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Harmonization of quality metrics and power
calculation in multi-omic studies
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Thomas Hankemeier9, Jesper Tegnér 3,4,10, Johan A. Westerhuis 11,12 & Ana Conesa 2,13✉

Multi-omic studies combine measurements at different molecular levels to build compre-

hensive models of cellular systems. The success of a multi-omic data analysis strategy

depends largely on the adoption of adequate experimental designs, and on the quality of the

measurements provided by the different omic platforms. However, the field lacks a com-

parative description of performance parameters across omic technologies and a formulation

for experimental design in multi-omic data scenarios. Here, we propose a set of harmonized

Figures of Merit (FoM) as quality descriptors applicable to different omic data types.

Employing this information, we formulate the MultiPower method to estimate and assess the

optimal sample size in a multi-omics experiment. MultiPower supports different experimental

settings, data types and sample sizes, and includes graphical for experimental design

decision-making. MultiPower is complemented with MultiML, an algorithm to estimate

sample size for machine learning classification problems based on multi-omic data.
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The genomics research community has been increasingly
proposing the parallel measurement of diverse molecular
layers profiled by different omic assays as a strategy to

obtain comprehensive insights into biological systems1–4.
Encouraged by constant cost reduction, data-sharing initiatives,
and availability of data (pre)processing methods5–13, the so-called
multi-platform or multi-omics studies are becoming popular.
However, the success of a multi-omic project in revealing com-
plex molecular interconnections strongly depends on the quality
of the omic measurement and on the synergy between a carefully
designed experimental setup and a suitable data integration
strategy. For example, multi-omic measurements should derive
from the same samples, observations should be many, and var-
iance distributions similar if the planned approach for data
integration relies on correlation networks. Frequently, these issues
are overlooked, and analysis expectations are frustrated by
underpowered experimental design, noisy measurements, and the
lack of a realistic integration method.

A thorough understanding of individual omic platform prop-
erties and their influence on data integration efforts represents an
important, but usually ignored, aspect of multi-omic experiment
planning. Several tools are available to assess omic data quality,
even cross-platform, such as FastQC for raw sequencing (seq)
reads14, Qualimap15,16 and SAMstat17 for mapping output, and
MultiQC18 that combines many different tools in a single report.
However, these tools do not apply to non-sequencing omics (i.e.,
metabolomics) and are not conceived to compare platform per-
formance nor support multi-omic experimental design choices.
Figures of Merit (FoM) are performance metrics typically used in
analytical chemistry to describe devices and methods. FoM
include accuracy, reproducibility, sensitivity, and dynamic range;
descriptors also applied to omic technologies. However, the
definition of each FoM acquires a slightly different specification
depending on the omic technology considered, and each omic
platform possesses different critical FoM. For example, RNA-seq
usually provides unbiased, comprehensive coverage of the tar-
geted space (i.e., RNA molecules), while this is not the case for
shotgun proteomics, which is strongly biased toward abundant
proteins. Importantly, we currently lack both a systematic
description of FoM discrepancies across omic assays and a defi-
nition of a common performance language to support discussions
on the multi-omic experimental design.

FoM are relevant to statistical analyses that aim to detect dif-
ferential features, due to their impact on the number of replicates
required to achieve a given statistical power. The statistical power
of an analysis method, which is the ability of the method to detect
true changes between experimental groups, is determined by the
within-group variability, the size of the effect to be detected, the
significance level to be achieved, and the number of replicates (or
observations) per experimental group, also known as sample size.
All these parameters are highly related to FoM. Estimating power
in omic experiments is challenging because many features are
assessed simultaneously19. These features may have different
within-condition variability and the significance level must be
adapted to account for the multiple testing scenario. Deciding on
the effect size to detect may also prove difficult, especially when
the natural dynamic range of the data has changed due to nor-
malization procedures. Moreover, different omic platforms pre-
sent distinct noise levels and dynamic ranges, and hence analysis
methods might not be equally applicable to all of them. As a
consequence, independently computing the statistical power for
each omic might not represent the best approach for a multi-omic
experiment, if the different measurements are to be analyzed in
an integrative fashion and a joint power study for all platforms
seems more appropriate. Although several methods have been
proposed to optimize sample size and evaluate statistical power in

single-omic experiments19,20, no such tool exists in the context of
multi-omics data. Similarly, multi-omic datasets are increasingly
collected to develop sample class predictors applying machine
learning (ML) methods. In this case, the classification error rate
(ER), rather than the significance value, is used to assess perfor-
mance. In the field of ML, the estimation of the number of
samples required to achieve an established prediction error is still
an open question21,22 and there are not yet methods that answer
this question for multi-omics applications.

In summary, the multi-omics field currently lacks a com-
parative description of performance metrics across omic tech-
nologies and methods to estimate the number of samples required
for their multiple applications. In this work, we propose a formal
definition of FoM applicable across several omics and provide a
common language to describe the performance of high-
throughput methods frequently combined in multi-omic stu-
dies. We leverage this harmonized quality control vocabulary to
develop MultiPower, an approach for power calculations in
multi-omic experiments applicable to across omics platforms and
types of data. Additionally, we present MultiML, an R method to
obtain the optimal sample size required by ML approaches to
achieve a target classification ER. The FoM definitions, together
with the MultiPower and MultiML calculations proposed here
constitute a framework for quality control and precision in the
design of multi-omic experiments.

Results
Comparative descriptions of omic measurement quality. We
selected seven commonly used FoM that cover different quality
aspects of molecular high-throughput platforms (see “Methods”
section, Fig. 1, Supplementary Table 1). Figure 2 summarizes the
comparative analysis for these FoM across seven different types of
omic platforms, classified as mass spectrometry (MS) based
(proteomics and metabolomics) or sequencing based. In this
study, we consider short-read seq-based methods that measure
genome variation and dynamic aspects of the genomes, and
divided them into feature-based (RNA-seq and miRNA-seq) and
region-based methods (DNA-seq, ChIP-seq, Methyl-seq, and
ATAC-seq).

Sensitivity is defined as the slope of the calibration line that
compares the measured value of an analyte with the true level of
that analyte (Fig. 1). For a given platform and feature, sensitivity
is the ability of the platform to distinguish small differences in the
levels of that feature. Features with low sensitivity suffer from less
accurate quantification and are more difficult to be significant by
differential analysis methods. In metabolomics platforms, sensi-
tivity primarily depends on instrumental choices, such as the
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Fig. 1 Analytical FoM related to the calibration lines. a Calibration line for
omics measuring the levels of the target features (MS platforms and gene-
based sequencing platforms). b Calibration line for omics not measuring
concentrations but finding genomic regions, where a biological event occurs
(region-based sequencing platforms).
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chromatographic column type, the mass detector employed, and
the application of compound derivatization23. Targeted proteo-
mic approaches sample many data points per protein, leading to
higher accuracy when compared to untargeted methods24. In
nuclear magnetic resonance (NMR), no separation takes place

and a low number of nuclei change energy status, leading the
detection of only abundant metabolites and lower sensitivity than
liquid chromatography (LC)–MS or gas chromatography
(GC)–MS. NMR is capable of detecting ~50–75 compounds in
human biofluid, with a lower sensitivity limit of 5 µmolar (ref. 25),

Fig. 2 FoM across omic platforms. The table summarizes critical aspects of each FoM and omic.
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while MS platforms are able to measure hundreds to thousands of
metabolites in a single sample. Sensitivity in sequencing platforms
depends on the number of reads associated with the feature, a
parameter influenced by sequencing depth. Features with an
elevated number of reads are more accurately measured, and
hence smaller relative changes can be detected. For region-based
omics, where the goal is to identify genomic regions where a
certain event occurs, the above definition is difficult to apply, and
sensitivity is described in terms of true positive rate or recall, i.e.,
the proportion of true sites or regions identified as such, given the
number of reads in the seq output.

