

Gazebo is a set of ROS packages that simulate an environment in which you can see the

interaction of the robot with this environment. [18]

It is useful because it is a safe place in which the application can be developed and the

robot movements be tested without the possibility of harming people or the robot itself.

Moreover, in terms of topics, subscribers and publishers, the simulation uses the same

names as it was the real robot, so any program wrote to be executed using Gazebo can

also be executed with the real robot without needing to change anything.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

19

4.1.2. MATLAB

MATLAB is an abbreviation of Matrix Laboratory and it is a high-level programming

language and an interactive environment which is designed specifically for quick and

easy scientific computations, visualisation, and programming of large amount of data.

[19]

Matrix manipulations, data plotting, creation of user interfaces, algorithms

implementation, interfacing with programs written in other languages (for example,

Java, C/C++, Python), analysing data, algorithms development, creating models and

applications are some examples of things that can be done in MATLAB. It has thousands

of built-in functions for computations in a wide variety of scientific fields and lots of

toolboxes developed and designed for specific research disciplines, including control

system, neural networks, robotics, image processing, computer vision …

As for this project, MATLAB 2019 is used and there are a couple of toolboxes that are

also needed to make the application itself and must be installed before commencing

work.

• Image Processing Toolbox: allows to work with the images received from the

robot’s camera and processing them.

• ROS Toolbox: allows to make a node in MATLAB which can connect to the robot’s

master node in the same net and perform publisher and subscriber orders as well

as action/server enquiries.

4.1.3. Virtual Box and Linux

Despite the advantages of ROS and Gazebo, it is only available to Ubuntu operating

systems and it is still in development on Windows 10. Moreover, as MATLAB is better

supported in Windows 10, there is the need of some way to connect both applications.

This can be solved using either two different PCs or using a virtual machine in only one

PC to install a copy of Ubuntu 18.04 and ROS Melodic. The last option has been chosen

as it is less dependent on different hardware, and a strong enough PC is available to

support MATLAB executing and the simulation in a Virtual Machine.

Virtual Box is a free software that aids to create a virtual machine choosing the virtual

hard disk space, the CPUs and RAM that the virtual operating system can use from the

real PC. With this, it will be setup a nice working environment.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

20

4.2. Human Vision
On this topic it will be exposed how human vision is, in order to better understand how

we will approach machine vision in the next topics.

Human eyes are complex organs of the human body and allow to have light perception,

colour vision and depth perception. These features make the human vision to be the

best vision in the animal kingdom and it will be looked to have these features in our

machine vision module but translated to a “machine kingdom”.

Figure 8. Human Eye. [20]

With human eyesight, cone cells are responsible for colour vision. Using the cone cells

in the retina, humans perceive images in colour. Each type of cone specifically sees in

regions of red, green, or blue, (RGB), in the colour spectrum of red, orange, yellow,

green, blue, indigo, violet. The colours in between these absolutes are different linear

combinations of RGB. [21]

RGB is the colour space used in the eyes and the most used to in common life (TVs,

computer screens, and other electronics). However, later, its disadvantages are

discussed later as well as how the colour space feature is employed in programming.

4.3. Machine Vision
This topic talks about machine vision and its implication in the project.

4.3.1 Introduction

Robots can do a variety of tasks much better than a human does, but, normally, this

concerns repetitive tasks without any thinking or decision making involved. With

machine vision, the goal here is to let the robot make the decision of where to put the

object it has picked using the information it has seen through its camera.

As it has been said, humans have the best vision in the animal kingdom. They can

interpret complex and unstructured scenes but with a limited speed, accuracy and, also,

repeatability. These last features are no problem for a robot with the right technology

(optics and camera resolution). These advantages add to the fact that robots could work

in hazardous areas, so we are opening more possibilities.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

21

4.3.2. Vision System Components

The term “right technology” is used in the later paragraphs. It will be now described and,

with it, the different options to handle different environments and problems.

Lenses

Lenses are the main part of the system since it converges the reflected light onto the

image sensor properly. They determine the resolution and the quality of the image

captured. There are two main types of lenses: converging and diverging. There are also

subtypes of lenses, but the important feature is how they treat the light through them

which all share depending on the main type. Lenses are mounted and this mount can

either be fixed or interchangeable.

Figure 9. Converging and Diverging Lenses (Google Images)

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

22

Lighting

Lenses can direct light through them, but it is also important how are we throwing this

light in the first instance. Ibn Al-Haytham corrected the old way of thinking and

concluded that the human vision system produces an image by the light reflected from

the object [22]. Machine vision system works in a similar way.

