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Optical coherence tomography (OCT) is a well-established bedside imaging modality

that allows analysis of skin structures in a non-invasive way. Automated OCT analysis

of skin layers is of great relevance to study dermatological diseases. In this paper, an

approach to detect the epidermal layer along with the follicular structures in healthy

human OCT images is presented. To the best of the authors’ knowledge, the approach

presented in this paper is the only epidermis detection algorithm that segments the

pilosebaceous unit, which is of importance in the progression of several skin disorders

such as folliculitis, acne, lupus erythematosus, and basal cell carcinoma. The proposed

approach is composed of two main stages. The first stage is a Convolutional Neural

Network based on U-Net architecture. The second stage is a robust post-processing

composed by a Savitzky-Golay filter and Fourier Domain Filtering to fully define the

borders belonging to the hair follicles. After validation, an average Dice of 0.83 ± 0.06

and a thickness error of 10.25 µm is obtained on 270 human skin OCT images. Based

on these results, the proposed method outperforms other state-of-the-art methods for

epidermis segmentation. It demonstrates that the proposed image segmentationmethod

successfully detects the epidermal region in a fully automatic way in addition to defining

the follicular skin structures as main novelty.

Keywords: skin OCT, follicular structures, layer segmentation, epidermis, convolutional neural networks,

pilosebaceous unit

1. INTRODUCTION

Optical coherence tomography (OCT) is a well-established imaging modality used to capture
various aspects of biological tissues (1). OCT has been routinely used in ophthalmology due to the
ease of light in penetrating ocular structures (2). In addition, as OCT is a non-invasive technique
and therefore, does not require direct contact with the eye, it allows the in-vivo study of internal
ocular structures such as the retina without performing any perforation.
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Less established is the use of the OCT for the analysis of
other biological tissues such as the skin due to the limited
resolution and penetration of the light waves within this structure
(3). Figure 1 shows the skin structure mainly composed of
epidermis and dermis layers. However, during the last decade,
this technique has gained great relevance for the study of the
skin layers because of the last advances in optical, fiber, and laser
technology (4).

Although skin biopsies are currently the gold standard for
the diagnosis of a large number of dermatological diseases,
this technique is invasive, time-consuming and can cause side
effects that make disease monitoring difficult (2, 3). Therefore,
the analysis of the main skin structures through non-invasive
techniques such as OCT provides a useful non-traumatic
alternative to the biopsy.

As well as other quantitative analyses of skin OCTs, the
calculation of the epidermal layer thickness, which is important
for the diagnosis of several skin disorders, often requires manual
segmentation that is very time-consuming and suffers from
inter and intra-observer variability. This fact has motivated
the development of semi- and fully automated epidermis
segmentation methods from OCT images (5–9). Li et al. defined
the segmentation of the epidermis in three steps: preprocessing
weighted by least squares, detection of the surface of the skin
based on graphics, and local integral projection for the detection
of the DEJ. The proposed method was evaluated with a dataset
composed of five volumes belonging to healthy skin of the arm,
obtaining an average overlap ratio of 0.744 (5). Taghavikhalilbad
et al. proposed a semi-automated method to detect the location
of the DEJ on 115 B-Scan OCT skin images taken from different
body parts, obtaining a root-mean-square error between 8
and 14 µm. The proposed method was based on a graphical
representation of an attenuation coefficient map through a
uniform-cost search method. In addition, for border thinning, a
fuzzy-based nonlinear smoothing technique was used (6). Note
that the aforementioned works were based on classical image
processing techniques. In fact, despite the existence of state-of-
the-art methods for segmentation of different skin structures,

FIGURE 1 | Main parts of skin: epidermal and dermal layers and follicular

structures.

only few are based on deep learning algorithms (8, 9). Calderon-
Delgado et al. proposed a fully convolutional network (FCN)
to segment 1756 human skin OCT images into dermis, dermal-
epidermal junction, epidermis, glycerol, and glass, obtaining an
average accuracy of 88, 91, 90, and 96%, respectively. Note that
the main limitation of this work is that complex structures, such
as hair follicles, were not segmented (8). Kepp et al. presented a
deep learning algorithm based on the U-net architecture which
was modified with densely connected convolutions to segment
mouse skin OCT volumes. They divided the skin into five classes:
(epi-)dermis layer, subcutaneous fat layer, fascia and muscle
layer, tattoos and background. They applied their algorithms
to 72 B-scans of the mice inguinal region and achieved an
average Dice similarity coefficient of 0.86 over all segmented skin
structures (9). Note that this work did not differentiate between
the epidermis and the dermis region.

