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Abstract 

In this investigation, two different varieties of ‘Prada’ limestones were studied: a dark 

grey texture, bearing quartz, clay minerals, organic matter and pyrites, and a light grey 

texture with little or no presence of such components. We have observed two effects of 

different intensity when heating the dark texture from 400º C: i) the explosion of certain 

samples and ii) greater thermal damage than in the light grey texture. Chemical and 

mineralogical composition, texture, microstructure, and physical properties (i.e. colour, 

open porosity, P and S-wave velocity) have been evaluated at temperatures of 105, 300, 

400 and 500º C in order to identify differences between textures. The violence of the 

explosive events was clear and cannot be confounded with ordinary splitting and 

cracking on thermally-treated rocks: exploded samples underwent a total loss of integrity, 

displacing and overturning the surrounding samples, and embedding fragments in the 

walls of the furnace, whose impacts were clearly heard in the laboratory. 

Thermogravimetric results allowed the identification of a process of oxidation of pyrites 

releasing SO2 from 400º C. This process jointly with the presence of micro-fissures in the 

dark texture, would cause a dramatic increase in pore-pressure, leading to a rapid growth 

and coalescence of microcracks that leads to a process of catastrophic decay in rock 

integrity. In addition to the explosive events, average ultrasound velocities and open 

porosity showed a greater variation in the dark grey texture from 400º C. That results 

also points towards a significant contribution of oxidation of pyrites on the thermo-

chemical damage of the rock, among other factors such as the pre-existence of micro-

fissuresand the thermal expansion coefficient mismatch between minerals. Implications 

in underground infrastructure and mining engineering works are critical, as the explosive 

potential of pyrite-bearing limestones bear risk for mass fracturing and dramatic strength 

decay from 400º C. Moreover, SO2 released has harmful effects on health of people and 
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the potential to form acid compounds that corrode materials, shortening their durability 

and increasing maintenance costs. 
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1 Introduction 

The variation in physical, mineralogical, and mechanical properties of rock with 

temperature is an issue of current interest among the scientific community, due to its 

applicability in different fields of engineering and architecture – such as mining (Behnia 

et al. 2017), geothermal energy (Pei et al. 2018), underground storage of radioactive 

waste (Zhang et al. 2017a), building materials (Brotóns et al. 2013; Fioretti et al. 2018), 

tunnelling (Nordlund et al. 2014), and rock drilling (Rossi et al. 2018). As a general 

overview, an increase in temperature leads to a growth in pores and fissures, and a 

decrease in ultrasonic wave propagation, uniaxial compression strength, and elastic 

modulus. Altogether, a temperature increase points to a decay in rock integrity, whose 

magnitude and key temperatures strongly depend on the type of rocks, and their diverse 

physical and mineralogical properties. 

Limestone is one of the most common types of sedimentary rocks. Its mineralogical 

composition is mostly calcite, which presents an anisotropic thermal expansion. A 

decrease in strength limit due to microcracking at relatively low temperatures (up to 250º 

C) was described for a limestone from Anstrude (France) (Lion et al. 2005). Below 150º 

C, microcracking does not seem to occur according to Yavuz et al. (2010), who observed 

a marked decay in physical properties (i.e. bulk density, P-wave velocity, and effective 

porosity) above 400ºC. A clear reduction in uniaxial compression strength (UCS) from 

500ºC, and a tendency to redden when heating, were described for calcareous and 

dolomitic rocks from Apulia in Italy (Andriani and Germinario 2014). Temperatures above 

600ºC usually mark a dramatic decline in UCS (Sengun 2014). Subsequent research 

contributed by accurately setting the temperature variation ranges for limestones from 

Linyi, China (Zhang et al. 2017b). These authors indicated that from 200 to 500 °C the 

porosity and pore volume rapidly increased, and from 500 to 600 °C the porous 



5 

 

 

parameters were relatively stable. The maximum strength slowly decreased while the 

peak strain continuously increased, elastic modulus declined quickly, Poisson’s ratio 

dropped suddenly, and the hardness decreased from mid-hard to soft. Recently, 

research correlated physical and mechanical properties to define a thermal damage 

factor (Yang et al. 2019).  

Different mechanisms control thermal damage of rocks, where the heating/cooling rate 

plays a fundamental role. On the one hand, a sharp variation of temperature when 

cooling (quenching) leads to tensile stresses that nucleate cracks (Mallet et al. 2014) 

even at temperatures below 300º C (Kim et al. 2014), causing a reduction on strength 

and elastic properties and enhancing permeability (Kumari et al. 2018). Such effect can 

be observed after high local heating rates (i.e. higher than 5 ºC/s), where thermal 

cracking is dominated by the stress concentrations caused by high thermal gradients 

(Nordlund et al. 2014; Rossi et al. 2018). On the other hand, low heating rates cause 

thermal cracking in carbonate rocks mainly controlled by the anisotropic expansion of 

calcite (Sippel et al. 2007; Yavuz et al. 2010). Finally, thermo-chemical damage involves 

some specific chemical reactions, such as thermal decomposition of calcite that starts at 

500º C, exhibiting the highest decomposition rate around 700º C, and being complete 

near 900º C.  

Presence of pyrites may be common in limestones with organic content (Berner 1985), 

and that gives them a dark tone. Such pyrites could experiment thermal oxidation when 

limestones are heated. The investigation of pyrite thermal oxidation is important in a wide 

number of productive fields. The wide occurrence of pyrite in different minerals and coals 

makes it one of the main sources of SO2 (acid rain precursor) emission from various 

industrial activities, such as coal conversion (Seehra and Jagadeesh 1981), power 

production (Lv et al. 2015), and cement production (Hansen et al. 2003; Cheng et al. 
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2014). Pyrite in auriferous and carbonaceous matters is usually found in association with 

valuable metallic elements such as Au, Ag, and Cu and their recovery includes the 

oxidative roasting of raw materials (Zhang et al. 2019). Pyrite is common in sedimentary 

rocks studied as a potential host rock for radioactive waste like claystone, and its 

oxidation is harmful to the corrosion kinetics of metallic engineered components (Verron 

et al. 2019). The oxidation reaction of pyrite is a destabilising factor in commercial 

emulsion explosive products, due to its exothermic reaction (Xu et al. 2015). In ceramic 

production, research focuses on reducing sulphur emissions produced when heating 

clays containing pyrites – which involve defects in the final product (Gómez-Tena et al. 

