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ABSTRACT 
 
A better understanding of the mechanisms underlying ventricular 

arrhythmias, as well as an improvement of the associated electrical and 
pharmacological therapies, are a key factor to prevent sudden cardiac 
death in patients with structural and electrical heart diseases.  

 
An important cardiomyopathy that can lead to life-threatening 

ventricular arrhythmias is heart failure (HF). Patients with HF also often 
suffer from left bundle branch block (LBBB), which worsens their 
condition. Currently, the most effective treatment to these patients is 
cardiac resynchronization therapy (CRT). However, many patients are 
non-responders, so further studies are needed to improve this treatment. 

 
A second cardiac pathology that also produces lethal arrhythmias is 

myocardial ischemia. Substantial experimental evidence has shown that 
electrophysiological alterations in the ventricular myocardium 
constitute a substrate for the generation of arrhythmias during the acute 
phase of ischemia. These alterations are induced by the three main 
ischemic components: hyperkalemia, hypoxia and acidosis. However, 
the influence of each component in the mechanisms of arrhythmia 
initiation and maintenance is still not completely understood.  

 
In the first section of this doctoral thesis, we focus on the 

optimization of CRT during its application in a heart suffering from HF 
and LBBB. For this purpose, we modified the O’Hara action potential 
(AP) model to simulate a realistic conduction velocity both in healthy 
and pathological conditions. In addition, a His-Purkinje system (HPS) 
was generated and incorporated into a 3D human biventricular/torso 
model to simulate realistic LBBB. A set of computational simulations 
were performed for different CRT configurations to determine the 
optimal pacing leads location and delay values leading to the shortest 
QRS duration. Subsequently, results were compared with other 
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optimization criteria. The main findings of this study showed the need 
of better or complementary optimization criteria, such as an index based 
on the time to reach the 90% of the QRS area suggested in this work, to 
reach the best ventricular electrical synchrony during the CRT 
application. In addition, our results also show that the upper septum 
close to the outflow tract is an alternative site for the right ventricle 
(RV) stimulation, which avoids the perforation problems of the RV 
apical wall during the typical CRT procedure. Finally, protocols of left 
ventricle endocardial pacing should be considered to obtain better CRT 
results. 
 

In the second section of this thesis, we investigated the effects of the 
three main components of ischemia on the vulnerability to reentry, as 
well as the role of the HPS and its mechanisms of action in the 
generation and maintenance of ventricular arrhythmias. In order to 
achieve our goal, we first modified the ventricular AP model to 
realistically simulate the major alterations caused by acute myocardial 
ischemia. Simulations were performed in a 3D human biventricular 
model, embedded in a virtual torso, which includes a realistic geometry 
of the central and border ischemic zones, as well as a detailed HPS. 
Four scenarios of ischemic severity corresponding to different minutes 
after coronary artery occlusion were simulated to evaluate the effects of 
the evolution of ischemia over time. Then, the individual influence of 
hyperkalemia, hypoxia and acidosis in the width of the vulnerable 
window (VW) for reentry was assessed during seven scenarios of acute 
ischemia. Finally, this last set of ischemic simulations was repeated 
using the anatomical model without the HPS to evaluate the effect of 
the latter in the VW. Results show that a moderate ischemic condition 
is the worst scenario for reentry generation. Hypoxia is the ischemic 
component with the most significant effect on the width of the VW. 
Furthermore, the retrograde current flow from the myocardium to the 
HPS in the ischemic region, conduction blocks in discrete sections of 
the HPS, and the degree of hyperkalemia affecting the Purkinje cells, 
are suggested as HPS mechanisms that could favor the triggering of 
ventricular arrhythmias. 
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RESUMEN 
 
Una mejor comprensión de los mecanismos subyacentes a las 

arritmias ventriculares, así como una mejora de las terapias eléctricas y 
farmacológicas asociadas, son un factor clave para prevenir la muerte 
súbita cardíaca en pacientes con cardiopatías estructurales y eléctricas. 

 
Una miocardiopatía importante que puede provocar arritmias 

ventriculares potencialmente mortales es la insuficiencia cardíaca (HF). 
Los pacientes con HF a menudo sufren también de bloqueo de rama 
izquierda (LBBB) que deteriora su condición. Actualmente, el 
tratamiento más eficaz para estos pacientes es la terapia de 
resincronización cardíaca (CRT). Sin embargo, no se alcanza una 
respuesta positiva en todos los casos, por lo que es necesario un mayor 
estudio para mejorar este tratamiento. 

 
Una segunda patología cardíaca que también produce arritmias 

letales es la isquemia miocárdica. Evidencia experimental ha 
demostrado que las alteraciones electrofisiológicas en el miocardio 
ventricular constituyen un sustrato para la generación de arritmias 
durante la fase aguda de isquemia. Estas alteraciones son inducidas por 
los tres componentes isquémicos principales: hiperkalemia, hipoxia y 
acidosis. Sin embargo, la influencia de cada componente en los 
mecanismos de inicio y mantenimiento de las arritmias no se 
comprende aún con claridad. 

 
Una primera parte de esta tesis doctoral, se centra en la optimización 

de la CRT durante su aplicación en un corazón que padece HF y LBBB. 
Para esto, se modificó el modelo de potencial de acción (AP) de O’Hara 
para simular una velocidad de conducción realista tanto en condiciones 
sanas como patológicas. Además, se estimó e incorporó un sistema de 
His-Purkinje (HPS) dentro de un modelo biventricular/torso humano 
3D para simular un LBBB realista. A continuación, se desarrolló un 
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conjunto de simulaciones computacionales para diferentes 
configuraciones de la CRT a fin de determinar la posición y el instante 
de estimulación óptimo que conducen a la duración más corta del QRS. 
Posteriormente, los resultados se compararon con otros criterios de 
optimización. Los principales hallazgos de este estudio mostraron la 
necesidad de definir criterios de optimización mejores o 
complementarios, como un índice basado en el tiempo hasta alcanzar el 
90% del área del QRS sugerido en este trabajo, para alcanzar la mejor 
sincronía eléctrica ventricular durante la aplicación de la CRT. Además, 
nuestros resultados también muestran que el septo superior cercano al 
tracto de salida es un sitio alternativo para la estimulación del ventrículo 
derecho, lo cual evita los problemas de perforación de la pared apical 
durante el procedimiento típico de la CRT. Por último, para obtener 
mejores resultados de la CRT se deben considerar protocolos de 
estimulación endocárdica en el ventrículo izquierdo. 

 
En la segunda parte de esta tesis se investigó los efectos de los tres 

componentes principales de la isquemia sobre la vulnerabilidad a una 
reentrada, así como el papel del HPS y sus mecanismos de acción en la 
generación y mantenimiento de arritmias ventriculares. Para lograr este 
objetivo, en primer lugar, se modificó el modelo AP ventricular para 
simular de forma realista las principales alteraciones provocadas por la 
isquemia miocárdica aguda. Las simulaciones se realizaron en un 
modelo biventricular humano 3D, acoplado en un torso virtual, que 
incluye una geometría realista de las zonas isquémicas central y de 
borde, así como un HPS detallado. Se simularon cuatro escenarios de 
severidad isquémica correspondientes a diferentes minutos de oclusión 
de la arteria coronaria para evaluar los efectos de la evolución de la 
isquemia en el tiempo. Luego, se evaluó la influencia individual de la 
hiperkalemia, hipoxia y acidosis en el ancho de la ventana vulnerable 
(VW) a reentradas durante siete escenarios de isquemia aguda. 
Finalmente, se repitió este último conjunto de simulaciones isquémicas 
utilizando el modelo anatómico sin el HPS para evaluar el efecto de este 
último en la VW. Los resultados muestran que una condición isquémica 
moderada es el peor escenario para la generación de una reentrada. La 
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hipoxia es el componente isquémico con el efecto más significativo en 
el ancho de la VW. Además, el flujo de corriente retrógrado desde el 
miocardio hacia el HPS en la región isquémica, los bloqueos de 
conducción en secciones discretas del HPS y el grado de hiperkalemia 
que afecta a las células de Purkinje, son sugeridos como mecanismos 
que podrían favorecer la aparición de arritmias ventriculares. 
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RESUM 
 
Una millor comprensió dels mecanismes subjacents a les arrítmies 

ventriculars, així com una millora de les teràpies elèctriques i 
farmacològiques associades, són un factor clau per a previndre la mort 
sobtada cardíaca en pacients amb cardiopaties estructurals i elèctriques. 

 
Una miocardiopatia important que pot provocar arrítmies 

ventriculars potencialment mortals és la insuficiència cardíaca (HF). 
Els pacients amb HF sovint pateixen també de bloqueig de branca 
esquerra (LBBB) que deteriora la seua condició. Actualment, el 
tractament més eficaç per a aquests pacients és la teràpia de 
resincronització cardíaca (CRT). No obstant això, no s'aconsegueix una 
resposta positiva en tots els casos, per la qual cosa és necessari un major 
estudi per a millorar aquest tractament. 

 
Una segona patologia cardíaca que també produeix arrítmies letals 

és la isquèmia miocàrdica. Evidència experimental ha demostrat que les 
alteracions electrofisiològiques en el miocardi ventricular constitueixen 
un substrat per a la generació d'arrítmies durant la fase aguda 
d'isquèmia. Aquestes alteracions són induïdes pels tres components 
isquèmics principals: hiperkalèmia, hipòxia i acidosi. No obstant això, 
la influència de cada component en els mecanismes d'inici i 
manteniment de les arrítmies no es comprén encara amb claredat. 

 
Una primera part d'aquesta tesi doctoral, se centra en l'optimització 

de la CRT durant la seua aplicació en un cor que pateix HF i LBBB. Per 
a això, es va modificar el model de potencial d'acció (AP) de O’Hara 
per a simular una velocitat de conducció realista tant en condicions 
sanes com patològiques. A més, es va estimar i es va incorporar un 
sistema de His-Purkinje (HPS) dins d'un model biventricular/tors humà 
3D per a simular un LBBB realista. A continuació, es va desenvolupar 
un conjunt de simulacions computacionals per a diferents 
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configuracions de la CRT a fi de determinar la posició i l'instant 
d'estimulació òptim que condueixen a la duració més curta del QRS. 
Posteriorment, els resultats es van comparar amb altres criteris 
d'optimització. Les principals troballes d'aquest estudi van mostrar la 
necessitat de definir millors o complementaris criteris d'optimització, 
com un índex basat en el temps fins a aconseguir el 90% de l'àrea del 
QRS suggerida en aquest treball, per a aconseguir la millor sincronia 
elèctrica ventricular durant l'aplicació de la CRT. A més, els nostres 
resultats també mostren que el septe superior pròxim al tracte d'eixida 
és un lloc alternatiu per a l'estimulació del ventricle dret, la cual cosa 
evita els problemes de perforació de la paret apical durant el 
procediment típic de la CRT. Finalment, per a obtindre millors resultats 
de la CRT s'han de considerar protocols d'estimulació endocárdica en 
el ventricle esquerre. 

 
En la segona part d'aquesta tesi es va investigar els efectes dels tres 

components principals de la isquèmia sobre la vulnerabilitat a una 
reentrada, així com el paper del HPS i els seus mecanismes d'acció en 
la generació i manteniment d'arrítmies ventriculars. Per a aconseguir 
aquest objectiu, en primer lloc es va modificar el model AP ventricular 
per a simular de manera realista les principals alteracions provocades 
per la isquèmia miocàrdica aguda. Les simulacions es van realitzar en 
un model biventricular humà 3D, acoblat en un tors virtual, que inclou 
una geometria realista de les zones isquèmiques central i de vora, així 
com un HPS detallat. Es van simular quatre escenaris de severitat 
isquèmica corresponents a diferents minuts d'oclusió de l'artèria 
coronària per a avaluar els efectes de l'evolució de la isquèmia en el 
temps. Després, es va avaluar la influència individual de la 
hiperkalèmia, hipòxia i acidosi en l'ample de la finestra vulnerable 
(VW) a reentradas durant set escenaris d'isquèmia aguda. Finalment, es 
va repetir aquest últim conjunt de simulacions isquèmiques utilitzant el 
model anatòmic sense el HPS per a avaluar l'efecte d'aquest últim en la 
VW. Els resultats mostren que una condició isquèmica moderada és el 
pitjor escenari per a la generació d'una reentrada. La hipòxia és el 
component isquèmic amb l'efecte més significatiu en l'ample de la VW. 



Resum 
 

XI 

A més, el flux de corrent retrògrad des del miocardi cap al HPS a la 
regió isquèmica, els bloquejos de conducció en seccions discretes del 
HPS i el grau d'hiperkalèmia que afecta les cèl·lules de Purkinje, són 
suggerits com a mecanismes que podrien afavorir l'aparició d'arrítmies 
ventriculars. 
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CHAPTER 1 

1 Introduction 
 
 Motivation 
 
Cardiovascular diseases are the first cause of mortality in Europe 

and worldwide, with around 3.9 million [1] and 17.9 million [2] of all 
deaths each year, respectively. One of the major causes of these deaths 
is the development of complex ventricular arrhythmias, which often 
lead to cardiac arrest. Ventricular fibrillation (VF) is the most common 
lethal arrhythmia observed in clinical practice, with an incidence at the 
time of cardiac arrest of 60 – 70% [3], [4]. VF consists on a chaotic 
disorganized electrical activation of the ventricles that, without 
immediate treatment, leads to death within minutes.  

 
Among the most common causes for the generation of VF and 

ventricular tachycardia (VT) are structural and electrical heart diseases, 
such as heart failure (HF) and acute myocardial ischemia [5], [6]. HF 
represents a chronic and progressive condition in which the heart 
muscle suffers anatomical and functional remodeling that alters the 
electrophysiological properties of the myocardium. The prolongation of 
the action potential duration (APD), alterations in calcium handling, 
and a reduction in the protein responsible for the coupling between 
cardiac cells called connexin 43 (Cx43), are the main hallmark 
characteristics of HF [7], [8]. As a consequence of these changes, 
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disorders in the action potential (AP) propagation may occur, which 
prevent the heart for pumping blood normally, reducing the ejection 
fraction (percentage of blood expelled during a heartbeat) of the left 
ventricle (LV) [9]. In addition, arrhythmias might be initiated in the 
ventricular tissue by triggering mechanisms such as early after 
depolarizations (EADs) and delayed after depolarizations (DADs) [7]. 
In Europe, over 15 million people are affected by HF [10] and 
approximately one third of them additionally suffer from left bundle 
branch block (LBBB) which worsens their conditions [11]. 

 
HF patients who suffer LBBB present a delay in the LV activation 

that leads to an interventricular dyssynchrony [12]. Similarly, an early 
activation of the interventricular septum with respect to the LV free wall 
produces a LV intraventricular dyssynchrony [13]. The combined effect 
of these two electrical disorders causes an uncoordinated contraction of 
the ventricles, reducing the efficiency of the heart to pump blood. In HF 
patients, this issue can make things worse. Indeed, in several studies, 
LBBB has been associated with increased 1-year mortality rate [14], 
[15]. In order to improve the quality of life of patients with HF, 
therapies with drugs and electrical stimulation are used. However, many 
patients are non-responders to these. 