Reproducibility measures how well a repeated experiment
provides the same level for a specific feature or, when referring to
technical replicates, the magnitude of dispersion of measured
values for a given true signal. Traditionally, the relative standard
deviation (RSD) is used as a measure of reproducibility, with RSD
normally differing over the concentration range in high-
throughput platforms26,27. Generally, reproducibility in sequen-
cing platforms improves at high signal levels, such as highly
expressed genes or frequent chromatin-related events. RSD is
roughly constant in relation to signal in MS platforms, although
in LC–MS the lifetime of the chromatographic column strongly
influences reproducibility, leading to small datasets being more
reproducible than experiments with many samples. This
constraint imposes the utilization of internal standards, quality
control samples, and retention time alignment algorithms in these
technologies28. Moreover, untargeted LC–MS proteomics quan-
tifies protein levels with multiple and randomly detected peptides,
each with a different ER, a factor that compromises the
reproducibility of this technique. On the contrary, NMR is a
highly linear and reproducible technique29, and reproducibility
issues are associated with slight differences in sample preparation
procedures among laboratories. Sequencing methods normally
achieve high reproducibility for technical replicates5 and are
further improved as sequencing depth increases. Reproducibility
at the library preparation level depends on how reproducible the
involved biochemical reactions are. Critical factors affecting
reproducibility include RNA stability and purification protocols
in RNA-seq30, antibody affinity in ChIP-seq6, quenching
efficiency in metabolomics31, and proteolytic digestion and on-
line separation of peptides in proteomics32,33. Methyl-seq
experiments based on the robust MspI enzymatic digestion and
bisulfite conversion usually are more reproducible data than
enrichment-based methods, such as methylated DNA immuno-
precipitation (MeDIP)34. Finally, reproducibility for DNA variant
calling is associated with the balance between read coverage at
each genome position and the technology sequencing errors.

The limit of detection (LOD) of a given platform is the lowest
detectable true signal level for a specific feature, while the limit of
quantitation (LOQ) represents the minimum measurement value
considered reliable by predefined standards of accuracy35. Both
limits affect the final number of detected and quantified features,
which in turn impacts the number of tested features and the
significance level when correcting for multiple testing. For MS-
based methods, LOD and LOQ depend on the platform, can be
very different for each compound, and normally require changes
of instrument or sample preparation protocol for different
chemicals. Additionally, sample complexity strongly affects
LOD, as this reduces the chance of detecting low-abundance
peptides, while pre-fractionation can reduce this effect at the cost
of longer MS analysis time. NMR has usually higher LOD than
MS-based methods. Conversely, LOD depends fundamentally on
sequencing depth in seq-based technologies, where more features
are easily detected by simply increasing the number of reads.
However, there also exist differences in LOD across features in
sequencing assays. Shorter transcripts and regions usually have

higher LODs and are more affected by sequencing depth choices.
For DNA-seq, the ability to detect a genomic variant is strongly
dependent on the read coverage. MS-based and seq-based
methods also differ in the way features under LOD are typically
treated. MS methods either apply imputation to estimate values
below the LOD (considered missing values)12, or exclude features
when repeatedly falling under the LOD. In sequencing methods,
LOD is assumed to be zero and data do not contain missing
values, although, also in this case, features with few counts in
many samples risk exclusion from downstream analyses.

The dynamic range of an omic feature indicates the interval of
true signal levels that can be measured by the platform, while the
linear range represents the interval of true signal levels with a
linear relationship between the measured signal value and the
true signal value (Fig. 1). These FoM influence the reliability of
the quantification value and, consequently, the differential
analysis, as detection of the true effect size depends on the width
of these ranges.

In proteomics, molecule fragmentation by data-independent
acquisition approaches increases the dynamic range by at least
two orders of magnitude. A typical proteomic sample covers
protein abundance over 3–4 to four orders of magnitude, a value
that increases for targeted approaches36,37. In metabolomics,
linear ranges usually span 3–4 orders of magnitude, while
dynamic ranges increase to 4–5 orders and can be extended using
the isotopic peak of the analytes. A combination of analytical
methods can increase the dynamic range, as different instruments
may better capture either high or low concentration metabolites.
NMR has a high dynamic range and can measure highly
abundant metabolites with precision, although it is constrained
by a high detection limit. For feature-based sequencing platforms,
the dynamic range strongly depends on sequencing depth, and
values can range from zero counts to up to hundreds of
thousands, or even millions (in RNA-seq, for some mitochondrial
RNA transcripts). However, due to technical biases, linear range
boundaries are difficult to establish and may require the use of
calibration RNAs (spike-ins). Moreover, linear ranges may be
feature dependent and affected by sequence GC content, which
then requires specific normalization. For region-based sequencing
platforms, linear and dynamic ranges coincide, and vary from
zero to one.

A platform displays good selectivity if the analysis of a feature
is not disturbed by the presence of other features. Selectivity
influences the number and quantification of features and,
consequently, statistical power. For MS platforms, targeted rather
than untargeted methods obtain the best selectivity. In metabo-
lomics, selected reaction monitoring, a procedure that couples
two sequential MS reactions to obtain unique compound
fragments and control quantitation bias using isobaric com-
pounds38, is used to improve selectivity, while in proteomics
selectivity strongly depends on sample complexity, which
determines whether a given feature is detected or not. Similarly,
in sequencing experiments, selectivity relates to competition of
fragments to undergo sequencing. Highly abundant features or
regions (e.g., a highly expressed transcript or a highly accessible
chromatin region) may outcompete low-abundant elements.
Generally, this problem is difficult to address by means other
than increasing the sequencing depth. In the case of transcrip-
tomics, the application of normalized libraries can partially
alleviate selectivity problems; however, at the cost of compromis-
ing expression level estimations. Particularly for DNA-seq,
variant detection is compromised at repetitive regions and can
be alleviated with strategies that increase read length.

Identification refers to the relative difficulty faced when
determining the identity of the measured feature, a critical issue
in proteomics and metabolomics. In principle, identification does
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not affect power calculations, but influences downstream
integration and interpretation. Metabolite identification in
untargeted MS-based methods requires comparisons with
databases that collect spectra from known compounds39–41.
Compound fragments with similar masses and chemical proper-
ties often compromise identification, while database incomplete-
ness also contributes to identification failures. A typical
identification issue in lipidomics is that many compounds are
reported with the same identification label (i.e., sphingomyelins),
but slightly different carbon composition and unclear biological
significance. Conversely, NMR is highly specific. Each metabolite
has a unique pattern in the NMR spectrum, which is also often
used for identification of unknown compounds. For untargeted
proteomics data, either spectral or sequence databases are used to
determine the sequence of the measured peptide. Current
identification rates lie at ~40–65% of all acquired spectra with a
false discovery rate (FDR) of 1–5%. In targeted approaches,
identification is greatly improved by the utilization of isotopically
labeled standards. Proteomics suffers from the additional
complexity of combining peptides to identify proteins, which is
not straightforward. In fact, a recent study highlighted identifica-
tion as one of the major problems in MS-based proteomics due to
differences in search engines and databases42 and to high false-
positive rates43. A common identification problem in seq-based
methods is the difficulty to allocate reads with sequencing errors
or multiple mapping positions, which is addressed either by
discarding multi-mapped reads or by estimating correct assign-
ments using advanced statistical tools44,45. In ChIP-seq, an
identification-related issue is the specificity of the antibody
targeting the protein or epigenetic modification. Low antibody
specificity may result in reads mapping to nonspecific DNA
sequences, leaving true binding regions unidentified. The
ENCODE consortium has developed working standards to
validate antibodies for different types of ChIP assays6.

