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any techniques exist for the evaluation of nutrient pollution, but most of them require large amounts of data and are difficult to im
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1. Introduction

Many methods have been developed to identify nutrient pollution
(Andersen et al., 2011; Ferreira et al., 2011; Garmendia et al., 2012;
Lundberg et al., 2005; Primpas et al., 2010). However, most of these
methods were developed in countries where large water quality
datasets are available and nutrient emissions are regulated. Conse-
quently, they consider many variables and tend to require large
amounts of data. These tools become difficult to implement for those
countries where environmental monitoring and policy is less devel-
oped. The progress towards the implementation of nutrient pollution
management tools entails a challenge for these countries and requires
a gradual implementation (Garmendia et al., 2015). It has been recog-
nized that results of environmentalmanagement should not be general-
ized worldwide as economic development plays an important role in
sustainable practices (Sánchez-Hernández et al., 2017). The develop-
ment of tools to be implemented in areas of limited data is necessary
and has proven to contribute to bringing useful nutrient management
information and prioritize problems for attention (Do-Thu et al., 2011;
Firmansyah et al., 2017; Montangero and Belevi, 2007, 2008). New
methods are necessary for a rapid overall evaluation of coastal water
quality with the scarce and sometimes unreliable data available
(Shaban et al., 2010; Xianyu et al., 2017), while governments switch
to more restrictive environmental policies.

Multivariate statistical techniques such as cluster analysis arewidely
used for the spatiotemporal variation analysis of water quality
(Hajigholizadeh and Melesse, 2017; Kitsiou and Karydis, 2011; Shaban
et al., 2010; Vadde et al., 2018). But in developing countries decision
making often relies on limited data (Schärer et al., 2006), and traditional
methods cannot deal with the uncertainty from data collection, storage,
processing and interpretation (Lermontov et al., 2009). Conventional
water quality indexes are weak in dealing with inaccuracies or vague-
ness (Azarnivand, 2017), and thus, new methods to asses uncertainty
are required. Fuzzy logic has proven to be a useful and robust method
under these circumstances (Schärer et al., 2006), which enables the pro-
cessing of imprecise information (Adriaenssens et al., 2004). However,
most fuzzy indexes require many parameters and are not reliable
when information of a single pollutant is available or when samples
are too small. In opposition to fuzzy logic, grey systems can deal with
small samples (Delgado and Romero, 2016) and focus on objects with
clear extension and unclear intension (Liu and Lin, 2010), as further ex-
plained by Delgado and Romero (2016).

The grey systems theorywas developed by Deng (1985) to deal with
situations where the available information is poor or the samples used
are small (Liu and Lin, 2010). This theory works with uncertain systems
inwhich only partial or lowquality data are available (Gong and Forrest,
2014), allowing the decisionmaker to excavate and extract useful infor-
mation and to reach an accurate conclusion. A few authors have inves-
tigated the implementation of grey theory in water quality analysis
(Qi et al., 2008;Wen andWei, 2006; Zhu and Liu, 2009), which is a use-
ful technique when the system is only partially known. Grey clustering
is one of the most useful contents of the grey systems theory, which al-
lows the classification of objects into definable classes (Delgado and
Romero, 2016). The grey clustering method based on whitenization
weight functions is mainly used to verify whether objects belong to
predetermined classes so that objects of each class can be treated differ-
ently (Liu and Lin, 2010). As such, several criteria can be combined for
decision-making by assigning a weight to each criterion which can be
determined by different weighting methods.

The entropyweightingmethod is an objectivemultiple criteria deci-
sion approach based on the concept of information entropy developed
by Shannon (1948). The information entropy of a criterion is ameasure-
ment of its disorder degree and the useful information it can provide
(Vatansever and Akgűl, 2018). As such, the higher the entropy of a cri-
terion is, the lower the information it can provide and the lower the
clustering weight should be, and vice versa (Sepehri et al., 2019).
Delgado and Romero (2016) proposed the incorporation of the entropy
weighting method to determine the clustering weights in grey cluster-
ing analysis for environmental conflict analysis. Since then, other re-
searchers have evaluated the suitability of integrating grey clustering
and the entropy weighting method in other applications such as
power systems security risk assessment (Peng et al., 2017), green trans-
portation planning (Ma et al., 2017) or power quality assessment
(Sacasqui et al., 2018). The entropy weighting method has also been
used for the development water quality indexes in combination with
other tools which deal with uncertainty such as fuzzy systems theory
(Chen et al., 2019).

