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Abstract 16 

The wide diversity of irrigation water sources (i.e., drinking water, groundwater, reservoir water, river 17 

water) includes reclaimed water as a requested measure for increasing water availability, but it is also 18 

a challenge as pathogen exposure may increase. This study evaluates the level of microbial 19 

contamination in different irrigation waters to improve the knowledge and analyses management 20 

measures for safety irrigation. Over a one-year period, the occurrence of a set of viruses, bacteria and 21 

protozoa, was quantified and the performance of a wetland system, producing reclaimed water 22 

intended for irrigation, was characterized. 23 

Human fecal pollution (HAdV) was found in most of the irrigation water types analysed. Hepatitis E 24 

virus (HEV), an emerging zoonotic pathogen, was present in groundwater where porcine 25 

contamination was identified (PAdV). The skin-carcinoma associated Merkel cell polyomavirus 26 
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(MCPyV), was found occasionally in river water. Noroviruses were detected, as expected, in winter, 27 

in river water and reclaimed water. Groundwater, river water and reservoir water also harboured 28 

potential bacterial pathogens, like Helicobacter pylori, Legionella spp. and Aeromonas spp. that could 29 

be internalized and viable inside amoebas like Acanthamoeba castellanii, which was also detected. 30 

Neither Giardia cysts, nor any Cryptosporidium oocysts were detected. 31 

The wetland system removed 3 Log10 of viruses and 5 Log10 of bacteria, which resembled the river 32 

water quality. Irrigation waters were prone to variable contamination levels and according to the 33 

European guidance documents, the E. coli (EC) levels were not always acceptable. Sporadic detection 34 

of viral pathogens as NoV GII and HAdV was identified in water samples presenting lower EC than 35 

the established limit (100MNP/100ml).  When dealing with reclaimed water as a source of irrigation 36 

the analysis of some viral parameters, like HAdV during the peak irrigation period (summer and 37 

spring) or NoV during the coldest months, could complement existing water management tools based 38 

on bacterial indicators..  39 

1. Introduction 40 

Surface water and groundwater are considered the main sources for irrigation, worldwide (Gleick, 41 

2009). Those freshwater supplies are becoming insufficient for supporting rapid population growth, a 42 

situation exacerbated by inadequate water quality management or water scarcity due to climate 43 

change (IPCC, 2019). As recycled water is increasingly accepted as a source of irrigation, pathogen 44 

exposure and outbreaks are changing their traditional patterns. In fact, between 2008 and 2011, the 45 

European Food Safety Authority reported increases in the numbers of outbreaks, cases, 46 

hospitalizations and deaths associated with food of non-animal origin (EFSA, 2013). Consumption of 47 

leafy green vegetables irrigated with unsafe water is considered the most common cause of human 48 

gastroenteritis illness, due to the presence of bacterial and viral pathogens in the water used for 49 

irrigation (FAO, 2013). 50 

Pathogen contamination of ready-to-eat fruits and vegetables can occur at any of the multiple steps 51 

from crop to fork. The source of irrigation water and the irrigation method applied play an important 52 
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role in microbial contamination (Uyttendaele et al., 2015), but quality criteria for irrigation water have 53 

only been established where reuse of treated wastewater is common practice. In 2006, the World 54 

Health Organization established recommendations for wastewater reuse, based on health risk 55 

considerations (WHO, 2006). Some countries developed specific standards on microbial quality for 56 

surface water or recycled water used for irrigation, based on Log10 removals or maximum allowable 57 

concentrations of specific microorganisms. The United Stated of America, Australia and New Zealand 58 

established the first guidelines (EPA, 2004; EPHC, NRMMC, 2006), and each state specified water 59 

quality standards using different maximum allowable concentrations. Portugal (NP 4434, 2005) and 60 

Spain (RD 1620, 2007) also set maximum allowable values per sample, whereas Israel used monthly 61 

averages (Inbar, 2007). Cyprus, Greece and Italy set stricter maximum limits, for crops eaten raw, 62 

than those legislated for by the other European states (Agrafioti and Diamadopoulos, 2012; Angelakis 63 

and Durham, 2008; Kalavrouziotis et al., 2015). On the other hand, different Canadian states as well 64 

as France, established minimum Log10 reductions in reclaimed water production for irrigation 65 

purposes (JORF 0153.29, 2014; Steele and Odumeru, 2004). The European Commission has recently 66 

set down the minimum quality requirements for water reuse for agricultural irrigation and produced a 67 

guidance document addressing microbiological risks related to agricultural water in the primary 68 

production of fresh fruits and vegetables (Alcalde-Sanz and Gawlik, 2017; EU C163, 2017). 69 

 70 

There is no consensus on the best indicator, nor on the optimal sampling frequency for irrigation 71 

water management. E. coli (EC) and Intestinal Enterococci (IE) are used as Fecal Indicator Bacteria 72 

(FIB), as detection methods are inexpensive and their presence relates to fecal (animal or human) 73 

pollution.  But, it is well known that they do not always correlate with important waterborne 74 

pathogens that may be present in the diverse irrigation water sources (Girones et al., 2010). As 75 

specific screening of every single pathogen is not feasible, a commonly accepted practice is to use 76 

multiple indicators. It is also important to settle indicator values for different irrigation water 77 

purposes, which may include viral, bacterial or protozoan pathogens.  78 

 79 
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Several waterborne pathogens are relatively resistant to conventional water treatment methodologies 80 

and can easily appear in irrigation water sources (Adefisoye et al., 2016; Rodriguez-Manzano et al., 81 