2014).  

However, investigations describing thermo-chemical damage on pyrite-bearing rocks are 

scarce, although this type of rocks is common in civil and mining engineering works. In 

this research, we study the thermal behaviour of a pyrite-bearing limestone from ‘Prada’ 

formation (Spain) to explore the causes and mechanisms of induced thermal damage. 

To this aim, we evaluate the variation of physical properties (colour, open porosity, P and 

S-wave velocities) at different temperatures between 105 and 500º C; we determine 

chemical, mineralogical, and microstructure changes; and we pay special attention to the 

thermal reactions involved and the released gases.  

2 Materials and methodology 

Rock samples were taken from two horizontal boreholes in Organyà, in the Catalan south 

Pyrenean zone (Spain). Both were drilled in a lower cretaceous limestone formation 

locally named ‘Prada’ limestone, widely described by García Senz et al. (2002). The 

depth explored in horizontal borehole 1 was of 65.30 m and 91.45 m in borehole 2. Intact 
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rock showed a bluish grey colour, and two varieties of samples could be clearly 

distinguished according to their lightness: light and dark grey. 

Dark and light grey samples forming ‘Prada’ limestone were separated in two groups. A 

total of 20 irregular fragments, with an average volume of 113±36 cm³, were then 

randomly selected from each group to determine the physical properties of the intact rock 

(i.e. dry density, water absorption, unit weight of solids, total and open porosity) and to 

compare the variation of open porosity with increase of temperature. In addition, a total 

of 68 cylindrical samples of 63 mm in diameter and a slenderness of 1.0 and 2.5 were 

chosen among both dark and light grey specimens to compare thermal damage between 

textures. Finally, four cylindrical samples were selected from each group to determine 

UCS for the intact rock. Table 1 depicts the number of samples tested for each group 

(dark or light grey) and their dimensions. All samples were identified by the borehole 

number and the depth at which they were extracted (Figure 1). A temperature of 105º C 

was applied to remove moisture content and are considered references for the 

determination of the intact rock properties. 

Table 1. Number of samples tested for each group (dark or light grey) and dimensions. All samples were first heated at 

105º C, then treated at 300, 400 and 500º C. Additional 4 cylindrical samples from each group were used to determine 

UCS for the intact rock (at 105ºC). 

Temperature  

 

(º C) 

Dark grey limestones Light grey limestones 

Irregular 

samples 

Cylindrical 

samples 

Irregular 

samples 

Cylindrical 

samples 

105 15 34 15 34 

300 5 10 5 10 

400 5 10 5 10 

500 5 10 5 10 
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Figure 1. Cylindrical cores from ‘Prada’ limestones before thermal treatment. Samples with a dark grey texture are 

identified in the figure.  

Samples were subjected to thermal treatment, except those used for UCS tests. The 

heating process was performed in a furnace under air atmosphere and constant 

pressure. Temperatures of 300, 400, and 500º C were selected and a gradient of 5º 

C/min was applied. Once the target temperature was reached, it was maintained for one 

hour. Then, cooling stage started inside the furnace at a slow rate from 5 to 1º C/min. 

Once the temperature inside the furnace reached 300ºC, limestones were then put 

outside the furnace and naturally cooled at air (at a slow rate) to room temperature (21º 

C). It is worth noting that during the heating process, one thermocouple registered the 

temperature inside the furnace, another thermocouple was in contact with the surface of 

one cylindrical sample, and a third one was installed inside the sample, in a small drill 

made along its axis. The evolution of the temperature was registered every minute using 

a PicoLog 6 data logger. Special attention was paid to perceptible sounds through the 

furnace chamber indicating explosions of samples during heating, and the temperature 

at which that occurred. Once the furnace was opened, the explosive events of certain 

samples had already happened, and the visual damage were recorded.  

Fragments from representative dark and light grey rock fractions were then pulverised. 

Total carbon, sulphur, and sulphides content were determined over pulverised rock 
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samples using an IR spectrometer after heating in a furnace. The whole rock analysis 

was performed using fusion and X-ray fluorescence. 

Determination of oxidizable organic matter aims to explain the different coloration 

between light and dark grey textures. To do so, finely ground rock samples previously 

subjected to 105° C and 500° C were selected, and oxidizable organic matter contents 

were determined using potassium permanganate, according to Spanish standard (UNE-

EN-103204 2019). 

Thermal analyses of dark grey samples were conducted using thermogravimetric, 

differential thermal analysis, and differential scanning calorimetry, TG-DTA-DSC, and 

TG-DTA coupled to a mass spectrometer. TG-DTA-MS and TG-DTA-DSC experiments 

were performed using a NETZSCH STA 449 Jupiter F5 thermal analyser. The NETZSCH 

Aeölos Quadro Mass Spectrometer was coupled to the TG-DTA analyser. 

Measurements were conducted under dynamic mode from 25 to 700º C at a heating rate 

10º C min−1 under air conditions (N2:O2 in 4:1) at 50 ml/min. 

The phase composition of samples was analysed by powder X-ray diffraction (XRD) on 

a Bruker D8-Advance diffractometer with a Goebel mirror (non-planar samples) using Cu 

Kα radiation and a setting of 40 kV and 40 mA. XRD data were collected and interpreted 

using the XPowder software package, which allows a quantitative analysis for the 

identified phases.  