The two parameters that must be taken in account in lighting are the source of light and

the relative placement of it, the object, and the camera. The lighting techniques used

can also depend on the colour of light. Some lighting techniques are:

• Backlighting

• Axial-diffuse lighting

• Structured light

• Dark-field illumination

• Bright-field illumination

• Diffused dome lighting

•

Figure 10. Lighting techniques [23]

Image Sensor

The image sensor is the part of the system that converts the photons to the electrical

signal. Most used types of image sensor are complementary metal-oxide

semiconductors known as CMOS or charge-coupled devices known as CCD. The key role

of the image sensor is to convert the reflected light into a digital image.

An image is a collection of pixels and each pixel is composed of red, green and blue

intensities in an RGB image. It is important to choose the right camera resolution since

the higher the resolution, the more detailed the picture will get, but also more complex

to process.

In this case, the resolution will be 480x640 pixels (3 layers for red, green and blue) as it

is the resolution of the robot’s camera. It is sufficient in terms of details.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

23

Types of Machine Vision System

Regarding the dimension of the result, machine vision systems can be divided in 1D, 2D

and 3D.

➢ One-Dimensional System (1D): scans a line of the full object, then they can be

combined to make the full object image. Most inspection systems use 1D vision.

➢ Two-Dimensional System (2D): this is the most common type of system. It is just

a simple camera like the one that our robot has got. It is the one that we are

going to use.

Figure 11. Fetch's head [25]

➢ Three-Dimensional System (3D): this system consists in using more than one

camera to get the RGB-D image of an object.

4.4. Colour Detection
In RGB images, a single image is composed by three layers of pixels representing each

of the three primary colours (red, green, and blue). But this colour space is not the only

one and it is not the one that it is going to be used in this project.

RGB colour space originated in colour television when Cathode Ray Tubes were used. It

is a relative colour standard dependant on the display device. RGB colour

representations assign a value from 0 to 255 to each of R, G, and B. [0, 0, 255] is pure

blue, [0, 255, 0] is pure green, [0, 0, 0] is black. These colours are additive to form white,

i.e. [255,255,255] is white. [24]

Figure 12. RGB (Google Images)

These spaces have got the advantage that they are linear and use a cartesian coordinate

system, but it is difficult to name all perceivable colours and extract a conclusion from

the pixels of an image.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

24

On the other hand, the HSV colour space, unlike its former colleague, it is not linear.

Each possible colour has three parameters:

• Hue, which is the dominant wavelength of the colour. It ranges from 0 to 360

degrees.

• Saturation, which reflects the “purity” of the colour. It ranges from 0% to 100%.

• Value, (or luminance) which is the brightness of the colour. It ranges from 0% to

100%.

Figure 13. HSV colour space [24]

With this colour space the evaluation of which colour (in general terms) is the robot

seeing it is sufficient to check just the “hue” parameter. Adding the “saturation” and

“value” parameters allows to completely define the colour in every pixel.

RGB images can be converted to HSV using MATLAB. This is possible thanks to the

functions from the Image Processing Toolbox exposed earlier.

For the purpose of this project, some colours are detected using only the “hue”

parameter, i.e. red, orange, yellow, green, cyan, blue, purple, magenta, and pink. But

also, black and white are detected comparing to the lower values of the other two

parameters.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

25

Here there is a flux diagram of the process to detect the colour of an image:

Figure 14. Flux diagram of colour detection

Get the full image
Get the interest

part of the image

Convert the image
to HSV colour

space

Extract hue,
saturation and

value parameters

Establish the
range for the

colours

Make the
comparation

Return the colour
to a variable

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

26

4.5. Hardware: Fetch Robot and Robot Movement
To accomplish the goal of this project, a Fetch Robot from Fetch Robotics is used. Here

is an image of it.

Figure 15. Fetch Robot [25]

It is a mobile manipulator robot with several features. Extracted from the

documentation of the robot [26], from bottom to the top of the robot, it has:

• A mobile base and a laser scan to make map planning and help avoiding

obstacles.

• An arm with 7 DOF (degrees of freedom) and a gripper to pick up objects (6 kg

of payload).

• A head, with a camera installed, that can move around the vertical axis and can

also look up and down in a range of -90º to 45º.

However, it has got some peculiarities that must be considered when making use of it.

As it is a robot that must be programmed, it does not know that its own arm may be

sometimes blocking the view from the camera. Also, seeing the design, the control of

the arm joints may be problematic because it can hurt itself during movement

(especially at the start of it), so further care to avoid this is required when using the

robot.

To solve these two problems, first, there is going to be a start routine that moves the

arm in a way that does not harm the robot and gets it to an initial position. And second,

also a movement planning that does not mess with the camera view during operation.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

27

Figure 16. Fetch Robot Joints [26]

Table 1. Joint Limits [26]

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

28

5. Methodology
In this section, the methodology followed to make the application is presented. The

description covers all the steps involved starting from the setup of the simulation until

how the final test with the robot is done and the programming involved in it.

5.1. Programming
In terms of programming, the subscriber/publisher architecture of ROS is used u. Some

publishers are set in MATLAB in order to send the commands to the active parts of the

robot (head, torso, arm and gripper) and some subscribers to retrieve the information

from the camera and joint topics.