For the first time, this paper proposes a methodology to evaluate a
pollutant with limited data which uses grey clustering based on
whitenization weight functions and the entropy weighting method.
The aim is to classify estuaries based on their need for nitrogen pollution
management with the limited and inaccurate data available as a first
step for its remediation. The assignment of high priority areas allows
the water managers to invest the limited economic resources to those
areas. Firstly, we developed a pollution management priority index
based on grey clustering: the Grey Nitrogen Management Priority
index (GNMP index). This index was applied to the evaluation of nitro-
gen pollution based on spatiotemporal variations of a single pollutant:
total nitrogen. Then, we developed a second index with grey clustering
which evaluated the nitrogen pollution pressures based on land use:
Grey LandUse Pressure index (GLUP index). The results of both indexes
were compared to determine the accuracy of the methodology. This
method was applied to eight estuaries with mangroves and other wet-
lands of the Southern Gulf of Mexico where nitrogen pollution is a
threat to the ecosystems but where very little information is available.

2. Materials and methods

Water pollution management decisions often needs to be taken out
of limited data, i.e. samples which are too small for statistical analysis or
where only information from one pollutant is available. With the aim of
classifying nitrogen pollution and its management requirements in sev-
eral estuaries for which only limited information is available, we devel-
oped two indexes based on grey clustering:

1. Grey Nitrogen Management Priority index: GNMP index
2. Grey Land Use Pressure index: GLUP index

Sincewater pollution should be evaluated in relation to the anthropo-
genic pressures (Ninčević-Gladan et al., 2015), both indexes were
confronted in order to determine the relationship between nitrogen pol-
lution and land use pressures. As such, nitrogen pollution management
priorities can be established, and remediation plans can be proposed
based on the GLUP index. The method developed is schematized in
Fig. 1 and explained with detail in the next sections.

2.1. Study area

The Mexican legislation does not consider nutrient pollution in nat-
ural water bodies and the accurate monitoring of nitrogen in coastal
systems is not regulated. As a consequence, the lack of data prevents
stakeholders from implementing the existing assessment methods
and proposing recovery measures. Phytoplankton growth is generally
nitrogen limited in the Gulf of Mexico (Turner and Rabalais, 2013) and
the control of nitrogen pollution is amust for environmental protection.

TheMexican state of Veracruz is located in the Southwestern Gulf of
Mexico and covers 745 km of coastline. Approximately 27% of the state
population lives within 20 km of the coast (Macauley et al., 2007). The
estuaries in Veracruz have been affected by nutrient enrichment for de-
cades (Macauley et al., 2007; Temino-Boes et al., 2019), but agriculture,
urbanization and other economic activities such as tourism along the
coast are still a grown source of water pollution (Adame et al., 2018;



Fig. 1. Schema of the methodology developed to evaluate nitrogen pollution with limited data. GNMP: Grey Nitrogen Management Priority Index. GLUP: Grey Land Use Pressure.
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Rivera-Guzmán et al., 2014). The Mexican legislation does not regulate
nitrogen emissions to natural water bodies, and no data exist on direct
inputs from urban or industrial sources. Nonetheless, nitrogen pollution
has dramatic consequences formangroves in estuaries, and it allows the
massive intrusion of water hyacinths into beaches and mangroves
(Temino-Boes et al., 2019). Clearly, management decisions need to be
taken as soon as possible to set remediation plans and avoid further
deterioration.

We evaluated 8monitoring sites located within estuaries with man-
groves of the Central Gulf hydrological region of the state of Veracruz in
Mexico (Fig. 2). The local government provided the nitrogen concentra-
tions used in this study, who measured nitrogen concentrations in sev-
eral monitoring sites located along the coast. Total nitrogen was
measured according to the Mexican standards NMX-AA-026-SCFI-
2010 andNMX-AA-079-SCFI-2001. The data used for this study includes
four annual measurements from 2013 to 2016: two measures corre-
spond to the dry season (16 October to 15 May) and two correspond
to the wet season (16 May to 15 October). However, the campaigns
were not always equally spaced, and some uncertainties exist related
to the exact date of the sampling. To deal with the inaccuracies and
the uncertainty in the methods used during the campaigns (locations
of the monitoring site, time of sample collection, etc.), we considered
grey systems theory to be a reliable tool. The land use associated to
mangroves from 2010 and 2015 was downloaded from the National
Commission for the Knowledge and Use of Biodiversity website
(“CONABIO”, 2016). Themain objectivewas to prioritize nitrogen pollu-
tion management within the estuaries due to the consequences it may
have for the surrounding ecosystems such as mangroves.

2.2. Spatiotemporal criteria for Grey Nitrogen Management Priority
(GNMP) index

Water pollution evaluation has always relied on spatiotemporal
analysis (Ali et al., 2016; Hajigholizadeh and Melesse, 2017; Temino-
Boes et al., 2019). As such, a good water pollution evaluation should
consider both spatial and temporal variations of water quality, which
should be reflected when developing a classification method (Li et al.,
2016). The detection of upward temporal trends in environmental pa-
rameters is necessary to not only rank concentrations but also identify
those areas with increasing pollution (Chaudhuri and Dutta, 2014), es-
pecially in developing countries where water quality problems are
often rapidly increasing (Li et al., 2016). The evaluation of differences
in spatial mean concentrations of pollutants gives an idea of which
site is more polluted now but does not provide information on the fu-
ture trends. Additionally, an increasing trend clearly indicates a growing
source of pollution. Considering the above-mentioned, andwith the aim
of developing a method which evaluates a single pollutant based on its
spatiotemporal variations, we selected two criteria as inputs for the
GNMP index: spatial nitrogen differences among sites and temporal
trends in each site.