Optical and scanning electron microscopy (SEM) in backscattered electron mode was 

used to study the petrographic features of ‘Prada’ limestone. Thin-section examination 

was performed under an optical polarising microscope (Model Zeiss Assioscop). For the 

SEM analysis, sample surfaces were polished with alumina and diamond powder; the 

finest abrasive was a 0.4 mm diamond powder. Uncovered polished surfaces were 
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studied in a HITACHI S-3000 N variable pressure SEM working at low vacuum, and salt 

tested surfaces were analysed in a high vacuum SEM in secondary electron mode. The 

chemical analysis of the elements associated with the SEM images were accomplished 

using the energy dispersive X-ray (EDX) technique.  

Mercury intrusion porosimetry (MIP) was used to obtain fine porosity results and pore 

size distribution in both dark and light grey samples. Tests were developed with a 

PoreMaster 60 GT (Quantachrome Instruments). The employed surface tensions and 

contact angles of mercury were 480 mN/m and 130°, respectively.  

Physical properties of both dark and light grey limestones were determined using 

irregular samples. Dry density, water absorption, unit weight of solids, total and open 

porosity, were determined before and after thermal treatment using saturation and 

buoyancy techniques according to the suggested methods of the International Society 

for Rock Mechanics (ISRM) (Franklin 1979).  

A preliminary colour classification of the intact rock was performed using Munsell soil 

colour charts (GLEY 2 chart for low chroma colours). To observe colour differences 

before and after heat treatment, both faces of samples were polished and moistened, 

and their image captured using an HP OfficeJetPro 7740 scanner with a resolution of 

600 ppi. The average sRGB colour values of the pixels were obtained for representative 

regions of the material using software GIMP 2.10.12. The colour was described in terms 

of CIELAB space colour (CIE 1977), used by many authors (Pospíšil et al. 2007; 

González-Gómez et al. 2015) where L* represents lightness (i.e. the darkest black at L* 

= 0, and the brightest white at L* = 100), and a* and b* chromaticity. The a* axis 

represents green in the negative direction and red in the positive direction, and b* axis 

represents blue in the negative direction and yellow in the positive direction. 
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The presence of discontinuities such as pores and fissures, reduces the propagation 

velocity of the mechanical waves, and so it is a commonly used parameter to evaluate 

the evolution in rock deterioration. Thus, ultrasonic measurements were carried out over 

light and dark grey cylindrical samples before and after thermal treatment. The 

transmission method consists of two piezoelectric sensors coupled to the sample at 

constant pressure. Compressive (P) and shear (S) waves were measured using 

polarised Panametric transducers (1 MHz). Emitting-receiving equipment (Panametrics-

NDT 5058PR) and an oscilloscope (TDS 3012B-Tektronix) were used to acquire and 

digitalise the waveforms to be displayed, manipulated, and stored. Every measurement 

of the P and S waves was repeated three times to test the reproducibility of the 

experiments and the corresponding results.  

Finally, UCS tests were performed to determine mechanical properties for the intact rock 

(at 105º C) for both light and grey textures. A slenderness of 2.5 was decided to ensure 

their suitability according to ISRM suggested methods (Fairhurst and Hudson 1987). 

Core faces were polished to ensure flatness and perpendicularity relative to the axis. A 

four-column press machine Mecánica Científica SA model 28.5200 with a capacity of 

2000 kN was used. A compression rate of 0.5 MPa/s was applied until the ultimate load 

and controlled by MecaTouch software v.1.1. Strain gauges of 30 mm long Tokyo 

Measuring Instruments Lab PF-30-11 (120.3±0.5 Ω, k=2.13±1) were used for longitudinal 

and transverse strains. Values were registered for each loading cycle using MecaSoft 

software v.1.3.8. The tangent Young's modulus and the corresponding Poisson's ratio 

were determined from values of 50% of the sample ultimate load.  
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3 Results  

3.1. Chemical, mineralogical, petrographic and microstructural characterisation 

‘Prada’ limestone is a grainstone or biosparite with abundant bioclasts (0.2–2 mm): 

mainly planktonic foraminifera and minor amounts of molluscs, red algae, bryozoan, and 

frequently fragmented echinoderm (Figure 2). Some angular and sub-angular grains of 

monocristalline quartz (0.02–0.1 mm) are also present. Sub-rounded grains of iron 

sulphides (0.02–0.04 mm) are irregularly distributed in the limestone (Figure 2A). They 

can be found dispersed in the rock matrix and concentrated in grain borders, cement, or 

stylolites. Cement is abundant and mainly consists of micro and meso-crystalline 

mosaics of calcite spar. Cement fills interparticle (bioclasts) porosity. Syntaxial cement 

is related to fragmented echinoderms. Micritic matrix is minor (<5%) and irregularly 

distributed. Discontinuities are abundant and consist of fissures, calcite veins and a 

minor amount of stylolites (Figure 2E and Figure 2F).  
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Figure 2. Optical microphotographs of intact ‘Prada’ limestone. (A) Grain-supported texture composed of bioclasts, 

angular and sub-angular grains of quartz and sub-rounded grains of iron sulphides. Details of (B) molluscs, (C) 

foraminifera and (D) red algae. (E-F) Bioclasts and micritic matrix cut by calcite veins. Microphotographs were taken 

under (A-E) parallel-nicols and (F) crossed-nicols 

Observations using SEM allowed identify two different textures on ‘Prada’ limestones: 

dark and light grey. Samples with a dark grey texture showed a higher concentration of 
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pyrite, quartz and fissures (

 

Figure 3a) than those with a light grey aspect (

 



15 

 

 

Figure 3b). Fissures were mainly intergranular and did not show a preferred orientation. Pyrite appeared with both cubic 

and well-formed framboidal (raspberry like aggregates of pyrite spheres) geometries (
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Figure 3c) at 105º C with different sizes and distribution. Such structures evolved to incomplete framboids when heated 

to 500º C (

 