 
Currently, cardiac resynchronization therapy (CRT) is the most 

effective treatment to restore the electrical activity of the heart in 
patients with HF and HF+LBBB [16], [17]. Typical CRT consist of a 
synchronized stimulation in the apex of the right ventricle (RV) and the 
lateral wall of the left ventricle (LV). CRT inclusion criteria are strictly 
established based on several dyssynchrony markers, such as the 
morphology of the QRS complex and LV ejection fraction [18]. Despite 
this, only two-third of CRT patients positively respond to treatment 
[19], [20] and in some cases, implantation issues, such as perforation of 
the RV apex, have been observed [21]–[23]. For these reason, it is of 
vital importance to improve CRT planning in terms of the sites and 
instants of stimulation, or even to define new biomarkers as a 
complement to the current optimization methods. 
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Another pathology which sometimes leads to HF in the long term, 

and also produces malignant ventricular arrhythmias is myocardial 
ischemia. In its acute phase, i.e. in the first 0 – 30 minutes after coronary 
artery occlusion [24], ischemic cells suffer a series of 
electrophysiological changes caused mainly by three ischemic 
components: hypoxia (reduction of oxygen supply), acidosis (reduction 
of pH) and hyperkalemia (increment of extracellular potassium) [25], 
[26]. These changes increase the heterogeneity of repolarization and 
refractoriness between normal and ischemic tissue, predisposing the 
myocardium to the generation of life-threatening arrhythmias, such as 
VT and VF [27]. Acute ischemia is an extremely complex process and 
the relative contribution of each ischemic component to 
arrhythmogenesis is still not completely established, furthermore its 
study by purely experimental means is difficult (or impossible) to carry 
out, especially in humans. This situation, together with the controversial 
role of the His-Purkinje system (HPS) in the onset and maintenance of 
ventricular arrhythmias [28]–[30], increases the need for further 
investigation and the use of novel tools, such as mathematical models 
and computational simulations that allow the understanding of the 
complex mechanisms of ischemia-induced arrhythmias. 

 
Mathematical models which allow the simulation of the electrical 

activity of the heart, as well as its pathologies and associated therapies, 
have proved to be a powerful and complementary tool to animal and 
clinical experimentation. Based on data from human and different 
animal species, these models allow the simulation of the APs of cardiac 
cells, ionic currents, concentration dynamics, and the AP propagation 
through the cardiac tissue, realistically reproducing the heart electrical 
activity [31]. Previous studies using mathematical models have 
improved our understanding of the mechanisms underlying ventricular 
arrhythmias [32]–[35]. Nowadays, there are models that describe the 
electrical processes at the cellular level with a great degree of 
electrophysiological detail, such as the ten Tusscher et al. [36], O’Hara 
et al. [37] and Tomek et al. [38] models. The O’Hara et al. [37] model 
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was the most recent human AP model when this doctoral thesis began, 
and therefore one of the most comprehensive tools for the study of 
cardiac pathologies and their therapies in a non-invasive way.  

 
 Objectives 
 
The main objective of the present doctoral thesis is to study the 

mechanisms underlying ventricular arrhythmias and their response to 
electrical therapies in a three-dimensional realistic anatomical model of 
the human ventricles under (a) HF with LBBB, and (b) acute 
myocardial ischemia conditions using computer simulations. This 
major goal was divided into the following specific objectives:  

 
• To improve the most recent human ventricular AP models to 

more realistically simulate the electrical behavior of the heart 
suffering from HF with LBBB and acute myocardial ischemia 
based on extensive literature review. 

 
• To improve the 3D anatomical models of the human ventricles 

by incorporating a His-Purkinje system that allows obtaining a 
realistic ECG morphology in the precordial leads in healthy and 
pathological conditions. 

 
• To analyze the optimal pacing leads location and 

atrioventricular delay (AVD) and interventricular delay (VVD) 
during CRT procedure in a tissue with HF and LBBB, based on 
the shortest QRS duration criterion. Subsequently, the results 
are to be compared with other optimization criteria. 

 
• To investigate the effects of hyperkalemia, hypoxia and 

acidosis, as well as the role of the His-Purkinje system, in the 
vulnerability to reentry during different ischemic severity 
scenarios.  
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 Structure of the thesis 
 
This doctoral thesis is divided into six chapters, which are described 

below: 
 
Chapter 1 describes the main reasons that motivate the conception, 

design and development of this research study, as well as the objectives 
and the structure of the present doctoral thesis.      

 
Chapter 2 presents a brief description of the fundamental concepts 

about the heart, the cardiac pathologies of HF, LBBB and acute 
myocardial ischemia, and the treatment with CRT. These concepts are 
the base of the development and understanding of the present work. 

 
Chapter 3 focuses on improving CRT by optimizing pacing leads 

location, AVD and VVD delays. For this purpose, a non-invasive 
criterion based on the shortest QRS duration is used. Subsequently, the 
results are compared with other optimization methods to determine the 
efficacy of each method, as well as to define possible new biomarkers 
that can be used as a complementary tool for CRT optimization. 

 
Chapter 4 aims at investigating the effect of each main component 

of acute ischemia (hyperkalemia, hypoxia and acidosis) on the 
vulnerable window to reentry during different scenarios of ischemic 
severity. Furthermore, the role of the His-Purkinje system in the 
generation and maintenance of reentry is analyzed. 

 
Chapter 5 presents a concise general discussion between the main 

findings obtained in this work and the related literature. 
 
Chapter 6 summarizes the major conclusions derived from the 

present doctoral thesis, linking these with the initial objectives raised. 
Finally, some guidelines for future works are provided.
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CHAPTER 2  

2 State of the art 
 
 Cardiac anatomy 
 

2.1.1 Structure of the heart 
 
The heart is the muscular organ responsible for pumping blood into 

the cardiovascular system, supplying oxygen and substrates to the 
whole organism. It is located in the middle of the chest, between the 
lungs, and behind the breastbone. Its inferior wall leans on the 
diaphragm and it is covered by a membrane called pericardium. 

 
The heart consists of four cavities, two upper called atria separated 

by the interatrial septum, and two lower called ventricles separated by 
the interventricular septum (Figure 2.1). The atria are connected to the 
ventricles by the atrioventricular valves. The tricuspid valve is located 
between right atrium (RA) and right ventricle (RV), while the mitral 
valve is located between the left atrium (LA) and the left ventricle (LV). 
These valves regulate the blood flow from the atria to the ventricles. On 
the other hand, the ventricles are connected to the aorta (left) and to the 
pulmonary (right) arteries by the aorta and pulmonary valves, 
respectively. Both valves allow blood flow in a single direction (out of 
the heart).  
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Figure 2.1 Anatomical structure of the heart (left panel), and blood flow through the 
heart and the circulatory system (right panel). The blue arrows indicate the direction 
of oxygen-poor blood flow coming from the different organs to lungs. The red arrows 
show the direction of oxygen-rich blood flow coming from the lungs to be distributed 
to the rest of the body [39]. 

 
The wall of the heart or myocardium is composed by three different 

layers of cardiac cells (cardiomyocytes or myocytes). The epicardium 
is the external layer, the midmyocardium is the middle layer and the 
endocardium is the internal layer. In the endocardial layer of the 
ventricles there are small papillary muscles connecting the ventricular 
wall with the tricuspid and mitral valves through the chordae tendineae. 
These papillary muscles serve to prevent retrograde blood flow from 
the ventricles to the atria (Figure 2.2). Furthermore, there is a second 
type of muscle structures called endocardial trabeculations or 
trabeculae carneae, which are projected from the inner surface of the 
ventricles forming a network that crosses the heart chamber. 
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Figure 2.2 Longitudinal cross-section of the heart showing the chordae tendineae and 
papillary muscles [40]. 

 
2.1.2 Cardiac conduction system 

 
A synchronized contraction of the cardiac muscle allows the heart 

to pump the necessary blood into the circulatory system. This 
contraction is the response to an electrical impulse generated and 
propagated through a set of specific myocytes which constitute the 
cardiac conduction system (CCS). 

 
Under physiological conditions, the primary pacemaker of the heart 

is the sinus node or sinoatrial node (SAN). This node consists of cardiac 
cells capable of generating rhythmic electrical impulses autonomously. 
The SAN is located in the RA wall close to the upper cave vein [41] 
and determines the normal heart rate (sinus rhythm) [42]. The rest of 
structures composing the CCS are the atrioventricular node (AVN), the 
bundle of His, the left and right bundle branches and the Purkinje 
network [43], [44] (Figure 2.3). These structures transmit the electrical 
impulses generated in the SAN to the ventricular tissue in a 
synchronized way.  

 



Chapter 2 

10 

 
Figure 2.3 Coronal cross-section of the heart exhibiting the cardiac conduction 
system. Modified from [45]. 

 
When a stimulus is generated by the SAN, it propagates through the 

internodal pathways to the AVN, or also known as the secondary 
pacemaker of the heart. Due to the fact that the atria and ventricles are 
electrically insulated, the AVN serves as an electrical interconnection 
point between the two cardiac chambers. In addition, in the AVN 
conduction velocity (CV) is reduced to ensure that the atria contract 
before the ventricles, so that the blood flow is optimal in the ventricular 
direction. Afterwards, the electrical stimulus is propagated through the 
bundle of His, which is split into the left and right branches located in 
the interventricular septum. Finally, the cardiac impulse reaches the 
Purkinje network which transmits it to the endocardium through the 
Purkinje-myocardial junctions (PMJs). As the His-Purkinje system 
(HPS) is electrically isolated, except in the PMJs, the simultaneous 
stimulation of several cardiomyocytes through PMJs allows the 
generation of different wavefronts spreading throughout the ventricular 
myocardium. Under physiological conditions, these wavefronts allow a 
synchronized electrical activation of the ventricles, which in turn leads 
to a coordinated ventricular contraction and an efficient blood pumping 
by the heart.   
 

The HPS is composed of a specific type of cardiomyocytes called 
Purkinje cells. Such cardiomyocytes allow a fast electrical conduction 
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of the electrical impulse. CV through HPS varies in the interval of 2 to 
3 m/s [46], [47]. This CV is significantly faster than the CV in the 
ventricular muscle which ranges between 0.5 and 0.7m/s [48].  
 

 Cardiac electrophysiology 
 

2.2.1 The action potential 
 
Cardiomyocytes, like other excitable cells, have a potential 

difference between the intracellular and the extracellular media 
(membrane potential) which can be measured by inserting a 
microelectrode through the cell membrane. Under resting conditions, 
this difference is called resting membrane potential (RMP) and its value 
is comprised between –80mV and –90mV for a healthy ventricular cell 
[49]. When a cardiomyocyte is paced with an electrical impulse, the 
membrane potential (Vm) changes over time. This variation is known as 
action potential (AP) and it is characterized by a rapid rise 
(depolarization) followed by a subsequent return to the RMP 
(repolarization). However, the features of the AP vary according to the 
kind of cardiac cell, differing mainly in the morphology and duration 
(APD) of the AP (Figure 2.4). These variations are the result of the 
distinct ion channels present in each cell, so that different areas can be 
defined in the cardiac tissue. 

 

 
Figure 2.4 Action potential waveforms recorded in different regions of the heart. 
Modified from [50]. 
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An AP is generated due to the exchange of ions, mainly sodium 

(Na+), potassium (K+), calcium (Ca2+) and chlorine (Cl–) between the 
intracellular and the extracellular media. This exchange is done through 
the cell membrane which has three structures allowing the active and 
passive movement of ions between the two media: ion channels, pumps 
and exchangers (Figure 2.5). This ion movement is the result of two 
causes. First, the variation between the ion concentrations inside and 
outside the cell produces a diffusion gradient and second, the electric 
field generated by the positively and negatively charged ions of each 
medium which produces an electrical force that allows the movement 
of ions through the membrane. 

 

 
Figure 2.5 Schematic diagram of a myocyte showing the main membrane structures 
(ion channels, pumps and exchangers) used for ion exchange [51].  

 
The morphology of an AP is characterized by five different phases: 

phases 0, 1, 2, 3 and 4. Figure 2.6 shows the AP phases of a ventricular 
cardiomyocyte, which are detailed below, as well as the ion current 
responsible for each phase. 
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Figure 2.6 Phases of the action potential (AP) for a ventricular cell, showing the main 
ion currents responsible for each phase. Phase 0: upstroke (green), phase 1: early 
repolarization (gray), phase 2: plateau (blue), phase 3: complete repolarization (red) 
and phase 4: resting (black). The time from the onset of the AP upstroke to the return 
to resting potential is defined as AP duration (APD). Adapted from [52]. 

 
• Phase 0 or depolarization. This phase corresponds to the initial 

upstroke of the AP produced by an increment in inward flux of 
sodium ions (Na+). The Na+ influx is generated due to the 
application of an external stimulus that raises Vm to the threshold 
potential. When the Vm reaches this value, Na+ fast channels 
open generating an inward Na+ current (INa), which raises Vm to 
positive values. 

 
• Phase 1 or initial repolarization. During this phase a small 

decrease in the AP is produced by the inactivation of Na+ fast 
channels and by the activation of the transient outward 
potassium current (Ito) which extrudes potassium ions (K+) out 
of the cell. This small repolarization leads the decrease of Vm to 
values around 0 mV. 

 
• Phase 2 or plateau. This phase corresponds to the time interval 

during which Vm tends to remain constant due to a balance 
between the inward L-type calcium current (ICaL), and the 
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outward slow delayed rectifier current (IKs). During this phase, 
the repolarization is slow and Vm remains around 0 mV. 

 
• Phase 3 or rapid repolarization. This phase is the final stage 

of the AP. It causes by the closure of Ca2+ channels and the 
activation of the inward rectifier potassium current (IK1). At this 
stage the Vm decreases from its plateau value to its RMP, around 
– 90mV. 

 
• Phase 4 or resting potential. This phase is the period during 

which the cell remains at its resting state until a new electrical 
stimulus is applied. In this stage, the NaK pump removes the 
excess of Na+ from the interior of the cell and introduces the 
excess of K+ from the extracellular medium. In addition, IK1 
remains slightly activated. 

 
The cardiac muscle or myocardium consists of contractile cells 

(myocytes) distributed in interconnected muscle fibers allowing the 
propagation of the AP. Intercalated discs are structures located mainly 
at the ends of each myocyte (Figure 2.7). Within these structures there 
are low resistivity channels connecting the cytoplasm of two 
neighboring cells. These channels are called gap junctions and their 
function is to propagate the AP between myocytes. The AP propagation 
occurs due to the potential difference existing between a depolarized 
cell and neighboring cells at resting state. When this happens, an 
electrical current flows through gap junctions and stimulates the 
neighboring cells which are not in their refractory period. The CV of an 
AP varies depending on the propagation direction. In the ventricular 
muscle, the CV in the longitudinal direction of the fibers is 2 to 5 times 
higher than in the transverse direction [53]. This variation is due to 
structural anisotropy of cardiac tissue (cell morphology, ion channels, 
and gap junctions distribution), as well as to the conditions of the 
cellular environment. 
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Figure 2.7 Microscopic photograph of a longitudinal section of the cardiac muscle, 
showing the striated fibers (cardiomyocytes) forming the cardiac muscle, and the 
intercalated discs connecting cardiomyocytes [39]. 
   
2.2.2 The electrocardiogram 

 
During a cardiac cycle, APs propagating throughout the heart 

generate an electrical potential (or extracellular potential) that varies 
over time. An electrocardiogram (ECG) records this electrical activity 
of the heart on the body surface, providing relevant information for the 
diagnosis of abnormalities that affect the cardiac tissue.  