The coverage of a platform is defined here as the proportion of
detected features in the space defined by the type of biomolecule
(aka feature space). Targeted MS platforms measure a small
subset of compounds with high accuracy; hence the coverage is
restricted and lower than for untargeted approaches. As sample
complexity is frequently much larger than the sampling capacity
of current instruments, even in untargeted methods, identifica-
tion is limited to compounds with the highest abundances.
Repeating sample measurement excluding the features identified
in the first run is an efficient strategy to improve coverage,
although this requires increased instrument runtime and sample
amounts. Coverage in seq-based methods strongly depends on
sequencing depth and can potentially reach the complete feature

space associated with each library preparation protocol. In RNA-
seq, oligodT-based methods recover polyA RNAs, whereas total
RNA requires ribo-depletion, capture of antisense transcripts
imposes strand-specific protocols, and microRNAs require
specific small RNA protocols. In Methyl-seq, coverage also relates
to the applied protocol. Whole-genome bisulfite sequencing has
greater genome-wide coverage of CpGs when compared to
Reduced Representation by Bisulfite Sequencing (RRBS), while
RRBS and MeDIP provide greater coverage at CpG islands. In
general, region-based sequencing approaches can cover the whole
reference genome, with coverage depending on the efficiency of
the protocol employed to enrich the targeted regions.

From FoM to experimental design. The FoM analysis across
omics revealed that each omic data type possesses different cri-
tical performance metrics. In MS, FoM mainly depend on the
choice of instrument and approach—targeted vs. untargeted—,
while FoM in sequencing methods rely on sequencing depth,
library preparation, and eventual bioinformatics post-processing.
Although FoM are not a property of data but of the analytical
platform, they directly impact data characteristics relevant to
experimental design. Overall, FoM strongly relate to the varia-
bility in the measurements, which changes in a feature-dependent
manner. FoM also determine the final number of measured fea-
tures and the magnitude of detectable change. Hence, reprodu-
cibility influences measurement variability; sensitivity, linear, and
dynamic range determine the magnitude and precision of the
measurements, and are associated to effect size; the number of
features measured by the omic platform is given by the LOD,
selectivity, identification, and coverage. These three parameters,
variability, effect size, and number of variables, are the key
components of power calculations in high-throughput data used
by MultiPower to estimate sample size in multi-omic experi-
ments. Figure 3a illustrates the relationship between platform
properties, FoM, power parameters, and MultiPower, while
Fig. 3b presents an overview of the MultiPower algorithm (see
“Methods” section for details).

MultiPower estimates sample size for a variety of experimental
designs. We applied MultiPower to the STATegra data46 (Sup-
plementary Note 1) to illustrate power assessment of an existing
multi-omic dataset. Figure 4 compares the number of features
(m), expected percentage of features with a significant signal
change (p1), and variability measured as pooled standard devia-
tion (PSD). Note that the number of features measured by each
omic platform varies by several orders of magnitude, from 60
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solves an optimization problem to estimate the optimal sample size and to provide a power study of the experiment (gray boxes).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16937-8 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3092 | https://doi.org/10.1038/s41467-020-16937-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Power vs sample size

Sample size

S
ta

tis
tic

al
 p

ow
er

RNA-seq

miRNA-seq

ChIP-seq

DNase-seq

Metabolomics

Proteomics

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Power vs dispersion

Dispersion percentiles

S
ta

tis
tic

al
 p

ow
er

1.0 1.5 2.0 2.5

2

4

6

8

10

14

Sample size vs Cohen's d

Cohen's d

N
um

be
r 

of
 r

ep
lic

at
es

Cohen's d = 1.98

S
ta

tis
tic

al
 p

ow
er

0.0

0.2

0.4

0.6

0.8

1.0

Optimal SS User's SS

Proteomics 1077

60

52,788

23,875

12,762 40%

20%

20%

20%

60%

20%

469

% DE features 5e+00

1e+00
5e-01

1e-01

Lo
g 

sc
al

e 
(d

is
pe

rs
io

n)

5e-01

1e-02
5e-03

1e-03
5e-04

R
N

A
-s

eq

m
iR

N
A

-s
eq

C
hI

P
-s

eq

D
N

as
e-

se
q

M
et

ab
ol

om
ic

s

P
ro

te
om

ic
s

R
N

A
-s

eq

m
iR

N
A

-s
eq

C
hI

P
-s

eq

D
N

as
e-

se
q

M
et

ab
ol

om
ic

s

P
ro

te
om

ic
s

Pooled standard deviation

# features

Metabolomics

DNase-seq

ChIP-seq

miRNA-seq

miRNA-seq

RNA-seq

miRNA-seq

ChIP-seq

DNase-seq

Metabolomics

Proteomics

a cb

d e

f g

Fig. 4 MultiPower application to STATegra data. a–c Pilot data analysis. Each color represents a different omic data type. a Number of features per omic.
b Expected percentage of differentially expressed (DE) features for each omic. c Pooled standard deviation (PSD) per gene and per omic for the estimated
DE features (pseudo-DE features, see “Methods” section for details). Boxplots represent the median and interquartile range (IQR). Whiskers depict the
minimum and maximum of data without outliers, which are the values outside the interval (Q1− 1.5 × IQR, Q3+ 1.5 × IQR). d–g MultiPower results with
parameters same sample size in all the omics, minimum power per omic= 0.6, minimum average power= 0.8, FDR= 0.05, initial Cohen’s d= 0.8.
d Statistical power curves for each omic for sample sizes between 2 and 35. Squared dots indicate power at the optimal sample size (n= 16). e Statistical
power curves for each omic when considering different percentiles of PSD. Squared dots indicate power for the dispersion used in power calculations for
each omic (75th percentile). f Curve relating the initial Cohen’s d to the optimal sample size needed to detect each magnitude of change. For the specified
sample size (n= 4), the red arrows and text highlight the magnitude of change to be detected (Cohen’s d= 1.98 in this case). g Statistical power per omic
using the optimal sample size (n= 16) with Cohen’s d= 0.8, and the maximum sample size allowed by the user (n= 4) with Cohen’s d= 1.98.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16937-8