Figure 3d). EDX analysis was performed over different framboidal structures. Thus, a 

structure heated to 105º C was formed mainly by Fe (30.97%) and S (34.48%), and a 

small fraction of O (4.78%), while another structure when heated to 500º C showed 

increased values for Fe (65.83%), a severe decrease in S (2.66%), and an appreciable 

increase in O (75.51%). 
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Figure 3. Images from scanning electron microscope of a dark grey sample (a) and a light grey sample (b) before 

thermally treated, showing different content of pyrites, quartz, and fissure distribution. Well-formed pyrite framboids 

appeared in dark grey samples heated to 105º C (c). Pyrite framboids showed uncomplete when heated to 500º C (d) 

Chemical composition (expressed as weight percent) is different for both textures (Table 

2). Dark grey texture presented SiO2 (9.27 %), what is coherent with grains of 

monocristaline quartz referred above, and other oxide combinations such as Al2O3 (2.74 

%), Fe2O3 (1.33 %) and K2O (0.49 %) related to a clay fraction in the limestone. Sulphur 

was present in the dark texture (0.85 %), partly forming sulphide (0.60 %), and organic 

matter was also present (1.16 %). Moreover, light grey limestones showed residual or 

inexistent percentages of quartz and clay minerals, sulphide and organic matter, while 

percentages of CaO and C were slightly greater than in the dark texture. Results for dark 

grey limestones after calcination at 500º C revealed decreases in the total amount of 

sulphur, sulphide, total carbon and calcium, and an increase in quartz and clay 

compounds.  
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Table 2. Compounds registered on light and dark grey samples 

Compound 

(%) 

Light grey simples Dark grey samples 

105 ºC 105º C 500º C 

CaO 54.30 46.60 40.70 

Al2O3 0.11 2.74 3.62 

SiO2 0.65 9.27 11.55 

Fe2O3 0.19 1.33 1.52 

K2O 0.02 0.49 0.65 

Ctotal 11.80 10.20 9.87 

Stotal 0.01 0.85 0.76 

Sulphide - 0.60 0.47 

Organic matter 0.11 1.16 - 

Results using XRD on dark grey samples before and after heat treatment enabled the 

determination of a greater proportion of pyrites (expressed as percentage by weight) in 

the intact rock (1.5%), and a decrease after heating to 500º C (1.2%). The presence of 

hematite was also registered after heat treatment on dark grey samples (0.6%). It is 

worth noting that XRD can only characterise crystalline solid phases and consequently 

any possible amorphous phase formed by the pyrite oxidation would be not detected 

using this technique. 

TG-DTA-DSC and TG-DTA-MS experiments on dark grey samples were conducted up 

to 700º C, and allowed the identification of three different stages (Figure 4), involving the 

generation of different chemical compounds. Stage I (100 <T <200 ° C) showed an initial 

release of H2O (Figure 4a). Stage II (400 <T <600º C) revealed a greater release of H2O 

(Figure 4b), as well as of CO2 (Figure 4d), with a peak at above 520º C. Also the release 

of SO2 was recorded in a narrow range of temperatures, between 405 and 535° C, and 

showed a marked peak at 460° C (Figure 4c). Finally, stage III (T > 600º C) showed an 

increasing release of CO2 with temperature (Figure 4d). Results on TG curve (Figure 4a) 
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revealed a small weight loss in stages 1 and 2 (less than 0.5% in weight). DSC curve 

confirmed that reactions taking place on stage 2 are exothermic.  

 

Figure 4. TG-DTA-DSC curves for the dark limestone (a) and MS curves for H2O (b), SO2 (c) and CO2 (d) 

MIP analysis reflected dual porosity features on dark grey samples (Figure 5a), which is 

in concordance with the textural characterisation. The first pore family represents the 

interparticle porosity defined by grain minerals, cements, and fine-grains and shows a 

small pore size (in the pore range of 0.01-0.2 m). A second pore family represents 

micro-fissures, which are more numerous, and appear in larger sizes (> 200m) that MIP 
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cannot measure completely. Otherwise, light grey samples showed interparticle porosity 

with greater pore size (lower than 1 m), and very few micro-fissures (Figure 5b). 

 

Figure 5. Cumulative mercury intrusion and pore size distribution curves of dark (a) and light grey (b) textures before 

thermally treated. 

3.2. Variation of physical properties by thermal treatment 

Some dark grey samples exploded inside the furnace when heated at 400º C and 500º 

C exhibiting a total loss of structure and causing fragments spread over the furnace 

(Figure 6a, d, f, h), displacement, overturn or damage of the surrounding samples by 

fragments impacts (Figure 6f), and even the embedding of some rock pieces in the walls 

of the furnace (Figure 6a,b). We also perceived the sound of rock fragments impacting 

inside the furnace. It occurred instantly, and such impacts were violent enough to be 

clearly heard in the laboratory. Consequently, for the subsequent heating rounds the 

samples were covered with a metal protection grid to avoid further damage in the furnace 

(Figure 6c, d, g, h). The temperatures recorded by the thermocouples were 470º C inside 

the furnace, 438º C on the surface of an instrumented sample, and 390º C in its centre 

in the precise moment in which we heard the explosion of one sample. It is noteworthy 

that, after the explosion, the room was impregnated by an intense acrid smell attributed 

to the release of SO2. That strong smell reached such intensity that a gas extraction 

system was needed, and we were forced to leave the room. We undoubtedly related 

such phenomenon with the explosive event, which due to its violence could not be 
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confused with fracturing or splitting of the samples. Explosions were not registered for 

temperatures of 300º C, neither in the light grey samples. In addition to the exploded 

specimens, some dark samples fractured and clearly exhibited visible cracks.   
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Table 3 summarizes the number of dark samples that showed differing grades of damage 

for each temperature. The maximum number of exploded samples was registered at 

500º C, although the grade of fracturing of specimens was greater at 400º C, and not 

evident for temperatures lower than 300º C.  