 
The normal morphology of an ECG during a heartbeat consists of 

three main components representing the depolarization and 
repolarization of the myocardium. Figure 2.8 shows the typical 
morphology of an ECG with its waves. The P-wave represents the 
depolarization of the atria. The QRS complex corresponds to the 
depolarization of the ventricles, which in turn masks the atrial 
repolarization due to its high amplitude. It consists of a Q-, R- and S-
wave. The T-wave represents the repolarization of the ventricles. 
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Figure 2.8 Morphology of a standard electrocardiogram (ECG), showing the P wave 
(atrial depolarization), QRS complex (ventricular depolarization) and Q wave 
(ventricular repolarization) [54]. 

 
Under normal conditions, the P-wave duration is less than 120 ms, 

and the QRS complex width is usually between 60 and 120ms [55], 
[56]. In addition, the PR interval or interval between the onset of atrial 
depolarization and the onset of ventricular depolarization varies 
between 120 and 200 ms [56], [57]. Values outside these intervals could 
be indicative of a cardiac pathology such as bundle branch block [58]. 

 
To properly record the ECG, 12 leads are used which record the 

electrical activity of the heart from different geometrical points. These 
leads are: three standard limbs leads (I, II, III), three augmented limb 
leads (aVR, aVL, aVF) and six precordial leads (V1 to V6). Each lead 
allows the analysis of a specific area of the heart, which can be useful 
to estimate the position of a cardiac injury within the myocardium [59].   

 
The standard limb leads of the ECG are bipolar recordings that 

measure the potential difference between two different limbs. For the 
registration of lead I, the electrodes are set at the right arm and the left 
arm. For lead II, the electrodes are located at the right arm and left leg. 
Finally, for lead III the electrodes are placed at the left arm and left leg. 
In all cases the positive terminal is located at the second position 
indicated. In addition, the triangular distribution of the electrodes over 
the limbs (Einthoven triangle) allows the recording of the electrical 
activity of the heart in the front plane (left panel in Figure 2.9). 
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Figure 2.9 Twelve leads of the standard ECG. The left panel shows the standard limb 
leads (I, II, and III) and the augmented limb leads (aVL, aVR, and aVF). The right 
panel shows the precordial leads (V1-V6) [60]. 

 
The augmented limb leads are unipolar leads that record the 

difference of potential at a point: right arm (aVR), left arm (aVL) or left 
foot (aVF), with respect to the combination of the other two limbs. This 
last combination is known as the Goldberger central terminal and it 
represents the negative pole for the augmented limb leads. These latter 
also provide information about the electrical activity of the heart from 
the front plane (Figure 2.9). 

 
The precordial leads are unipolar leads that record the electrical 

activity of the heart in the transverse plane, i.e., perpendicular to the 
plane of the other leads. For the recording of precordial leads (V1 to 
V6) the electrodes are located at six positions on the torso surface. 
These electrodes represent the positive terminal for each of the leads, 
while the Wilson's central terminal, which has a potential of 
approximately zero, represents the negative pole. In the right panel of 
the Figure 2.9 the positions of the ECG electrodes on the torso surface 
are shown, which are detailed below [61]. 

 
• V1: In the fourth intercostal space, on the right sternal border. 
• V2: In the fourth intercostal space, on the left sternal border. 
• V3: At the midpoint between V2 and V4. 
• V4: In the fifth left intercostal space, on the midclavicular line. 
• V5: Horizontally aligned with V4, on the anterior axillary line.  
• V6: Horizontally aligned with V4, on the midaxillary line. 
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 Modelling the electrical activity of the heart  
 

2.3.1 Ventricular AP models 
 
Mathematical models of the cellular AP are a complementary tool 

to understand electrophysiological phenomena, especially those which 
cannot be deduced from experiments in humans or animals. 

 
In 1952, Hodgkin and Huxley developed the first AP model based 

on experimental measurements on squid neuronal axons [62]. Their 
model consisted of four differential equations that allow the analysis of 
the behavior of Na+ and K+ ion channels and the membrane potential. 
Later, several models have been developed based on the formalism of 
Hodgkin and Huxley. For instance, Luo and Rudy  built in 1994 a more 
detailed model of the AP, which was based on data measured from 
guinea pig ventricular myocytes [63]. This last model included currents 
originated by pumps and exchangers, as well as an improved 
description of Ca2+ dynamics. In 1998, Priebe and Beuckelman   
formulated a first model of the human ventricular AP [64]. However, 
several ion currents included in this model were adopted from Luo 
Rudy's model for guinea pigs. The increase in the availability of 
experimental data, as well as the improvement of measuring techniques 
have favored the development of more complete models, such as ten 
Tusscher et al. 2004 [36], Grandi et al. 2010 [65], Carro et al. 2011 [66] 
and O'Hara et al. 2011 [37]. 

 
In the present thesis, the O'Hara AP model (ORd model) with some 

improvements was used. This is the most recent human ventricular AP 
model. Its formulation is based on experimental data from over one 
hundred non-pathological human hearts. Between the most relevant 
incorporations of the ORd model is the effects of Ca2+/calmodulin-
dependent protein kinase II (CaMK) on known ionic currents. As a 
result, the model can reproduce in a realistic way the APs of 
endocardial, epicardial and M cells. Figure 2.10 shows the graphic 
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scheme of the ventricular AP model developed by O'Hara et al. [37]. 
This model has recently been updated and improved by Tomek et al. 
[38]. 

 

 
Figure 2.10 Schematic representation of the human ventricular AP model by O’Hara 
et al., showing the main ion currents and ion fluxes (labels starting with I and J, 
respectively), and the different subcellular compartments (MYO, JSR, NSR, SS) [37]. 
More details can be found in the text below. 

 
The ORd model includes four intracellular compartments:  

• Bulk myoplasm (MYO) 
• Junctional sarcoplasmic reticulum (JSR)  
• Network sarcoplasmic reticulum (NSR) 
• Subspace (SS), representing the space near the T-tubules 
 
The currents circulating through the membrane are: 
• Na+ current (INa; representing both fast and late components) 
• Transient outward K+ current (Ito).  
• Rapid delayed rectifier K+ current (IKr)  
• Slow delayed rectifier K+ current (IKs)  
• Inward rectifier K+ current (IK1)  
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• 80% of Na+/Ca2+ exchange current (INaCa,i)  
• Na+/K+ pump current (INaK) 
• Background currents (INab, ICab e IKb)  
• Sarcolemmal Ca2+ pump current (IpCa)  

 
The currents circulating into the subspace are: 
• L-type Ca2+ current (ICaL, with Na+ and K+ components ICaNa e 

ICaK) 
• 20% of Na+/Ca2+ exchange current (INaCa,ss)  
 
The ionic fluxes are:  
• Ca2+ through ryanodine receptor (Jrel)  
• NSR to JSR Ca2+ translocation (Jtr)  
• Ca2+ uptake into NSR via SERCA2a/PLB (Jup; PLB - 

phospholamban)  
• Diffusion fluxes from subspace to myoplasm (Jdiff,Na, Jdiff,Ca y 

Jdiff,K) 
 

The Ca2+ buffers are:  
• Calmodulin (CMDN) 
• Troponin (TRPN) 
• Calsequestrin (CSQN) 
• Anionic SR binding sites for Ca2+ (BSR) 
• Anionic sarcolemmal binding sites for Ca2+ (BSL) 
• Ca2+/calmodulin-dependent protein kinase II (CaMK) 
 
 Heart failure and left bundle branch block 
 
Heart failure (HF) is a pathological condition in which the heart is 

unable to pump enough blood to meet the demand from the whole body. 
This disability is caused by a structural or functional anomaly which 
progressively worsens over time. The main electrophysiological 
changes affecting ventricular myocytes in HF conditions are AP 
prolongation and alterations in calcium handling [7]. In addition, the 
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number of gap junction proteins responsible for intracellular coupling 
between myocytes, called connexin 43 (Cx43), is reduced, leading to 
slower conduction velocity [8], [67]. As a result of these 
electrophysiological changes, HF patients are predisposed to develop 
complex ventricular arrhythmias which, in many cases, may be mortals 
[68], [69].  

 
A great number of HF patients (approximately one third) also suffer 

from left bundle branch block (LBBB), which worsens their diagnosis 
[11]. LBBB is an abnormality in the left section of the CCS which 
blocks the propagation of electrical impulses to the LV. As a result, the 
LV is activated via the right bundle branch and RV, causing a delay in 
electrical activation, and subsequent contraction of the LV. Such a 
delay generates interventricular dyssynchrony, i.e. the RV contracts 
before the LV [12], [70]. In addition, due to late-activation of the LV 
free wall with respect to the interventricular septum activation, an 
intraventricular dyssynchrony occurs in the LV, i.e., the interventricular 
septum contracts before the LV free wall [13]. A dyssynchronyzed 
ventricular contraction reduces the efficiency of each heartbeat due to 
a reduction in the normal pumping capacity of the heart [71]. This 
reduced efficiency can accelerate the deterioration of the patient 
conditions [11], [14]. 
 

The ECG is a useful tool for the diagnosis of patients with HF and 
LBBB. Experimental and simulation studies have highlighted the 
widening, as well as a change in the morphology of the QRS complex 
on the surface ECG in patients with these pathologies [72], [73], caused 
by the intraventricular dyssynchrony [74]. Despite this fact, a standard 
criterion for LBBB diagnosis based on the ECG has not been 
established yet in the clinical practice.  

Table 2.1 presents the definition of complete LBBB according to 
European [75] and American [76] guidelines, as well as the criteria 
suggested by Strauss and coworkers [73]. Figure 2.11 shows the ECG 
of a patient whose QRS width is increased from 76 ms to 148 ms with 
the development of complete LBBB. 
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ECG parameter for LBBB ESC AHA Strauss 

QRS duration (ms) > 120 120 ♀130 
 ♂140 

QS or rS pattern in V1 Yes Yes Yes 

Positive T in V1 Yes No No 

Normal ID R in V1 – V3 No Yes No 

ID R in V5 ≥ 60ms No Yes No 

ID R in V6 ≥ 60ms Yes Yes No 

ID R in I ≥ 60ms Yes No No 
Notch-/slurred R in I, aVL and V5 – 
V6 No Yes No 

Mild-QRS notch/slurring in ≥ 2 
leads of V1 – V2, V5 – V6, I, aVL No No Yes 

RS pattern allowed in V5 – V6 No Yes Yes 

Absent q in V5 – V6 No Yes No 

Absent q in I No Yes No 

QS with positive T in aVR Yes No No 

Usually discordant T Yes Yes No 
 

Table 2.1 ECG parameters for complete LBBB according to guidelines of European 
Society of Cardiology (ESC) [75], American Heart Association (AHA)/American 
College of Cardiology Foundation (ACCF)/Heart Rhythm Society (HRS) [76], and 
Strauss et al. [73]. ID = intrinsicoid deflection. Adapted from [77]. 
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Figure 2.11 ECG from a patient with an increase in QRS duration from 76ms (A) to 
148ms (B) 1 year later with the development of complete LBBB. Changes in QRS 
morphology, such as mid-QRS notching in leads I and aVL, along with mid-QRS 
slurring in leads V5 and V6, are showed bottom [73]. 
 
2.4.1 Cardiac resynchronization therapy 

 
As previously mentioned, patients with HF and LBBB have an 

electrical and therefore mechanical dyssynchrony of the ventricles 
which causes abnormal blood pumping. An effective treatment for this 
kind of patients is cardiac resynchronization therapy (CRT) [78]. CRT 
aims at restoring the electrical order of the heart, improving the ejection 
fraction of the LV (percentage of blood pumped during a heartbeat) and 
stopping arrhythmias. CRT is performed with a pacemaker which 
delivers coordinated biventricular pacing (standard modality) or LV-
only pacing [79]. 
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During standard CRT application, the LV pacing lead is placed into 

a coronary sinus venous branch, usually at the lateral or posterolateral 
location [80]. The RV pacing lead is located inside the RV, typically in 
the apical wall (Figure 2.12) [81]. In addition, a third lead is placed in 
the RA, which is used to monitor the sinus rhythm or as a source of 
stimulation and inhibition of impulses generated by the SAN. For 
synchronized contraction of the heart, the leads are paced with an 
atrioventricular delay (AVD) and interventricular delay (VVD). AVD 
is the time interval between the onset of electrical activity of the SAN 
(external or intrinsic stimulation) and the external CRT stimulation of 
the ventricles. VVD is defined as the time interval between the LV 
pacing and RV pacing during CRT application.  

 

 
Figure 2.12 Placement of CRT pacemaker. Pulses generator is typically located in the 
subcutaneous tissue of the upper chest. The CRT leads are placed, one in the RA, 
other in the RV apical wall and a third within a coronary vein on the LV surface [82]. 

 
Although patients for CRT are selected under strict criteria, about 

30% of them do not respond favorably to this therapy [19], [20]. In 
addition, severe complications such as RV perforation has been 
observed during CRT application [21]–[23]. Therefore, the 
optimization of pacing leads location and delays is crucial for a better 
response to CRT. Patients with a positive therapy response present QRS 
shortening and an increased LV ejection fraction, due to an 
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improvement in the electrical synchrony of the cardiac muscle [83], 
[84]. In addition, a reduction in mortality rate and HF-related 
hospitalizations have been observed in these patients, after implantation 
of the CRT device [17], [85].  

 
 Acute myocardial ischemia 
 
In the healthy heart, the demand for oxygen of the myocardium is 

supplied by the coronary arteries. The most important are shown in 
Figure 2.13. If a partial or total arterial block is produced, commonly 
by an atheromatous plaque (atherosclerosis) [86], blood flow to the 
myocardium is reduced causing a lack of oxygen and nutrients to the 
affected tissue. This cardiac pathology is known as myocardial 
ischemia and its characteristics vary from patient to patient depending 
on both the magnitude and the duration of ischemia [87] (Figure 2.13). 
During the first 0 – 30 minutes after coronary artery occlusion, an acute 
phase of myocardial ischemia occurs [24]. However, if the occlusion 
persists for a longer period of time, it leads to irreversible damage and 
death of the ischemic cell, a phenomenon termed myocardial infarction.   

 

 
Figure 2.13 Example of myocardial ischemia caused by occlusion of left anterior 
descending artery. Adaptaded from [88], [89].  
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In the acute phase of myocardial ischemia, pathophysiological 
changes caused by the reduction of coronary blood flow lead to 
alterations in the electrical properties of ventricular tissue. As a result, 
potentially lethal arrhythmias, such as ventricular fibrillation, could be 
triggered [24], [90]. Experimental studies have reported that ventricular 
arrhythmias occur in two different stages during the first 30 min of 
acute myocardial ischemia [24], [91]. The first stage or phase 1A occurs 
between 2 – 10 min after the occlusion and it is highly arrhythmogenic 
due to electrophysiological heterogeneities between the ischemic and 
healthy tissues [90], as well as due to alterations in the conduction in 
the affected tissue [48]. Mapping recordings have shown that 
arrhythmias are usually triggered by reentrant processes [92], [93]. The 
most common arrhythmia in this phase is ventricular tachycardia (VT) 
and rarely evolves into ventricular fibrillation (VF) [90].  