An advantage that can be found here is that topics (and their messages needed) do not

change when addressing the simulation or the real robot, so anything built to work with

the simulation will work fine on the robot. This helped at the beginning where further

learning of ROS and its architecture was needed, so with the simulation began the tries

of which instructions would work and which would not.

The full script can be checked at the end of the document in the appendix section.

5.1.1. ROS Topics

Head topic

The head is the less dangerous part of the robot as it cannot do much harm nor to people

or objects around the robot or the robot itself. It is going to be moved down to achieve

a better view of the object. New values are going to be sent for the angles of the two

joints of the head.

When programming, in order to change the values of head joints, it has appeared the

need of creating an auxiliary variable to initialise part of the message that will be sent to

the robot.

Torso topic

The torso itself is not dangerous either, but as the arm could be extended, there must

be care when moving this joint to avoid hitting anything with the arm. An auxiliary

variable is also needed to set up the full message. Here, just set the parameter of the

torso joint to be positive or negative results in the robot going up or down, respectively.

Moreover, the parameter “effort” is set to a relatively high value, so the torso moves

gently and does not make the arm move too much in consequence.

Arm topic

The arm is, obviously, the most dangerous part of the robot if no safety measures are

taken within the path planning.

The position of every degree of freedom (DOF) must be set. And, in order to avoid

undesirable paths, the arm is going to be moved step by step, moving only a joint at the

same time (with some harmless exceptions that have been largely tested). Thanks to the

simulation, it has been possible to find the movements that accomplish the goal safely.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

29

Camera topic

There are lots of different topics from where information about what the robot is seeing

can be extracted. The differences affect mostly the format of the image extracted and

how or by which programs can it be used.

As there is not a direct HSV image, the raw RGB image topic is chosen since it can be

processed in order to get it in the HSV colour space.

Joint State topic

With this topic it is possible to get the state of every joint and notice whether its working

as intended or not. This topic is not used in the final program as the robot should work

automatically without too much supervision, but it can be accessed at any time for

debugging purpose.

5.1.2. MATLAB environment with ROS

Starting Gazebo with fetch robot package automatically starts a master node as if the

real robot were initialised so it is possible to connect to that node from MATLAB. Here,

every instruction related to ROS is available thanks to the ROS Toolbox provided in

MATLAB Apps.

Using instruction “rosinit” followed by the IP address allows MATLAB to create a node

that will connect to the master node which is running in that address.

Figure 17. Rosinit instruction

Figure 18. Successful connection

Now, if browsing for topics, it appears which topics can be published in or subscribed

to.

Figure 19. Part of the topics we can access

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

30

5.1.3. MATLAB scripts

The application has been divided in three phases: initialisation, routine and shutdown.

As for MATLAB, there have been developed three scripts that relate to that three phases.

The initialisation script is devoted to make the robot get to an initial position safely while

setting up the publishers/subscribers needed for the architecture. The initial position is

discussed later when talking about the simulation results.

Figure 20. Initial Position

The routine script is the “loop” part of the application. This script has been created in

order to be executed as many times as we need to pick objects from the pick position.

The program starts from the initial position and returns to it at the end while placing the

object in the correct place depending on its colour.

Finally, the shutdown script is meant to return the arm to the retracted position and

stop communications with the robot cleaning also the workspace. When ending the

work, this is the script that should be called.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

31

5.2. Simulation
As told previously, the simulation is done in Gazebo using MATLAB for programming.

5.2.1. Goal of the simulation

Basically, the goal of the simulation is to verify that the robot is going to do what has

been stated, and it is not going to hurt itself by doing it. The robot will start in a pre-pick

position and, when ordered, it picks up the object, checks it out with the camera, then

places it where the algorithm says and return to the initial position.

Within this simulation lots of path planning, movements and joint position have been

tried and checked to avoid damage to the robot and its environment.

Below there is the flux diagram that the application should follow in and out of the

simulation.

Figure 21. Flux Diagram of the Process

5.2.2. Setup of the simulation

The first step is to create a virtual machine and install both Ubuntu 18.04 and ROS

Melodic, including the Gazebo packages which work with Fetch Robot.

The settings for the virtual machine used are the following:

• 40 GB of virtual hard disk

• 4 cores of the CPU (1,60 GHz per core)

• 4096 MB RAM (half of the total 8 GB of the PC)

Initialise
system

Get to pre-pick
position

Pick

Get to camera
position

Check place
position

Get to pre-
place position

Place
Return to pre-
pick position

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

32

Figure 22. Virtual Box Main Page

Now, for MATLAB to communicate with ROS being executed inside the virtual machine

there are additional configurations to make.

In net configurations, the communication to “Host-only adapter” must be set. This

option makes the virtual machine to be in a subnet inside the PC, so it can connect now

to other applications running outside the virtual machine, but it will not be able to

connect to anything outside the computer. With this, the connection via IP address from

MATLAB can be done.