After a thorough search of the relevant literature, it was found
that no previous studies have been focused on the segmentation
of the epidermis layer along with the follicular structures in
human skin OCT images. Note that the epidermis detection
is of importance in several clinical dermatology applications
such as the epidermal thickness determination in healthy
versus unhealthy skin (6). In addition, the identification and
measurement of pilosebaceous unit and the size and condition
of hair follicles can be useful in monitoring several diseases
such as lupus erythematosus, folliculitis, alopecia areata, and
basal cell carcinomas (BCCs) (10). However, before interpreting
pathological processes and identifying skin pathologies using
OCT, the healthy skin appearance has to be studied to establish
morphological features of normal skin (4, 11). For all of the
above, in this paper, a method to detect the epidermis layer with
the hair follicles in healthy human skin OCT images is proposed.

2. MATERIALS AND METHODS

2.1. Skin Database
The human skin OCT database used in this paper is composed
of a total of 270 images from nine healthy humans with ages
between 28 and 72 years old (Table 1). The research protocol
was approved by the Ethics Committee of the Capital Region
of Denmark: no. H-16039077. The skin images were acquired
from the cheek of the subjects using a UHR-OCT (ultrahigh-
resolution) system developed by the Technical University of
Denmark (DTU) (3). Compared with a commercial OCT system,
which has a lateral resolution around between 10 and 15 µm and
axial resolution of 5-10 µm, the used UHR-OCT system achieves
6 and 2.2 µm for lateral and axial resolution, respectively.
Therefore, the UHR-OCT system is able to improve the definition
of some structures of the skin images such as follicular structures
that are of great importance to detect some skin disorders (3).
In terms of image size, the number of image pixels varies from
one patient to another (Table 1). In order to be segmented
through deep learning techniques, it is required that all images
have the same dimension. For this reason, a rescaling of all
images to the minimal dimension was performed, in this case,
to 526× 975 pixels.
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TABLE 1 | Content of the skin OCT database.

Patients Images Dimensions

Patient 01 30 601 × 975

Patient 02 30 601 × 975

Patient 03 30 601 × 975

Patient 04 30 526 × 975

Patient 05 30 601 × 975

Patient 06 30 601 × 995

Patient 07 30 601 × 995

Patient 08 30 551 × 995

Patient 09 30 601 × 995

FIGURE 2 | Ground truth of skin layer boundaries.

As was mentioned before, the goal of the method presented
in this paper is to segment the epidermis regions as well as the
follicular structures, which can be identified in the skin OCT
images as variations of the dermo-epidermal junction. These
structures were manually segmented by an expert for training
and validation purposes (Figure 2). The complete database,
including original images and the ground truth, is available as
Supplementary Material.

2.2. Segmentation Algorithm
In this paper, we present an automatic algorithm able to segment
the epidermis regions in OCT volumes from human skin. This
algorithm consists of an encoder-decoder fully convolutional
network combined with a robust post-processing1.

2.2.1. Fully Convolutional Network (FCN)
Skin layers segmentation can be interpreted as a classification
problem. The aim is to assign each pixel of an OCT image,
into its label l in the label space L = {l} = {1, ..., λ}. In this
work λ = 3, being λ the number of classes (i.e., upper bound,
epidermis+follicles, dermis). Note that these layers are shown
between the boundaries exposed in Figure 3. The encoder-
decoder architecture proposed to address the segmentation task
can be observed in Figure 3. The input to the whole algorithm
is the original image along with its corresponding ground-truth
mask, whereas the outputs are the obtained probability maps,

1Request for materials should be addressed to RA (email: madeam2@upv.es).

one per class. The architecture components and the training and
testing processes will be exposed below.

• Encoder-decoder block

Each encoder block is composed of four layers, in
sequence: convolution layer, batch normalization layer, ReLU
activation layer and max-pooling layer. The convolutional
layer is composed of 64 rectangular kernels of 7 × 3
and zero padding to preserve the spatial dimensions. The
batch normalization technique is applied to improve the
convergence speed and the performance of the neural
network. ReLu activation introduces non-linearities and
max-pooling condenses the feature information reducing the
spatial dimensions. The pooling indexes of this operation
are transferred to the corresponding unpooling layer in
the decoder block. In conclusion, the main objective of the
encoder part is the extraction of relevant features from the
images.