2012; Rusiñol and Girones, 2017). Human adenoviruses (HAdV), widely used as fecal indicators 82 

(Albinana-Gimenez et al., 2009; Hewitt et al., 2013; Verani et al., 2018), also pose a threat to public 83 

health since they may cause gastrointestinal and respiratory diseases. It is well known that HAdV, 84 

stable under many environmental conditions and disinfection treatments, are shed in high 85 

concentrations and do not show seasonality (Allard and Vantarakis, 2017). Other enteric viruses, like 86 

noroviruses (NoV) or enteroviruses (EV), are excreted in greater concentrations from infected 87 

individuals during clinical infections in the seasons with high incidence and then decrease over time 88 

(Atmar et al., 2008). Whereas NoV are the leading worldwide cause of gastroenteritis and may be the 89 

most important etiologic agent with respect to recycled water, EV go beyond gastroenteritis and cause 90 

a diversity of diseases, such as meningitis, paralysis or myocarditis (Kocwa-Haluch, 2001; Koo et al., 91 

2013; Soller et al., 2018; WHO, 2013). Human polyomaviruses are also prevalent in fecally 92 

contaminated water bodies. JC polyomavirus (JCPyV) is persistently excreted over a lifetime and has 93 

been shown to be human specific, which is not the case with fecal indicator bacteria (Bofill-Mas et al., 94 

2000; McQuaig et al., 2009). Merkel cell polyomavirus (MCPyV) was the first virus detected in 95 

environmental samples to have been described as having carcinogenic potential (Bofill-Mas et al., 96 

2010; Rusiñol et al., 2015). In 2008, MCPyV was first related to neuroendocrine tumors in elderly 97 

and/or immunosuppressed people (Feng et al., 2008). Finally, hepatitis E virus (HEV), causing acute 98 

hepatitis in humans, is mainly transmitted through waterborne, foodborne and zoonotic routes and has 99 

been closely related to irrigation water contamination (Kokkinos et al., 2017; Yugo and Meng, 2013).   100 

Bacteria such as Legionella spp., Aeromonas spp.,  Arcobacter spp., Campylobacter and Helicobacter 101 

pylori have been recognized as emerging pathogens in water, and have been also identified in 102 

wastewater and reclaimed water sources (Collado and Figueras, 2011; Fernandez-Cassi et al., 2016; 103 

Figueras and Borrego, 2010). Many of these pathogens are able to adhere to biofilms, but in addition, 104 

they may be associated with free-living protozoa, including amoebae. Both situations provide acting 105 

reservoirs for these pathogens and protect them from the effects of disinfection treatments. Also, 106 

Giardia cysts and Cryptosporidium oocysts, common waterborne parasites infecting humans and 107 
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animals, are ubiquitous in wastewater and they are frequently included in water management as Fecal 108 

Indicator Protozoa (FIP). Blastocystis are one of the most common single-celled intestinal parasites 109 

found in human stool samples and in a wide variety of domestic animals and wildlife (Souppart et al., 110 

2009). 111 

Constructed wetlands, with surface flow, are being considered as low-cost technologies for reclaimed 112 

water production. These wetlands are used as an additional step (tertiary treatment systems) after 113 

secondary treatments and have proved to be efficient at reducing nitrogen and removing organic 114 

micropollutants (Llorens et al., 2009; Matamoros et al., 2008). The positive environmental values of 115 

these passive treatment systems for wastewater reclamation have been extensively reviewed 116 

(Ghermandi et al., 2010). Compared to other advanced treatment systems (e.g., reverse osmosis or 117 

membrane bioreactors), the price of the water that flows through the wetland cells is relatively low 118 

and has been calculated to range from €0.71 to €0.75 per m-3 (Alfranca et al., 2011). Moreover, the 119 

seasonal water demand for agriculture, which is a challenge for advanced reclaimed water facilities 120 

(NCR, 2012), can be solved using these sustainable systems.  121 

This study evaluates the presence and levels of important circulating pathogens and indicators in 122 

diverse sources of irrigation water and proposes evaluation and management measures. Here it is also 123 

evaluated the performance of a constructed wetland system as a green tertiary treatment system 124 

producing reclaimed water intended for irrigation. 125 

2. Methods 126 

2.1. Sampling and microbial parameters analysis 127 

Different sources of irrigation water were selected: drinking water, reservoir water, groundwater, river 128 

water and reclaimed water produced in a sustainable tertiary treatment (constructed wetland). To 129 

enable quantification of the concentration of pathogens in the main source of microbial pollution 130 

coming into the irrigation water bodies, raw sewage and secondary treated effluents were also 131 

collected. Conductivity, pH and water temperature data were determined in the field for each sample. 132 
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Drinking water was sampled from distribution water tanks. Reservoir water was selected from a dam 133 

created to store water intended for irrigation, as it is a common source of irrigation. When needed, the 134 

reservoir water can be released into irrigation water channels for downstream orchard irrigation. River 135 

water samples were collected from the Fluvià River. This 100-km long river receives the effluents 136 

from 24 small wastewater treatment plants (WWTPs) treating up to 100,000 PE and it is also 137 

impacted by intensive farming and agricultural activities. Groundwater sampling sites were located at 138 

the final section of the river, hosting intensive pig and poultry farming.  139 

Reclaimed water was collected from a sustainable wetland system (also known as passive natural 140 

treatment system) which receives part of a secondary treated WWTP effluent. The WWTP, treating 141 

approximately 112,000 PE, uses a Conventional Activated Sludge (CAS) and chlorinates part of the 142 

secondary effluent (70%) before discharging into the river. The remaining part of the WWTP effluent 143 