Figure 23. Net Configuration

After this, connection parameters can be double-checked using “ifconfig” in a Linux

terminal and “ipconfig” in Windows command terminal.

Figure 24. Configuration in VM (Ubuntu 18.04)

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

33

Figure 25. Configuration in Host Operating System (Windows 10)

The Gazebo environment has been a fundamental part of the simulation. Two “launch”

files have been used to make the testing of the movement: “simulation.launch” and

“playground.launch”. In the former there is an empty environment with just the Fetch

Robot while in the last one there are also other objects the robot may interact with.

Figure 26. Gazebo simulation.launch

Figure 27. Gazebo playground.launch

Now everything is set to start MATLAB and begin working with topics in ROS.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

34

5.3. Real test
To carry out the real test, first, there must be set a safe place in which the robot can

start working and will not harm anything.

Robot’s arm measures 1 m fully extended from its torso and the pre-pick position is

70cm from the torso. Taking this into account, as the arm may move near the full

extension, enough space must be disposed for the robot to move freely even if the pick

position is nearer than the full extension.

In the end, the safe place was set in the Robotics Lab since the robot was already there

and there was enough space to proceed with the test without harmful collisions.

Figure 28. Acknowledging the safe place for the test

The test objects were some prismatic polyhedron made from plastic. Some of their faces

were covered with different colours to test the colour detection feature of the robot.

These objects have been chosen taking in account their size for the robot to be able to

pick them easily with its gripper.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

35

Figure 29. Prismatic piece vs Two pounds coin.

In the above figure there is an example of a test object. Its faces are blue but one that

was covered in red with stickers.

Figure 30. Fetch Robot with the prism picked up

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

36

6. Results

6.1. Simulation results
Thanks to the simulation, better understanding of the robot’s movement has been

achieved. Also, it has also led to the discovery of which paths are better in order to avoid

self-harming and fulfil the robot's duty at the same time.

At the beginning, the simulated robot started moving one joint at a time following the

orders allowing to learn which paths were better to develop later. Then, it came up with

the idea to combine joint movements to increase efficiency but keeping safety.

The starting position of the robot that comes by design is problematic. It is necessary to

understand that joints in that position are not in the “zero radians” position, but they

have another value.

Through a couple of tests, the joint states were established and there was managed to

get the arm to a better initial position. In this position, the robot has the arm almost fully

extended except for the last two joints that are prepared to pick an object from the

table.

Figure 31. Power On (left) – Pre-pick position (right)

The torso joint is used to let the robot reach advantageous pre-pick positions. The height

can be adjusted to make the robot pick anything up to 40 cm from its base (measured

from the top part of the base).

After this, testing was continued to know how the object could be held by the robot.

This is important so the object could be seen by the camera without interruptions in the

line of sight. Head joints were also used to help get a reasonable position that does not

make the arm to move too much. Finally, the object reaches around 10mm from the

camera which gives enough image quality in the postprocessing step.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

37

Figure 32. Camera position (head moved)

Finally, place positions are arbitrary in some way since the application can be used in

many fields with different spatial conditions. For this project, two different place

positions at both sides of the robot were chosen; with the arm almost fully extended.

The reason of this is to test the limits of the arm and the robot itself without using its

mobile base.

Figure 33. Place position (right of the robot)

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

38

6.2. Simulation full programs
Two full programmed tests have been made.

In the first one, the robot will pick a single cube and deposit it in one of the boxes (right

or left) depending on its colour. This is the simplest use of the application and needs no

change.

Figure 34. First program. Single cube

Figure 35. Aerial schematic view. Single cube.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

39

In the second one, a different scenario was created. In this scenario the robot must

perform the pick&place task four times to place four cubes that are on the table. The

robot must know the cubes’ position and it will pick and place one by one, repeating the

“routine script” four times, and then shutdown.

Figure 36. Second program. Four cubes

6.2. Real tests results
There has been a lot learned after doing some tests in the Gazebo simulation. However,

at this point, there was still the need to see tests in real applications and take a closer

look of how well it is working.

The first thing that came up during the tests was that some movements were too fast

and too strong that the robot was having a hard time using its compensators to perform

these movements. This gave the idea to change some parameters in the code.

The “effort” parameter in the arm message is responsible for this. If it is increased to

high levels, the robot moves more gently and avoids harming the object.

Also, regarding the object, the gripper suffered from this as well. If the effort parameter

was left to a low value, the gripper put too much pressure on the object. So, it was

needed to increase its value again.

This test is mandatory for working with fragile objects since they could need different

effort values to be picked firmly but also gently, avoiding breaking them.

Real tests also provided a simple and efficient way to test working heights the robot

could reach.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

40

7. Conclusions
At the beginning of this document, it was indicated that the aim was to create a

pick&place application which would let the robot decide where to place the objects. At

this point that goal has been fulfilled. And through this project, there have been learnt

lots of useful tools that could be used in future projects working with robots.