Each decoder block consists of five layers, in sequence:
unpooling layer, concatenation layer, convolution layer,
batch normalization, and ReLU activation function. The
unpooling layer upsamples the feature maps from the
previous decoder block to a double resolution by using the
achieved pooling indexes to the matched encoder block. After
this step, a concatenation of the upsampled feature maps
with the corresponding output feature maps is performed.
Finally, convolutional layer, batch normalization, and ReLu
are applied to the concatenated feature map. The main
objective of this part is to collect the characteristics extracted
by the encoder to build the output image as accurately as
possible and with the same spatial dimension as the input
image.

The final decoder block consists of a convolutional layer with
1 × 1 kernel and the softmax activation function. This part is
responsible to associate each pixel to one of the three possible
classes (upper bound, epidermis+follicles, dermis).

• Training process

Data partitioning. According to section 2.1, the used
dataset is composed of 270 images coming from nine
different subjects. To avoid biased results due to a specific
partition of the skin OCT images database into training and
test subsets and to obtain the segmentation of all images,
an external K-fold cross-validation technique was carried
out. Specifically, K = 9 partitions were created, one
per patient. Consequently, in the training process, K − 1
different folds in each external iteration were used, while
the remaining partition was utilized to test the model
performance. In addition, an internal leave-one-out cross-
validation was carried out, using the images from one
different training fold in each internal iteration as a validation
set (Figure 4).

Data conditioning. Because the images used for training
have large dimensions, a patch-wise learning methodology was
applied in order to avoid memory problems. In this case, patches
of size 526 × 75 were used, with a total of 2,730 patches
for training and 390 patches for validation. Furthermore, we
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FIGURE 3 | Encoder-decoder architecture proposed to address the segmentation task.

FIGURE 4 | K-fold cross-validation technique used to data partitioning.

augmented the sliced data by introducing random geometric
transformations such as rotations, horizontal flips, croppings,
and translations that permit avoiding the overfitting. In the
testing stage, memory requirements were more permissive
allowing to predict a test sample into two slices of 526×512 with a
Titan V GPU.

Loss function. The proposed network was trained
by optimizing the Soft-Dice loss function. This
function evaluates spatial overlap between the algorithm
prediction and the ground truth. Since the Soft-Dice
loss is a value ranging between 0 and 1, the aim is
to maximize this function during the training stage.
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The used Soft-Dice loss function can be defined
as follows:

ζdice = 1−
2
∑

x∈� pl(x)gl(x)
∑

x∈� p2
l
(x)+

∑

x∈� g2
l
(x)

(1)

where pl(x) is the predicted multiclass segmentation and gl(x) is
the ground truth.

Hyper-parameter configuration. The proposed network was
learned through the stochastic gradient descent (SGD) optimizer.
Using this optimizer, each epoch of training was composed

of a set of N iterations N =
no training samples

Batch Size
, in which the

gradient was calculated only for a batch of training data. In
this case, Batch Size = 4 and N = 683 per epoch. A
momentum value of 0.97 was used and the learning rate was
initially established to 0.001 and reduced by one order after every
20 epochs. The training stage was composed of 60 epochs and
the model that minimizes the validation loss was chosen as the
best one.

• Testing process

After training the different models, the images belonging to
each patient partition (K = 9) were predicted. As wasmentioned,
an external and internal cross-validation technique was used,
obtaining a set of K × (K − 1) models. Therefore, for the final
prediction of each test subset belonging to each patient Pi (i =
1, 2, . . . ,K), (K − 1) models were used:

Pi =
1

K − 1

K
∑

j=1

Tj ∀j 6= i (2)

where Tj is the test subset prediction of each model created with
different validation subsets (j = 1, 2, . . . ,K) with j 6= i.
The final prediction had a depth equal to the number
of classes, so the maximum value in the depth direction
was calculated, obtaining for each pixel the class with the
highest probability.

2.2.2. Post-processing
After testing all skin OCT images of the database (Figure 5A)
with the trained models, segmentation maps as those shown in
Figure 5B were obtained. As it can be observed in Figure 5C,

the proposed network was not able to obtain the characteristic
smoothed borders of the follicular structures due to the lack of
a pronounced gradient of intensity in its contours. Thus, a post-
processing on the obtained segmentation maps was carried out.
The implemented post-processing was composed of two main
stages that are explained below.