(30%) is conducted to the wetland system to reduce nitrogen and phosphorus, after a retention time of 144 

three days. This constructed wetland covers an area of 1 ha and receives a secondary treated effluent 145 

flow of between 100 m3 and 250 m3 per day.  In a single cell, a mixture of Phragmites australis and 146 

Typha latifolia was planted and has proved successful at removing contaminants  (Alfranca et al., 147 

2011; Llorens et al., 2009; Matamoros et al., 2008). 148 

Drinking and reservoir water samples were collected monthly for 6 months. River water, groundwater 149 

and reclaimed water, as well as raw sewage and secondary effluent samples, were collected every 150 

month (12 samples each) over a period of one year, from April 2015 to March 2016. A total of 72 151 

irrigation water, 12 raw sewage and 12 secondary treated water samples were collected and 152 

distributed after each sampling among the partner laboratories for the viral, bacterial and protozoan 153 

analyses. FIB and Heterotrophic bacteria counts (HBC) were analysed from 500 mL of each sample 154 

within 24 h of collection. All human (HAdV, JCPyV, MCPyV, NoV GGI and GGII, EV and HEV) 155 

and animal viruses (bovine polyomavirus (BPyV), porcine adenovirus (PAdV) and avian parvovirus 156 

(ChTyPV)), bacteria (Aeromonas spp., Arcobacter spp., Helicobacter pylori, Legionella spp.) and 157 

protozoa (Blastocystis spp., Acanthamoeba castellanii, Cryptosporidium spp. and Giardia spp.) were 158 

analysed from a volume of 10 litres of irrigation water or 500 mL of sewage and secondary effluent 159 
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samples, using molecular based methods after a single Skimmed Milk Flocculation (SMF) 160 

concentration protocol (section 2.3.).  161 

2.2. Fresh water analysis 162 

2.2.1. Heterotrophic bacteria quantification 163 

Heterotrophic Bacteria were determined and quantified in all the water samples in accordance with 164 

ISO 6222:1999 (International Organization for Standardization, 1999), following the standards for 165 

water quality (Bartram et al., 2003). Briefly, ten-fold dilution series were prepared in Ringer 1/4 166 

(Scharlau Chemie), plated in Plate Count Modified Agar (Scharlau Chemie) and incubated at 22°C for 167 

72 h. The limit of detection (LOD) was 50 MPN per 100 mL. 168 

2.2.2. FIB quantification 169 

For FIB detection (EC and IE), 100 mL of each sample was collected in parallel from all sites. All 170 

samples were kept on ice and processed within 24 h. The enumeration of EC and IE was carried out 171 

with the  96-well microplate systems (MUG/EC 355-3782 and  MUG/EC 355-3783, BioRad®, 172 

respectively), according to ISO 9308-2:2012 and ISO 7899-1:1998 (International Organization for 173 

Standardization, 2012, 1998), respectively. 174 

2.3. A single concentration method for viruses, bacteria and protozoa 175 

This study was conducted using Standardized Operational Procedures (SOPs) for viral, bacterial and 176 

protozoan concentration, nucleic acid extraction and quantitative detection. All microorganisms were 177 

concentrated using the SMF protocol (Gonzales-Gustavson et al., 2017). Irrigation water (10 L) as 178 

well as raw sewage and secondary treated effluent samples (500 mL) were acidified to pH 3.5 using 1 179 

N HCl. The conductivity was also measured and adjusted with artificial sea salt (Sigma) to achieve a 180 

minimum conductivity of 1.5 mS/cm2. Separately, a Pre-flocculated Skimmed Milk solution (PSM) 181 

was prepared by dissolving 10 g of skimmed milk powder (Difco) in 1 L of artificial seawater and 182 

adjusting the pH to 3.5.  The PSM was added to the previously conditioned samples to obtain a final 183 
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concentration of 0.01% of skimmed milk. All samples were stirred for 8 h at room temperature and 184 

the flocs were allowed to settle by gravity for another 8 h. The supernatants were removed and the 185 

sediment was collected and transferred to 500 mL centrifuge containers and centrifuged at 8000 × g 186 

for 30 min at 4°C. Pellets were suspended in 5 mL of 0.2 M phosphate buffer at pH 7.5 (1:2, v/v of 187 

0.2 M Na2HPO4 and 0.2 M NaH2PO4), distributed in refrigerated boxes among partner laboratories 188 

and stored at −20°C until the nucleic acid (NA) extractions were performed.  189 

2.4. Virus quantification 190 

Viral nucleic acids (NA) were extracted from 140 μL of the SMF concentrate using a QIAamp® Viral 191 

RNA Mini Kit (Qiagen) and the automated QIACube system (Qiagen), following the manufacturer’s 192 

instructions. PCR inhibitors were removed by pre-centrifugation of lysate samples before using the 193 

automated extraction system. Specific real-time quantification of DNA viruses (HAdV (Bofill-Mas et 194 

al., 2006; Hernroth et al., 2002), JCPyV (Pal et al., 2006), MCPyV (Rusiñol et al., 2015), BPyV 195 