From the first steps of the simulation to the final real test, it has been aimed to be as

efficient and safe as it could. In order to reach a good result, it has been key to balance

the different goals but also to keep in mind the possible industry in which this application

could have its place.

The application has been designed using both common tools in robotic programming:

MATLAB and ROS architecture. It has been designed to be flexible to the situation, the

objects, and the hardware used. The application can be easily adapted if using the same

architecture.

Thanks to the simulations and the real testing it has been able to produce a high-quality

application despite the limitations in software or hardware.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

41

8. Future work
In this project, a versatile application that can work in many different industries has been

made. But, with more time, there are some other features that can be added to this

application to make it even better and self-sufficient.

For now, the application works under instruction. A person or another machine must

send the order to pick the object. But the application could be made to recognise when

it should start working, so it would not need external aid to work properly. The robot’s

camera would be used to detect the object to be picked and work standalone.

Apart from that, with further research, the artificial intelligence of the robot could be

improved to consider more characteristics from the object when classifying it, such as

shape or even texture using deep learning.

Following the beginning of this project, robotics is a huge world in which humans have

still a lot to research, and doing so, lives would be easier.

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

42

References

[1] Article: Multiclass object classification for retail products -

https://towardsdatascience.com/multi-class-object-classification-for-retail-products-

aa4ecaaaa096

[2] Article: Benefits of Robots - https://www.robots.com/articles/benefits-of-robots

[3] Article: Advantages and Disadvantages of Industrial Robots -
https://www.plastikmedia.co.uk/advantages-disadvantages-of-industrial-robots/

[4] Article: Benefits of Automation - https://www.productivity.com/benefits-of-

automation/

[5] Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam,

Industry and Invention. University of Chicago Press. p. 149. ISBN 978-0-226-72634-2.

[6] Article: On Humans, Robots and the Future of Work -
https://www.industryweek.com/technology-and-iiot/article/22027828/on-humans-robots-

and-the-future-of-work

[7] ABB (Company) - https://new.abb.com/es

[8] Human–robot collaborative assembly in cyber-physical production: Classification

framework and implementation , Xi Vincent Wang, Zsolt Kemény, József Váncza, Lihui

Wang

[9] CLASSIFICATION OF COBOTIC SYSTEMS FOR INDUSTRIAL APPLICATIONS,

Théo Moulières-Seban, Jean-Marc Salotti, Bernard Claverie, David Bitonneau

[10] Confined Configuration Space for Collaborative Robots, S. Saeed 2020

[11] Design of the implementation of a collaborative robot for optimising the internal

flow of equipment and materials in the healthcare industry, A. A. Sánchez Alcázar,

2019

[12] Article: Los robots industriales irrumpen en el sector de la alimentación y bebida,

November 2010 - https://www.youtube.com/watch?v=8G59zTXVHHU

[13] Article: Custom cameras classify plastic pellets precisely - https://www.vision-

systems.com/cameras-accessories/article/16738359/custom-cameras-classify-plastic-pellets-

precisely

[14] General information about ROS: URL: ros.org/about-ros/

[15] Material to learn ROS: Udemy course: “Programming Robots with ROS”

[16] Material to learn ROS: Course from ETH Zürich - https://rsl.ethz.ch/education-

students/lectures/ros.html

[17] ROS by Example. A Do-It-Yourself Guide to Robot Operating System, R.Patrick

Goebel

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

43

[18] Gazebo tutorials: http://gazebosim.org/tutorials?tut=ros_overview

[19] MATLAB https://es.mathworks.com/products/matlab.html

[20] Human Eye image and documentation https://kidshealth.org/en/kids/eyes.html

[21] Human Eye learning https://courses.lumenlearning.com/boundless-physics/chapter/the-

human-eye/

[22] Ibn al-Haytham. (2019, 10 1). Retrieved from Encyclopaedia Britannica:

https://www.britannica.com/biography/Ibn-al-Haytham

[23] Cognex (Company), 2016 - https://www.cognex.com/es-es/what-is/machine-

vision/components/lighting

[24] Machine Vision Notes. Image Processing, L. Alboul 2020

[25] Fetch Robot from Fetch Robotics: https://fetchrobotics.com/robotics-platforms/fetch-

mobile-manipulator/

[26] Documentation of the Fetch Robot -
https://docs.fetchrobotics.com/robot_hardware.html

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

44

Appendix
Here are presented the three algorithms developed that make the pick&place

application as has been explained in the corresponding section of this document:

Process Initialisation

%% Initial configuration %%

%% Connect to ROS master in fetch robot from Matlab %%
rosinit('http://192.168.0.3:11311') % 192.168.0.3 fetch54

%% Or connect to ROS master in simulation %%
rosinit('http://192.168.56.102:11311') % 192.168.56.102