2.2.1. Temporal criterion
The first parameter evaluates the temporal trend of total nitrogen

concentrations in each monitoring site. The usual method to determine
the trend is based on least squares regression. However, thismethod re-
quires a linear trend, assumptions on the normal distribution of the data
and is very sensitive to outliers. Hence, we used a non-parametric esti-
mation of the trend called Sen's slope (Sen, 1968). Non-parametric
methods do not require assumptions on the normal distribution of the
data and are not distorted by outliers or missing data (Kitsiou and
Karydis, 2011). These methods show useful results for the evaluation
of incomplete environmental monitoring data (Scannapieco et al.,
2012). Sen's slope has been used in many applications for water quality
analysis to detect trends in pollutants (Koh et al., 2017; Machiwal et al.,
2019; Tabari et al., 2011a, 2011b) as it represents an absolute measure
of change (Miró et al., 2018). As such, we used the Sen's slope to derive
an indicator which represents the temporal trend in nitrogen concen-
trations. We calculated the Seasonal Sen's slope for total N concentra-
tions in each monitoring site with the package “trend” in R version
3.5.1. The Seasonal Sen's slope takes into account the seasonality of
the data. In our case study, the seasonality was four, as four samples
were collected each year. The scores are first computed for each season



Fig. 2. Study area with the eight monitoring sites and the corresponding watersheds.
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separately and finally the corrected Z-statistics for the entire series is
calculated (Pohlert, 2020). In order to generate a normalized criterion
ranging from zero to one which would allow us to compare pollution
trends in each site, we used the following equation:

Ctemporali ¼
si−smin

smax−smin
ð1Þ

where Ctemporal,i is the temporal variation criterion in site i, si is Sen's
slope in i, smin is the minimum Sen's slope between all sites and smax

is the maximum Sen's slope between all sites.

2.2.2. Spatial criterion
To evaluate the spatial differences of nitrogen concentrations among

themonitoring sites we used themedian of total N of each site. Theme-
dian is a robust measure of central tendency, which is not skewed by
outliers. As the sampling size is not large and data reliability is not
clear, the median was selected as a better measure than the mean. We
determined a normalized criterion with values going from 0 to 1
which allows the comparison of nitrogen concentrations among sites:

Cspatiali ¼
Mi−Mmin

Mmax−Mmin
ð2Þ

where, Cspatial,i is the spatial variation criterion in site i, Mi is themedian
of total nitrogen in site i, Mmin is the minimum median value between
all study sites andMmax is themaximummedian value between all sites.

2.3. Pressure criteria for the Grey Land Use Pressure (GLUP) index

For the development of the GLUP index, we defined the criteria by
evaluating the anthropogenic pressures on N pollution based on land
use. We downloaded maps of land use from the National Commission
for the Knowledge and Use of Biodiversity website (“CONABIO”,
2016), which used SPOT images to create them. The images which
more closely correspond to nitrogen data were images from 2010 and
2015. Although this timeframe does not correspond fully with nitrogen
monitoring years (2013–2016), it represents the trend of land use
changes. Nonetheless, the inaccuracy in the dates of landusemaps is ad-
dressed by grey clusteringwhich can deal with incomplete information.
After carefully reviewing the scientific literature we identified three
main sources of nitrogen pollution associated to land use in the study
area: agriculture, livestock and urban expansion along the coast.We de-
fined one criterion for each source.

2.3.1. Agriculture
Veracruz is the second state in Mexico with the highest amount of

land used for agriculture. The agriculture production is mainly com-
posed of cereals (40.1% of the cultivated land), industrial crops (31.5%)
and fruit trees (21.6%) (SAGARPA, 2009). The application of fertilizers
to increase agricultural productivity is encouraged by governmental
policies, while farmers are not provided with appropriate training
(Anguiano-Cuevas et al., 2015). Consequently, natural water bodies
are being increasingly impacted by diffuse nutrient pollution generated
from such practices. Besides, the conversion of forest and grassland to
crop agriculture also may contribute significantly to nitrogen loading
to coastal systems (López-Portillo et al., 2017). As such, the first pres-
sure criterion Cagriculture used as input for the GLUP index calculation
was the percentage of the watershed used for agriculture.