(Hundesa et al., 2010), PAdV (Hundesa et al., 2009) and Ch/TyPV (Carratalà et al., 2012)) by qPCR 196 

or RNA viruses (NoV GGI (da Silva et al., 2007; Hoehne and Schreier, 2006; Svraka et al., 2007) and 197 

NoV GGII (Kageyama et al., 2003; Loisy et al., 2005), EV and HEV (Jothikumar et al., 2006)) by 198 

quantitative reverse transcription PCR (qRT-PCR), were performed as previously described using 199 

TaqMan® Universal PCR Master Mix and the RNA UltraSenseTM One-Step qRT-PCR System, 200 

respectively (Invitrogen). Quantification was performed with an MX3000P sequence detector system 201 

(Stratagene). The standards for viruses were prepared using synthetic gBlocks® Gene Fragments 202 

(IDT) (supplementary material) and quantified with a Qubit® fluorometer (Thermo Fisher Scientific). 203 

The LOD in 100 mL of water of the (RT)qPCR assays was found to be 21 GC for HAdV, 29 GC for 204 

JCPyV, 57 GC for MCPyV, BPyV, PAdV and ChTyPV, 41 GC for NoV GGI and 296 GC for NoV 205 

GGII, 81 GC for HEV and 414 GC for EV, following the WHO manual (FAO, 2015). Undiluted and 206 

10-fold dilutions of the nucleic acid extracts were analysed in duplicate. The equivalence of 105 mL 207 

for DNA viruses and 52.5 mL for the RNA virus were tested from the original irrigation water 208 

samples, whereas 5.3 mL and 2.6 mL, respectively, were tested from sewage and secondary effluents. 209 

All qPCRs included three non-template control (NTC) to demonstrate that the mix did not produce 210 
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fluorescence due to contamination. 211 

2.5. Bacteria analysis 212 

2.5.1. Legionella spp. quantification 213 

Nucleic acids were extracted from 1 mL of sample concentrates using a Wizard genomic DNA 214 

purification kit (Promega). All samples were tested for the presence of Legionella spp. using a 215 

modified qPCR assay. In summary, a final volume of 25 μL, containing 0.9 μM of each primer 216 

(Cervero-Aragó et al., 2015; Herpers et al., 2003), 0.2 μM of the FAM-TAMRA probe with an 217 

annealing temperature of 53ºC (Cárdenas Youngs, 2018), 12.5 μL of 1× TaqMan® Universal Master 218 

Mix (Invitrogen) and 5 μL of the extracted nucleic acids. The standards for Legionella spp. were 219 

prepared using DNA extracted from an L. pneumophila ATCC 33152 culture and quantified with a 220 

Nanodrop. The equivalence of 105 mL was tested from the original irrigation water samples whereas 221 

5.3 mL and 2.6 mL, respectively, were tested from sewage and secondary effluents. The LOD was 222 

200 GC per 100 mL. 223 

2.5.2. Arcobacter spp. and Aeromonas spp. quantification 224 

Bacterial DNA was extracted with the DNeasy PowerSoil kit (Qiagen), following the manufacturer’s 225 

instructions. The DNA was quantified and checked for quality by using the NanoDrop instrument 226 

(NanoDrop Products). A real-time PCR (qPCR) was performed to quantify the Aeromonas spp. and 227 

Arcobacter spp., by using the StepOneplusTM Real-Time PCR System (Applied Biosystems) and DNA 228 

Target Species specific dtec-qPCR Test (Genetic PCR Solutions) for each genus. The threshold cycle 229 

(Ct) was determined using StepOne software v2.3. The LOD was found to be 5 genome copies of the 230 

target.  231 

2.5.3. Helicobacter pylori quantification 232 

DNA was extracted using FastDNA® SPIN Kit for soil (MP Biomedicals), following the 233 

manufacturer’s instructions. All samples were tested for the presence of H. pylori, by means of qPCR. 234 
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Briefly, the H. pylori specific qPCR, based on SYBR Green I fluorescence, was carried out using 235 

VacA primers to amplify a 372 bp fragment (Nilsson et al., 2002) in LightCycler® 2.0 Instrument 236 

(Roche Applied Science). The final reaction volume was 20 μL, which contained: 2 μL of 237 

LightCycler® FastStart DNA SYBR Green I (Roche Applied Science), 1.6 μL of MgCl2 (50 mM), 0.5 238 

μL of each primer (20 μM) and 2 μL of DNA template. The amplification consisted of an initial DNA 239 

denaturalization at 95°C for 10 min, followed by: 40 cycles each of 95°C for 10 s, 62°C for 5 s and 240 

72°C for 16 s; and finally, one cycle at 72°C for 15 s and one at 40°C for 30 s (Santiago et al., 2015). 241 

Amplifications were made in triplicate. A positive control with H. pylori DNA (reference strain: 242 

NCTC 11637) and a control of external contamination, qPCR mix without DNA, were added to the 243 

qPCR analysis.  244 

2.6. Protozoa analysis  245 

A volume of 300 μl of each SMF concentrate was lysed using the FastPrep®-24 instrument (MP 246 