• Savitzky-Golay filter

Hair follicles can be considered invaginations of the epidermis
into the dermis. The first step to perform a correct definition
of the hair follicles consisted in obtaining the contours of those
structures. To achieve this purpose, it was necessary to detect the
baseline of the dermo-epidermal signal to discriminate between
the part belonging to the epidermis to that belonging to the hair
follicles. So that, the Savitzky-Golay (SG) filter was used.

The Savitzky-Golay filter is considered a type of finite response
digital filter (FIR) based on the polynomial adjustment of a set of
points by means of least squares (12). If a symmetric window of
size N and centered on point x0 of a vector x of size N = 2M + 1
is considered, the points contained in this window are symmetric
on each side of x0 as follows:

x = [x−M , ..., x−1, x0, x1, ..., xM]T (3)

The N samples contained in x can be adjusted by a polynomial of
order d with (0 ≤ d ≤ M), following the next equation:

x̂m = c0 + c1m+ ...+ cdm
d −M ≤ m ≤ M (4)

where x̂m represents the mth sample of the smoothing data. The
coefficients ci are real and must be determined in an optimal way,
minimizing the least-squares adjustment errors.

e =

M
∑

m=−M

(xm − x̂m)
2 =

M
∑

m=−M

(xm − (c0 + c1m+ ...+ cdm
d))2

(5)
To obtain the value of these coefficients and therefore the
smoothing values, d + 1 polynomial base vectors represented by
si (i = 0, 1, . . . , d) are defined:

si(m) = mi −M ≤ m ≤ M (6)

FIGURE 5 | (A) Original OCT image. (B) Segmentation maps obtained before post-processing. (C) Ground truth image.

Frontiers in Medicine | www.frontiersin.org 5 June 2020 | Volume 7 | Article 220

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


del Amor et al. Epidermis and Hair Follicles Segregation

The corresponding S matrix (N × (d + 1)) is established as
S = [so, s1, . . . , sd] and the smoothing values can be organized
in a vector as follows:

x̂ = Bx =

d
∑

i=0

cisi (7)

where B is established as B = [b-M , . . . , b0, . . . , bM].
The value y0 = x̂0 is given in terms of the center of the filter

b0 according to the following equation:

y0 = bT0 x =

M
∑

m=−M

b0(m)xm (8)

In addition, the N-dimensional vector x can be shifted of n
instants of time as follows:

x = [xn−M , ..., xn−1, xn, xn+1, ..., xn+M]T (9)

Therefore, the response of the SG filter with N length to smooth
a x(n) signal in a steady-state period can be represented by:

y(n) =

M
∑

m=−M

b0(−m)x(n−m) (10)

Note that in input-on and input-off transients periods (at the
beginning and the end of the signal), the window goes beyond
the limits of the signal and becomes undefined. To handle this
problem, in input-on transients periods where n = 0, . . . ,M− 1:

y(n) =

2M
∑

m=0

bM−n(m−M)x(m) (11)

and in input-off transients periods where n = L−M, . . . , L− 1,
being L the length of the whole signal:

y(n) =

2M
∑

m=0

b−M−n+(L−1)(m−M)x(L− 1− 2M +m) (12)

The larger the size of the chosenwindow, the smaller the variance
of the error at the filter output. However, if the window is too
large, the filter output will be biased compared to the real signal,
so the output signal will be very smoothed.

Since the purpose of applying this method was to obtain the
baseline of the dermo-epidermal junction, a polynomial order
d = 1 and a large window size of 449 pixels were established
to obtain the signal as smooth as possible. Note that both the
polynomial order and the window size were obtained empirically.
The results after the application of this filter can be observed
in Figure 6A.

As it is shown in Figure 6A, the obtained baseline of the
dermo-epidermal junction (green line) was not completely
adjusted at the outset of the three follicular structures content in
this image. Therefore, a baseline correction was carried out:

blc(x) = bl(x)− dif (x) (13)

where dif (x) = max(sdej(x))−max(bl(x)) with sdej(x) is the signal
of dermo-epidermal junction and bl(x) the baseline obtained
after the application of Savitzky-Golay filter. In Figure 6B,
the corrected baseline is shown. As it can be observed, the
baseline is now more precisely adjusted to obtain the full
follicular structures.