%% Init Subscribers %% (head camera and joint states)
camera_sub = rossubscriber('/head_camera/rgb/image_raw');
joint_states = rossubscriber('/joint_states'); % In case we need to

know the states during the process

%% Init Publishers %% (head, arm, torso and gripper controllers)
move_head_publisher =

rospublisher('/head_controller/follow_joint_trajectory/goal','control_

msgs/FollowJointTrajectoryActionGoal');
move_arm_publisher =

rospublisher('/arm_controller/follow_joint_trajectory/goal','control_m

sgs/FollowJointTrajectoryActionGoal');
move_torso_publisher =

rospublisher('/torso_controller/follow_joint_trajectory/goal','control

_msgs/FollowJointTrajectoryActionGoal');
move_gripper_publisher =

rospublisher('/gripper_controller/gripper_action/goal','control_msgs/G

ripperCommandActionGoal');

%% Move head so camera can see objects %%
head_move = rosmessage(move_head_publisher);

joint_send = rosmessage('trajectory_msgs/JointTrajectoryPoint'); % Aux

variable
joint_send.Positions = zeros(2,1);
joint_send.Velocities = zeros(2,1);
joint_send.Accelerations = zeros(2,1);
joint_send.Effort = zeros(2,1);
time = rosduration(1,0);
head_move.Goal.Trajectory.Points = joint_send;

head_move.Goal.Trajectory.JointNames = ["head_pan_joint";

"head_tilt_joint"];
head_move.Goal.Trajectory.Points.Positions = [0.0; 0.48];
head_move.Goal.Trajectory.Points.TimeFromStart = time;
send(move_head_publisher,head_move);

%% Setting torso initial position %%
torso_move = rosmessage(move_torso_publisher);

joint3_send = rosmessage('trajectory_msgs/JointTrajectoryPoint'); %

Aux variable
joint3_send.Positions = zeros(1,1);

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

45

joint3_send.Velocities = ones(1,1)*0.1;
joint3_send.Accelerations = zeros(1,1);
joint3_send.Effort = 500*ones(1,1);
time = rosduration(1,0);
torso_move.Goal.Trajectory.Points = joint3_send;
torso_joint_names = "torso_lift_joint";
torso_move.Goal.Trajectory.JointNames = torso_joint_names;
torso_positions = 0.2; % Positive = up, Zero/Negative = down (max 0.5)
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
torso_move.Goal.Trajectory.Points.TimeFromStart = time;
send(move_torso_publisher,torso_move);

%% Setting arm message conditions and pickup position from initial

fetch position %%
arm_move = rosmessage(move_arm_publisher);

joint2_send = rosmessage('trajectory_msgs/JointTrajectoryPoint'); %

Aux variable
joint2_send.Positions = zeros(7,1);
joint2_send.Velocities = 0.01*ones(7,1);
joint2_send.Accelerations = zeros(7,1);
joint2_send.Effort = 50000*ones(7,1);
time = rosduration(1,0);
arm_move.Goal.Trajectory.Points = joint2_send;
arm_joint_names = ["shoulder_pan_joint", "shoulder_lift_joint",

"upperarm_roll_joint", "elbow_flex_joint", "forearm_roll_joint",

"wrist_flex_joint", "wrist_roll_joint"];
arm_move.Goal.Trajectory.JointNames = arm_joint_names;
arm_move.Goal.Trajectory.Points.TimeFromStart = time;

% Step by step arm movement
% arm_positions = [deg2rad(90); deg2rad(90); deg2rad(0); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 1 % Initial Position
% pause(4)
% arm_positions = [deg2rad(90); deg2rad(90); deg2rad(-90);

deg2rad(90); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 2 % Can be skipped
% pause(4)
% arm_positions = [deg2rad(0); deg2rad(90); deg2rad(-90); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 3 % Can be skipped
% pause(4)
arm_positions = [deg2rad(0); deg2rad(90); deg2rad(180); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % 4 %
pause(4)

%%%%%%%%%%%%%
% arm_positions = [deg2rad(0); deg2rad(90); deg2rad(-180);

deg2rad(90); deg2rad(0); deg2rad(0); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 5.1 % Extend 6º DOF % Skippable
% pause(4)
arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(0); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

46

send(move_arm_publisher,arm_move); % 5.2 % Extend 2º DOF
pause(4)
arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(0);

deg2rad(0); deg2rad(0); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % 5.3 % Extend 4º DOF
pause(4)
%%%%%%%%%%%%%%

arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(0);

deg2rad(0); deg2rad(-90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % 6 %
pause(4)

%% Opening gripper in case it's closed %%
gripper_move = rosmessage(move_gripper_publisher);

gripper_move.Goal.Command.Position = 1; % Positive opens,

Zero/Negative closes
gripper_move_Goal.Command.Effort = 500;

send(move_gripper_publisher,gripper_move);