2.3.2. Livestock
The livestock subsector in Mexico is very diverse and widespread

throughout the territory. Livestock farming in Veracruz consists of
both farms that are managed with modern and competitive systems
and others which use themost traditional practices. It is also character-
ized by its extensive management and seasonal production. Most cattle
feed is based on grazing, with pastures managed in a free grazing sys-
tem. Livestock occupies about 51% of the total area of the state with
3.7 million hectares. The bovine cattle stands out for its importance in
production, which is used both for meat and milk production
(SAGARPA, 2009). As a consequence, land clearing for cattle ranching
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is also a predominant source of pollution throughout the studiedwater-
sheds (González-Marín et al., 2017; López-Portillo et al., 2017; Rivera-
Guzmán et al., 2014; Rodríguez-Romero et al., 2018; Vázquez-
González et al., 2015). Therefore, the second pressure criterion used
for the calculation of the GLUP index is the percentage of the watershed
used for livestock production, Clivestock.
2.3.3. Urban
Most of the urban areas in Veracruz are located along the coast and

consequently urban development expands over beaches, dunes and
mangroves, parallel to the coastline (Martínez et al., 2014). In fact,
many researchers identified the rapid urbanization over beaches and
mangroves throughout the coast as one of themain source of water pol-
lution to our study sites (Marín-Muñiz et al., 2016;Martínez et al., 2014;
Martinez et al., 2017; Mendoza-González et al., 2012; Rodríguez-
Romero et al., 2018). The accelerated urban development does not
allow the implementation of the required wastewater treatment facili-
ties (Rodríguez-Romero et al., 2018) or the adequate coastal ecosystem
management (Martínez et al., 2014). Moreover, direct urban pollution
affects the lower course of the watersheds, adding to the fact that self-
purification is not as efficient as in the upper course (Rodríguez-
Romero et al., 2018). As such, for the urban pressure criterion we con-
sidered more adequate to focus on the urban development along the
coast. The aim of this criterion was to represent exclusively the urban
expansion over the coastal ecosystems such as beaches, dunes or man-
groves. This expansion occurs generally at less than 1 km from the coast,
especially in touristic areas (Mendoza-González et al., 2012). As such,
the selection of a buffer of 1 km around the sampling points was consid-
ered adequate. Therefore, we calculated the urban expansion within
1 km of the sampling points observed between 2010 and 2015, which
was the third input criterion CUrban for the GLUP index.
Fig. 3. Center-point whitenization weight functions used for each criterion andwith three
grey classes (high, medium and low).
2.4. Grey clustering

In grey systems theory, a system with totally unknown information
is called a black system, while a systemwith fully known information is
a white system. In between we find grey systems which have partially
known information (Tseng, 2009), with small samples and poor infor-
mation (Liu and Lin, 2010). Similarly, a grey number is a number
whose value lies within an interval, but whose exact value is unknown.
In this context, whitenization weight functions are used to determine
the preference a grey number has over the interval of values it might
take by describing what is known (Liu and Lin, 2010). Grey clustering
is a method developed to classify observation objects into classes
using either grey incidence or whitenization weight functions (Liu and
Lin, 2010). The secondmethod is mainly used to check whether objects
belong to predefined classes (Liu and Lin, 2010).

The point of a grey class with a maximum degree of greyness is
known as the center λ (Liu and Lin, 2010). The center-point triangular
whitenization weight function relies on the center of the interval,
where the cognitive certainty of the object belonging to a defined
class is higher and therefore is often consideredmore reliable and scien-
tific (Delgado and Romero, 2016). For grey clustering in s classes, the left
and right endpoints are extended horizontally from λ1 to zero and from
λs to the highest possible value of the criterion (Ye et al., 2018). As such,
an object whose criterion is lower than λ1 totally belongs to the first
grey class, while an object whose criterion is greater than λs totally be-
longs to the highest class. Center-point triangular whitenization weight
functions were used in other environmental applications, demonstrat-
ing the usefulness of this method to solve such problems (Delgado
et al., 2018; Delgado and Romero, 2016). The steps followed for the
grey clustering are described below (Liu and Lin, 2010):

Step 1.Define n criteria (j= 1,2,…n), m objects (i=1,2,…m) to be
classified in s classes (k = 1,2, …s), and the observed data values xi,j.
Step 2. Divide the values field of each criterion into s equal grey in-
tervals ([a0, a1], [a1, a2], … [as-1, as]) and define the center-points λk of
each interval (λ1, λ2, … λs).