Biomedicals). Samples were first homogenized for 60 s. After the bead beating step, samples were 247 

placed on ice for 1 min and then homogenized for another 60 s. DNA was extracted with the 248 

FastDNA® SPIN Kit (MP Biomedicals) for soil, according to the manufacturer’s instructions. The 249 

final DNA products were eluted in a final volume of 50 μL. Real-time PCR (qPCR) assays for 250 

detection of Giardia spp., Cryptosporidium spp., Acanthamoeba spp. and Blastocystis spp. were 251 

performed as previously described (Moreno et al., 2018).  252 

2.7. Log reduction values and analysis of season and water type effects 253 

Following analysis of the recovered microorganisms the Log10 reduction values (LRV) were 254 

calculated according to the formula: LRV = - Log10 (concentration in effluent / concentration in 255 

influent). Where the resultant effluent concentration was a none detected, the LOD values were 256 

assumed for the calculation. In order to assess the significance of season and water type we adjusted a 257 

linear model for the Log10 value of the counts of every organism. The model included the four 258 

physical-chemical variables measured as covariates. For organisms detected in two or more types of 259 

water at least in two samples per season the equation was: 260 
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yijk = μ + αi + βj + (αβ)ij + γ pijk + δ cijk + η uijk + λ tijk + εijk 261 

Where yijk was the Log10 of the counts, μ the overall mean, αi the effect of the i-th season, βj the effect 262 

of the j-th water type and (αβ)ij the interaction of both effects. The continuous covariates were pH 263 

(pijk), conductivity (cijk), turbidity (uijk) and temperature (tijk) with γ, δ, η and λ standing for their 264 

respective regression coefficients. Finally, εijk was the random error of the k-th replicate. Several 265 

viruses were detected in raw sewage, but were mostly undetected in some, or all, the periods studied 266 

for the rest of water types. For these cases, we considered a simplified version of the model without 267 

the season factor. All models were analysed using the lm method of the R software, version 3.6.1 (R 268 

Core Team, 2019). 269 

3. Results 270 

3.1. Microbiological contamination of irrigation water 271 

3.1.1. Conventional irrigation water sources: drinking water, groundwater, reservoir and 272 

riverwater. 273 

Results obtained for fecal indicator organisms and specific pathogens are summarized in Table 1. 274 

Drinking water was the only source of water in which no microorganisms were detected. HAdV were 275 

occasionally found in 2/12 samples from groundwater and river water. The FIB were persistently 276 

found over the sampling year. EC was more prevalent in river water (12/12) than in reclaimed water 277 

(10/12), whereas IE was more commonly found in reclaimed water (11/12) than in river water (7/12). 278 

Groundwater and reservoir water sources always presented lower FIB concentration levels and 279 

prevalence, but in contrast, Aeromonas and Arcobacter showed higher concentrations. No FIP were 280 

detected in any of the irrigation water sources analysed.  281 

Besides the HAdV detection, other viral pathogens were observed in irrigation water. MCPyV and 282 

NoV GGII were detected in river water during the coldest months (2/6 in both cases) and HEV was 283 

occasionally present in groundwater (1/12). All viral concentrations were near the detection limit of 284 

the technique (Table 1). Heterotrophic bacteria were present in all irrigation water samples (except 285 



 12 

drinking water) at mean Log10 concentrations in a range between 2.42 and 5.55 Log CFU/100 mL. 286 

Aeromonas spp. and Arcobacter spp. prevalence was higher in river water than in groundwater, but 287 

concentrations showed higher fluctuations in groundwater samples. Legionella spp. was found in 7/12 288 

of groundwater samples, 5 of the positive results being observed during the warmest seasons.  289 

Helicobacter pylori was detected in the groundwater and river water samples tested. Acanthamoeba 290 

castellanii was found in all types of conventional irrigation water (except drinking water).  291 

3.1.2. Reclaimed water. 292 

Viral, bacterial and protozoan concentrations in reclaimed water (wetland effluents) are shown in 293 

Table 1. Fecal contamination was very prevalent although detected in low concentrations: 2.02 and 294 

1.54 Log10 MPN/100 mL of EC and IE, respectively. Heterotrophic bacteria, Helicobacter pylori and 295 

Acanthamoeba castellanii, were detected in all reclaimed water samples analyzed whereas Legionella 296 

spp. was found in 33% of the tested water. Blastocystis sp., Cryptosporidum spp. and Giardia spp. 297 

were not present in wetland water after treatment.   298 

HAdV was detectable throughout the sampling year in all raw and secondary effluents, but only one 299 

third of the reclaimed water samples tested positive for this virus (Table 2). Mean concentrations 300 

decreased significantly (see figure 2 and supplementary material 2) throughout the treatment, being 301 

4.52, 3.04 and 2.11 Log10 GC/100 mL in raw, secondary and reclaimed water, respectively. Viral 302 

pathogens, like polyomaviruses (JCPyV and MCPyV) and noroviruses (NoV GGI and GGII), were 303 

also detected in 100% of raw sewage, but after Conventional Activated Sludge (CAS) treatment and 304 

the duration of retention in the wetland system, their prevalence dropped to under 25% positive 305 

sampling (Table 2). 306 

3.2. Performance of the sustainable wetland as a water reclamation system  307 

Figure 1 summarizes in boxplots the most prevalent viruses and FIB concentrations across the water 308 

reclamation process, including CAS and the sustainable wetland system. Although concentrations of 309 