%% RAFAEL GOMEZ HORTELANO %% RGH %%

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

47

Process Script

%% Procces script %%

%% Wait input -- then pick %%

% Moving torso down to pick
torso_positions = 0.06; % Positive = up, Zero/Negative = down
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
send(move_torso_publisher,torso_move); % Picks at 53 mm from ground
pause(6)
% Closing gripper
gripper_move.Goal.Command.Position = 0; % Positive opens,

Zero/Negative closes
send(move_gripper_publisher,gripper_move);
% Tested with 12 mm object [---4mm-gripper-7mm---]
pause(4)

% Moving torso up
torso_positions = 0.2; % Positive = up, Zero/Negative = down
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
send(move_torso_publisher,torso_move); % Up to 14 mm torso extended
pause(4)

% Moving arm to camera position
% arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(0);

deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 7 % Skippable
% pause(4)

%%%%%%%%
% arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(45);

deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 8.1 % Skippable
% pause(4)
arm_positions = [deg2rad(0); deg2rad(45); deg2rad(-180); deg2rad(45);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % 8.2 %
pause(4)
%%%%%%%%

arm_positions = [deg2rad(0); deg2rad(45); deg2rad(-180); deg2rad(110);

deg2rad(-5); deg2rad(85); deg2rad(90)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % 9 %
pause(4) % Object at 10 mm from camera

%% Get info from camera and interprete it %%

% image_msg = receive(camera_sub, 8);
img = receive(camera_sub);
image_work = readImage(img);
figure(1), imagesc(image_work)

part_object = image_work(250:370, 60:500, :);

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

48

figure(2), imshow(part_object)

% Test color HSV method
hsv_object = rgb2hsv(part_object);
hue = mean(hsv_object(:,:,1));
hue = mean(hue);
saturation = mean(hsv_object(:,:,2));
saturation = mean(saturation);
value = mean(hsv_object(:,:,3));
value = mean(value);

color(1) = (0+0.0833)/2;
color(2) = (0.0833+0.1665)/2;
color(3) = (0.1665+0.333)/2;
color(4) = (0.333+0.5)/2;
color(5) = (0.5+0.667)/2;
color(6) = (0.667+0.75)/2;
color(7) = (0.75+0.8335)/2;
color(8) = (0.8335+0.9167)/2;
color(9) = (0.9167+1)/2;

if saturation<=0.1
 color_str = 'white';
elseif value<=0.1
 color_str = 'black';
else
 if (hue>color(9) || hue<color(1))
 color_str = 'red';
 elseif (hue>color(1) && hue<color(2))
 color_str = 'orange';
 elseif (hue>color(2) && hue<color(3))
 color_str = 'yellow';
 elseif (hue>color(3) && hue<color(4))
 color_str = 'green';
 elseif (hue>color(4) && hue<color(5))
 color_str = 'cyan';
 elseif (hue>color(5) && hue<color(6))
 color_str = 'blue';
 elseif (hue>color(6) && hue<color(7))
 color_str = 'purple';
 elseif (hue>color(7) && hue<color(8))
 color_str = 'magenta';
 elseif (hue>color(8) && hue<color(9))
 color_str = 'pink';
 end
end

 %% Choose where to place %%
if (strcmp(color_str,'red') == true) || (strcmp(color_str,'white') ==

true || strcmp(color_str,'black') == true ||

strcmp(color_str,'yellow') == true || strcmp(color_str,'blue') ==

true)
 place = 1;
elseif (strcmp(color_str,'orange') == true || strcmp(color_str,'cyan')

== true || strcmp(color_str,'green') == true ||

strcmp(color_str,'purple') == true || strcmp(color_str,'magenta') ==

true || strcmp(color_str,'pink') == true)
 place = 2;
end

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

49

%% Place %%
% Moving arm to place
switch place
 case 1 % Right
 arm_positions = [deg2rad(-90); deg2rad(45); deg2rad(-180);

deg2rad(110); deg2rad(-5); deg2rad(85); deg2rad(90)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % Rotate to left/right
 pause(4)
% arm_positions = [deg2rad(-90); deg2rad(45); deg2rad(-180);

deg2rad(45); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 8.2 % Skippable
% pause(4)
% arm_positions = [deg2rad(-90); deg2rad(0); deg2rad(-180);

deg2rad(45); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 8.1 % Skippable
% pause(4)
% arm_positions = [deg2rad(-90); deg2rad(0); deg2rad(-180);

deg2rad(0); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 7 % Skippable
% pause(4)
 arm_positions = [deg2rad(-90); deg2rad(0); deg2rad(-180);

deg2rad(0); deg2rad(0); deg2rad(-90); deg2rad(0)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % 6 %
 pause(4)
 % Moving torso down
 torso_positions = 0.06; % Positive = up, Zero/Negative = down
 torso_move.Goal.Trajectory.Points.Positions = torso_positions;
 send(move_torso_publisher,torso_move);
 case 2 % Left
 arm_positions = [deg2rad(90); deg2rad(45); deg2rad(-180);