Step 3. Determine thewhitenizationweight function fj
k(xi, j) for each

kth class of each jth criterion with the next equations:
For k = 1

f 1j ¼

1 xbλ1

λ2−x
λ2−λ1

x∈ λ1;λ2½ �

0 xNλ2

8>>>><
>>>>:

ð3Þ

For 1 b k b s

f kj ¼

0 x ∉ λk−1;λkþ1½ �
x−λk−1

λk−λk−1
x ∈ λk−1;λk½ �

λkþ1−x
λkþ1−λk

x ∈ λk;λkþ1½ �

8>>>>>><
>>>>>>:

ð4Þ

For k = s

f sj ¼

0 xbλs−1

x−λs−1

λs−λs−1
x ∈ λs−1;λs½ �

1 xNλs

8>>>><
>>>>:

ð5Þ

Step 3. Select a clustering weight ηj for each criterion j.
Step 4. Calculate the clustering coefficients for each criterion j and

each class k as:

σk
i ¼

Xm
j¼1

η j∙ f
k
j xij
� �

i ¼ 1;2;…m j ¼ 1;2;…n k ¼ 1;2;…s ð6Þ

Step 5. If =
max

1≤k≤s
fσk

i g ¼ σk�
i then object i belongs to grey class k ∗.

For each criterion, we defined three classes corresponding to “High”,
“Medium” and “Low” priorities, and thus, the whitenization weight
functions are as represented in Fig. 3. The clustering objects correspond
to themonitoring sites. The clustering criteria usedwere the spatial and
temporal criteria defined in Section 2.2 for the GNMP index and the ag-
riculture, livestock and urban criteria defined in Section 2.3 for theGLUP
index (Table 1). The clustering weights are defined based on the en-
tropy weighting method explained in Section 2.5.



Table 1
Description of the criteria used for Grey NitrogenManagement Priority (GNMP) and Grey
Land Use Pressure (GLUP) indexes.

Index Criteria Description

GNMP
Ctemporal Normalized index based on the Sen slope (Eq. (1))

Cspatial
Normalized index based on the median of total nitrogen (Eq.
(2))

GLUP

Cagriculture Percentage of the watershed used for agriculture
Clivestock Percentage of the watershed used for livestock production

Curban
Increase in urban area within 1 km of the sampling site from
2010 to 2015, in hectares

6

2.5. Entropy weighting method

The clustering weights are calculated with the Shannon entropy,
which measures the uncertainty in the information provided by each
criterion (Delgado and Romero, 2016):

Step 1. Normalize each criterion:

Pij ¼
xijPm
i¼1 xij

ð7Þ

Step 2. Calculate the entropy Hj of each criterion:

Hj ¼ −
1

ln mð Þ
Xm
i¼1

pij ln pij
� �

ð8Þ

Step 3. Calculate the degree of divergence divj of the average intrin-
sic information provided by each criterion:

divj ¼ 1−Hj ð9Þ

Step 4. Calculate the clustering weight ηj of each criterion:

η j ¼
div jPn

j¼1 divj
ð10Þ

3. Results

3.1. Total nitrogen concentrations

Total nitrogen concentrations in each sampling site are presented in
Fig. 4. Themedianwas greater in theNorthern regionswith amaximum
value in Nautla. The lowest total nitrogen concentrations were found in
Papaloapan and Coatzacoalcos. In Fig. 5, the time variations of total ni-
trogen between 2013 and 2016 are represented with four measure-
ments per year. An upward tendency was observed in Tuxpan,
Tecolutla and Nautla.
Fig. 4. Boxplot of total nitrogen concentrations in all monitorin
3.2. Grey Nitrogen Management Priority (GNMP) index

Sen's slope and themedian of total nitrogen are shown in Table 2, to-
gether with temporal and spatial criteria and their clustering weights.
The spatial criterion,which compares the current total nitrogen concen-
trations in each site, had a higher clustering weight (0.60) derived from
the entropy-weighting method, compared to the temporal indicator
which measures the trend in total nitrogen concentrations in each site
(0.40).

Three grey classeswere obtained corresponding to low,mediumand
high N pollution management priority. The clustering coefficients for
each class and each criterion, together with the global clustering coeffi-
cients and the derived GNMP index are shown in Table 3. Two sites,
Tuxpan and Nautla, were classified with a high nitrogen management
priority, while two sites, Papaloapan and Coatzacoalcos, were classified
with low priority. The other sites had a medium priority.

3.3. Grey Land Use Pressure (GLUP) index

We evaluated the extent of the agricultural area within each water-
shed, together with the livestock area (Fig. 6). Additionally, we calcu-
lated the increase in urban areas around the study sites. As an
example, the three sites with a greater increase in the urban areas are
shown in Fig. 7.

The three criteria for land use evaluation and their clustering
weights are presented in Table 4, while the clustering coefficients and
the derived GLUP index are presented in Table 5. The classification
agrees with the results obtained with the GNMP index (see Table 3).
The urban criterion had the highest clustering weight (0.67), while
the agricultural criterion weight (0.22) and the livestock weight (0.11)
were lower.