6 NATURE COMMUNICATIONS |         (2020) 11:3092 | https://doi.org/10.1038/s41467-020-16937-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


metabolites to 52,788 DNase-seq regions (Fig. 4a). This, together
with the expected percentage of differentially abundant features
(Fig. 4b), affects statistical power when multiple testing correction
is applied. Given that PSD is different for each feature (Fig. 4c),
users can set the percentile of PSD for power estimations (see
“Methods” section). In this example, PSD equals the third
quartile, which is a conservative choice. We used MultiPower to
calculate the optimal number of replicates for each omic
imposing a minimum power of 0.6 per technology, an average
power of at least 0.8, an FDR of 0.05, an initial Cohen’s d of 0.8,
and same sample size across platforms. MultiPower estimated the
optimal number of replicates to be 16 (Fig. 4d, Table 1), which is
the number of replicates required by DNase-seq to reach the
indicated minimum power. Power estimates were lowest for
DNase-seq, followed by proteomics and miRNA-seq, while fea-
tures with variability below the P60 percentile, DNase-seq, pro-
teomics, and miRNA-seq displayed power values above 0.8
(Fig. 4e). The power plots also indicated that metabolomics and
RNA-seq data had the highest power, implying that the detection
of differentially expressed (DE) features for these omics is
expected to be easier. As costs for generating 16 replicates per
omic might be prohibitive, alternatives can be envisioned such as
allowing a different number of replicates per omic—at the
expense of sacrificing power in some technologies—, accepting a
higher FDR, or detecting larger effect sizes. For instance, with
four replicates per condition and omic, significant changes were
detected at a Cohen’s d of 1.98 (Fig. 4f). Figure 4g depicts a per
omic summary of the effective power at the optimal sample size
(n= 16) with a Cohen’s d of 0.8, and at a sample size (n= 4) with
a larger Cohen’s d. Results showed that a reduction in the number
of replicates can counteract the loss of power if accepting an
increase in the magnitude of change to be detected. Finally,
MultiPower estimates were further validated by calculating power
and Cohen’s d with the published replicate numbers in STATegra
(n= 3), and verifying the agreement in magnitude and direction
of change between RNA-seq and RT-PCR for six B-cell differ-
entiation marker genes46 (Supplementary Fig. 1).

Experimental designs with different sample sizes per omic may
limit statistical analysis options, but might be unavoidable or
preferred in certain studies. We assessed this possibility with the
STATegra dataset assuming the same cost for each technology
and keeping the rest of the parameters identical to the previous
example. MultiPower analysis revealed that miRNA-seq and
DNase-seq required the highest sample size (n= 17), while only
six and nine replicates per group were required by metabolomics
and RNA-seq, respectively (Supplementary Table 2, Supplemen-
tary Fig. 2). Power plots revealed that decreasing the sample size
for miRNA-seq, DNase-seq, or proteomics results in a strong
reduction in power. Again, an alternative to reducing power is to
increase the magnitude of change to detect that was initially set to

Cohen’s d= 0.8 (Supplementary Fig. 2c). For example, for a
sample size not higher than n= 5, the graph indicates a Cohen’s d
of 1.59 for all omics. Additionally, MultiPower can also handle
different costs per omic platform and use this information to
propose larger sample sizes for inexpensive technologies (Sup-
plementary Tables 3 and 4, Supplementary Fig. 3).

Human multi-omic cohort studies such as The Cancer Genome
Atlas database (TCGA) usually collect data from a large number
of subjects, where biological variability is naturally higher than in
controlled experiments. In such studies, not all subjects may have
measurements at all omic platforms and when integrating data
decisions should be made to either select individuals profiled by
all omic assays—to keep a complete multi-omic design—or to
allow a different number of individuals per platform. We
illustrate the utility of our method in cohort studies by using
MultiPower to estimate power for the integrative analysis of four
omic platforms available for the TCGA Glioblastoma dataset47

(Supplementary Note 1). MultiPower indicated that n= 24
(Supplementary Table 5, Supplementary Fig. 4) is the optimal
sample size for complete designs. In this case, Methyl-seq set the
required sample size due to the high number of features, low
expected percentage of DE features and high variability of this
dataset. As the optimal sample size is similar to the number of
samples available in the less prevalent omics modality (only
22 samples are available for proneural tumor in methylation
data), the joint analysis of current data is not expected to suffer
from a major lack of power (Supplementary Fig. 5). However,
smaller sample sizes would dramatically impact the number of
detected DE features (Supplementary Fig. 5), further validating
the results of the MultiPower method. Given that power is
affected by the number of omic features (Fig. 3a), an alternative to
adjusting power here is the exclusion of methylation features with
low between-group variance, as this reduces the magnitude of the
multiple testing correction effect on the loss of power. Multi-
Power helps to assess these options. For example, keeping only
methylation sites with an absolute log2 fold change >0.05 for the
power analysis resulted in a reduction of the optimal sample size
from 24 to 22 (Supplementary Table 6).

MultiML predicts sample size for multi-omic based predictors.
Multi-omics datasets may be used in cohort studies to classify
biological samples into, for instance, disease subtypes or to pre-
dict drug response. In these cases, the analysis goal is not to detect
a size effect but to achieve a specified prediction accuracy. Mul-
tiML computes the optimal sample size for this type of problem.
Briefly, MultiML uses a pilot multi-omics dataset to estimate the
relationship between sample size and prediction error, which is
then used to infer the sample size required to reach a target
classification ER (Fig. 5a, “Methods” section). MultiML is a

Table 1 MultiPower parameters and results from the STATegra pilot data.

Omic numFeatb DEpercb Deltaa Dispersiona minSampleSize optSampleSize Power

RNA-seq 12,762 0.4 0.61 0.32 5 16 0.999
miRNA-seq 469 0.2 0.50 0.46 14 16 0.680
ChIP-seq 23,875 0.2 1.35 0.96 10 16 0.898
DNase-seq 52,788 0.2 0.51 0.49 16 16 0.627
Metabolomics 60 0.6 1.20 0.52 4 16 1.000
Proteomics 1077 0.2 1.16 1.05 14 16 0.685

MultiPower results were obtained for the same sample size in all technologies, a minimum power per omic of 0.6, a minimum average power of 0.8, and a Cohen’s d of 0.8.
numFeat number of omic features, DEperc expected proportion of DE features, delta difference of means to be detected, dispersion pooled standard deviation, minSampleSize sample size to achieve the
minimum power per omic, optSampleSize optimal sample size for the experiment, power power reached with the optimal sample size.
aParameter estimated by MultiPower.
bParameter provided by the user.
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flexible framework that (i) predicts sample sizes using different
combinations of omics platforms to obtain the best predictive set,
as omics technologies may have similar or complementary
information content for a given classification scenario; (ii) accepts
user-provided machine learning algorithms beyond the imple-
mented partial least squares discriminant analysis (PLS-DA) and
random forest (RF) methods; and (iii) offers job parallelization
options to speed up calculations when high-performance com-
puting resources are available.