NoV GGI and GGII in raw sewage were higher than HAdV, with respective mean and maximum 310 
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values of 2.26 and 1.61 Log10 GC/100 mL for NoV GGI and 1.51 and 1.52 Log10 GC/100 mL for 311 

NoV GGII, they were less prevalent than HAdV in the wetland effluent (Table 2). The water 312 

reclamation system reached means of 3.42 and 2.97 total LRV for NoV GGI and NoV GGII, 313 

respectively. FIB showed a similarly high removal behavior, but the percentage of positive samples at 314 

the end of the process was still persistent.  EV and HEV were occasionally detected in sewage and 315 

secondary effluents. A seasonal distribution of HAdV, EC and IE was not clearly observed in raw 316 

sewage (Figure 2), but a different behavior was observed in the secondary effluents. While both virus 317 

levels were relatively constant in the treated effluents, showing no significant effects of season nor 318 

interaction water type-season, FIB concentrations exhibited peaks in the spring samplings, showing 319 

significant effect of season (supplementary material). Important viral pathogens, like NoV, presented 320 

higher median concentration during winter and spring. After the activated sludge process, NoV GGI 321 

was not detected during autumn or summer. In general, NoV GGI and GGII mean concentrations 322 

were higher than HAdV, but HAdV was the most stable over the year, both in secondary effluents and 323 

after passing through the wetland system.   324 

3.3. Origin of the fecal contamination 325 

Table 3 summarizes the concentrations and percentage rates of detection of MST markers in different 326 

irrigation water samples and raw sewage. Human fecal contamination (HAdV) was detected in 17% 327 

of the groundwater and river water samples, and 33% of the reclaimed water samples, at similar 328 

concentrations. Porcine fecal pollution (PAdV) was very prevalent (44%) in the groundwater samples. 329 

Mean concentrations of porcine fecal pollution reached 2.47 Log10 GC/100 mL in groundwater. 330 

Bovine (BPyV) and avian (Ch/TyPV) fecal indicators were only detected when there were cow and 331 

chicken farms near the extraction well. It is also interesting to note the detection of the emergent 332 

zoonotic virus HEV in the sample from November, with a value of 2.83 Log10 PAdV GC/100 mL.  333 

4. Discussion 334 

The SMF method proved to be useful for the concentration of microorganisms after monitoring the 335 

microbial quality of different types of irrigation water applying molecular methods. As previously 336 
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reported (Calgua et al., 2013; Rusiñol et al., 2015, 2014), this concentration method is robust and easy 337 

to implement for simultaneous concentration of viruses, bacteria and protozoa (Gonzales-Gustavson 338 

et al., 2017). The harmonization of the concentration method, for the further detection of indicators 339 

and pathogens, may allow water managers to use mathematical approximations when calculating 340 

concentrations according to acceptable prediction intervals.  341 

 342 

4.1. Irrigation water quality: conventional and reclaimed water sources. 343 

 344 

Chlorinated drinking water was the only irrigation water source with no pathogen detection, but in 345 

terms of costs, the use of drinking water for irrigation purposes is unaffordable as well as unavailable 346 

in many regions. In general, fecal pollution was found in a high percentage of the samples by means 347 

of FIB. Occurrences of EC in river water samples were the highest in irrigation water (100%), 348 

whereas in reclaimed water both EC and IE were frequently detected (10/12 samples and 11/12 349 

samples respectively) in low concentrations. The fact that IE are distinguished by their ability to 350 

survive in more complex matrices, underscores their use as FIB in more complex water matrices. It is 351 

also important to state that changes in the WWTP management could explain FIB fluctuations in the 352 

treated effluents during spring.  353 

During this one-year surveillance, HAdV was detected in groundwater (17%), river water (17%) and 354 

reclaimed water (33%), confirming the human origin of the fecal contamination. This human 355 

pathogen is widely detected when water is impacted by sewage (Bofill-Mas et al., 2013; Rusiñol et 356 

al., 2014; Rusiñol and Girones, 2017; Vieira et al., 2016). NoV occurrence in river water has been 357 

reported when rain events introduce large amounts of pathogens into the receiving water bodies (Hata 358 

et al., 2014), during peak infection periods or due to viral outbreaks (Kauppinen et al., 2018). 359 

Although we did not detect NoV in groundwater, it has been reported that this highly infectious 360 

pathogen remains infective in groundwater for long periods (Seitz et al., 2011). MCPyV was found in 361 

2 of the 12 river water samples, as reported in other studies (Rusiñol et al., 2015). This skin virus is 362 

persistently excreted in sewage (Bofill-Mas et al., 2010), so its presence highlights its dissemination 363 

into the environment and its resistance to water treatment technologies. 364 
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 365 

Emerging pathogens, like HEV, Arcobacter spp. and Helicobacter pylori, were also detected. HEV 366 

presence in groundwater may be attributed directly to the presence of livestock in the aquifer recharge 367 

area, as porcine fecal pollution (PAdV) was also detected and no human viruses were found in that 368 

sample. Previous studies have evidenced the impact of the presence of livestock and agricultural 369 

practices on the microbial quality of river water (Rusiñol et al., 2014). Considering that groundwater 370 

provides half of all drinking water worldwide or that 70% of groundwater withdrawal is used for 371 

agriculture (FAO, 2019), it is important to consider the potentially infective pathogens that are found 372 

in this type of matrix. From a one-health perspective, the putative risks to farm animals should also be 373 

considered when engineering the irrigation of feeding crops. Arcobacter spp. is highly resistant to 374 

sanitation and disinfection treatments, as well as showing tenacious survivability in the environment 375 