4. Discussion

The GNMP index, based on the global clustering coefficients pre-
sented in Table 3, was high for Tuxpan and Nautla. In terms of the tem-
poral criteria both siteswere classified as highwhile the spatial criterion
indicated high priority for Nautla andmedium priority for Tuxpan. Sim-
ilarly, Tecolutla was high according to the temporal criterion indicating
rapidly increasing nitrogen concentrations but was classified medium
based on the spatial criterion; its overall classification was medium.
The remaining monitoring sites could be evaluated similarly, indicating
that the integration of both temporal and spatial differences among sites
derives in a more accurate evaluation of the nitrogen management re-
quirements. The inclusion of temporal trends into the index developed
is a new proposal which was not used in most of the water quality as-
sessment indexes developed to date (da Costa Lobato et al., 2015;
Gharibi et al., 2012; Islam et al., 2013; Ocampo-Duque et al., 2007;
Shooshtarian et al., 2018). And yet, the detection of temporal trends is
g sites, between 2013 and 2016 with four values per year.



Fig. 5. Total nitrogen concentrations in all monitoring sites, between 2013 and 2016 with four values per year.
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especially important in areas where water pollution increases rapidly
due to the lack of water pollution management (Li et al., 2016), which
are the areas aimed by the newly developed method. Environmental
managers could determine the restoration practices required based on
whether the nitrogen pollution is increasing over time or on whether
the current concentrations are high.

The comparison of the classification of the GNMP index with the
GLUP index is necessary in order to validate the nitrogen pollution eval-
uation. The linkage between pollution levels and pressures allows the
evaluation of the anthropogenic influence on nutrient concentrations.
It also allows to check whether the selected land use pressures have a
real impact on nutrient pollution and to guide management plans
(Romero et al., 2013). All monitoring sites were placed in the same
class by the GNMP and the GLUP indexes, indicating that land use pres-
sures were detected accurately. The results indicate that Nautla and
Tuxpan estuaries have the highest urgency for N pollutionmanagement
which agrees with previous studies which indicated the existence of N
pollution in these estuaries (González-Marín et al., 2017; Marín-
Muñiz et al., 2016; Rivera-Guzmán et al., 2014; Rodríguez-Romero
et al., 2018; Temino-Boes et al., 2019). Studies in Nautla river indicated
that human settlements are a major source of N pollution to the river at
its lower course (Rodríguez-Romero et al., 2018). Casitas, the town lo-
cated at Nautla estuary, has undergone severe changes in physicochem-
ical characteristics of water in the last years (Rivera-Guzmán et al.,
2014), and has lost most of its mangroves losing its filtering capacity
(Marín-Muñiz et al., 2016; Rivera-Guzmán et al., 2014)

The entropyweightingmethod allowed the detection of themost di-
vergent criteria for nitrogen management. As such, in the studied area
the spatial criterion had a higher clustering weight (0.60) than the
Table 2
Sen's slope, Median total nitrogen (TN), Ctemporal, Cspatial and clustering weights.

Site Sen's slope
(mgN.L−1)

Median TN
(mgN.L−1)

Ctemporal Cspatial

Tuxpan 0.34 0.99 0.78 0.64
Cazones −0.13 0.90 0.07 0.51
Tecolutla 0.36 0.89 0.81 0.49
Nautla 0.49 1.24 1.00 1.00
Actopan −0.18 0.90 0.00 0.51
Jamapa 0.07 0.86 0.37 0.45
Papaloapan 0.06 0.55 0.36 0.00
Coatzacoalcos 0.00 0.60 0.27 0.07
Clustering weight – – 0.40 0.60
temporal criterion (0.40), indicating that the divergence in the values
of the median of total nitrogen are higher than the divergence in the
Sen's slope. The entropy weighting method allows a more flexible de-
termination of the importance of each criterion depending on the char-
acteristics of the area under study by evaluating the useful information
provided by each criterion. On the other hand, the clustering weights
assigned to the GLUP index indicate which land use criterion has a
higher divergence and thus which land use activity may have a higher
influence in nitrogen pollution. The highest clustering weight for the
GLUP index was assigned to the urban criterion, indicating that the
urban development along the coast should be the first pollution source
to be addressed for nitrogen management. Tecolutla and Nautla are lo-
cated within a popular touristic area named Costa Esmeralda, where
tourism expansion has led to urban development over beaches and
mangroves (Martínez et al., 2014). Tecolutla river basin experienced
an increase of 67% of the urban area between 1994 and 2010 (Karen
Osuna-Osuna et al., 2015) and in Tuxpan the human population almost
doubled in 20 years (Rivera-Guzmánet al., 2014). At large, urban expan-
sion in Veracruz has taken place over mangroves, grasslands, beaches
and croplands (Martínez et al., 2014), and tourism has increased along
the coast (Mendoza-González et al., 2012), reducing the coastal resil-
ience of Veracruz while population grows (Martinez et al., 2017).