The hair follicles are structures located below the baseline of
the dermis-epidermis junction obtained. However, after the SG
application, not all structures below the obtained baseline are hair
follicles. To obtain only the follicular structures, a morphological
area opening was performed (13). This operation removes the
connected components with an area smaller than a parameter α.
In this case, α = 0.3 × max(Ac), with Ac being the area of the
components below the obtained baseline.

After the application of the Savitzky-Golay filter, the upper
epidermis region, Figure 7B, and the follicular structures,
Figure 7C, were obtained removing any structure that not
accomplishes the condition to be a hair follicle as that located
on the right side of Figure 7A. These follicular structures are the
input to the following post-processing stage.

FIGURE 6 | Baseline of the dermo-epidermis junction. (A) Baseline obtained after the application of Savitzky and Golay filter. (B) Baseline obtained after the correction

process.
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FIGURE 7 | Post-processing. (A) Segmentation maps obtained by the fully convolutional network. (B) Upper epidermis without follicular structures. (C) Follicular

structures obtained after the Savitzky-Golay filter. (D) Follicular structures softened after the Fourier Domain Filtering application. (E) Segmentation maps obtained

after post-processing.

• Fourier Domain Filtering

After applying the Savitzky-Golay filter to obtain the baseline
of the dermo-epidermal junction signal and therefore, detect
each follicular structure, a Fourier Domain Filtering is applied
to soften their contours. Fourier Domain Filtering is a useful
mathematical tool to describe the shape of objects defined by a
closed contour line. The first step in the application of the Fourier
transform is to obtain the coordinates (x, y) of the object contour
to be analyzed. The application of the Fourier method requires
that the contour was discretized in equispaced coordinates and
that the number of contour points N was a power of two and
belongs to the complex plane:

s[n] = x[n]+ jy[n] (14)

where x[n] and y[n] are the coordinates of the points of the
resampled contour, in this case, the follicular contour.

After obtaining the points of the contour in the complex plane,
the Fourier transform is calculated as:

S[k] =

N−1
∑

n=0

s[n]e−j 2πknN (15)

where k = (0, . . . N − 1). After this step, the contour
of the object, that in this case is each follicular structure, is
transformed into a frequency vector. Since the Fourier transform
has inverse, the outline of each object can be reconstructed

from its Fourier descriptors. The reconstruction is carried out by
applying this equation:

s[n] =
1

N

P−1
∑

n=0

S[k]ej
2πkn
P (16)

being P ≤ N. Note that the first descriptors that make up the
object, which correspond to the low frequencies, represent the
general shape of the contour. However, the latest descriptors,
which correspond to high frequencies, represent the finest details.
In this case, the roughness of the contour of the hair follicles.
Therefore, if the number of descriptors used in the object
reconstruction process, P decreases, the contour of the object is
softened. As the aim of the application of the Fourier Domain
Filtering method is the smoothing of the hair follicles and the
bandwidth of this signal was approximately 0.06, a frequency cut
off (fc) around 0.007 was used. This means that all descriptors
with a frequency greater than fc were removed. Note that the
fc value was heuristically determined. The number of total
descriptors used to define the final object can be calculated with
the following equation P = fcN, being N equal to the number
of total descriptors, about 57 in this case. Therefore, the number
of descriptors used to define the hair follicles was P = 4. The
follicular structures softened after the Fourier Domain Filtering
stage are shown in Figure 7D.

Final segmentation maps were obtained by combining the
upper epidermis (Figure 7B) with the smoothed follicular
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TABLE 2 | Dice’s and Jaccard’s metrics (mean and standard deviation) comparing

the results of the proposed method before and after post-processing (PP) with the

ground truth.

Layers
Dice Jaccard

Before PP After PP Before PP After PP

Epidermis + follicles 0.81± 0.06 0.83 ± 0.06 0.69± 0.09 0.71 ± 0.09

Dermis 0.95± 0.01 0.96 ± 0.01 0.92± 0.02 0.93 ± 0.02

structures (Figure 7D). As it can be observed, in Figure 7E, all
follicles irregularities have been removed. This allows a better
shape definition of the follicular structures, more similar to the
manually segmented by experts.

3. RESULTS

First, six quantitative measures were computed: Dice’s and
Jaccard’s coefficients, the relative success rate for the number of
detected follicles per patient, epidermal thickness, root-mean-
square andmean absolute error of the epidermal thickness. Dice’s
and Jaccard’s metrics were calculated for both, the epidermis with
hair follicles and the dermis since the layer below the dermo-
epidermal junction belongs to the dermis. In addition, these
metrics were obtained before and after the post-processing stage
to demonstrate the utility of the post-processing in the results
of the proposed method (Table 2). As Table 2 demonstrates the
improvement of segmentation by including post processing (bold
values), from this point, the remaining metrics will be computed
on the segmentation results after post-processing.