 

Figure 6. (a) Dark samples exploded or fractured when heated at 400º C. (b) Detail of the fragment embedded in the 

furnace chamber due to the violence of the event shown in (a). Dark samples before (c) and after (d) heating at 400ºC. 

Note the protection grid used to preserve the furnace. Dark and light grey cores before (e) and after (f) heating at 500º 
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C. Note that only dark cores exploded, and their fragments overturned and damaged the surrounding light grey samples 

and the furnace chamber. A new set of dark samples before (g) and after (h) heating at 500º C using the protection grid. 

The temperatures were being registered using thermocouples when one sample exploded. 
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Table 3. Number of samples that showed different grades of damage for each temperature. 

Temperature  

 

(º C) 

Grade of damage 

Explosion 

Fracturing and visible 

fissures No visible damage 

300 0 0 10 

400 2 4 4 

500 4 2 4 

Before discussing the evolution of physical and mechanical parameters with temperature 

of both textures, average values for the intact rock (defined at a reference temperature 

of 105º C) are depicted (Table 4). Values of physical parameters were in the same range 

for both textures, while mechanical parameters (UCS, Young’s modulus, and Poisson’s 

ratio) were smaller for the dark grey samples. 

Table 4. Reference values for dark and light grey samples forming ‘Prada’ limestone, heated at 105º C. 

Parameter 
Dark grey 

samples 

Light grey 

samples 

Dry density, ρd (kN/m3) 26.80±0.24 26.84±0.25 

Water absorption saturated (%) 0.46±0.36 0.45±0.20 

Unit weight of solids, γs (kN/m3) 27.23±0.01 27.21±0.01 

Open porosity, n (%) 1.22±0.94 1.21±0.54 

Total porosity, n (%) 1.60±0.89 1.46±0.91 

P-wave velocity, Vp (km/s) 5.76±0.05 5.35±0.06 

S-waves velocity, Vs (km/s) 3.11±0.02 2.65±0.02 

Uniaxial compressive strength, σci (MPa) 103.76±59.11 164.63±23.77 

Young's modulus, E (GPa) (from mechanical tests) 50.65±20.44 77.69±6.54 

Poisson's ratio, ν (from mechanical tests) 0.24±0.06 0.31±0.05 

Open porosity trends were compared for both textures using normalised average values 

(i.e. results after heating were divided by those of the same samples obtained at the 

reference temperature of 105º C) (Figure 7a). The porosity showed little variation 



25 

 

 

between 105 and 300º C, and then gradually increased from 300º C. Differences 

between textures appeared at 400 and 500º C. Normalised open porosity was greater 

on dark grey samples (2.61 at 400º C; 3.43 at 500º C) than on light grey (1.54 at 400º C; 

3.01 at 500º C). Ultrasound wave velocity was also represented using normalised values. 

Values of P- (Figure 7b) and S-wave (Figure 7c) velocities progressively decreased with 

temperature for both textures, although the rate of decline accelerated between 400 and 

500º C. Differences between both textures appeared at 400 and 500º C, since P-wave 

normalised velocity was smaller on dark grey samples (0.84 at 400º C; 0.57 at 500º C) 

than on light grey (0.89 at 400º C; 0.64 at 500º C); S-wave normalised velocity was also 

smaller on dark grey samples (0.87 at 400º C; 0.52 at 500º C) than on light grey (0.93 at 

400º C; 0.75 at 500º C). 
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Figure 7. Variation of normalised (a) open porosity; (b) P-wave velocity; and (c) S-wave velocity of dark and light grey 

samples after heat treatment. Reference values used for the normalization are given in Table 4. 
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Intact rock showed a bluish grey colour, with different grades of lightness: Munsell colour 

values varied from light bluish grey (5B 6/1) to dark bluish grey (5B 3/1). Visual 

observation revealed colour variation when heating: one sample at 105º C (Figure 8a) 

evolved towards red and greater luminosity when heated at 400º C (Figure 8b); while 

reddening and lightness intensified when one sample was heated from 105º C (Figure 

8c) to 500º C (Figure 8d). CIELAB values enabled the trend to be quantified: lightness 

L* and colour a*, b* increased with temperature, especially from 400° C, with maximum 

values at 500 ° C (Figure 8e). The most significant variation could be observed for L*, 

marking a clear trend towards lighter tones with higher temperatures, especially between 

400º C and 500º C. In relation to colour parameter a *, a slight increasing trend could be 

observed up to 400º C, and an accelerated reddening of the samples from 400º C to 

500° C. The parameter b * marked lower values than a*, showing an increasing trend 

towards yellow with temperature. 
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Figure 8. Compared images of the flat and polished face from one sample heated to 105º C (a), and later to 400º C (b), 

and from one sample heated to 105º C (c), and later to 500º C (d). A transition from dark grey and bluish tones to light 

red and increased lightness with temperature could be observed. Colour variation with temperature, expressed using 

CIELAB variables (e) 

4 Discussion 

In this investigation, we study two different varieties of ‘Prada’ limestones: (a) a dark grey 

texture, bearing quartz, clay, organic matter, and pyrites, and (b) a light grey texture with 

little or no presence of such components. Dark grey texture showed micro-porosity and 
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microcracks, while light grey samples showed greater pore size and few microcracks. 

We have observed two negative effects of different intensity when heating the dark 

texture over 400º C, not reported in the light grey texture. On the one hand, the explosion 

of certain samples and, on the other hand, a greater thermal damage in terms of open 

porosity and ultrasound wave velocity variation.  