 
The second stage, or phase 1B, occurs within 20 – 30 min from the 

onset of ischemia [90]. At this stage, ventricular arrhythmias are also 
generated. However, the trigger mechanisms of these arrhythmias are 
not precisely defined [94], [95]. Animal experiments have shown a 
greater evolution to VF and sudden death in this phase [96], [97], 
although the incidence of arrhythmias is higher during phase 1A [97]. 
In this thesis, part of our work focuses on studying the role of the main 
pathophysiological changes due to ischemia (hyperkalemia, hypoxia, 
and acidosis) in arrhythmogenesis, during the first 10 minutes of 
ischemia (phase 1A).  

 
2.5.1 Pathophysiological components of acute myocardial 

ischemia 
 
Acute myocardial ischemia is a complex process that involves a 

series of pathological changes at the cellular and tissue levels, mainly 
hypoxia, acidosis and hyperkalemia. Each change or ischemic 
component evolves differently as ischemia progresses [98], [99]. In 
addition, a spatial variation of these components within the ischemic 
zone has been reported [28], [98], [100].   
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Hypoxia. It is a reduction of the oxygen reaching tissues, which 

produces a deterioration in cellular metabolism and a change in 
intracellular concentrations of adenosine tri-phosphate ([ATP]i) and 
adenosine di-phosphate ([ADP]i). In physiological conditions, the 
[ATP]i value has been reported to be between 5 – 10 mM [101]. After 
10 minutes of ischemia, a study in dog hearts recorded a reduction by 
61% with respect to its control value [102]. On the other hand, the 
experiments by Weiss et al. [101] in rabbits reported an [ADP]i level of 
15 mM in normal conditions and 100 mM after 10 min of ischemia. 

 
Hyperkalemia. This is defined as an increase of the extracellular 

potassium concentration ([K+]o), which is developed in two stages. At 
the initial stage, [K+]o rapidly increases until it reaches a plateau level 
within the first 5 – 10 minutes after the coronary occlusion [94], [98]. 
Then, [K+]o is maintained approximately constant and eventually 
increases again after 15 – 20 minutes of ischemia [98], [103]. An 
experiment in pig hearts showed that [K+]o rises from 5.4 mM to 
approximately 11 mM at a site in the center of the ischemic region, 10 
minutes after the coronary occlusion [98]. Then, it rises again from 
minute 20 onwards. However, these values varied depending on the 
measurement site. 

 
Acidosis. It consists of the reduction of the intracellular and 

extracellular pH (pHi and pHo, respectively). As a result, INa and ICaL 
currents decrease during cell depolarization [104], [105]. Studies by 
Mohabir et al. [106] and Garlick et al. [107] in perfused rabbit and rat 
hearts, respectively, reported a decrease in pHi of around 0.7 pH units 
after 10 min of ischemia compared with its normal value (between 7.0 
and 7.2). On the other hand, an experiment in pigs during five 
successive ischemic episodes showed that pHo decreases from 7.4 in 
normal conditions to a value between approximately 6.3 and 6.9 within 
10 min of occlusion, depending on the ischemic episode [108].  
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2.5.2 Electrophysiological effects of myocardial ischemia 
 
The main components of ischemia produce several alterations in the 

electrical activity of the affected cells, which can trigger ventricular 
arrhythmias. These electrophysiological alterations include: reduction 
in cell excitability, decrease in conduction velocity (CV), shortening of 
the action potential duration (APD), and prolongation of the effective 
refractory period (ERP) (Figure 2.14) [90]. Each of these changes is 
described below. 

 

 
Figure 2.14 Schematic illustration of a normal (top) and ischemic (bottom) myocyte 
AP, showing the main alterations caused by acute ischemia. RMP is the resting 
membrane potential, (dV/dt)max is the maximum upstroke velocity, APD90 is the AP 
duration at 90% of repolarization, ERP is the effective refractory period and PRR is 
the post-repolarization refractoriness. Black arrows indicate the instant of application 
of an electrical stimulus. Adapted from [109]. 

 
During acute ischemia, [K+] raises producing a diastolic 

depolarization of the membrane, i.e., the RMP increases to a less 
negative value [110], [111]. In the porcine heart, RMP changed from 
normal values ≈ –90 mV to between –65 and –60 mV within 7 – 10 min 
after left anterior descending artery occlusion [112]. This 
depolarization decreases cell excitability due to reduced availability of 
Na+ channels [113]. As a result, the maximum upstroke velocity 
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(dV/dt)max and the CV of AP propagation are reduced [48], [113], and 
the recovery period of the excitability of the cell (or ERP) is extended 
(Figure 2.14) [114]. A reduction in the transmural CV from 0.55 m/s at 
the onset of ischemia to 0.25 m/s after 3 min of occlusion was observed 
in humans by Sutton et al. [114]. On the other hand, Taggart et al. 
reported an increase in the ERP of 10 ms in group 1 and about 100 ms 
in group 2 [48]. In the latter case, a lower amplitude stimulus was 
applied. 

 
In a non-ischemic myocyte, the recovery of excitability closely 

coincides with the end of the AP, allowing the myocyte to be stimulated 
with a suprathreshold electrical stimulus when it reaches the RMP 
[109], [115]. In acute ischemia, the recovery period is longer than the 
repolarization time, giving rise to a phenomenon called post-
repolarization refractoriness (PRR) [114], [116]. PRR consists of a 
decoupling between the ERP and the APD (Figure 2.14). This 
phenomenon is potentially arrhythmogenic because the dispersion in 
recovery of excitability of the cardiac tissue favors unidirectional block 
of AP propagation, allowing the generation of reentrant arrhythmias 
[24], [117]. 

 
Another electrical alteration due to ischemia is APD shortening. It 

is caused mainly by the activation of ATP-sensitive K+ current (IK(ATP)), 
a consequence of hypoxia [113], [118]. In addition, Shaw and Rudy 
[113], and Ferrero et al. [118], in their respective studies reported that 
the increase of the extracellular K+ level is also a secondary factor 
which slightly affects the APD. An experimental study in humans 
showed that APD decreased by approximately 60 ms after 3 min of 
ischemia [114]. 

 
2.5.3 Electrographic changes during acute myocardial ischemia 

 
ECG is a commonly used tool for diagnosis of various cardiac 

pathologies, such as acute myocardial ischemia. Due to alterations in 
the electrical activity of cells affected by ischemia, typical and atypical 
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changes in ECG can be observed, mainly in the ST segment (interval 
between the end of the QRS and the onset of the T wave) and in the T 
wave [119]. These changes vary depending on the time, site, and extent 
of ischemia [120]. 

 
Clinical reports and simulation studies have reported a displacement 

of the ST segment during ischemia [119]–[122], although the presence 
of other factors, such as bundle branch block, can complicate diagnosis 
[61]. In a heart with subendocardial ischemia, leads near the affected 
area record a horizontal or down-sloping ST depressed at the J-point 
(end of the QRS complex) [61], [123]. Conversely, when the 
myocardium presents a transmural ischemia, which involves the full 
thickness of the myocardium, leads near the ischemic region record a 
ST elevation [61], [122], [123]. These different behaviors in the ST 
segment are due to the direction of injury currents, which flow from 
healthy or less injured tissue toward ischemic region [32], [123]. Figure 
2.15 shows an example of subendocardial and transmural ischemia 
(left), as well as an ECG in both cases (right). 

 

 
Figure 2.15 Schematic illustration showing the ST elevation during transmural 
ischemia (top), and ST depression in subendocardial ischemia. Modified from [124].  
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A second electrographic parameter affected by myocardial ischemia 
is the T wave morphology, which can vary in different ways [119]. The 
existence of tall symmetric T waves (referred to as hyperacute T waves) 
is an early electrocardiographic indicator of acute ischemia [61], [125]. 
For instance, an isolated tall T-wave in V1 to V3 leads could be a sign 
of ischemia on the posterior wall of the LV [119]. On the other hand, 
flattened, inverted or biphasic T waves have been also observed as 
ischemia progress over time (Figure 2.16) [119], [121]. However, 
inverted T waves are not only specific to myocardial ischemia and these 
need to be correlated with clinical history for a proper diagnosis.  

 

 
Figure 2.16 T wave changes associated with myocardial ischemia [119]. 

 
 Cardiac arrhythmias and reentries 
 
A cardiac arrhythmia is an abnormal heart rhythm disturbance 

caused by dysfunctions in the electrical activity of the heart, which can 
lead to sudden cardiac death. There are several categories of 
arrhythmias depending on whether the heart rate is faster, slower or 
irregular. Arrhythmias where the cardiac rhythm is less than 60 beats 
per minute (bpm) are called bradycardias. Conversely, when the heart 
rate is above 100 bpm, such arrhythmias are known as tachycardias. 
Finally, the most common type of cardiac arrhythmia characterized by 
irregular rapid rhythm is named fibrillation (usually at over 300 bpm).  
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Based on the location where cardiac arrhythmias occur, i.e. in the 
atria or ventricles, these are called supraventricular or ventricular 
arrhythmias, respectively. In general, as the ventricles are responsible 
for pumping blood to the whole organism, ventricular arrhythmias are 
the most serious of both arrhythmias [126]. These include ventricular 
tachycardia (VT) and ventricular fibrillation (VF). During VT, the 
ventricle contraction is accelerated due to a faster self-sustaining 
excitation wave that overrides the sinus rhythm. When VF occurs, the 
electrical activity of the ventricles is completely disorganized, making 
the heart unable to pump normally and efficiently. Figure 2.17 shows a 
characteristic ECG signal of VT and VF. 

 

 
Figure 2.17 Characteristics ECG signals of normal sinus rhythm (NSR), ventricular 
tachycardia (VT) and ventricular fibrillation (VF). Adapted from [127]. 

 
During acute myocardial ischemia, reentries represent the 

fundamental mechanism of generation of VT and VF. A reentry is 
defined as a repetitive propagation of the activation wavefront returning 
quasi-periodically to its site of origin, after it recovers excitability, to 
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reactivate that site [128]. The most common reentrant patterns 
experimentally observed are single circus and double circus (figure-of-
eight reentry) (Figure 2.18) [112], [129]. For a reentry to occur, a set of 
requisites is necessary, which are described below [130]. 

 
1. The presence of joined myocardial tissue with different 

electrophysiological properties, conduction and refractoriness. 
This can create an area of block or unexcitable tissue, which the 
wavefront can circunvalate. 

2. Occurrence of a unidirectional conduction block. 
3. The existence of a path of slowed conduction that allows 

sufficient delay in the conduction of the circulating wavefront to 
enable the recovery of the refractory tissue proximal to the site 
of unidirectional block. 

4. The appearance of an initiating trigger, such as an ectopic beat or 
abnormal automaticity. 

 

 
Figure 2.18 Reentry pattern that changes from a single circus to a double circus 
(figure-of-eight) to then come back to a single circus movement [34]. 
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CHAPTER 3 

3 Optimization of lead 
placement in the right 

ventricle during cardiac 
resynchronization therapy 

 
 Introduction 
 
Heart failure (HF) constitutes a major public health problem 

worldwide and much attention has been paid to the understanding of the 
arrhythmogenic mechanisms in the failing heart induced by the 
structural, electrical, and metabolic remodeling. Heart failure is also 
characterized by a compromised ventricular contraction, which is 
fundamental for an optimal cardiac function. Lack of synchrony in heart 
contraction is worsened when the failing heart is also affected by left 
bundle branch block (LBBB). These patients present electrical and 
mechanical ventricular dyssynchrony causing pump dysfunction, 
reduced functional capacity, and myocardial remodeling. In particular, 
LBBB is associated with delayed contraction of the left ventricle (LV), 
reduced ventricular performance and widening of the QRS complex.  
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The relative QRS duration (QRSd) provides a powerful prognostic 
value for patients with HF and is a primary indicator of eligibility for 
cardiac resynchronization therapy (CRT). CRT helps to reduce 
mortality and morbidity associated with HF [17], [131]. Recent studies 
have also concluded that patients with LBBB are more likely to respond 
to CRT than those with right bundle branch block (RBBB) or 
nonspecific interventricular conduction delays (IVCDs) [19], [132].  

 
During CRT, two synchronized electrical stimuli are usually 

delivered to reduce ventricular dyssynchrony. One stimulation lead is 
usually placed on the apex of the right ventricle (RV), and the other one 
on the epicardium of the LV lateral wall. Patients with positive therapy 
response present QRS shortening and an increased LV ejection fraction 
(LVEF) [83], [84], [133]. However, around one third of the patients do 
not respond favorably to this therapy [19], [134] and implantation 
issues, such as perforation of the RV apex, have been observed. 

 
Optimal location of pacing leads is crucial to achieve the best degree 

of ventricular synchrony. LV lead position has been recognized as an 
important determinant for response to CRT since the initial 
development of this therapy [135]–[137]. Experimental studies and 
computational models [138] have been used to optimize LV lead 
location. In current guidelines [80], the LV posterior-lateral wall is the 
recommended LV region for CRT application. Several studies have 
reported the beneficial results of pacing from the lateral region of the 
LV [139]. However, there are still several open questions. 

 
First, as suggested by Zanon et al. the ideal LV lead placement 

should be the latest electrical intrinsic activated region [140], typically 
the postero-lateral wall [141]. This location provided the maximum 
increase in contractility, expressed as the highest value of the first 
derivative of LV pressure over time (LV dP/dtmax). However, the 
electromechanical modelling study by Pluijmert et al. [142] determined 
that in fascicular block conditions the latest activated area did not 
provide the maximum response in contractility. A different criterion 
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suggested in the literature is to place the LV lead in the site 
corresponding to the shortest QRS registered. Nevertheless, simulation 
studies that apply this last non-invasive criterion [143], [144] estimated 
QRSd through calculation of the total ventricular activation time 
(TAT), a parameter not easily accessible in clinical or even 
experimental settings. In addition, studies such as Potse et al. [72] have 
observed that biventricular pacing did not change QRS duration but 
reduced total ventricular activation time when the stimulation was 
applied in one point of the LV free wall. 

 
Second, there is controversy about whether a higher degree of 

synchrony can be achieved by stimulating from points in the RV other 
than the apex [145], [146]. Third, individualized programming of the 
atrioventricular delay (AVD) and interventricular delay (VVD) 
intervals is not typically performed in most patients in the normal 
clinical practice, and it has been primarily reserved for non CRT 
responders [147]. The largest trials studying CRT used various methods 
to optimize these intervals, most frequently based on echocardiography 
and intracardiac electrogram interval measurements, but unequivocal 
proof of the benefit brought by optimization is still lacking [148]–[150]. 
Echocardiography presents inherent variability of results and is highly 
operator dependent. Optimization based on intracardiac electrogram 
intervals has not proved yet to be of clear benefit above arbitrary 
atrioventricular interval [151]. Another optimization method based on 
the surface ECG uses fusion with intrinsic conduction and avoids 
echocardiographic atrioventricular and biventricular optimization 
[152]. Applying this method Arbelo et al. determined that 
electrocardiographic optimization improved invasive LV dP/dtmax. 
Similarly, randomized studies demonstrated that electrocardiographic 
optimization had superior LV remodeling at 6-month follow up 
although survival was not different, compared with optimization by 
echocardiography [153], [154]. All these results suggest that 
minimizing QRSd could be used as a non-invasive method to optimize 
CRT. 
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In this study, we used a 3D biophysical model of the heart and torso 
to optimize pacing leads location, AVD, and VVD settings during CRT 
procedure, based on the shortest QRS duration measured on the torso 
surface. Results were compared with other optimization criteria. This 
analysis was used to define an electrical biomarker that relates the 
optimal lead configuration with the observed surface electrocardiogram 
signals. 