While conventional clustering methods assign a fixed class to each
object, grey clustering does not provide a deterministic solution, but
rather allows the partial assignment of an object to a class by means
of grey numbers. For example, both Cazones and Tecolutla were classi-
fied in themedium class. However, theGNMP index of Cazones is some-
where between low (0.40 clustering coefficient) and medium (0.59
clustering coefficient), while Tecolutla's GNMP is localized betweenme-
dium and high (Table 3). The same applies for the GLUP index (Table 5).
This flexibility in the classification allows the pollution managers to
make decisions which are aligned with the ecosystems' requirements,
the site restoration strategies or the economic resources available,
allowing a scientific understanding of nitrogen pollution when only
small sampled are available. The exploration of the information pro-
vided by the available data enables a comprehensive evaluation of nitro-
gen pollution.

The limitations of thedevelopedmethodology should be clear before
its application. This approach evaluates one single pollutant while no
additional data is available, but the development of more frequent and
exhaustive campaigns is necessary for the management of the coastal
water quality. When economic resources are limited, governments
and scientists could start by managing nutrient pollution in the areas



Table 3
Clustering coefficients for each criterion, the global clustering coefficients and the derived Grey Nitrogen Management Priority (GNMP) index.

Site Ctemporal Cspatial Global GNMP

Low Medium High Low Medium High Low Medium High

Tuxpan 0.00 0.17 0.83 0.00 0.59 0.41 0.00 0.42 0.58 High
Cazones 1.00 0.00 0.00 0.00 0.99 0.02 0.40 0.59 0.01 Medium
Tecolutla 0.00 0.08 0.92 0.02 0.98 0.00 0.01 0.62 0.37 Medium
Nautla 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 High
Actopan 1.00 0.00 0.00 0.00 0.99 0.02 0.40 0.59 0.01 Medium
Jamapa 0.38 0.62 0.00 0.15 0.85 0.00 0.24 0.76 0.00 Medium
Papaloapan 0.43 0.58 0.00 1.00 0.00 0.00 0.77 0.23 0.00 Low
Coatzacoalcos 0.69 0.31 0.00 1.00 0.00 0.00 0.88 0.12 0.00 Low
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indicated by the method developed. But once more data become avail-
able, the use of integrativemethods to evaluate the overall water quality
would be a necessary step forward. Additionally, it is important to point
out that as no pristine site exists, it is not possible to indicatewhether all
monitored sites are polluted. Although the priority should be put in
those areas with a greater pollution, the sites with a lower priority
should not be completely left aside. On the other hand, it is also impor-
tant to consider that the studied estuaries belong to watersheds of dif-
ferent sizes. As such, the cleaning capacity of rivers via dilution differs
among sites. The risk of water pollution in Coatzacoalcos and
Papaloapan is therefore reduced due to their dilution capacity, com-
pared to Actopan river for example. The aim of our approach is to eval-
uate the pollution within the estuary to estimate the potential
consequences of nitrogen pollution to the surrounding ecosystems
such as beaches or mangroves. For example, the consequences of nitro-
gen pollution in Nautla estuary include the degradation of touristic
beaches with consequences for the local economy, as well as the deteri-
oration of mangroves (Temino-Boes et al., 2019). But the impact of high
nitrogen concentrations in Papaloapan river in the eutrophication of the
Gulf of Mexico as a whole would be much worse than N pollution in
Fig. 6. Agricultural and livestock production
Actopan river. The large marine ecosystem perspective is not addressed
by this study.

Nitrogen pollution in estuaries, mangroves and coastal waters has
severe environmental consequences. In Veracruz, 75% of the estuaries
rated poor for water quality a decade ago (Macauley et al., 2007), and
the urbanization along the coast has since then increased nutrient pol-
lution (Temino-Boes et al., 2019). Massive mats of water hyacinths,
driven by nutrient pollution, were observed in Nautla and Tecolutla es-
tuaries, extending over mangroves, altering their nutrient cycles and
blocking sunlight (Temino-Boes et al., 2019). Nitrogen pollution also
has big economic impacts, as many of the small villages located in the
coastal regions of Veracruz depend on tourism and fishing, activities
which are directly affected by nitrogen pollution (González-Marín
et al., 2017). Ultimately, water pollution also affectswildlife populations
(González-Marín et al., 2017) and eutrophic conditions in coastal sys-
tems along the Gulf of Mexico may drive harmful algal blooms (Ulloa
et al., 2017). Despite the consequences mentioned, the lack of effective
water monitoring and evaluation programs prevents stakeholders
from developing management plans. The methodology developed
herein allows the detection of high N concentrations in estuaries as
areas within the studied watersheds.



Fig. 7. Urban area development between 2010 and 2015 in a 1 km buffer around the study sites Nautla, Tuxpan and Tecolutla.
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well as those estuaries with increasing trends and links the pollution to
land uses. As such, based on our results, Nautla and Tuxpan estuaries
have a high priority for N pollution management which should be
approached mainly through the sustainable management of urban de-
velopment. Both Tuxpan and Nautla are touristic destinations, which
Table 4
Cagriculture, Clivestock, Curban and their clustering weights for all monitoring sites.