We illustrate MultiML performance using TCGA Glioblastoma
data47. Omic features were used to predict tumor subtypes with
RF, and the target classification error rate (ERtarget) was set to
0.01. Sample sizes were calculated for combinations of two to five
omics platforms. We found that the number of samples required
to obtain ERtarget decreased as the number of omics data
platforms increased, suggesting that complementary information
was captured by the multi-omics approach resulting in a more
efficient predictor (Fig. 5b). Figure 5c shows the classification ER

a

b c d

Fig. 5 The MultiML algorithm. a Given a multi-omic dataset with O different omic types and NO samples per omic and a classification vector Y, MultiML
obtains the maximum number of common observations Nmax (Nmax≤ NO) for the combination of omic types specified by the user. MultiML then creates
subdatasets (ticks) having different number of observations (nt) from the available Nmax and obtains the variables that best explain each tick through
LASSO regression. Taking provided machine learning algorithm ML and cross-validation method CV, the selected variables at each tick are used to predict
the classification error rate (ER) on a different random subdatasets of size nt, resulting in ERt. This variable selection-ER prediction process is repeated
through m iterations to obtain an average ER and confidence interval for each tick. On these, n1 to nt and ER1 to ERt values, a first-order-smoothed penalized
P-spline regression is adjusted to estimate the learning curve that will allow the prediction of classification ERs for sample sizes larger than Nmax. b–d
MultiML results on the TCGA Glioblastoma data. b Predicted sample size for different omics combinations using a target ER of 0.01. Margin of error is
given as number of samples. GE expression microarrays, Prots proteomics, miRNA-seq microRNA microarrays, Meth methylation microarrays. c Example
of MultiML graphical output with the predictive P-spline for a combination of four omics types. OOB out-of-bag classification ER, ERtarget target error rate,
PSS predicted sample size, MOE margin of error. d MultiML evaluation. An increasing number of observations and omic types were run as input data in
MultiML having as ERtarget, the ER achieved with complete data for four omics (69 observations). For the PSS, their ER are recovered from the actual data
and their deviation from ERtarget is calculated as ΔError. The ΔError is plotted against the size of the input data. Accuracy in ER predictions increases with
the size of input data and the number of omics.
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curve fitted by MultiML for a predictor with four omics. A
quadratic pattern is observed, where ERs rapidly decrease as the
number of samples increases to reach a stable classification
performance. This graph can be used to calculate the number of
samples required at different ER levels.

To validate the estimations given by MultiML, we mimicked a
prediction scenario where we took fractions of the Glioblastoma
data and used MultiML to estimate the sample size for ERtarget

equal to the ER of the complete dataset (MinER) or greater. Then,
for the predicted sample sizes, we obtained their actual ER from
the data and compared them to ERtarget to evaluate the accuracy
of the MultiML estimate, and if the magnitude of the input
dataset affected this accuracy. As expected, MultiML accuracy
increased with the size of the input data and the number of
included omics types (Fig. 5d). Accurate predictions (deviations
< 5%) were obtained with 50 samples in a three omics
combination. Results were similar for other values of ERtarget

(Supplementary Fig. 6). We concluded that the sample size could
be accurately predicted when input data represents ~40–60% of
the required sample size.

Discussion
As multi-omic studies become more common, guidelines have
been proposed for dealing with experimental issues (i.e., sample
management) associated with specific omics data types48. How-
ever, the field has yet to address aspects that are essential to
understand the complexity of multi-omic analysis, such as the
definition of performance parameters across omic technologies
and the formulation of an experimental design strategy in multi-
omic data scenarios. In this study, we addressed both issues by
proposing FoM as a language to compare omic platforms, and by
providing algorithms to estimate sample sizes in multi-omic
experiments aiming at differential features analysis (MultiPower)
or at sample classification using ML (MultiML).

FoM have traditionally been used in analytical chemistry to
describe the performance of instruments and methods. These
terms can also be intuitively applied to sequencing platforms, but
we noticed that the meaning and relevance of FoM slightly differ
for both types of technologies. Here, we explain FoM definitions
across omic platforms and discuss which of these metrics are
critical to each data type. Detection limit, selectivity, coverage,
and identification are FoM with critical influence on the number
of features comprising the omics dataset, which in turn affects the
power of the technology to identify features with true signal
changes. Power diminishes as the number of features increases
due to the application of multiple testing corrections to control
false positives. Reproducibility and dynamic range may also be
very different across platforms, and these have a direct impact on
the within-condition variability and across-condition differences
of the study. Moreover, while sequencing depth critically affects
many of the described FoM of sequencing platforms, in MS-based
methods, the choice of a targeted or untargeted method strongly
influences FoM values. The number of features detected by the
omic platform together with the different measurement vari-
abilities across features and the magnitude of change to be
detected, represent major components of power calculations for
omics data. The highly heterogeneous nature of these factors
across omics platforms calls for specific methods for power cal-
culations in multi-omic experiments, which is addressed by
MultiPower.

MultiPower solves the optimization problem of obtaining the
sample size that minimizes the cost of the multi-omic experiment,
while ensuring both a required power per omic and a global
power. As any power computation approach, MultiPower indi-
cates the sample size required to detect a targeted effect size given

a significance threshold. MultiPower graphically represents the
relationship between sample size, dispersion, and statistical power
of each omic, and facilitates exploration of alternative experi-
mental design choices. Estimates for MultiPower parameters are
optimally calculated from pilot data, although they can also be
manually provided. The tool accepts normally distributed, count
and binary data to facilitate the integration of omic technologies
of different analytical nature. Data should have been properly
preprocessed and eventual batch effects, removed. In this study,
we showcase MultiPower functionalities using sequencing,
microarray, and MS data, although the method could be applied
to other technologies, such as NMR. Importantly, the optimal
sample size can be computed under two different requirements:
an equal sample size for all platforms ensuring a common
minimal power, or different sample size per omic to achieve the
same power. This is relevant for the choice of downstream sta-
tistical analysis. Methods that rely on co-variance analysis typi-
cally require uniform sample sizes and MultiPower will provide
this while revealing the differences in power across data mod-
alities. Methods that combine data based on effect estimates allow
sample size differences and can benefit from the equally powered
effect estimation. We illustrate the MultiPower method in three
scenarios, where different parameterizations are assessed and
include both controlled laboratory experiments and cohort data
to highlight the general applicability of the method. By discussing
interpretations of power plots and the factors that contribute to
sample size results, we provide a means to make informed deci-
sions on experimental design and to control the quality of their
integrative analysis.

The MultiPower approach is not directly applicable to ML
methods used for sample classification, as in this case the basic
parameters of the power calculation—significance threshold and
effect size—are not applicable. Still, sample size estimation is
relevant as multi-omic approaches are frequently used to build
classifiers of biological samples. This is not a trivial problem
because, aside from FoM, feature relationships within the mul-
tivariate space are instrumental in ML algorithms. The MultiML
strategy calculates samples size for multi-omic applications,
where the classification ER can be used as a measure of perfor-
mance. MultiML is itself a learning algorithm that learns the
relationship between sample size and classification error, and uses
this to estimate the number of observations required to achieve
the desired classification performance. Hence, pilot data are a
requisite for MultiML. Additionally, MultiML has been designed
to be flexible for the ML algorithm and to evaluate multiple
combinations of omics types in order to identify optimized multi-
omic predictors.

Altogether this work establishes, for the first time, a uniform
description of performance parameters across omic technologies,
and offers computational tools to calculate power and sample size
for the diversity of multi-omics applications. We anticipate
MultiPower and MultiML will be useful resources to boost
powered multi-omic studies by the genomics community.

Methods
Scope of the FoM analysis. In this study, we discuss seven FoM, which we broadly
classified into two groups: quantitative or analytical FoM include sensitivity,
reproducibility, detection and quantification limit, and linear or dynamic range,
and qualitative FoM, which are selectivity, identification, and coverage. To describe
how they apply to omic technologies, we distinguish between MS and seq-based
platforms.