Dry density reference values are similar for dark and light grey samples, and values of 

open porosity at 105º C classify the samples as low-porosity rocks, compared to other 

limestones (e.g. Sengun 2014; Yavuz et al. 2010; W. Zhang et al. 2017). A growing trend 

in open porosity that accelerated between 400 and 500º C was previously reported by 

other authors (e.g. Yavuz et al. 2010), although values are smaller than those reported 

for low-porosity rocks (e.g. Sengun 2014; W. Zhang et al. 2017). Samples showed typical 

initial ultrasonic wave velocity values for low porous limestones (e.g. Sengun 2014; 

Yavuz et al. 2010), and the scatter is consistent with the observed microstructural 

heterogeneity in ‘Prada’ limestone. The decrease on P-wave velocity reflects 

microstructural changes produced during heating, specially between 400º C and 500º C, 

which indicates an increase in the number and size of fissures for that interval of 

temperatures, for both light and dark grey textures. Although the effects of rapid cooling 

lead to increased thermal damage (Kim et al. 2014; Mallet et al. 2014; Kumari et al. 

2018), the cooling of ‘Prada’ limestones was carried out at a slow rate: in a first step at 

a rate of 1 to 5º C/min to 300º C inside the furnace, and later under ambient conditions 

up to room temperature. Otherwise, microstructural changes could be mainly explained 

by internal stress concentrations resulting from anisotropic thermal expansion of the 

calcite (Lion et al. 2005; Malaga-Starzec et al. 2006). However the differing evolution of 

open porosity, P- and S-wave velocities between textures at 400 and 500º C is 

remarkable (Figure 7), and so further additive mechanisms must be contributing on the 

thermal damage on the dark grey texture.  
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Firstly, the thermal variation of physical properties is attributed in certain cases to the 

decomposition of clay minerals cementing particles or filling micopores (Zhang and Lv 

2020). Results in Table 4 are inconclusive and do not permit to ensure the transformation 

of clay compounds in the range of tested temperatures, apart from the amount of clay 

mineral contents is low according to the values of Al2O3 (Table 4).”. Regarding to water 

content in clays, heating could lead to pore-pressure build-up when clay is organized in 

a continuous phase (as layers or pockets) that significantly affects the material features 

(Delage et al. 2000; Sultan et al. 2002; Gens et al. 2011). Indeed, for temperatures up to 

200º C the loss of water is the main influencing factor on the thermal damage of 

limestones (Zhang and Lv 2020), as the high-pressure vapour escaping from the rock 

sample induces the generation and expansion of micro-fractures (Meng et al. 2020). TG-

DTA-DSC and TG-DTA-MS tests on dark grey samples allowed concentrate between 

100 and 200º C the removal of water adsorbed on mineral surfaces and in clay minerals. 

However, such range of temperatures is far from 400 and 500º C, where different thermal 

damage between textures was registered. Thus, we do not consider clay mineral 

decomposition, nor the loss of water, a reason for a greater thermal damage on the dark 

grey samples.  

The presence of quartz on dark grey samples could also cause thermal damage in 

limestones by the mineral phase transition. Rocks containing quartz experiment a 

sudden microcracking and volume increase at the phase transition between 550 and 

600º C, with a strong peak at 573º C (Van der Molen 1981; Glover et al. 1995), but such 

mechanism cannot explain different thermal damage between textures in the range of 

temperatures tested (T<500º C). Following with the different mineral composition 

between textures, thermal coefficient of calcite (1.4 x 10-5 ºC-1) is less than a half than 

that of clay (3.4 x 10-5 ºC-1) or quartz (3.3 x 10-5 ºC-1) (Belmokhtar et al. 2017). Local 

thermal stress concentrations occur between mineral particles of different nature, due to 
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mismatch in thermal expansion coefficients, thus increasing microcracking. Such effect 

has been reported in limestones by different authors (Liu and Xu 2013; Zhang et al. 

2017b; Villarraga et al. 2018; Yang et al. 2019), and the range of temperatures of 400 to 

500 °C configures a threshold for thermal cracking (Meng et al. 2020). Thus, microscale 

destructuring process induced by differential thermal expansion of the mineral 

components contribute to differences between textures when heated. Moreover, an initial 

micro-fissuring in the intact dark grey samples lead to greater coalescence and growth 

of fissures when heated, and so contributes on a greater thermal damage. 

Nevertheless, existing research on thermal damage in limestones reports to 

microcracking, fracturing and splitting in the samples, but not to explosive events of such 

violence as that observed in our research. Thus, there must be additional mechanisms 

triggering the explosion of certain samples between 400 and 500º C, and such 

mechanisms must contribute, among those discussed above, on a greater thermal 

damage in the dark texture in terms of open porosity and ultrasound velocity variation. 

For all above, we will discuss the role of organic matter and pyrite presence. 

Coloration constitutes a visible difference between textures forming ‘Prada’ limestones. 

That difference seems to be caused by a greater content on organic matter in the dark 

grey texture, in view of the results from the potassium permanganate method: samples 

showed six times more organic matter. Moreover, the presence of organic matter is 

related to the presence of pyrites (FeS2), which is common in continental margin 

sediments: these marine anoxic conditions enable bacterial sulphate reduction from 

organic matter that later reacts with detrital iron minerals in the sediment to form pyrite 

(Berner 1970, 1982). Observations using SEM confirmed framboidal pyrite structures in 

the group of dark grey samples, whose presence in organic matter can be a result of 

microbial activity (Sawlowicz 2000; Shawar et al. 2018). 
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XRD characterisation confirmed the presence of pyrite in the dark texture, and that was 

corroborated with EDX analysis on the framboidal minerals. Presence of iron and sulphur 

was established in the chemical composition (Table 2). Therefore, a greater content of 

pyrites in the dark texture established an additional difference between varieties. 