The relative success rate (RSR) for the number of the detected
follicles was calculated with the following equation:

RSR = 1−
|FGT − FP|

FGT
(17)

where FGT and FP are the number of follicles detected by
the ground truth and by the proposed method, respectively
(Table 3). To obtain the follicular structures, the Savizky-Golay
filter was used. After the application of the SG filter and the
morphological area opening explained in section 2.2.2, the
follicular structures of the ground truth and the proposedmethod
were obtained per patient. After that, the connected components
were automatically counted.

For the epidermal thickness (ET), the average distance
between the dermo-epidermal junction (DEJ) and the epidermis
surface is considered. The dermo-epidermis junction without
hair follicles was calculated for this measure because, according
to experts’ knowledge, it is better to consider the thin region of
the epidermis for the diagnosis of disorders associated with loss
of epidermal thickness (11, 14). The hair follicles were manually
removed from the GT by experts. The averaged values as well as
standard deviation of ET for each healthy subject are reported
and compared with the values of the ground truth (Table 4). The
three lowest values of RSME and MAE are shown in bold.

TABLE 3 | Number of detected follicles comparing the results of the proposed

method with the ground truth (GT).

Patients FGT FP RSR

Patient 01 5 5 1.00

Patient 02 3 4 0.67

Patient 03 5 6 0.80

Patient 04 4 5 0.75

Patient 05 5 5 1.00

Patient 06 7 7 1.00

Patient 07 3 3 1.00

Patient 08 4 6 0.50

Patient 09 4 4 1.00

Mean total 0.86

TABLE 4 | Epidermis thickness (ET) comparing the results of the proposed

method with the ground truth (GT).

Patients GT-based ET (µm)
Proposed-method-based

ET (µm)

RMSE

(µm)

MAE

(µm)

Patient 01 56.06±2.05 65.02 ± 0.76 9.13 8.95

Patient 02 49.20±1.50 58.19 ± 1.77 9.28 8.98

Patient 03 78.90 ± 3.83 62.50 ± 2.75 8.90 8.68

Patient 04 82.47 ± 2.63 87.00 ± 1.90 5.75 4.62

Patient 05 71.30 ± 3.83 83.65 ± 3.02 13.29 12.9

Patient 06 71.43 ± 2.40 77.90 ± 1.99 7.30 6.61

Patient 07 92.12 ± 3.37 106.00 ± 1.20 14.40 13.87

Patient 08 76.12 ± 1.67 85.42 ± 0.76 9.70 9.29

Patient 09 85.16± 2.94 98.69 ± 1.18 14.10 13.52

Mean total 73.60 ± 2.69 80.50 ± 1.70 10.20 9.76

The root-mean-square error (RMSE) and the mean absolute
error (MAE) were calculated with the following equations:

RMSE =

√

∑N
k=1(G[k]− P[k])2

N
(18)

MAE =
1

N

N
∑

k=1

|G[k]− P[k]| (19)

where in bothmetricsG and P are the ET obtained by experts and
the prediction of the proposed method, respectively, and N is the
number of OCT images.

Secondly, for qualitative evaluation, Figure 8 shows three
examples of representative segmentation results obtained by the
proposed method.

4. DISCUSSION

In this work, we presented an automatic algorithm for the
segmentation of the epidermis along with the follicular structures
in healthy patients. As no previous studies have been based
on the detection of follicular structures, the results of Dice’s
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FIGURE 8 | Segmentation results (including post-processing) on three representative examples of human skin OCT images. Color code: skin surface (red),

dermo-epidermal junction along with hair follicles (blue).

FIGURE 9 | Segmentation of follicular structures in another state-of-the-art

work. Note that the method misdetect the hair follicles. The area where follicles

should be detected is marked and zoomed in with the correct segmentation.

Image directly extracted from Li et al. (5).

and Jaccard’s coefficients obtained in this study cannot be
extrapolated and reliably compared with those existing in the
state of the art. However, there are some studies focused only
on the segmentation of the epidermal layer (5). It satisfactory
segments the epidermis but fails in the detection of the hair
follicles (Figure 9). In particular, the method presented by Li
et al. (5) obtains a Dice’s coefficient of 0.74 in the segmentation
of the epidermis layer in contrast to the 0.83 obtained by
the proposed method that segments the epidermis along with
follicular structures, which adds considerable difficulty.