MS platforms refer to metabolomics and proteomics, which often operate in
combination with LC–MS or GC–MS. MS platforms can be used for “untargeted”
(measuring a large number of features including novel compounds) and “targeted”
assays. While MS is the platform used in most proteomics and metabolomics based
studies, NMR (refs. 29,49) is also a relevant platform in metabolomics and is
incidentally discussed.
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For sequencing platforms, we also consider two subgroups: “feature-based” and
“region-based”. In feature-based assays (i.e., RNA-seq or miRNA-seq), a genome
annotation file defines the target features to be quantified, and hence these are
known a priori. For region-based assays (i.e., ChIP-seq or ATAC-seq), the
definition of the target feature to be measured (usually genomics regions) is part of
the data analysis process. Applications of RNA-seq to annotate genomes could be
considered a region-based assay. We consider here omic assays with a dynamic
component regarding the genotype, such as RNA-seq, ChIP-seq, ATAC-seq,
Methyl-seq, proteomics, and metabolomics, and also genome variation analyses.
However, single-cell technologies are not included, as they require a separate
discussion.

Analytical FoM quantify the quality of an analytical measurement platform and
are defined at the feature level (gene, metabolite, region, etc.). We describe FoM as
properties of a calibration line that displays the relationship between the measured
value and the true quantity of the feature in the sample (Fig. 1). In our case, the
definition of the true signal differs between omic platforms. As MS platforms and
feature-based seq-based platforms measure the concentration or level of the feature
of the gene, protein, or metabolite of interest, the true signal represents the average
level across all cells contained in the sample (Fig. 1a). In contrast, region-based
sequencing techniques aim to identify the genomic region, where a given molecular
event occurs, such as the binding of a transcription factor. In this case, the true
signal represents the fraction of cells in the sample (or probability), where the event
actually occurs within the given coordinates (Fig. 1b).

Lastly, while analytical FoM are defined at the feature level, omic platforms by
nature measure many features simultaneously and consequently, the FoM may not
be uniform for all of them. For example, accuracy might be different for low vs.
highly expressed genes or polar vs. apolar metabolites. In this study, we consider
FoM globally and discuss how technological or experimental factors affect the FoM
of different ranges of features within the same platform.

Overview of MultiPower method. The MultiPower R method (Fig. 3b) performs a
joint power study that minimizes the cost of a multi-omics experiment, while
requiring both a minimum power for each omic and an average power for all
omics. MultiPower calculations are defined for a two groups contrast and imple-
mented in the R package to support the application of the method to single and
multiple pairwise comparisons. The parameters required to compute power can be
estimated from multi-omic available data (pilot data or data from previous studies)
or, alternatively, users can set them. The method considers multiple testing cor-
rections by adjusting the significance level to achieve the indicated FDR. Addi-
tionally, MultiPower accepts normally distributed data, count data or binary data,
and optimal sample size (number of replicates or observations per condition) can
be computed either requiring the same or allowing different sample sizes for each
omic. In the latter, the monetary cost is considered as an additional parameter in
the power maximization problem. MultiPower can be used to both design a new
multi-omic experiment and to assess if an already generated multi-omic dataset
provides enough power for statistical analysis.

MultiPower minimizes the total cost of the multi-omics experiment while
ensuring a minimum power per omic (Pi) and a minimum average power for the
whole experiment (A). Equation (1) describes the optimization problem to be
solved to estimate the optimal number of biological replicates for each omic (xi):

min
PI
i¼1

2cixi

subject to:

f xi; α; ¼ð Þ≥ Pi 8i ¼ 1; ¼ ; IPI

i¼1
f xi ; α;¼ð Þ
I ≥A

xi 2 Zþ

ð1Þ

Where I is the number of omics, ci is the cost of generating a replicate for omic i, α
is the significance level, and f() represents the power function.

We calculate statistical power under the assumption that the means of two
populations are to be compared in the case of count or normally distributed data.
Consequently, power is in these cases a function of the sample size (xi) per
condition and for a particular omic i, the significance level (α), and other
parameters that depend on the nature of the omic data type. For normally
distributed data, a t-test is applied and the power for omic i is expressed as
f xi; α;Δi; σ ið Þ, where Δi is the true difference of means in absolute value to be
detected, and σi is the PSD considering two experimental groups. Count data
obtained from sequencing platforms can be modeled as a negative binomial
distribution (NB) and an exact test can be applied to perform differential analysis.
In this case, the power of omics i is estimated as described in ref. 50, where power is
expressed as f xi; α; ϕi; μi;ωi

� �
, being ϕi the dispersion parameter of the NB that

relates variance and mean (see Eq. (2)). The effect size is calculated with the fold
change (ωi) between both groups as well as the average counts (μi).

σ2 ¼ μþ μ2ϕ ð2Þ
For binary data with 0/1 or TRUE/FALSE values indicating, for instance, if a

mutation is present or not, or if a transcription factor is bound or not, the goal is
comparing the percentages of 1 or TRUE values between two populations. In this

case, the parameters needed to estimate power are related to the difference between
proportions to be detected (the effect size) and the sample size, but variability is not
considered.

As MultiPower considers multiple testing correction to control FDR, the
significance level given to the power function is adapted to this correction (α*). We
followed the strategy proposed in other studies51–53 given by Eq. (3).

α* ¼ r1α
ðm�m1Þð1� αÞ ; ð3Þ

where m is the number of features in a particular omic, m1 is the number of
expected DE features, r1 is the expected number of true detections, and α is the
desired FDR.

Sample size scenarios in MultiPower. In multi-omic studies, an assorted range of
experimental designs can be found. All omic assays may be obtained on the same
biological samples or individuals, which would result in identical replicates number
for all data types. However, this is not always possible due to restrictions in cost or
biological material, exclusion of low-quality samples, or distributed omic data
generation. In these cases, sample size differs among omic types and yet the data
are to be analyzed in an integrative fashion. MultiPower contemplates these two
scenarios.

Under the first scenario, adding the constraint of equal sample size for all omics
(xi= x for all I= 1, …, I) to the optimization problem in Eq. (1) results in a
straightforward solution. First, the minimum sample size required to meet the
constraint on the minimum power per omic (xi) is calculated and the initial
estimation of x is set to x=maxI{xi}. Next, the second constraint on the average
power is evaluated for x. If true, the optimal sample size is xopt= x. Otherwise, x is
increased until the constraint is met. Note that, under this sample size scenario, the
cost per replicate does not influence the optimal solution xopt.

Under the second scenario, allowing different sample sizes for each omic, the
optimization problem in Eq. (1) becomes a nonlinear integer programming
problem, as the statistical power is a nonlinear function of xi. The optimization
problem can be transformed into a 0–1 linear integer programming problem by
defining the auxiliary variables zin for each omic i and each possible sample size n
from 2 to a fixed maximum value nimax, where zin ¼ 1 when the sample size for
omic i is n. The new linear integer programming problem can be formulated as
follows:

min
PI
i¼1

2ci
Pnimax

n¼2
nzin

 !

subject to:

Pnimax

n¼2
fi nð Þzin ≥Pi 8i ¼ 1; ¼ ; I

PI

i¼1

Pnimax
n¼2

fiðnÞzin
I ≥A

Pnimax

n¼2
zin ¼ 1 i ¼ 1; ¼ ; I

zin 2 f0; 1g 8i 8n

; ð4Þ

where fi(n) is the power for sample size n, given the parameters of omic i.

MultiPower implementation. The MultiPower R package implements the
described method together with several functionalities to support both the selection
of input parameters required by the method and the subsequent interpretation of
the results. The R package and user’s manual are freely available at https://github.
com/ConesaLab/MultiPower.