 

 Methods 
 

3.2.1 Anatomical model 
 
A 3D biventricular model of the heart was built from segmentation 

of a DE-MRI images stack. The cardiac DE-MRI was acquired from 
the Hospital Clinic Universitari de Valencia (Valencia, Spain). 
Regarding the ethical considerations, the protocol was approved by 
the Ethics Committee for Clinical Research of the Hospital Clinic 
Universitari de Valencia, which certifies that the present study was 
conducted in accordance with the recommendations gathered in the 
Declaration of Helsinki, originally adopted by the General Assembly of 
the World Medical Association in 1964, and in its subsequent revisions. 
Furthermore, the patient, who underwent the standard clinical protocol, 
gave written informed consent for the use of his anonymized clinical 
data in this study. 

 
Manual image segmentation was performed using Seg3D software 

(Scientific Computing and Imaging Institute, University of Utah, 
USA) [155], including papillary muscles and main endocardial 
trabeculations (Figure 3.1A). From the segmented DE-MRI stack, a 
surface model of the ventricles was generated and subsequently meshed 
using MeshGems-Hexa (Distene S.A.S., Bruyeres-le-Chatel, France), 
obtaining a hexahedra-based volume mesh comprised of 4 million 
nodes (vertices) and 3.71 million elements, with an average edge length 
of 0.4 mm (see appendix A for further detailed information). 
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Transmural heterogeneity (Figure 3.1B) was defined by three different 
transmural layers for endocardial (blue), midmyocardial (green), and 
epicardial (red) cells within the volume mesh of our ventricular model, 
spanning 17%, 41%, and 42% of ventricular wall thickness, 
respectively [156]–[158]. 

 

 
Figure 3.1 Anatomical model. (A) Biventricular hexahedral mesh of a segmented 
human heart. (B) Model color-coded to show the assignment of the elements to the 
different cellular model in order to model the transmural heterogeneity: endocardial 
cells (blue), midmyocardial cells (green) and epicardial cells (red). (C) Arrows 
indicating the principal myofiber orientation of epicardial (red) and midmyocardial 
(green) cells. (D) Purkinje System (PS), including three main LV branches (posterior, 
septal, anterior) and RV main brunches (septal and anterior). Purkinje-Junctions are 
represented as magenta spheres. His Bundle, and the location of the LBBB are labeled 
in the model. (E) PS (black) coupled to the biventricular model. (F) Torso model with 
the biventricular mesh embedded (red) and precordial leads location (white). 

 
To include the anisotropy of the cardiac muscle through fibers 

orientation (Figure 3.1C), we implemented Streeter’s rule-based 
method [159] modeled by the set of equations described in [160] 
defining the helix (αh) and transmural (αt) angles. In papillary muscles 
and endocardial trabeculations, fibers are known to be aligned parallel 
to the longitudinal axis of those anatomical structures [161]. In order to 
reproduce such configuration, we performed the topological 
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skeletonization of the volume mesh to extract the medial axes of each 
one of those structures, what enabled to properly assign the fiber 
orientation. Finally, we performed a Gaussian smoothing with a 3D 
kernel to soften abrupt transitions in fibers direction between the 
myocardial wall and the papillary muscles and trabeculations. 

 
A Purkinje system (PS) network (Figure 3.1D, E) was developed 

based on a stochastic grown method [162] formed by linear elements. 
The RV section was composed of two main branches, one descending 
to the apex, and another extending to the surroundings of the moderator 
band, with several subdivisions. The LV section was formed by three 
main branches with several subdivisions: one descending to the apex 
towards the papillary muscles of the lateral wall, another one to the 
anterior wall, and the last one to the posterior wall. The location of the 
PMJs that start the endocardial activation from the main PS branches 
was optimized to obtain a typical ECG wave morphology in the 
precordial leads. Purkinje-Myocardial junctions (PMJs) conductivity 
were adjusted to allow retrograde and anterograde electrical 
propagation. A total of 1391 PMJ were distributed across the RV and 
LV.  

 
The biventricular mesh was fit into a human torso mesh [163] to be 

able to properly solve the forward problem in electrophysiology and 
simulate the electrocardiogram (ECG) (Figure 3.1F). The torso dataset 
was obtained from the online open repository at the Centre for 
Integrative Biomedical Computing (CIBC) from University of Utah 
[164]. The torso volume mesh was made of tetrahedral elements of 0.5 
mm spatial resolution. Note that the problem of passive propagation of 
extracellular potentials, i.e. only diffusion without reaction component, 
does not require such a fine spatial resolution outside the heart domain 
[165]; for this reason, the torso mesh is highly refined only in the region 
where it intersects with the ventricles (see appendix A for 
complementary description). 
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3.2.2 Electrophysiological model 
 
O’Hara et al. [37] model is the most recent action potential model 

developed for human ventricular electrophysiology. Our simulations 
were conducted using a modified version of this model to achieve 
realistic conduction velocity and electrical propagation in 3D 
ventricular tissue. For this reason, the original fast sodium current (INa) 
formulation was modified. Firstly, the steady state inactivation (hss and 
jss) and activation (mss) gates were changed as in Passini et al. [166] and 
Mora et al. [167], respectively. Secondly, the time constant of the 
inactivation gates was modified as in Dutta et al. [168]. Finally, the 
sodium conductance (GNa) was decreased to 23% of its original value 
to obtain approximately a maximum upstroke velocity (dV/dtmax) of 260 
V/ms as in the original O’Hara et al. [37] model. Furthermore, the late 
sodium current (INaL) conductance (GNaL) was duplicated to maintain 
the relationship between INaL and peak INa observed in voltage-clamp 
experiments as described in Mora et al. [167]. All these changes are 
detailed in the appendix A together with the action potential (Figure 
A.1) obtained with the original and modified O’Hara et al. models. The 
action potential model for Purkinje cells developed by Stewart el al. 
[169] was used in the cardiac conduction system. 

 
The electrical propagation through the ventricles was calculated by 

solving the monodomain equation (Equation 3.1) using ELVIRA FEM 
software [170], 

 
                         ∇∙(D∇Vm) = Cm

∂Vm
∂t

+ Iion+ Istim (3.1) 
 
where D is the equivalent conductivity tensor, Vm the 

transmembrane potential field, Cm the cell membrane capacitance, Iion 
the transmembrane ionic current and Istim the transmembrane 
stimulation current. 

 
The ECG was simulated by solving the extracellular potential (φe) 

from the equation 
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                          ∇∙�[Di+De]∇φe�=  ̶ ∇∙(Di∇Vm) (3.2) 
  

where Di and De are the volume-average conductivity tensors of the 
intra and extracellular domains, respectively [171]. The reaction-
diffusion simulation was run on the biventricular mesh. The right-hand 
side of Equation 3.2 was evaluated on this fine mesh and then 
interpolated on the coarser torso mesh. The extracellular potential was 
solved on the coarser mesh. The precordial ECG leads were then 
computed by extracting the extracellular potential at the electrode 
locations taking into account the Wilson terminal, as in clinical practice 
(see appendix A for details). 

 
In order to establish the conductivities that will define the 

conduction velocities (CV) in the heart domain, we performed a set of 
test simulations on a 3D slab model (20x20x6 mm) composed of regular 
hexahedral elements (voxels) with an edge length of 0.4 mm, matching 
the average length in the ventricular model. As a result, we set the 
conductivity values to 0.5 S/m and 0.1 S/m for longitudinal (σL) and 
transversal (σT) conductivity, respectively. This resulted in a CV of 0.61 
m/s along the fiber direction and of 0.29 m/s in transverse direction. 
These values are consistent with experimental measurements in human 
ventricles [48]. 

 
CV in the PS was adjusted to 2.5 m/s [46], [47]. The electrical 

propagation in the torso mesh was considered isotropic and specific 
conductivities were assigned to each organ: i) myocardium (4.589 
mS/cm), ii) bones (0.200 mS/cm), iii) liver (0.277 mS/cm), iv) lungs 
(0.389 mS/cm), v) muscle (2.390 mS/cm), and vi) blood (7.0 mS/cm) 
based on several experimental studies [172]–[174]. 

 
3.2.3 Pathological model 

 
To simulate LBBB, an electrical block was generated on the left 

section of the PS before the bifurcation into three sub-branches by 
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imposing null conductivity in two linear elements (see Figure 3.1D). 
HF condition was modeled by a reduction of 50% in CV, in accordance 
with protein connexin43 (Cx43) reduction observed in failing tissue [7]. 
The decrease and lateralization of this protein is associated with 
reduced longitudinal conduction velocity [67], [175], [176]. 

 
3.2.4 Stimulation protocols 

 
For the present study a 3D anatomical model of the ventricles was 

generated, which does not include the geometry of the atria. Therefore, 
the intrinsic activation from the sinoatrial node was simulated by 
applying an electrical stimulus to the His bundle, either in healthy or 
HF + LBBB conditions (see Figure 3.1D). CRT leads were modeled as 
0.5 mm3 cubes injecting a transmembrane current of 400 µA/µF in 
amplitude (see Equation 3.1). Four scenarios of CRT pacing were 
defined for HF + LBBB conditions with different combinations of 
atrioventricular delay (AVD) and interventricular delay (VVD) for each 
lead location configuration (AVD = 100 ms, VVD = 0 ms; AVD = 100 
ms, VVD = 30 ms; AVD = 140 ms, VVD = 0 ms; AVD = 140 ms, VVD 
= 30 ms).  

 
AVD is the time delay between the instant of initial activation of the 

sinoatrial node (external or intrinsic stimulation) and the instant of time 
of external CRT stimulation of the ventricles. To set the value of AVD 
in our simulations, several considerations were taken into account. 
Firstly, the typical duration of PR interval observed in LBBB patients 
is 200 ms [177], which is the time that takes the initial atrial stimulation 
to spread through the atria (100 ms), plus the time delay in the 
atrioventricular (AV) node (80 ms) [178], plus the propagation time 
from the His bundle through Purkinje system to finally reach the first 
activation site of the ventricles (20 ms approximately). Secondly, our 
model does not include the atria or the AV node as mentioned before, 
so that the intrinsic activation was simulated by stimulating His bundle, 
which is included in our 3D model. 
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In our simulations, different AVDs could be simulated by changing 
the stimulation time of the His bundle (coming from the intrinsic 
activation of the atria). Thus, an AVD of 100 ms was modeled by 
applying an electrical stimulus to the His bundle of 80 ms after 
ventricular leads activation. Indeed, when we applied the external CRT 
ventricular stimulation, 100 ms after initial activation of the sinoatrial 
node (AVD of 100 ms), this intrinsic activation had reached the atrial 
side of the AV node (this takes 100 ms) and needed still 80 ms to reach 
His bundle (delay needed in the AV node). In the case of an AVD of 
140 ms, the electrical stimulus in the His bundle was applied 40 ms after 
ventricular leads activation. Indeed, when we applied the external CRT 
ventricular stimulation, 140 ms after initial activation of the sinoatrial 
node, this intrinsic activation had reached the AV node in 100 ms and 
40 ms of delay in the AV have also elapsed, the stimulus needed 40 ms 
more to reach the His bundle, and this is why we stimulated the His 
bundle 40 ms after the ventricles. Additionally, VVD was set to 0 ms 
(stimulation in both ventricles simultaneously) and 30 ms (the RV was 
stimulated 30 ms after the LV), according to the time ranges used in 
clinical practice [80], [179]. 

 
3.2.5 Leads location 

 
The RV septal wall is an alternative location for the RV pacing lead 

in CRT. In this study, three different locations for the RV pacing lead 
were tested based on medical protocols and research works [145], 
[146]. The RV septal electrode was placed in the apex (RVapex), 
middle septal region (RVmid) or upper region near the outflow tract 
(RVupper) (Figure 3.2A). 

 
For the LV pacing lead location, the LV free wall was divided into 

three different regions [137], [180]: anterior, lateral, and posterior 
(Figure 3.2B). In addition, each region was divided into three segments: 
apical, mid-cavity, and basal, leading to a set of nine segments for the 
LV free wall as illustrated in Figure 3.2C as in Singh et al. [137]. The 
LV pacing lead was placed in the middle of each segment, both in the 
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epicardial (Figure 3.2C) and endocardial wall (Figure 3.2D) to represent 
and simplify the different possible positions of the electrode within the 
same region, due to variety of veins configurations observed in CRT 
patients. 

 

 
Figure 3.2 Heart subdivisions and stimulation points for CRT protocol. (A) RV septal 
endocardial stimulation points tested (green). (B) Left ventricular (LV) free wall 
region divided into three regions: posterior (yellow), anterior (brown), and lateral 
(green). (C) Subdivisions of the three LV free wall regions into nine segments. 
Epicardial stimulation points tested in the middle of each segment (red dots). (D) 
Endocardial stimulation points tested in the LV free wall (blue dots). 
 

To summarize, we have a total of 54 lead location configurations 
obtained by combination of the three RV lead locations with eighteen 
LV lead locations (9 epicardial and 9 endocardial) for the application 
of the CRT protocol. 
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3.2.6 QRS measurements 
 
QRS complex was computed in the precordial leads location on the 

torso surface for each CRT configuration and QRSd was measured 
using an algorithm implemented in Matlab software (Mathworks Inc., 
Natick, MA, USA). This algorithm determines the beginning and end 
of the QRS complex based on the first and second derivate of the 
electrocardiographic signal (see Figure A.2 in the appendix A). The 
QRS onset was calculated applying a threshold in the first derivate to 
determine a change in the slope. To estimate the end of QRS complex, 
additional signal processing was required as baseline was not reached 
in most CRT configurations. A time interval after the QRS complex 
was set based on the 95% of the accumulated area under the curve of 
the second derivate, and the end of the signal. To set the end of the QRS, 
the lowest value of the first derivate was used within this interval (see 
appendix A for details). Once the beginning and end of QRS complex 
were determined for each precordial lead, the QRSd was calculated as 
the time interval between the onset beginning and the latest end of the 
QRS among all leads [76]. This is the recommended criterion by the 
American Heart Association, the American College of Cardiology 
Foundation, and the Heart Rhythm Society (AHA/ACC/HRS). The 
total activation time (TAT) of the ventricular mesh was estimated as the 
time interval between the first and last depolarized node mesh above a 
threshold of ‒10 mV. 

 
3.2.7 Correlation analysis 

 
Shortest QRSd was the criterion applied to evaluate the optimal 

location of the LV lead for different positions of the pacing lead in the 
RV. However, the total activation time (TAT), QRS area (QRSa) and 
the time to 90% of activated tissue (t90) are other important parameters 
that have been used to evaluate CRT response. For this reason, three 
linear correlations between these parameters were performed using 
Pearson correlation method. Values of p < 0.05 were considered 
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statistically significant. Values for the analysis are shown in Table A.1‒ 
A.5 in the appendix A. 

 
 Results 
 

3.3.1 Model validation 
 
Simulated ventricular activation maps for non-pathological and HF 

conditions with LBBB (HF + LBBB) are shown in Figure 3.3A. In 
healthy conditions, the electrical impulse traveled from the bundle of 
His to the first activation point in the LV endocardium in approximately 
20 ms. RV activation started 10 ms after the onset of LV activation [47]. 
The computed time until all the ventricular tissue was depolarized (total 
activation time or TAT) was approximately 103 ms, in accordance with 
human data [181]. The outflow tract and the posterobasal area were the 
last activated regions in the RV, while the latest areas depolarized in the 
LV were the anterior mid and basal regions. 