TG-DTA-DSC-MS analysis over dark grey samples showed three different stages 

(Figure 4) representing different chemical processes. Stage I (100 <T <200 ° C) 

corresponded to sample dehydration, involving removal of water adsorbed by the 

microporosity of mineral surfaces and in clay minerals. Stage II (400 <T <600º C) took 

place between 400-600º C and involved two different chemical processes: TG-MS 

curves displayed the presence of CO2 and H2O from 400 to 600ºC, which is coherent 

with a thermal oxidation of organic matter (Galbács et al. 1998; Cuypers et al. 2002; 

Boyle 2004) that can be represented as CH2O(OM) + O2 → CO2 + H2O. SO2 was detected 

between 405 and 535º C, showing a pronounced peak at 460ºC, which is coherent with 

thermal oxidation of pyrites (Hong and Fegley 1997; Gazulla et al. 2009), which can be 

represented as 2FeS2 (pyrite) + 11/2O2 → Fe2O3 (hematite) + 4SO2. Finally, stage III (T > 600º 

C) coincides with initial stages in the decomposition of inorganic carbonate and can be 

written as CaCO3 (calcite) → CaO + CO2. 

EDX analysis on dark grey samples after thermally treated at 500º C showed a clear 

increase in oxygen accompanied by a decrease in sulphur, and chemical results (Table 

2) showed a decrease in sulphide content, which is consistent with pyrite oxidation. 

Moreover, thermal oxidation of pyrites results in hematite, which was confirmed by XRD 

results. The range of temperatures for hematite formation can be described by means of 

colorimetry analysis: the process of reddening limestone rocks by oxidative conditions 

during thermal treatment has been experimentally proven and associated with the 

apparition of hematite (González-Gómez et al. 2015). Indeed, a tendency towards 
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reddish tones was visually appreciated between 400° C and 500° C (Figure 8), and 

numerically confirmed in view of CIELAB a* values (Figure 8e), which is consistent with 

the range of temperatures for thermal oxidation of pyrites. For all the above, in view of 

the results obtained using different techniques, it can be confirmed that an oxidation 

process of pyrites takes place, releasing SO2, when dark grey samples forming ‘Prada’ 

limestone are heated from 400º C.  

However, XRD, chemical characterisation, and framboids observed using SEM for 

samples heated to 500º C revealed that pyrite transformation was incomplete for the test 

conditions of temperature and time. This must be related to a lack of oxygen in the pore 

space. Available oxygen in pores depends on the gas diffusion coefficient, which 

decreases in porous materials as porosity and pore size decreases (Currie 1960). MIP 

results showed that dark grey limestone is a low-porosity rock with dual microstructure, 

which leads to poorly connected small pores. Such tortuosity strongly affects availability 

for gaseous transport (Benavente and Pla 2018). Consequently, air diffusion, and 

particularly O2 presence in pores, must be limited in dark grey samples, which explains 

the incomplete oxidation of pyrites. However, different conditions of volume, interstitial 

water content, and air exposure time, would enable greater O2 penetration throughout 

the rock and enable more efficient oxidation. An additional factor contributing to reduce 

the gas diffusion coefficient in the rock was described by Hu et al. (2006), who stated 

that the direct oxidation process leads to inward diffusion of oxygen due to the pore-

blocking effect of the formation of ferric/ferrous compounds.  

The release of SO2 from 400º C leads to an increase in pore pressure. Moreover, thermal 

oxidation of organic matter, which releases CO2 and H2O specially from above 420º C, 

could contribute to increase the pore-pressure. In addition, the presence of CO2 from 

organic matter and calcite decomposition speeds up the thermal oxidation of the pyrite 
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(Lv et al. 2015; Zhang et al. 2019), which leads to a more violent chemical reaction. The 

DSC curve showed that thermal oxidation of pyrites and organic matter are both 

exothermic reactions which locally accelerate the thermal oxidation of pyrite (Figure 4). 

The increasing presence of SO2, CO2, and H2O within closed pores may cause an 

expansion of the rock, and so an accelerated fissuring. The observed behaviour is 

closely related to the initial number and distribution of micro-fissures, identified on dark 

samples using MIP, and their two-dimensional shape, which causes a stress 

concentration in their tips (Griffits 1920). Consequently, the heating of the pyrite-bearing 

limestone causes a nonlinear decay in physical properties, also observed in other 

mechanisms of physical and durability decay (Smith et al. 2008; Martínez-Martínez et al. 

2013; Benavente et al. 2018). Catastrophic decay in rock integrity is a nonlinear process 

that dark limestones might suffer, where the initial microcracks may grow and begin to 

coalesce. Smith et al. (2008) argued that this situation constitutes the critical threshold 

for macroscopic rock integrity decay. When this critical threshold is exceeded, 

microcracks turn into cracks and grow rapidly. The increase in porosity may accelerate 

the decay in physical properties until the ultimate failure is reached.” 

During heating of the samples, we registered the sound of multiple impacts inside the 

furnace. Such impacts occurred instantly and were violent enough to be clearly heard in 

the laboratory. After opening the furnace, exploded samples showed a total lack of 

structure and its fragments were spread over the furnace, even embedded in the furnace 

walls as a result of the explosion. Consequently, we undoubtedly identified that sound 

with an explosive event, since it cannot be confused with fracturing or splitting of the 

samples. Additionally, we reported the exact temperatures at the moment of that 

explosion: 390º in the centre of the sample and 438º C on its surface. Considering that 

the SO2 generation curve starts at 405ºC and peak is at 460º C, temperatures in the 

sample were compatible with the rising branch of the curve. Consequently, the release 
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of SO2 must have been taking place within the sample at an accelerated rate. 

Additionally, there are more indicators of that event, since produced SO2 was released 

throughout the room immediately after the explosive event, detaching a strong smell that 

made necessary the use of gas extraction means and forced us to leave the room. The 

release of SO2 above a narrow range of temperatures would cause a peak in pore 

pressure that, jointly with a structure of micro-fissures in the dark texture, would cause a 

violent fracturing of the material. For all above, we associate the documented explosive 

phenomenon to SO2 production rather than oxidation of organic matter for the next 

reasons: (i) oxidation of pyrites evolves in a narrower temperature range than organic 

matter; and (ii) the peak release of SO2 occurs at lower temperatures (above 460º C) 

than organic matter (above 520º C). Moreover, explosive behaviour similar to that 

described in this work are not described in the existing scientific literature on the thermal 

effects on carbonate rocks containing organic matter (Yavuz et al. 2010; Andriani and 

Germinario 2014; González-Gómez et al. 2015). Consequently, thermal oxidation of 

pyrites has a greater contribution in the explosive phenomenon than organic matter 

oxidation. 