The MultiPower package requires different parameters to compute the optimal
sample size. As the choice of parameters can be challenging, MultiPower can
estimate them from pilot or similar existing data. The multi-omic pilot data must
have two groups and at least two replicates per group. The algorithm assumes data
are already preprocessed, normalized, and free of technical biases. Both normally
distributed and count data are accepted. We recommend raw count data to be
provided for sequencing technologies as MultiPower deals with the sequencing
depth bias. However, when count data contains other sources of technical noise, we
recommend previous transformations to meet normality (e.g., with log or voom
transformation) and indicating MultiPower that data are normally distributed. We
also recommend removing low count features from sequencing data. For data
containing missing values, these must be removed or imputed before running
MultiPower. MultiPower also accepts binary data (e.g., SNP data, ChIP-seq
transcription binding data, etc.). In this case, values must be either 0–1 or TRUE/
FALSE.

Each data type requires a different sample size computation. For normally
distributed data, MultiPower uses the power.t.test() function from stats R package
(based on a classical t-test), while the sample_size() and est_power() functions from
R Bioconductor RnaSeqSampleSize package54 are used for count data, where a NB
test is applied. For binary data, the power.prop.test() function from stats R package
is used. Moreover, MultiPower transforms parameters provided by the user to fit
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specific arguments required by these functions, in such a way that magnitudes are
maintained roughly comparable for all data types.

The power function for normally distributed data depends on the effect size, i.e.,
the true difference of means to be detected (delta parameter, Δ). The delta
parameter depends on the dynamic range of the omic and may be nonintuitive
following data preprocessing. On the contrary, the fold change and mean counts
are used in count data to estimate power. Therefore, MultiPower uses instead the
Cohen’s d (d0) value to homogenize input parameters. Cohen’s d is defined as Δ/σ
and does not depend on the scale of the data as occurs for the Δ value. Therefore,
the same value can be chosen for all omic platforms. Cohen55 and Sawilowsky56

proposed the classification presented in Supplementary Table 7 to establish a
Cohen’s d value. MultiPower computes the Cohen’s d value for all omic features
and applies this value to estimate the set M1 of DE features (those with d > d0),
which are called pseudo-DE features. We recommend setting the same Cohen’s d
initial value (d0) for all the omics although MultiPower allows different values for
each one of them.

The equivalent to Cohen’s d when comparing proportions in groups A and B is
Cohen’s h, which can be defined as h= |φA− φB|, where φi= 2 arcsin √pi, and pi is
the proportion of 1 or TRUE values in group i. Classification in Supplementary
Table 7 is also valid for Cohen’s h.

The multiple testing correction is applied to each omic analysis (see Eq. (3)),
taking the significance level set by the user as FDR value. The user must also
provide the expected percentage of DE features (p1) for each omic. Given the
number of features in a particular omic (m), the expected number of DE features
can be simply represented as m1=mp1. The RnaSeqSampleSize package50

estimates the expected number of true detections r1 for count data. For normal or
binary data, r1=m1 is assumed(as in ssize.fdr R/CRAN package57).

The intrinsic characteristics of each omic feature may result in different power
values for each one of them. To have a unique power estimation per omic, an
average power parameter from the distribution of such parameters across pseudo-
DE features must be provided. For normally distributed data, the PSD parameter
(σ) is computed as the percentile Pk of the PSDs for all the pseudo-DE features,
where Pk is set by the user (default value P75). Thus, the Δ estimation should equal
the chosen PSD. However, to avoid dependence on a single value, MultiPower
evaluates all the pseudo-DE features with PSD between percentiles Pk−5 and Pk+5

and the P100− k of the corresponding Δ values is taken as conservative choice. For
count data, MultiPower estimates the parameter w that considers the different
sequencing depth between samples as w=DB/DA, where Di is the geometric mean
of the sequencing depth of the samples in group i divided by median of the
sequencing depth of all samples (MSD). To compute the rest of parameters, count
values are normalized by dividing them by this ratio, that is, the sequencing depth
of the corresponding sample divided by MSD. To be consistent with the previous
choice for normally distributed data, the variance per condition (σ2) is also
estimated as the percentile Pk of the variances for all pseudo-DE features and
conditions. Mean counts (μ) are obtained as the percentile P100−k of mean counts
in the reference group (A) corresponding to pseudo-DE features with variance
between percentiles Pk−5 and Pk+5. The dispersion parameter (ϕ) is then derived
from Eq. (2). Finally, the fold change of pseudo-DE features (ω) is estimated as the
percentile P100−k of the fold changes corresponding to pseudo-DE features with a
PSD between percentiles Pk−5 and Pk+5. For binary data, the proportions chosen to
estimate power correspond to the P100−k of pseudo-DE features for Cohen’s d, and
are stored in the delta output parameter of MultiPower. As variability is not
considered for this data type, dispersion power plots are not generated in this case.

Once the power parameters are obtained for each omic and the user sets the
minimum power per omic and the average power for the experiment, the
optimization problem in Eq. (4) is completely defined and MultiPower makes use
of lpmodeler and Rsymphony R packages to solve it. Note that the application of
these packages to solve the problem is only needed when the number of replicates
for each omic differs. MultiPower returns a summary table with the provided and/
or estimated power parameters, the obtained optimal sample size, and
corresponding power per omic.

Power parameters in the absence of prior data. While parameter estimation
from previous data is recommended for MultiPower analysis, this might not always
be feasible. In this case, MultiPower requires parameters to be provided by users,
which could be challenging. Here, we provide recommendations for critical Mul-
tiPower parameters.

The average value for the standard deviation per omic feature and condition
partially depends on the reproducibility of omics technology. Overestimating this
parameter guarantees that the sample size fits the power needed but may lead to
too large sample sizes. According to our experience, a good value for the standard
deviation is 1.

Value for the expected proportion of DE features per omic should be set
according to results seen in similar studies. A high percentage is expected for cell
differentiation processes or diseases like cancer, while small perturbations or other
types of diseases may induce fewer changes.

Typical values for the minimum fold change between conditions and the mean
of counts for the DE features when using count data are 2 and 30, respectively, but
again these values depend on the sequencing depth of the experiment and the
magnitude of the expected molecular changes.

Power study. After obtaining the optimal sample size with MultiPower, some
questions may still arise, especially when this sample size exceeds the available
budget for the experiment:

● How much reduction of the sample size can we afford without losing too
much power?

● If power cannot be decreased but the sample size has to be reduced, how will
this reduction influence the effect size to be detected?

● Can we remove any omic platform with negligible changes between
conditions, since this platform imposes a too large optimal sample size?

To provide answers to these and similar questions, MultiPower returns several
diagnostic plots (see Fig. 4d–g for instance). The power vs. sample size plot shows
variations in power as a function of the sample size. The power vs. dispersion plot
also displays the power curves but for different dispersion values (PSD in normal
data or ϕ parameter in count data). In both plots, the power for the estimated
optimal sample size or the fixed dispersion value is represented by a square dot.

If the optimal sample size estimated by MultiPower exceeds the available
budget, researchers may opt for increasing the effect size (given by the Cohen’s d)
to be detected and allowing a smaller sample size without modifying the required
power. To perform this analysis, the postMultiPower() function can be applied,
which computes the optimal sample size for different values of Cohen’s d, from the
initial value set by the user to dmax=mini in I{P90i(d)}, where P90i(d) is the 90th
percentile of the Cohen’s d values for all the features in omic i. This choice ensures
sufficient pseudo-DE features to estimate the rest of the parameters needed to
compute power.