Site Cagriculture Clivestock Curban

Tuxpan 43 29 14.9
Cazones 51 28 6.5
Tecolutla 49 13 9.6
Nautla 56 22 18.7
Actopan 45 32 6.8
Jamapa 57 25 6.9
Papaloapan 30 21 4.4
Coatzacoalcos 9 40 0.0
Clustering weight 0.22 0.11 0.67
has enhanced urban growth. Tecolutla which is also a touristic destina-
tion was classified as medium priority, but the high temporal criterion
indicates that N pollution increased over time and could reach higher
N concentrations in a near future. Therefore, the sustainable manage-
ment of tourism growth could lead to a reduction of the coastal pollu-
tion which in turn would allow a conservation of the natural heritage.

In regions where the monitoring of coastal waters is not regulated,
simplemethodswhich allow the evaluation ofwater pollutionwith lim-
iteddata are very useful. It is necessary to recognize the scarcity factor to
allow the distribution of the available resources efficiently (Sánchez-
Hernández et al., 2017). As such, grey clustering allows the detection
of areaswith a high urgency for Nmanagement and allows the planning
of the available economic and human resources. When data sources are
limited and inaccurate, the grey evaluation developed can helpwith the
establishment priority areas to allow decisionmakers to identify poten-
tial threats and propose recovery measures. This method could be used
to evaluate other pollutants, and could be applied in other countries
with limited data such as most Latin American countries which present



Table 5
Clustering coefficients for each class (low, medium and high) and each criterion and the Grey Land Use Pressure (GLUP) index for all monitoring sites.

Site Cagriculture Clivestock Curban Global GLUP

Low Medium High Low Medium High Low Medium High Low Medium High

Tuxpan 0.00 0.40 0.60 0.00 0.67 0.33 0.00 0.11 0.89 0.00 0.24 0.76 High
Cazones 0.00 0.00 1.00 0.00 0.79 0.21 0.46 0.54 0.00 0.31 0.45 0.24 Medium
Tecolutla 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.97 0.03 0.11 0.65 0.24 Medium
Nautla 0.00 0.00 1.00 0.46 0.54 0.00 0.00 0.00 1.00 0.05 0.06 0.89 High
Actopan 0.00 0.26 0.74 0.00 0.36 0.64 0.41 0.59 0.00 0.27 0.49 0.23 Medium
Jamapa 0.00 0.00 1.00 0.16 0.84 0.00 0.39 0.61 0.00 0.28 0.51 0.21 Medium
Papaloapan 0.18 0.82 0.00 0.61 0.39 0.00 0.79 0.21 0.00 0.64 0.36 0.00 Low
Coatzacoalcos 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.89 0.00 0.11 Low
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similar limitations with water pollution assessment and management
(Gómez et al., 2012; Kathuria, 2006). Future research should focus on
how to efficiently combine the existing tools to deal with uncertainty,
such as fuzzy logic, grey systems or rough sets theory, whose employ-
ment can deal with real-world problems especially in countries with
limited economic resources.
5. Conclusion

Many countries lack proper coastal water monitoring programs and
consequently the data available for pollution assessment is limited. As
such, the application of grey clustering togetherwith entropyweighting
significantly contributes to the accurate prioritization of N pollution
management. The integration of spatial and temporal variations in a
unique index, i.e. the GNMP index, evaluated both current and future
trends of N pollution. On the other hand, the analysis of land use
changes through the GLUP index and the application of the entropy
weighting method identified the main sources of N pollution based on
land use. For the study area we found urban development around the
sampling site to be themain driver of N pollution. This allows the estab-
lishment of N pollution management strategies, such as the control of
the urban expansion over beaches and mangroves, allowing a sustain-
able development while conserving the natural heritage. When eco-
nomic resources are limited, the establishment of priority areas is
necessary in order to allow a scientifically sound assignment of the
scarce economic resources.

It is nonetheless crucial to understand and consider the limitations
of the methodology. Grey clustering provides useful information de-
rived from small and inaccurate samples, which can be extremely useful
when the situation fromwhichwe departed is a completely lack of pol-
lution evaluation. From this perspective, the information provided by
the grey clustering analysis is with no doubt an important step forward.
However, this is not an ideal situation which provides a thorough and
unique diagnosis of the pollution levels, its pressures and impacts. The
implementation of more stringent coastal monitoring programs and
the development of strict environmental policies to protect water re-
sources is necessary for the correct management of coastal pollution.
But this situation is far from realistic in many developing countries.
Meanwhile, research should focus on how to deal with the lack of data
by combining and implementing tools such as fuzzy logic, grey systems
or rough sets theory.
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