Regarding the thermal damage suffered by the dark texture in terms of open porosity 

and ultrasound wave velocity variation, the partial contribution of the pore overpressure 

and gas release caused by the thermal oxidation of pyrites on the total thermal damage 

is difficult to evaluate. However, we cannot ignore this process because the release 

curve of SO2 has been identified, and their negative effects observed (i.e. the explosion 

of certain samples). Summarizing, in this work we describe a new thermo-chemical 

process to explain the observed thermal damage on dark texture limestones from Prada 

formation based on the thermal oxidation of pyrites, jointly with further factors identified 

in this research (i.e. differential thermal expansion of the mineral components and initial 

micro-fissuring in the intact rock). 
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Finally, a 40 % of the dark samples did not undergo visible damage after heat treatment 

although they suffered thermal damage after heat treatment according to the variation of 

their physical properties (Figure 7). ‘Prada’ limestone presents a great chemical and 

textural heterogeneity that varies within and between samples. Hence, pyrite content and 

initial micro-fissure and pore structure (that determines the gas transport and the 

oxidation reaction efficiency) would induce a particular explosive potential to each 

sample. Although our results are definitive and are based on evidences, further 

investigations would be necessary to quantitatively relate pyrite content and initial micro-

fissure with explosive potential to each sample. Nevertheless, heterogeneity hinders any 

systematic investigation because of chemical and textural test are destructive, and 

therefore are not compatible with the need to count with intact samples to monitor their 

explosive behaviour during heating process. Despite of such difficulties, only a 

systematic study would be fully conclusive. 

5 Conclusions 

‘Prada’ limestone, formed by dark and light grey varieties, was subjected to temperatures 

of 105, 300, 400 and 500° C. We have observed two effects of different intensity when 

heating the dark texture above 400º C, not reported in the light grey texture: (a) the 

explosion of certain samples; and (b) a greater thermal damage in terms of open porosity 

and ultrasound wave velocity variation. The influence of the specific features of the dark 

texture on such thermal effects have been discussed and the derived conclusions are 

listed below: 

1. Two textures from ‘Prada’ limestone have been characterised: a dark grey texture 

with micro-porosity and microcracks, bearing quartz, clay, organic matter and 
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pyrites, and a light grey texture with greater pore size and few microcracks, and 

little or no presence of such mineral components. 

2. Thermal damage on ‘Prada’ Limestone could be mainly explained by internal 

stress concentrations resulting from anisotropic thermal expansion of the calcite. 

However, the differing evolution of open porosity, P- and S-wave velocities 

between textures at 400 and 500º C is explained by differences on their mineral 

and textural composition. 

3. Different thermal damage between textures could be partly explained by 

microscale destructuring process induced by differential thermal expansion of the 

rock-forming minerals, and an original micro-fissuring in the intact dark grey 

samples leading to greater coalescence and growth of fissures. Effects from clay 

thermal decomposition, water loss and quartz phase transition have been also 

reasoned and discarded. Such mechanisms cannot explain the explosive events 

observed between 400 and 500º C  

4. The sound of multiple impacts was registered inside the furnace during the 

heating process of the samples. This process was instantly and violent enough 

to be clearly heard in the laboratory room. Furthermore, after opening the 

furnace, exploded samples showed a total lack of structure and their fragments 

were spread over the furnace, even embedded in the furnace walls as a result of 

the explosion. We undoubtedly associated that sound with an explosive event 

that cannot be confounded with fracturing or splitting on rocks. 

5. The heating of dark texture samples revealed two thermal reactions involving gas 

release: thermal oxidation of pyrites (FeS2) releasing SO2 from 400 to 520º C, 

and thermal oxidation of organic matter releasing H2O and CO2 from 400 to 600º 

C. Temperatures for rock explosion are compatible with the rising branch of the 

SO2 release curve, that would cause a peak in pore pressure that combined with 
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the micro-fissured structure of the dark texture, would cause violent fracturing of 

the material.  

6. We relate the explosive phenomenon to SO2 production rather than oxidation of 

organic matter for different reasons: oxidation of pyrites evolves in a narrower 

temperature range than organic matter, and the peak release of SO2 occurs at 

lower temperatures (above 460º C) than organic matter (above 520º C). 

Moreover, SO2 was released throughout the laboratory immediately after the 

explosive event. 

7. Total thermal damage on the dark texture is attributed to thermal oxidation of 

pyrites, jointly with further factors identified in this research (i.e. differential 

thermal expansion of the mineral components and initial micro-fissuring in the 

intact rock). 

8. Although results are definitive and are based on evidences, further investigations 

would be necessary to quantitatively relate pyrite content and initial micro-fissure 

with explosive potential to each sample. Despite of difficulties derived from great 

chemical and textural heterogeneity that varies within and between samples, only 

a systematic study would be fully conclusive. 

The practical relevance of the observed phenomenon in underground infrastructures 

and mining engineering works is critical, since temperatures higher than 400º could 

lead to explosive phenomenon on pyrite-bearing limestones, involving mass 

fracturing, rock integrity loss and strength decay on mining works and underground 

infrastructures. In addition, SO2 released into the atmosphere as a result of thermal 

oxidation of pyrites has a harmful effect on health (ATSDR 1998) of people involved 

on mining or underground construction or works, users of tunnels or emergency 

intervention teams in case of a fire event. Additionally, SO2 can react with other 

atmospheric chemical elements forming acid compounds (sulphurous or sulphuric 
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acid) that corrode metals, concrete, limestone, and other materials (Kumar and Imam 

2013), shortening underground structures life and increasing maintenance costs. 
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