(Banting and Figueras, 2018). Canadian researchers showed that it is frequently detected in irrigation 376 

water, where it is often underestimated due to the cross-amplification with Campylobacter (Banting et 377 

al., 2016).  378 

 379 

In this study, groundwater, river water and reservoir water all harbored potential bacterial pathogens, 380 

like Helicobacter pylori, Legionella spp. and Aeromonas spp. The association of these bacteria with 381 

biofilms can act as a reservoir in irrigation waters (Richards et al., 2018). In fact, Helicobacter pylori, 382 

as previously stated for Legionella spp., can be internalized and viable inside Acanthamoeba 383 

castellanii (Moreno-Mesonero et al., 2016), which could also be detected in all samples tested. The 384 

presence of Aeromonas has been related to stagnant water with low/no levels of chlorine and presence 385 

of organic matter (Figueras and Ashbolt, 2019). Our persistent detection of Helicobacter pylori in the 386 

untreated irrigation water sources has been related to the exposure to sewage (Bellack et al., 2006). 387 

According to the Spanish regulation for water reuse (RD 1620, 2007), the occurrence of Legionella 388 

spp. in this study would restrict the use of reclaimed water for drop irrigation of produce intended for 389 

raw consumption.  390 

 391 
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Reclaimed water and river water presented similar HAdV and NoV concentrations, although viral 392 

occurrences were higher in the wetland effluents. Human-specific JC polyomavirus was only detected 393 

in reclaimed water in November. This virus is very prevalent in wastewater worldwide and low 394 

reductions have been reported after CAS (Mayer et al., 2016; Rusiñol et al., 2015). When tertiary 395 

treatments are applied, different reductions are observed but JCPyV is still frequently detected. In 396 

accord with our results, Rachmadi and collaborators reported removals below the LOD in subsurface 397 

wetlands (Rachmadi et al., 2016). Both the LOD of the technique (29GC in 100 mL) and the low 398 

volume of the original sample represented in the analysis (35 mL) may explain the absence of positive 399 

results.  400 

 401 

If we check the minimum quality criteria set down by the EU for reclaimed water used as class A 402 

irrigation water (Alcalde-Sanz and Gawlik, 2017), only drinking water could be used for crops where 403 

the edible portion is in direct contact with the irrigation water (class A), because only there were the 404 

EC levels below the LOD. Groundwater, reservoir and reclaimed water would be in class B (EC 100 405 

cfu/100 mL) and could be used for raw consumption crops only where the edible part is produced 406 

above ground and is not in direct contact with the irrigation water. According to our results, river 407 

water would be in class C (EC 1000 cfu/100 mL) and the irrigation method for edible vegetables 408 

should be limited to drip systems.  409 

 410 

4.2. Microbial removals in a sustainable wetland system  411 

 412 

There is an increasing amount of evidence regarding the presence of viral pathogens in reclaimed 413 

water used for irrigation (López-Gálvez et al., 2016; Randazzo et al., 2016). HAdV are being used as 414 

wastewater reclamation indicators, together with FIB, because they are more resistant to removal than 415 

other viruses (Kitajima et al., 2014; Prado et al., 2019; Sidhu et al., 2018). In our study, their numbers 416 

varied from 1.12 to 2.92 Log10 GC/100 mL, which is comparable to the reported numbers in other 417 

constructed wetlands (Rachmadi et al., 2016). In total, the wetland fed with secondary effluent 418 



 17 

reduced 3.14 Log10 of HAdV a nd 5.17 Log10 of EC. Comparing Log10 removals of HAdV in diverse 419 

reclaimed water production systems (Table 4) shows that advanced sewage treatments achieve higher 420 

efficiencies (5.20 Log10), but they also have important operational and maintenance costs to be 421 

considered (Guo et al., 2014; Hunter et al., 2018; Liu et al., 2013; Prado et al., 2019).  422 

Our treatment process achieved a mean 3.23 Log10 removal of HBC, similar to the reported removal 423 

when wastewater is treated in conventional wastewater reclamation processes (CAS + chlorination) 424 

(Al-Jassim et al., 2015).  The analysis of HBC has little value as an indicator of pathogen presence, 425 

but can be used in assessing regrowth and presence of biofilms in the reclaimed water system.  426 

 427 

Following the health target of <10-6 DALY’s per person per year for safe drinking-water, the WHO 428 

established performance values, or minimum Log10 removals, of three reference pathogens: a virus 429 

(5.0 Log10 of rotavirus), a bacterium (4.0 Log10 of Campylobacter) and a protozoan (4.9 Log10 for 430 

Cryptosporidium) (WHO, 2017). The European directive does not compel member states to monitor 431 

pathogens, and only recommends translating the EC monitoring data into treatment performance 432 

targets (WHO, 2017). As irrigation water should be free of contamination and, where possible, have 433 

of the same quality as drinking water, a similar approach could be used for irrigation water. A recent 434 

publication in our group, quantifying the risk of using the wetland effluent to irrigate lettuce, 435 

established that the disease burden of NoV GGII and HAdV was higher than 10-6 DALYs (Gonzales-436 