MultiPower for multiple comparisons. Although MultiPower algorithm is
essentially defined for a two groups comparison, the MultiPower R package sup-
ports experimental designs with multiple groups. Assuming that a pilot dataset is
available, the MultiGroupPower() function automatically performs all the possible
pairwise comparisons (or those comparisons indicated by the user) and returns
both a summary of the power and optimal sample size for each comparison, and a
numerical and graphical global summary for all the comparisons. In this global
summary, the global optimal sample size is computed as the maximum of optimal
sizes obtained for the individual comparisons. Therefore, the solution given by
MultiPower method does not allow a different sample size for each group. Users
must be aware that different optimal sample size could be obtained in this case.

MultiML method. The MultiML method deals with a multi-omic sample size
estimation problem, in which we have prior data consisting of a list of O omic data
matrices of dimension N observations × P predictor variables, and a categorical
response variable Y providing the class each observation belongs to (Fig. 5). The
number of observations and variables can differ across omics. MultiML estimates
the optimal sample size required to minimize the classification ER. MultiML
allows users to perform analyses for different combinations of the O available
omics. In each combination, the algorithm selects the common observations across
omics, Nmax. Next, an increasing number of observations (from two observations
per class to the total number of observations Nmax) are selected to build a class
predictor using the ML algorithm, sampling strategy (SS), and cross-validation
(CV) method indicated by the user. The algorithm incorporates a LASSO variable
selection step to reduce the number of predictors and computation time. LASSO
regression is incorporated at the performance evaluation step to avoid overfitting.
This process is repeated 15 times as default, and for each iteration the classification
ER of the predictor is computed. These data are used to build a polynomial model
that describes the relationship between ER and the number of observations in the
multi-omics dataset, which can be then used to estimate the sample size required
for a given ERtarget. Supplementary Fig. 7 shows the pseudocode of the MultiML
algorithm.

MultiML implementation. MultiML is implemented as a set of R functions that
calculate the classification ERs at increasing number of observations, fit the sample
size predictive model and graphically display results. Auxiliary functions are
included to prepare multi-omic data and optimize computational requirements.
The main function is ER_calculator(), which basically takes multi-omic pilot data
and returns the estimated sample size. This function requires an ERtarget, which is
the maximum classification ER that the user is willing to accept in the study. When
not provided by the user, MultiML takes the ER value obtained from the pilot data.
Users may select from two CV methods, tenfold and leave-one-out CV, and pre-
diction performance results are averaged across iterations. MultiML can operate
with any user-supplied ML algorithm, provided that this is a wrapped R function
with input and output formats supported by MultiML. By default, MultiML
includes RF and PLS-DA as ML options. For RF the R package randomForest58 is
required. In this method, the classification ER is calculated after constraining all
selected omics variables into a wide matrix. For PLS-DA the mixOmics R package59

is required. In this case, each omics data matrix is reduced to its significant vari-
ables and analysis is performed maintaining a three-way N × P ×O structure, where
N are individuals, P are the significant variables, and O are the different omics in
the study. If PLS-DA is selected as ML method, the SSs may or not be balanced,
returning either an overall classification ER or a balanced ER calculated on the left-
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out samples. For RF method, only ER is available as both methods give similar
results. MultiML also provides different prediction distances for PLS-DA and RF
used to assign a category to samples. For PLS-DA, maximum distance, distance to
the centroid, and Mahalanobis distance were implemented. These prediction dis-
tances can be defined as a model with H components. Given NnewInds new indi-
viduals and their corresponding omic data matrix Xnewinds, the predicted response
variable Ŷnewinds can be computed as follows:

bYnewinds ¼ Xnewinds ´W DTW
� ��1

B ð5Þ
where W is a p (variables) ×H matrix containing the loading vectors associated
with X; D is a p ×H matrix containing the regression coefficients of X on its H
latent components; and B is an H × n (individuals) matrix containing the regres-
sion coefficients of Y on the H latent components associated to X. The predicted
scores (Tpred) are computed as:

Tpred ¼ Xnewinds ´W DTW
� ��1 ð6Þ

In turn, for RF, out-of-bag (OOB) estimate was included60. The RF classifier is
trained using bootstrap aggregation, where each new tree is fit from a bootstrap
sample of the training observations zi= (xi, yi). The OOB error is the average error
for each zi calculated using predictions from the trees that do not contain zi in their
respective bootstrap sample. The prediction distances are then applied to assign a
category to each new sample. To reduce the number of omics variables and
computational time, a generalized linear model via penalized maximum likelihood
is applied. The regularization path is computed for the LASSO penalty using the
glmnet R package61. This variable selection step is performed on a random selection
of n observations and repeated as many times as required (15 by default) to retain
the q variables that best explain the classification vector Y. The algorithm then
takes a new set of n′i observations and, uses only the q variables to calculate the
classification ER using the ML and CV method chosen by the user (Fig. 5). The
sample size prediction curve is estimated with the vector of ERs ERti and the vector
of number of samples τi. The accuracy of MultiML depends on the number of ticks
obtained to fit the sample size prediction curve. The algorithm starts with a low (5)
number of ticks and iteratively increases them until the addition of new ticks does
not improve the accuracy of the sample size prediction curve. The algorithm
termination protocol implemented in MultiML, forces a stop when at least 12% of
the range of values of three consecutive models (ticks addition steps) are equal.
Finally, a first-order-smoothed penalized P-spline calculation is performed to
model the relationship between the number of samples and the classification ER
(refs. 62,63). The degrees of freedom of this model are the number of observation
subsets evaluated (ticks) minus 1. The model is used to predict the sample size
required to obtain a given classification error.

MultiML is a computationally intensive algorithm. The function
RequiredTimeTest() allows users to estimate the time required to run the full
predictive model at the local installation. For users who can benefit from
parallelization options, we have implemented the slurm_creator() R function that
creates a. sh script to run MultiML calculations in a SLURM cluster. Moreover,
MultiMIL can be run incrementally. The function Previous_CER() allows the
utilization of a previous MultiML result with N samples in a new MultiML
calculation that expands the size of the prior dataset by M samples, thereby
significantly accelerating the calculation of the new model.

MultiML output. MultiML returns all numerical data of the ML models created to
fit the sample size prediction model. This includes the evaluated subsets of
observations and data types, the classification ER values obtained at each iteration,
and the predicted sample size together with the margin of error of the prediction.
Additionally, the function ErrorRatePlot() prints graphically the relationship
between different sample sizes and their corresponding classification ERs. An
example is shown in Fig. 5c. The plot also includes the fitted penalized smooth
spline model to graphically obtain the sample size for an ERtarget not achievable
with the pilot dataset. The user can also create a comparative plot of all omic
combinations to determine the best contributing data modality to an accurate
classification by using Comparative_ERPlot() function.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The STATegra data used in this manuscript are available from: Gene Expression
Omnibus with accession numbers GSE75417, GSE38200, GSE75394, GSE75393, and
GSE75390; https://identifiers.org/pride.project:PXD003263; and https://identifiers.org/
metabolights:MTBLS283. The TCGA glioblastoma data used in this manuscript are
available from https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga/studied-cancers/glioblastoma.

Code availability
The MultiPower and MultiML methods are available at GitHub repository https://github.
com/ConesaLab/MultiPower.
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