 

 
Figure 3.3 Model validation. (A)  Cross section of biventricular model showing color 
coded local activation maps of a healthy (left) and pathological heartbeat (right). (B) 
Precordial leads signals recorded on torso surface. 

 
Under HF + LBBB conditions, activation began in the RV 

endocardium and reached the LV endocardium in the apical septal 
region after 46 ms from the onset of the LV depolarization. This is in 
agreement with the data recorded experimentally by Auricchio et al. 
[182]. The last activated region in the LV was the lateral wall in 
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accordance with the study of Mafi-Rad et al. [183]. Additionally, the 
TAT was increased in 104% compared to a healthy heart. 

 
Figure 3.3B shows the computed QRS complexes in the precordial 

leads for simulations in a healthy heart and under HF + LBBB 
conditions. For non-pathological conditions, QRS duration (QRSd) was 
93 ms, while in HF + LBBB QRSd was increased to 190 ms. Both 
values are within experimental ranges [184], [185]. Additionally, QRS 
complexes in HF + LBBB simulations present an rS pattern (small R 
wave followed by a bigger S wave) [186] in leads V1 and V2 and a mid-
QRS notching in several leads. These observations are in agreement 
with the criteria proposed by Strauss et al. [73] to define complete 
LBBB. 

 
3.3.2 QRS duration during CRT 

 
A total of 54 electrode placement configurations with four different 

delays (two AVD and two VVD configurations) settings were tested for 
the CRT simulations. QRSd values are shown in Table A.1 in the 
appendix A. 

 
Figure 3.4 compares the simulated QRS complexes in a scenario 

with HF + LBBB before (red traces) and after (green traces) the 
application of the CRT protocol. The optimal configurations in terms 
of shortest QRSd for the RV lead placement tested (apex, mid septum, 
and upper septum) are shown in the different rows. Epicardial versus 
endocardial LV lead stimulation for those configurations are shown in 
columns. 

 
Firstly, we analyzed the optimal lead placement. The shortest QRSd 

among all configurations tested was obtained when the RV lead was 
placed in the upper septum near the outflow track (third row). 
Furthermore, for all RV lead placement the optimal location of the LV 
lead, both in the epicardium and endocardium, was the LV mid 
posterior wall.  
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Figure 3.4 Precordial leads signals on CRT. QRS complexes in the precordial leads 
under HF + LBBB conditions, before (red trace) and after (green trace) the application 
of the best CRT configurations (shorter QRSd). Three different locations for the RV 
pacing lead were tested: RV apex with epicardial (A) and endocardial (B) LV lead 
stimulation; RV mid septum with epicardial (C) and endocardial (D) LV lead 
stimulation; and RV upper septum with epicardial (E) and endocardial (F) LV lead 
stimulation. Stimulation points are shown in light green inside the insets for the RV 
lead, and in blue and red for the LV endocardial and epicardial lead, respectively. 
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Secondly, we analyzed the effect of the delay between pacing leads 

and intrinsic activation in a fixed location. The best configurations for 
the RV lead placed in the apex are depicted in the first row. QRSd was 
reduced from 172 ms (Figure 3.4A) to 157 ms (Figure 3.4B), but bigger 
reductions were obtained for different intrinsic and pacing delays (AVD 
= 140 ms, VVD = 0 ms; AVD = 100 ms, VVD = 30 ms, respectively). 

 
When the RV lead was located in the middle of the septum (second 

row), the QRSd was reduced from 161 ms (Figure 3.4C) to 146 ms 
(Figure 3.4D) for optimal configurations. In this case, these results were 
obtained for different pacing delays between leads but the same AVD 
(AVD = 140 ms and VVD = 30 ms vs AVD = 140 ms and VVD = 0 
ms, respectively). 

 
If the RV lead was placed in the upper septum, the QRSd was 

reduced from 149 ms (Figure 3.4E) to 143 ms (Figure 3.4F). However, 
in this case both configurations were achieved with the same intrinsic 
and biventricular delay (AVD = 140 ms, VVD = 30 ms). 

 
Finally, the influence of LV epicardial versus endocardial pacing 

was assessed. QRSd was decreased in all cases after CRT application, 
but the reduction was greater for LV leads placed in the endocardium 
(column 2) compared to epicardium (column 1). 

 
Summarizing, the optimal location in terms of shortest QRSd was 

obtained when the RV lead was placed in the upper septum and the LV 
lead was located in the mid posterior wall region. Once the optimal lead 
location was selected for both RV and LV leads, the shortest QRSd was 
measured for different intrinsic and biventricular delays, without 
highlighting a particular optimal setting. Finally, the shortest QRSd was 
obtained in all configurations when the LV lead was placed in the 
endocardium compared with those in the epicardium. 
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3.3.3 Ventricular activation time during CRT 
 
Another helpful parameter to assess CRT outcome is the total 

activation time (TAT) of the ventricles. This parameter is not directly 
accessible in clinical practice during CRT procedures, but simulations 
can provide additional information to achieve the ideal configuration. 
Ideally, within normal physiological ranges, the shorter the QRS the 
shorter TAT, leading to an increase in ventricular synchrony. In Figure 
3.5, the percentage of activated ventricular tissue is shown as a function 
of time for the healthy heart, under HF + LBBB conditions, and for the 
optimal CRT configurations (as a function of RV location), which are 
shown in Figure 3.4. Under HF + LBBB conditions (red trace), the 
electrical impulse spreads throughout the ventricles much slower 
(gradual slope) than in the healthy heart (black trace) or in CRT (green 
trace) configurations, completing ventricular activation after 210 ms. 
For CRT simulations, the rate of activated tissue was initially low, but 
increased rapidly to reach rates similar to those observed in healthy 
cases. This was especially noticeable when the LV lead was located in 
the epicardium (first column) and the RV lead was located in the mid 
and upper septum (Figure 3.5C, E, respectively). These results can be 
explained because of several factors. Firstly, the configuration of the PS 
and the PMJ distribution strongly affects the initial spread of the 
wavefront. Given the PS RV morphology, i.e. two main branches, one 
descending to the apex and another growing around the moderator band 
(Figure 3.1D), when the RV lead was located in the apex, the electrical 
stimulus entered fast in the PS (around 5 ms) and propagated to remote 
areas faster than through the myocardium (see Video 1 CRT). However, 
it took around 40 ms to retrogradely enter in the PS when the RV lead 
was located in the mid septal region, and around 90 ms when the RV 
lead was in the upper septum. For this reason, it took 75 ms to activate 
initially only 10% of the myocardium. Secondly, stimulation in the 
epicardial layer took longer to reach PMJ locations. Thirdly, the 
stimulation delay between both ventricles (VVD) also affected the 
initial slope of cardiac activation. Nevertheless, after 70 ms for the 
endocardial configurations (second column) and 125 ms for the 

https://youtu.be/Dp7GBOK6nJk
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epicardial ones the percentage of activated tissue during CRT 
application was higher than the percentage of HF + LBBB conditions. 
Moreover, during the final phase of ventricular activation, the rising 
rate was considerably reduced. Indeed, the electrical impulse took 
between 26 to 54 ms (15% to 26% of the TAT) to activate the last 10% 
of the ventricular tissue. 

 

 
Figure 3.5 Cumulative frequency histograms of the normalized percentage of 
activated tissue. The curves correspond to healthy (black), HF + LBBB (red) and CRT 
(green) scenarios. The best CRT configurations (shortest QRSd) for the three 
locations of the RV lead were tested: RV apex with epicardial (A) and endocardial 
(B) LV lead stimulation; RV mid septum with epicardial (C) and endocardial (D) LV 
lead stimulation; and RV upper septum with epicardial (E) and endocardial (F) LV 
lead stimulation. 
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Finally, after applying the CRT protocol, the TAT was decreased by 

15%, 14%, 12%, 15%, 19%, 22%, with respect to HF + LBBB 
conditions, as shown in Figure 3.5A–F, respectively. The locations of 
the pacing leads for the shorter QRS complexes coincided with the 
locations of the electrodes for the shorter TAT. However, when VVD 
and AVD were modified, the shortest QRS did not match the shortest 
TAT, which means that QRSd and TAT are not totally correlated. In 
addition, the difficulty in QRS measurement at the beginning and end 
of the signals has to be considered. 

 
In clinical practice, a shorter QRSd is one of the standard criteria 

used to evaluate CRT response. However, both non-responder and 
responder patients show a reduction in QRSd after CRT application 
[187], [188]. Therefore, an additional indicator would be useful for a 
better perception of CRT benefit. As shown in Figure 3.5, TAT could 
be strongly modified by the initial rate of activation, as well as by the 
last activation interval. To avoid this, we analyzed the time elapsed to 
90% of ventricular activation (t90), (Figure 3.6). This parameter allows 
us to determine which configuration leads to a faster activation of most 
of the ventricular tissue, thus decreasing electrical dyssynchrony.  

 
Figure 3.6 shows t90 values for a configuration with the RV lead 

placed in the apex, mid septum, and upper septum, and the LV lead 
located in the epicardium (panels A – C), and the same RV 
configurations with the LV located in the endocardium (panels D – F). 
The different delays applied between the His Bundle and CRT leads 
(AVD) and between the RV and LV leads (VVD) are shown in 
columns.   

 
The optimal location of the LV pacing lead, both in the epicardium 

and endocardium, changed during CRT application for each of the 
pacing lead locations in the RV. However, the optimal AVD and VVD 
were the same in all cases, 140 ms and 0 ms (third column), 
respectively. 
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Figure 3.6 Time to 90% of ventricular activation for the different CRT configuration 
delays assessed. (A) – (C) Epicardial LV lead stimulation for the three RV lead 
location tested: (A) RV apex, (B) RV mid septum and (C) RV upper septum. (D) – 
(F) Endocardial LV lead stimulation for the three RV lead location tested: (D) RV 
apex, (E) RV mid septum and (F) RV upper septum. The three LV regions (anterior, 
lateral and posterior walls) are shown in different color brightness (red, blue and 
yellow). The values for healthy and HF + LBBB configurations are depicted in black 
and red lines respectively. 
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On the one hand, when AVD was modified (column 1 versus 

column 3 and column 2 versus column 4) similar results were obtained, 
except when the RV lead was located in the upper septum area. The 
electrical propagation of the intrinsic stimulus contributed to decrease 
t90 (7% reduction) for an AVD of 140 ms. On the other hand, when VVD 
was increased (column 1 versus column 2 and column 3 versus column 
4) t90 increased up to 19% for all the RV lead locations. 

 
When the RV lead was located in the apex, the optimal location of 

the LV lead in the epicardium was the LV anterior wall at basal level 
(Figure 3.6A). For the same RV lead location, the optimal LV lead 
location in the endocardium was the LV posterior wall at mid-cavity 
level (Figure 3.6D). Changing the RV lead location to mid septum, the 
optimal LV lead location in the epicardium was the LV mid lateral wall, 
while the optimal LV lead location in the endocardium was the LV mid 
posterior wall (Figure 3.6B, E, respectively). 

 
Finally, for the RV lead location in the upper septum, the optimal 

placement of the LV pacing lead in the epicardium was in the LV mid 
lateral wall, while the optimal placement of the LV lead in the 
endocardium was the apex of the LV lateral wall (Figure 3.6C, F, 
respectively). Table 3.1 summarizes the optimal placement of the LV 
lead for a faster activation of 90% of the ventricular tissue. The optimal 
locations calculated are not in agreement with the optimal RV lead 
location determined based on a shorter QRSd in most cases. This result 
suggests the hypothesis that the shortest QRSd does not necessarily 
imply the fastest ventricular activation of 90% of the ventricular 
muscle. 

 
3.3.4 Correlation between ventricular activation and QRS 

 
To better highlight the relationship between QRSd and TAT, a 

correlation analysis was carried out (Figure 3.7A). Results showed an 
elliptical distribution of data with a moderate positive linear 
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relationship, statistically significant (R = 0.78 and p < 0.05). This 
moderate correlation could justify the difference between the optimal 
AVD and VVD values for the simulations with a shortest QRSd and 
with a shortest TAT. 

 
LV epicardial stimulation 

Criterion RV lead LV lead AVD 
(ms) 

VVD 
(ms) 

Shortest QRS 
duration 

Apex Posterior - mid 140 0 
Mid septum Posterior - mid 140 30 
Upper septum Posterior - mid 140 30 

Shortest TAT 
Apex Posterior - mid 140 0 
Mid septum Posterior - mid 140 0 
Upper septum Posterior - mid 140 0 

Faster activation 
of 90% of the 
ventricular tissue 

Apex Anterior - base 140 0 
Mid septum Lateral - mid 140 0 
Upper septum Lateral - mid 140 0 

LV endocardial stimulation 

Criterion RV lead LV lead AVD 
(ms) 

VVD 
(ms) 

Shortest QRS 
duration 

Apex Posterior - mid 100 30 
Mid septum Posterior - mid 140 0 
Upper septum Posterior - mid 140 30 

Shortest TAT 
Apex Posterior - mid 140 0 
Mid septum Posterior - mid 140 0 
Upper septum Posterior - mid 140 0 

Faster activation of 
90% of the 
ventricular tissue 

Apex Posterior - mid 140 0 
Mid septum Posterior - mid 140 0 
Upper septum Lateral - apex 140 0 

Table 3.1 Optimal placement of the LV lead on CRT. 
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Figure 3.7 Correlation between ventricular activation and QRS. (A) Correlation 
between QRS duration and TAT (red circles show LV epicardial leads, blue circles 
show LV endocardial leads). (B) Correlation between the QRS area and TAT. (C) 
Correlation between t90QRSa and t90. 
 

A similar correlation analysis was made between area of the QRS 
(QRSa) and TAT (Figure 3.7B). We first calculated the QRSa for the 
average signal of the six precordial leads, between the beginning and 
end values determined during the measurement of the QRSd. The 
results of the correlation show a scattering distribution of data with a 
statistically non-significant p value (R = ‒ 0.12 and p = 0.076). Thus, a 
linear relationship between QRSa and TAT was not observed in this 
study.  

 
Finally, when correlating the curves of percentage of activated 

tissue and percentage of QRS area as a function of time, a direct 
relationship between both variables was observed. Figure 3.7C shows 
the correlation between time to 90% of QRSa (t90QRSa) and time to 
90% of the ventricular activation (t90) for each CRT simulations. A 
significant correlation with a high linear dependence was observed (R 
= 0.94 and P < 0.05). Simulations with shorter t90QRSa correspond to 
the simulations with shorter t90. Therefore, a new biomarker based on 
time up to 90% of the QRS area can be used as an indicator of electrical 
synchrony. 
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 Discussion  
 
In this study, biophysical 3D multiscale simulations were conducted 

to assess alternative locations of the RV lead for a better CRT response 
in LBBB HF patients. The major findings of this study can be 
summarized as follows: i) the optimal leads location based on shortest 
QRS criterion was the RV upper septum and the LV mid posterior 
region minimizing also TAT; ii) for the optimal lead location, the delay 
configuration leading to the shortest QRSd was AVD = 140 ms, VVD 
= 30 ms. However, the AVD and VVD setting leading to the shortest 
TAT was different, suggesting that minimizing QRSd is a good 
criterion to select leads location but not to select the pacing delay; iii) 
the time to 90% of the QRS area (t90QRSa) was a good predictor of the 
instant at which 90% of the ventricular tissue had been activated (t90). 
This indicator could be used in clinical trials to complement QRSd 
criterion to select the optimal delay of the pacing leads to obtain a faster 
ventricular activation of most of the ventricular muscle. 