deg2rad(110); deg2rad(-5); deg2rad(85); deg2rad(90)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % Rotate to left/right
 pause(4)
% arm_positions = [deg2rad(90); deg2rad(45); deg2rad(-180);

deg2rad(45); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 8.2 %
% pause(4)
% arm_positions = [deg2rad(90); deg2rad(0); deg2rad(-180);

deg2rad(45); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 8.1 %
% pause(4)
% arm_positions = [deg2rad(90); deg2rad(0); deg2rad(-180);

deg2rad(0); deg2rad(0); deg2rad(90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % 7 %
% pause(4)
 arm_positions = [deg2rad(90); deg2rad(0); deg2rad(-180);

deg2rad(0); deg2rad(0); deg2rad(-90); deg2rad(0)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % 6 %
 pause(4)

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

50

 % Moving torso down
 torso_positions = 0.03; % Positive = up, Zero/Negative = down
 torso_move.Goal.Trajectory.Points.Positions = torso_positions;
 send(move_torso_publisher,torso_move);
 pause(4)
 otherwise

end

% Opening gripper
gripper_move.Goal.Command.Position = 1; % Positive opens,

Zero/Negative closes
send(move_gripper_publisher,gripper_move);
pause(4)
% Moving torso up
torso_positions = 0.1; % Positive = up, Zero/Negative = down
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
send(move_torso_publisher,torso_move); % Up to 14 mm torso extended
pause(4)

%% Returning to pick position %%
switch place
 case 1 % from right
 arm_positions = [deg2rad(-90); deg2rad(0); deg2rad(-180);

deg2rad(90); deg2rad(0); deg2rad(-90); deg2rad(0)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % Ret 1 %
 pause(4)
 case 2 % from left
 arm_positions = [deg2rad(90); deg2rad(0); deg2rad(-180);

deg2rad(90); deg2rad(0); deg2rad(-90); deg2rad(0)];
 arm_move.Goal.Trajectory.Points.Positions = arm_positions;
 send(move_arm_publisher,arm_move); % Ret 1 %
 pause(4)

 otherwise

end

% arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(45); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % Ret 3 % Skippable
% pause(4)
% arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(-90); deg2rad(0)];
% arm_move.Goal.Trajectory.Points.Positions = arm_positions;
% send(move_arm_publisher,arm_move); % Ret 4 % Skippable
% pause(4)
arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(0);

deg2rad(0); deg2rad(-90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Ret 5 % Ready to pick again
pause(4)

torso_positions = 0.1; % Positive = up, Zero/Negative = down (max 0.5,
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
torso_move.Goal.Trajectory.Points.TimeFromStart = time;
send(move_torso_publisher,torso_move);
pause(4)

“Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place
operation using colour detection”

51

Process Shutdown

% Move head
head_move.Goal.Trajectory.Points.Positions = [0.0; 0.0];
send(move_head_publisher,head_move);

% Move arm
arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(0);

deg2rad(0); deg2rad(0); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 1 %
pause(4)
arm_positions = [deg2rad(0); deg2rad(0); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(0); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 2 %
pause(4)
arm_positions = [deg2rad(0); deg2rad(90); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(0); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 3 %
pause(4)
arm_positions = [deg2rad(0); deg2rad(90); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 4 %
pause(4)
arm_positions = [deg2rad(90); deg2rad(90); deg2rad(-180); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 5 %
pause(4)
arm_positions = [deg2rad(90); deg2rad(90); deg2rad(-90); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 6 %
pause(4)
arm_positions = [deg2rad(90); deg2rad(90); deg2rad(0); deg2rad(90);

deg2rad(0); deg2rad(90); deg2rad(0)];
arm_move.Goal.Trajectory.Points.Positions = arm_positions;
send(move_arm_publisher,arm_move); % Shutdown 7 %
pause(4)

% Move torso down without hitting itself
torso_positions = 0.03; % Positive = up, Zero/Negative = down
torso_move.Goal.Trajectory.Points.Positions = torso_positions;
send(move_torso_publisher,torso_move);
pause(4)

% Node shutdown
rosshutdown
clear all

%% RAFAEL GOMEZ HORTELANO %% RGH %%

	Student Name: Rafael Gómez Hortelano
	Student Number: 29044206
	and the name and student number of other group members below:
	Course Title: MSc. Automation Control & Robotics
	Module Title: PROJECT AND DISSERTATION
	Module Code: (CONT2 KF-2018/9) 55-704710-KF-20189
	undefined: Dr Lyuba Alboul
	Assignment Title: Design and implementation of an artificial intelligence module in a Fetch. Application: Pick&place operation using colour detection
	undefined_2: 7th May 2020
	undefined_3: 25th June 2020