Gustavson et al., 2019). Thus, additional disinfection treatment would be required to irrigate these 437 

types of crops with reclaimed water produced in the studied wetland system.  438 

  439 

4.3. Monitoring irrigation water quality 440 

 441 

The first microorganism included in the monitoring of water quality and water reuse legislation was 442 

EC (RD 1620, 2007; WHO, 2017). It is prevalent through seasons in different irrigation water 443 

sources, but as stated before, it does not always correlate with the presence of other pathogens. The 444 

European Food Safety Authority identified Salmonella, Yersinia, Shigella and noroviruses as the most 445 

important risks within food of non-animal origin, but the guidance document for irrigation water only 446 
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fixes EC maximum thresholds as an indicator of fecal contamination (EFSA BIOHAZ Panel, 2017; 447 

EU C163, 2017). With the single recommendation of EC testing, most of the results of this study, 448 

including different sources of irrigation water, would meet the EU requirements for irrigation of 449 

ready-to-eat vegetables and fruits. Nevertheless, in some particular cases (e.g., groundwater), where 450 

fecal pollution is occasional and viruses can survive longer periods, it is necessary to consider human 451 

and animal specific MST indicators when evaluating microbial water quality.  452 

When agricultural water comes into direct contact with the edible portion of a crop, or the source of 453 

irrigation water is vulnerable to contamination, the introduction of viral parameters would 454 

complement the information used by water managers. Regarding public health, it is necessary to 455 

include direct indicators of risk. Bacteriodes spp., Bifidobacterium spp., bacteriophages, Clostridium 456 

perfringens and HAdV analyses have been proposed to evaluate reclaimed water quality (Bofill-Mas 457 

et al., 2013; Bourrouet et al., 2001; Verani et al., 2018), but there are no compelling data about their 458 

utility for irrigation water monitoring. Our study of this type of water confirms the prevalence of 459 

HAdV through seasons and its low removal during treatment, supporting the argument for use of this 460 

waterborne pathogen together with FIB for characterization of irrigation water quality. The risk 461 

associated with the presence of viral pathogens supports the use of qPCR for irrigation water 462 

management, even if some degree of overestimation of risk has been suggested (Symonds and 463 

Breitbart, 2015). Although direct pathogen screening is not feasible, when water is used to irrigate 464 

ready-to-eat fruits and vegetables, we recommend including NoV testing in peak concentration 465 

months, to validate and complement existing management strategies.  466 

Besides FIB and HAdV, Legionella spp. analysis should also be considered, depending on the crop 467 

and the irrigation system. In fact, the Spanish legislation includes maximum acceptable values for 468 

Legionella when there is aerosolization and/or potential regrowth. Values (100 or 1000 cfu/mL) and 469 

minimum analytical frequencies (every two weeks and once a month) will depend on the usage of the 470 

reclaimed water for irrigation.  471 

 472 



 19 

It is assumed that human pathogens are present in low concentrations in irrigation water. However, 473 

this will be directly related to the disinfection treatment to which the water has been submitted and its 474 

proper storage. Aeromonas and Arcobacter have been found in lagooning reclaimed water, and the 475 

former also in parsley and tomatoes irrigated with water contaminated with these bacteria (Fernandez-476 

Cassi et al., 2016; Latif-Eugenín et al., 2017). The SMF method allowed for the evaluation of a 477 

representative volume (10 L) for simultaneous monitoring of waterborne viruses, bacteria and 478 

protozoa. This concentration method would reduce costs and facilitate periodic testing of different 479 

irrigation water sources. Further investigations are necessary to obtain larger data sets and to assess 480 

specific pathogen serotypes.  481 

 482 

5. Conclusions 483 

Considering the current guidelines at the EU, with the single recommendation of EC testing, most of 484 

the sources of irrigation evaluated here would meet the EU requirements. However sporadic detection 485 

of viral pathogens was found in water samples with EC values lower than 100 MPN/100ml. It is 486 

assumed that groundwater is less vulnerable to fecal pollution than reservoir or river water, but the 487 

detection of porcine fecal pollution (PAdV) and an emergent pathogen as HEV, would confirm that 488 

pigs act as a reservoir of this viruses and enhances the importance of having a good characterization 489 

of this irrigation source.  490 

Compared to other microorganisms evaluated, HAdV presented low reduction values in the wetland 491 

system, demonstrating its high resistance to treatment. Due to the higher demand for reclaimed water 492 

for agriculture during the warm season, when noroviruses where not detected, we would recommend 493 

evaluating the presence of HAdV as a complementary management measure of the performance of the 494 

water reclamation process. A viral pathogen like NoV might be considered during the coldest months.  495 

Neither Giardia cysts, nor any Cryptosporidium oocyst where detected in the analysed water samples, 496 

showing a low prevalence of these protozoa in the irrigation water sources studied.  497 

Groundwater, river water and reservoir water also harboured potential bacterial pathogens, like 498 

Helicobacter pylori, Legionella spp. and Aeromonas spp. that could be internalized and viable inside 499 

amoebas like Acanthamoeba castellanii, which was also detected. The detection of ubiquitous 500 
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potential bacterial pathogens and free-living amoebae should be also considered when evaluating the 501 

role that irrigation water could play in the transmission of bacterial pathogens, been internalized 502 

bacteria more resistant to disinfection processes. 503 

 504 
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