 
3.4.1 Optimal lead location  

 
The location of the optimal pacing site varies significantly between 

patients, so that a strategy of individualized LV lead placement is 
required to maximize the benefit of CRT [184], [189]. The apex for 
permanent LV pacing should be avoided, as this location has been 
associated with poor outcomes in studies such as MADIT-CRT [137], 
[190]. The experimental study PATH-CHF I suggested that the mid 
lateral left ventricular site for the LV lead may show greater acute 
benefit in patients with LBBB [191]. In general, a lateral or posterior 
vein is the desired location for achieving optimal hemodynamic support 
as this is usually the site of most delayed activation of the left 
ventricular wall in patients with LBBB [192], [193].  

 
Our simulation results suggested the upper area of the RV septum 

as the optimal position for the RV lead, in agreement with some 
experimental [145], [194]–[196] and simulation [144] studies. The 
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study of Leclerq and coworkers [197] demonstrates that septal and 
apical RV pacing in CRT have a similar clinical outcome and similar 
LV reverse remodeling after 6 months of therapy. However, other 
studies [198] reported the shortest QRSd for RV septum pacing but not 
a better CRT response (similar LVEF at 6 months). This highlights the 
need of additional indicators to determine the optimal placement of the 
pacing leads. 

 
In the present simulation study the most delayed activation area was 

located in the anterior basal LV region in the HF + LBBB configuration 
under intrinsic activation. We also assessed the latest activated area of 
the LV, when only RV stimulation was applied. If the RV lead was 
placed in the apex, the anterior basal LV area was activated the latest. 
However, the LV lateral wall was the latest activated area when the RV 
lead was located either in the middle or upper septal regions (see Figure 
A.3 in appendix A).  

 
The study of Zanon and coworkers [140] determined that the LV 

lead location in the latest activated site was predictive of the maximum 
increase in contractility (LV dP/dtmax). On the other hand, in the recent 
study of Şipal and coworkers [141], comparing the clinical benefits of 
LV lead implantation guided by the shortest BiV-paced QRSd using 
surface ECG and with the standard unguided CRT, there was a 
significantly higher rate (85% vs. 50%, p = 0.02) of response (>15% 
reduction in LV end-systolic volume) to CRT as well as a shorter QRSd 
(p < 0.001) and a greater QRS shortening for the surface ECG guided 
group. Furthermore, the optimal site for LV lead placement was the 
posterior and posterolateral region, in agreement with our simulations. 
For all RV lead locations tested in our study, when the LV lead was 
placed in the latest activated area of the LV, none of those 
configurations led to the shortest QRSd. 

 
In our study, we also showed that when pacing in the latest 

electrically activated area of the LV, that area did not provide the 
shortest TAT. Similar results were observed in the simulation study by 
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Pluijmert et al. [142]. In that work, the authors found that the LV pacing 
region that provided the maximum acute hemodynamic response, 
located near the latest activated area, did not lead to the largest 
reduction of TAT during biventricular stimulation. Even stimulating 
regions leading to the largest reduction of TAT showed poor increase 
of hemodynamic response. However, other studies have found a 
positive correlation between acute hemodynamic response and TAT 
reduction [135]. The optimal method to place the LV pacing lead is thus 
object of controversy: while several studies support that pacing in the 
latest activated area leads to better hemodynamic response, others 
consider the criterion of maximal reduction in QRSd as the best choice. 

 
3.4.2 Optimal delay between pacing leads 

 
Optimization of AVD and VVD is crucial during CRT application. 

A longer inter-lead electrical delay was associated with more 
pronounced LV reverse remodeling in CRT patients with a presumed 
optimal LV lead position concordant or adjacent to the latest 
mechanically activated non-scarred segment [199]. 

 
In clinical practice this value should be specifically set for each 

patient, although optimization is rarely performed in the real practice. 
The largest trials studying CRT used various methods to optimize these 
intervals, most frequently based on echocardiography and intracardiac 
electrogram interval measurement, but unequivocal proof of the benefit 
brought by optimization is still lacking [148]–[150]. Echocardiography 
presents inherent variability of results and is highly operator dependent 
[147]. Optimization based on intracardiac electrogram intervals has not 
proved yet to be of clear benefit above arbitrary AV interval [151]. 
Multisite pacing has shown favorable results, although it is technically 
complex [200]. A less time-consuming and easier optimization method 
might enable a more systematic optimization of the AVD and VVD at 
routine follow-up visits in all recipients of CRT systems. 
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The morphology of the PS clearly determined in our study the 
influence of AVD. When the RV lead was placed in the apex, the 
intrinsic activation of the His bundle found the majority of the Purkinje 
network already depolarized via retrograde conduction. However, if the 
RV lead was placed in the middle septum or closer to the outflow tract, 
further from any possible entrance to the cardiac conduction system, the 
intrinsic depolarization wavefront spread faster to the myocardium than 
the wavefront generated through the CRT leads, leading to a reduction 
in TAT. Some experimental studies [201] support the idea that PS may 
not allow retrograde conduction in LBBB patients due to structural 
damage, or if allowed, reduced conduction velocity would be observed 
in LV PS sections, neglecting the influence of PS. Whether the rest of 
the LV branches are able to conduct retrogradely [202] or other areas 
of the Purkinje network deteriorate, as HF evolves, remains unknown. 
Experimental studies have measured a strong reduction in septal 
conduction velocity during LBBB when HF was advanced compare to 
acute LBBB [203]. In that case, the simulation results of this study 
should be considered with caution. Although new methodologies are 
arising to better describe the PS [204], [205]. The lack of technology to 
characterize the PS in a patient specific manner, limits the optimal 
configuration for CRT. 

 
Traditional CRT pacing mode does not promote ventricular 

activation through conduction system from the sinoatrial node. The lack 
of enough information on the chronic effects of the fusion leads 
(intrinsic stimulation combined with external pacing) and this method 
is avoided, setting the shortest AVD based on echocardiography [206]. 
In our study, a fusion between the intrinsic activation and biventricular 
(BiV) pacing for the optimal CRT configuration (pacing lead location 
and delays) was assessed. Several experimental works support this 
procedure [152], [207]–[209]. Guo et al. determined that congestive 
heart failure patients with BiV pacing + intrinsic activation presented 
improvement in cardiac function and quality of life [207]. Meanwhile, 
Vatasescu and coworkers observed that BiV pacing fused with intrinsic 
activation might increase the rate of structural responders [209]. 
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Biophysical models of the heart have been used to optimize AVD, 

VVD and lead location during CRT simulation [136], [142]–[144], 
[210]. QRSd, estimated as the difference between the time of the first 
and last activated cardiac cell (or TAT), have been used as one 
optimization criterion by Miri and coworkers. In our study, the optimal 
LV lead location based on the shortest QRSd (calculated in the ECG 
signal) was similar to the region with shortest TAT (see Table 3.1). 
However, VVD value that produced the shortest QRSd did not match 
with the VVD that produced the shortest TAT, which means that QRSd 
and TAT are not totally correlated. A simulation study by Potse and 
coworkers [72] support this result. The authors observed that 
biventricular pacing did not change QRS duration but reduced total 
ventricular activation time when the LV stimulation was applied in one 
point of the LV free wall. 

 
3.4.3 Indicators to evaluate CRT outcome 

 
The Echocardiography Guided Cardiac Resynchronization Therapy 

(EchoCRT) study further reinforced the importance of QRSd over 
mechanical dyssynchrony as the most important indicator for CRT 
responses [211]. Other studies have proposed indexes based on QRS 
measurements. Van Gelder and colleagues [212] showed a relation 
between the Q-LV interval (the interval from Q wave to intrinsic 
deflection on the LV EGM) and the acute hemodynamic effect on 
optimized biventricular stimulation. A longer Q-LV interval predicted 
a greater increase in LV pressure rise (LVdP/dtmax) and vice versa. 
Normalizing the QLV by QRS duration, termed LV lead electrical delay 
(LVLED), was also shown to correlate with Doppler-derived dP/dt 
values. LVLED greater than or equal to 50 % was associated with 
significantly greater reductions in all-cause death or HF hospitalization 
at 12 months of follow-up in patients with non-ischemic 
cardiomyopathy [192]. 
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Our simulations show that the difference in QRSd was significant 
when the LV was paced in different sites and for a fixed placement of 
RV. However, these differences in QRSd were decreased when 
adjusting the delay between leads in a fixed location for both leads (see 
Table A.1 in the appendix A). Thus, the shortest QRSd predicted 
precisely the region in the LV subdomains that produced the shortest 
TAT for the three locations of the RV lead tested, leading to an increase 
in ventricular synchrony. However, this index could not determine the 
pacing delay configuration between leads that allows to obtain the 
shortest TAT. There is no consensus on how QRS should be accurately 
measured, and therefore small differences are expected between 
methods [213]. In our study, the optimal QRSd obtained after CRT 
application supposed a 20% reduction of the QRSd. This result is in 
agreement with the study of Elhakam et al. [187], where 180 patients 
under heart failure conditions and LBBB were studied, and similar 
reductions were obtained. Other studies obtained lower QRS reduction 
values, namely 17% and 12%, for CRT responders in Molhoek et al. 
[188] and Pitzalis et al. [214] studies, respectively. 

 
The assessment of interventricular dyssynchrony was done 

analyzing the TAT. Our results showed that a shorter duration of the 
QRS complex is moderately correlated with a shorter TAT (Figure 
3.7A). The narrowest QRS complex predicted the optimal location of 
the stimulation leads but not the optimal value of the VVD. In this way, 
the t90 index selected correctly the best delay configuration to provide 
the fastest activation of the majority of the heart. In several 
configurations, TAT value was exactly the same (see Table A.2 in the 
appendix A), but t90 discerned the shortest order of activation. Thus, the 
shortest QRSd predicted the location for the optimal leads placement, 
but t90 predicted the best pacing delay with the shortest TAT. We 
hypothesized that setting the pacing delay properly with this new index 
could improve CRT non-responders rate. 

 
Other simulation studies have assessed the evolution of TAT during 

CRT [72], [215] focused on the assessment of the LV intraventricular 
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delay. The recent study of Tomassoni [216] showed how CRT response 
assessment is highly variable depending on the criteria used to define 
the response. QRS width has been shown to correlate well with 
interventricular dyssynchrony but unfortunately this has poor accuracy 
for detecting intraventricular dyssynchrony. As a result, it is estimated 
that only 70% of patients with LBBB have echocardiographic evidence 
of mechanical dyssynchrony [74]. The role of mechanical 
dyssynchrony for improving patient selection for CRT remains 
controversial. The multicenter, nonrandomized Predictors of Response 
to CRT (PROSPECT) study evaluated the ability of 12 
echocardiographic indices of dyssynchrony to predict CRT responses 
at 6 months [217]. These indices provided only modest sensitivity and 
specificity, and researchers reported large variability in quantification 
of dyssynchrony. Mechanical dyssynchrony has also been used to select 
CRT candidates with a narrow QRS duration ≤ 120 ms, with limited 
success in randomized multicenter studies. In this line, mechanical 
response generated by electrical excitation (excitation-contraction 
coupling) could be different depending on the heart region [218]. 
Multiple simulation studies have addressed CRT from different 
perspectives. The recent work of Lee et al. [219] organized and 
summarized the state of the art of computational modeling for CRT. 

 
To our knowledge, and given the benefits of using a model where 

all variables are accessible, our study is the first to systematically 
explore the correlation between the activated portion of tissue (less 
accessible in clinical practice) and the QRS complex in the torso 
surface. Thus, we found that an index based on time to 90% of the QRS 
area (t90QRSa) is a good predictor of the instant at which 90% of the 
ventricular tissue has been activated (t90). This indicator could be used 
in clinical trials to complement QRSd measurements in defining the 
optimal location and delay of the pacing leads to produce faster 
ventricular activation of most of the ventricular muscle. 
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3.4.4 Epicardial vs endocardial pacing 
 
Although LV epicardial stimulation decreased QRS width in most 

cases, a greater reduction was observed for endocardial pacing. The 
study conducted by Spragg et al. [184] showed that CRT administered 
at the optimal site of the LV endocardium was more effective than 
stimulation through an electrode in the coronary sinus. There is 
evidence to suggest that endocardial stimulation yields to more natural 
transmural activation patterns and a better response for CRT patients 
[220]–[222]. In this line, new devices that allow endocardial pacing and 
single lead stimulation [223] coordinated with intrinsic activation will 
provide new possibilities.  

 
The better results obtained with endocardial pacing are strongly 

influenced by PS. As PMJs are located in the endocardial surface, the 
wavefront generated for the LV lead gets into the Purkinje conduction 
system retrogradely and spreads faster to other inactivated areas (see 
Video 2 Retrograde). Thus, knowing the distribution and location of 
PMJ, as well as the conduction system morphology is a determinant 
factor for CRT improvement. 

 
 Limitations 
 
CRT was analyzed only from an electrical point of view in our 

study. Mechanical behavior based on echocardiography is a common 
alternative to assess hemodynamic response, although this method is 
time-consuming and the optimal measurements remain unclear. 
Simulation studies including the mechanical behavior would be 
certainly enlightening.  

 
In this study, a particular heart geometry and PS were assessed. The 

inclusion or not of the moderator band (which may be very patient-
specific) may affect QRSd and TAT measurements, especially when 
pacing on the RV upper septal area. Although our results have been 
compared to other related studies, the specific findings observed in this 

https://youtu.be/2Bqh_AfWzPU


Chapter 3 

66 

study should be carefully validated against clinical studies and 
complemented with a set of computational models of different patients. 
In addition, two isolated stimuli were employed to assess CRT 
efficiency. The development of strategies that allow multi-site pacing 
should be taken into account in future studies. Additionally, the 
incorporation of levels of HF in different ventricular areas could modify 
simulation results. 
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CHAPTER 4 

4 Analysis of vulnerability to 
reentry in acute myocardial 

ischemia using a realistic 
human heart model 

 
 Introduction 
 
Electrophysiological heterogeneities in the myocardium caused by 

acute ischemia can lead to potentially lethal arrhythmias, such as 
ventricular tachycardia (VT) and ventricular fibrillation (VF) [224]. 
Indeed, within the first 10 to 15 minutes after a coronary artery 
occlusion and the subsequent lack of blood flow, the patient frequently 
suffers sudden cardiac death due to the appearance of arrhythmias 
[225]. 

 
Experimental evidence has shown that two discrete phases of 

ventricular arrhythmias occur within the first 30 minutes of myocardial 
ischemia [24], [91]. Phase 1A takes place between 2 and 10 min of 
ischemia approximately [91], with a reentrant process as predominant 
mechanism of origin. VT is the most common arrhythmia in this stage 
[92], [94]. Phase 1B occurs within 18 – 30 min after artery occlusion 
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[91], although the main mechanisms for triggering arrhythmias are not 
precisely defined [94], [95]. A great number of VF events and larger 
mortality have been reported during this stage [96], [97]. However, the 
overall incidence of arrhythmias is higher during phase 1A [97]. 