Regarding the amount of follicles detected per patient, the
proposed method achieves a mean relative success rate of 0.86,
which demonstrates that the proposed algorithm successfully
detects the follicles structures from patients with different ages.

With respect to the measurement of epidermal thickness, only
the epidermis region was considered because hair follicles were
not considered relevant enough in this case. Compared to the
RSME error provided by another semi-automatic method of
the state of the art, the proposed method achieves an error of
10.2, while (6) obtains an error between 8 and 14 µm. Note
that this is an indirect comparison since the epidermal thickness
was calculated on two different databases focused on different
body parts and acquired with different OCT devices. However, in
addition to be a fully automatic method, the error presented by
the developed algorithm is among the lowest errors obtained by
the semi-automaticmethod which were body-part dependent (6).
Note that no publicly available skin OCT segmentation method
that can be tested on our images to perform a direct comparison
was found because most methods designed for this goal are not
open access.

As commented in section 1, the detection of follicular
structures is of importance in some skin disorders. For example,
basal cell carcinoma, the most prevalent cancer in Caucasians
human, is related to hair follicles. In fact, several studies confirm
that BCCs arise from basal cells specifically of the hair follicles
(15, 16). Therefore, in this case, the obtaining of the hair follicles
in the OCT images would be useful to study the changes in
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follicular volume and size produced by cancerous effects. The
follicular structures are also the main target in a subtype of
cutaneous lupus erythematosus (LE) called chronic discoid LE
(CDLE), which results in an irreversible hair loss due to the
recruitment of the cells to the bulge region of the hair follicles
coupled with the collapse of immune privilege ultimately (17).

Acne is another disorder related to alterations in hair follicles
that is easily detected in OCT images (18). Several studies
demonstrate that the dynamics of the acne skin are characterized
by the increase in the number of dysmorphic pilosebaceous
units and the hyperkeratinization of the acroinfundibulum of
the pilosebaceous duct before the occurrence of inflammatory
events around the follicle. Furthermore, superficial inflammation
of the hair follicles in the epidermis is also produced when
folliculitis occurs (19). The OCT images show an ill-defined
border of the follicular structures in this type of disorder
(20).

Due to the fact that the algorithm presented in this work
allows to detect hair follicles and distinguish them from
the epidermis in an automatic way, it could be of interest
to the analysis of diseases such as those mentioned above.
The detection of hair follicles carried out by the proposed
algorithm could be used to detect a significant decrease in
the number of follicles of a patient during a period of time.
In addition, the obtaining each follicular structure would
also facilitate a further automatic analysis and comparison of
its shape and area with a reference pattern which is useful
in diseases that cause a significant change in the follicular
structures.

5. CONCLUSION

OCT analysis in human skin is of great relevance because,
compared to other invasive techniques such as biopsies, the
OCT allows to capture the most important skin structures
without perforation. This fact is especially important for the
follow-up of dermatological treatments or the detection of skin
tumors. However, before analyzing pathological images, it is
necessary to study images from healthy patients to establish
reference markers to be compared. In that context, this paper
proposes an approach to segment the epidermal layer along
with follicular structures in healthy human OCT images. The
proposed algorithm is composed of two main stages. The first
stage is a CNN based on U-Net architecture. The second stage
is a robust post-processing based on a Savitzky-Golay filter and
Fourier Domain Filtering. The Savitzky-Golay filter is used to
obtain the baseline of DEJ junction and detect the hair follicles.
The Fourier Domain Filtering is used over the hair follicles to
smooth their contour. To the best of the authors’ knowledge, this
approach is the only epidermis detection algorithm that segments
the follicular structures, which are of importance in the progress
of several skin disorders. So, the introduction of the proposed
method into clinical practice would accelerate the process of
segmentation some important skin structures, allowing the early
diagnosis of several skin disorders in a near future. With the

aim of facilitating further comparisons and avoid having to use
different databases to evaluate the goodness of the segmentation
method, the dataset used in this work along with their ground
truth (expert-reviewed segmentation) were made publicly as
Supplementary Material.

From a technical perspective, the future lines of work will
focus on adapting the network architecture, if it is necessary, to
segment pathological images of different disorders. In this way,
a distinction between healthy and pathological images would be
carried out.
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