 
Electrophysiological changes at the cellular and intercellular levels 

occur during acute myocardial ischemia and predispose the heart to the 
occurrence of arrhythmias [112]. It is well know that the three main 
ischemic components that induce electrophysiological alterations in the 
affected tissue are hyperkalemia, hypoxia, and acidosis [25], [26]. 
Within the acute phase of ischemia, hyperkalemia (i.e., an increase of 
extracellular potassium concentration, [K+]o) generally reduces 
conduction velocity (CV) and cell excitability, and induces post-
repolarization refractoriness [90], [112]. Hypoxia (i.e., a reduction in 
oxygen supply) shortens the action potential duration (APD) [101], 
[118], while acidosis (i.e., a reduction of pH) affects the behavior of 
certain ionic currents [105], [226]. All these alterations occur in a 
heterogeneous way through the myocardium, providing the pro-
arrhythmic substrate for the occurrence of reentrant arrhythmias [90]. 

 
The influence of the main ischemic components in 

arrhythmogenesis has been investigated in the past. However, due to 
the complex process of acute myocardial ischemia, the relative 
contributions of each component are still not completely established. 
Experimental and simulation studies have analyzed the combined effect 
of hyperkalemia, hypoxia, and acidosis [25], [227]–[229], as well as the 
effect of one component at a time during the generation of arrhythmias 
[25], [34], [230]. Although some researchers have suggested the 
existence of a predominant ischemic component favoring the likelihood 
of arrhythmias [227], [228], [231], there are no works that have 
assessed and compared the individual influence of the three components 
simultaneously using a realistic 3D anatomical model during ischemia. 
A 2D simulation study by Trenor et al. [228] evaluated the individual 
effect of these components. However, a realistic ischemic region and 
His-Purkinje system (HPS) were not included in their work. 
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The role of the HPS as a possible element that favors the onset and 
maintenance of ventricular arrhythmias also needs further investigation. 
Experimental recordings of the HPS electrical activity have provided 
some evidence supporting the implication of the HPS in VF. For 
instance, experiments in canines showed retrograde and anterograde 
propagation between the myocardium and the HPS during VF [232]. In 
another study, endocardial cryoablation in pig hearts modified the 
activation pattern of VF [233]. Finally, a faster extinction of VF was 
observed in dogs after chemical ablation of Purkinje fibers [234]. 
Despite all these evidences results in animals do not always translate to 
human due to differences between species. In addition, the acquisition 
techniques of these studies may be not sufficient to measure the HPS 
electrical activity without recording the surrounding activity. 
Therefore, the role of the HPS in the onset and maintenance of 
ventricular arrhythmias is controversial, and complex to assess 
experimentally in humans. 

 
Computational simulations are a useful and complementary tool to 

analyze ischemia-induced arrhythmias and the role of the HPS. Several 
simulation studies have assessed the likelihood of  arrhythmias within 
the first minutes of acute ischemia by the quantification of the 
vulnerable window (VW) [34], [122], [228], [229]. The VW is defined 
as time interval during which ectopic stimuli can elicit a reentry. 
However, there are few ischemic simulation studies that include a 
detailed HPS [235], [236], and also a realistic ischemic region in a 
human ventricular model [237]. 

 
In this work, we investigate the effects of hyperkalemia, hypoxia, 

and acidosis on the VW to reentry during different ischemic scenarios 
involving different severities of ischemia. In addition, we analyze the 
role of the HPS and its mechanisms of action in the generation and 
propagation of reentrant activity. These studies were carried out using 
a 3D biventricular human model that includes a realistic geometry of 
the ischemic central and border zones, as well as the cardiac conduction 
system. 
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 Methods 
 

4.2.1 Anatomical model 
 
In the present study, we used a 3D anatomical model of the 

ventricles including a realistic geometry of the ischemic region 
previously developed by our group [238]. The biventricular model was 
built from manual segmentation of a DE-MRI stack using Seg3D 
software (Scientific Computing and Imaging Institute, University of 
Utah, USA) [155]. A surface model of the ventricles was generated 
from the segmented images and meshed using MeshGems-Hexa 
(Distene S.A.S., Bruyeres-le-Chatel, France), obtaining a volume mesh 
formed of 4 million nodes (vertices) and 3.71 million hexahedral 
elements, with an average edge length of 0.4mm. Transmural 
heterogeneity of the ventricular myocardium was assigned in the model 
by defining endocardial, mid-myocardial and epicardial zones, which 
were adjusted to 17%, 41%, and 42% of the ventricular wall thickness, 
respectively [156]–[158]. Myocardial anisotropy was implemented by 
defining fiber orientation based on the method by Streeter et al. [159]. 

 
The biventricular model was based on cardiac DE-MRI images from 

a patient that revealed ischemic myocardial regions in the LV. Using 
the American Heart Association (AHA) nomenclature, these regions 
were located in the medial and basal segments of both inferolateral and 
inferoseptal walls (segments 3, 5, 9, and 11), and all segments of the 
inferior wall (apical, mid-cavity, and basal) (segments 4, 10, and 15), 
mainly associated with an occlusion of the right coronary artery (RCA) 
[239]. The 3D geometries of the ischemic central zone (ICZ) and the 
border zone (BZ) were obtained by applying the standard deviation 
(SD) method [240] during the segmentation of the DE-MRI stack. 
Briefly, the myocardium was divided into healthy and ischemic regions 
based on the gray color intensity of each pixel. Similarly, the ischemic 
region was categorized as ICZ or BZ. ICZ was assigned for pixel 
intensities higher than mean value + 3×SD of healthy tissue; BZ for 
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pixel intensities between mean + 2×SD and mean + 3×SD values; and 
healthy tissue (or normal zone (NZ)) for pixel intensities below mean + 
2×SD. The different regions were mapped into the volume mesh of the 
ventricles and each hexahedral element was labeled as ICZ, BZ or NZ 
(Figure 4.1A). For further details regarding the biventricular model 
construction, see [238]. 

 

 
Figure 4.1 Anatomical model. (A) Endocardial (upper) and epicardial (lower) 
views of the biventricular model in acute ischemia. The ischemic central zone 
(ICZ) (red), the border zone (BZ) (green), the normal zone (NZ) (blue), the 
His-Purkinje system (HPS) (yellow), and the spatial variations of [K+]o, 
[ATP]i, [ADP]i, pHi, pHo, and LPC across the different zones are shown. (B) 
HPS with its elements labeled as ICZ (red), BZ (green), and NZ (blue). 
Purkinje-Muscle junctions are represented as small brown spheres. (C) Torso 
model, including the biventricular mesh (red) and the precordial leads 
location. 

 
The HPS network used in our simulations was the same network 

developed in our previous work [241]. It was built based on a stochastic 
growth method [162] using linear elements. The right ventricle (RV) 
and left ventricle (LV) sections of the network comprised two and three 
main branches with several subdivisions, respectively. A total of 1391 
Purkinje-Muscle junctions (PMJs) were distributed across the 
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myocardium, which, upon simulation, yielded a typical ECG wave 
morphology in the precordial leads. Furthermore, we adjusted the 
conductivity of the PMJs so as to allow retrograde and anterograde 
electrical propagation as it has been experimentally observed [242]. 
Finally, each HPS element was labeled as NZ, ICZ or BZ depending on 
its location (Figure 4.1B). 

 
To compute the ECG in the precordial leads, we fitted the 

biventricular model into a torso mesh previously developed [163], using 
a linear transformation. The adjusted torso mesh comprised 1.26 
million nodes and 7.35 million tetrahedral elements, with a spatial 
resolution of 0.55mm (Figure 4.1C). Furthermore, tissue conductivities 
of lungs, liver, bones, blood pools, great vessels, and skeletal muscle 
were included in the torso model. For further detailed information, see 
[238]. 

 
4.2.2 Action potential model in acute ischemia 

 
As the basal model for our simulations, we used a modified version 

of the O’Hara action potential (AP) model [37] and we introduced it 
into our 3D biventricular model as in our previous work [241]. To 
include changes related to acute ischemia (hyperkalemia, hypoxia, and 
acidosis) in the model, we modified several currents and incorporated 
others, as in [243]. 

 
The effect of intracellular ATP ([ATP]i) and ADP ([ADP]i) (and 

their changes due to hypoxia) were introduced in the AP model through 
the following changes. First, we added the ATP-sensitive K+ current 
(IK(ATP)) proposed by Ferrero et al. [118] which was adapted to human 
ventricular myocytes by modifying the maximum conductance and the 
sensitivity to [ATP]i and [ADP]i using data from Babenko et al. [244]. 
Second, we introduced different scaling factors in the formulations of 
the Na+/K+, sarcolemmal Ca2+ and SERCA pumps that depend on 
[ATP]i and [ADP]i as in the model proposed by Cortassa et al. [245]. 
To introduce the effects of acidosis in the model, we modified the 
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inactivation (fss) and activation (dss) gates of the L-type Ca2+ current 
(ICaL) and multiplied the maximum conductance by a scaling factor to 
mimic the experimental results observed by Saegusa et al. [105]. 
Furthermore, we multiplied the fast and late Na+ currents (INa and INaL, 
respectively) and the Na+/K+ pump by different scaling factors that 
depend on extracellular and intracellular pH (pHo and pHi, 
respectively), and lysophosphatidylcholine (LPC). The effects of pHo 
and pHi were obtained from [104], [246]–[248], while those due to LPC 
were obtained from [249]–[251]. Finally, the effect of hyperkalemia 
was introduced by simply increasing the extracellular potassium 
concentration ([K+]o). 

 
The values of [K+]o, [ATP]i, [ADP]i, pHi, pHo, and LPC used in the 

AP model were chosen in correspondence to four different severities of 
acute ischemia in the ICZ: mild (≈ 2.5 minutes after occlusion), 
moderate (≈ 5 minutes after occlusion), moderate-severe (≈ 7.5 minutes 
after occlusion), and severe (≈ 10 minutes after occlusion) (see Figure 
4.2). The values for healthy and severe conditions were taken within a 
range of experimental data [98], [101], [103], [108], [249], [252]. 
Parameter values for mild, moderate, and moderate-severe conditions 
were calculated using linear interpolation, except for [K+]o. For the 
latter, we used a Boltzmann curve which approximately mimics the 
behavior of the [K+]o during the first 10-15 minutes of ischemia in 
accordance with several experimental studies [98], [103], [253], [254] 
(Figure 4.2). 

 
Within the BZ, we implemented a linear gradient of each ischemic-

related parameter from its physiological value in the NZ to its ischemic 
value in the ICZ, as shown in experimental studies [28], [255]. The 
transition within the BZ occurred along its entire width for [K+]o, pHi, 
pHo, and LPC and along the proximal 10% of the BZ (next to the NZ) 
for [ATP]i and [ADP]i (see Figure 4.1A, bottom panel). 
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Figure 4.2 Time course of ischemia-related parameters during the first 10 
minutes of acute ischemia. Parameter values before arterial occlusion (t = 0) 
correspond to healthy conditions. Parameter values for 2.5, 5.0, 7.5, and 10.0 
minutes of ischemia correspond to a mild (blue traces), moderate (red traces), 
moderate-severe (magenta traces), and severe (green traces) ischemic 
condition, respectively. 
 

Ischemic simulations including the HPS were performed using the 
AP model of Purkinje cells developed by Stewart et al. [169]. The 
effects of hyperkalemia on Purkinje cells were introduced in the model 
by simply increasing extracellular potassium concentration ([K+]o) as in 
the nearest cardiomyocyte. The effects of hypoxia and acidosis were 
not introduced due the lack of experimental information. 

 
4.2.3 Stimulation protocol 

 
In the present study, we analyzed the role of each ischemic 

component (hyperkalemia, hypoxia, and acidosis), as well as the role of 
the His-Purkinje system, in the generation of reentries. For this purpose, 
our 3D human ventricular model with and without the HPS was used to 
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simulate the bioelectric behavior of the ventricles under different acute 
ischemic conditions. In the presence of the HPS, sinus rhythm was 
simulated by applying an electrical stimulus (S1) in the hypothetical 
location where the bundle of His begins. Conversely, when the HPS 
was removed from the model, a stimulus was applied at each location 
of a PMJ at the same instant in which the PMJ was activated in the 
simulation with the HPS. Seven consecutive beats with a cycle length 
of 600 ms were simulated in both cases. After the fifth beat of the series, 
a premature stimulus (S2) was applied in a region of the epicardial BZ. 
This stimulus mimics the earliest epicardial activity experimentally 
observed in the myocardium adjacent to the border zone after a 
premature beat occurred in acute ischemia [129]. The time interval 
between the fifth S1 and S2 (coupling interval or CI) was varied with a 
resolution of 5 ms to determine the duration of the vulnerable window 
(VW) for reentry. The range of CIs that produced at least two reentrant 
cycles in the biventricular model was defined as the VW. 

 
4.2.4 Numerical methods 

 
Simulations were run using ELVIRA software [170]. The electrical 

propagation throughout the ventricles was computed by solving the 
reaction-diffusion monodomain equation 

 
                         ∇∙(D∇Vm) = Cm

∂Vm
∂t

+ Iion+ Istim (4.1) 
  

where D is the equivalent conductivity tensor, Vm is transmembrane 
potential, Cm is membrane capacitance, Iion is transmembrane ionic 
current and Istim is the transmembrane stimulation current. This system 
of differential equations that results from equation 4.1 plus the ordinary 
differential equations related to gating and dynamic changes in ionic 
concentrations [170] was solved using the finite element method 
(FEM). 
 

To obtain a realistic conduction velocity (CV) in the biventricular 
model, we performed a set of test simulations on a 3D slab model of 20 
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mm x 20 mm x 8 mm as in our previous study [241]. The longitudinal 
(σL) and transversal (σT) conductivities were fit to 0.5 S/m and 0.1 S/m, 
respectively. This calibration yielded a CV of 0.61 m/s along the fiber 
direction and of 0.29 m/s perpendicular to the fiber direction, in 
accordance with experimental measurements in human ventricles [48]. 
For the HPS, the CV was adjusted to 2.5 m/s approximately [47], [256]. 

 
The ECG and the body surface potential maps (BSMP) were 

obtained using an approximation of the bidomain approach. 
Specifically, the transmembrane potentials computed in the nodes of 
the hexahedral biventricular mesh were interpolated to the nodes of the 
tetrahedral torso mesh that corresponded to the ventricular 
myocardium. Then, the extracellular potentials (φe) in the ventricles 
were calculated by solving the passive term of the bidomain approach 

 
                          ∇∙�[Di+De]∇φe�=  ̶ ∇∙(Di∇Vm) (4.2) 
  

where Di and De are the volume-averaged conductivity tensors of the 
intra and extracellular domains, respectively [171], [174]. 
Subsequently, applying Dirichlet boundary conditions at the ventricles-
torso interface and Neumann-type conditions at the torso surface, the 
extracellular potentials were computed in the whole domain of the 3D 
torso model (ΩT) by using the FEM method to solve the following 
Laplace equation: 

 
      ∇ ∙ (𝑫𝑫𝑇𝑇 ∙ ∇𝑉𝑉𝑇𝑇) = 0      in      Ω𝑇𝑇 (4.3) 

 
where VT represents extracellular potentials within the domain of the 
torso model (except for the ventricles) and DT is the heterogeneous 
conductivity tensor of the torso model defining its conductive 
properties [238]. We assigned isotropic conductivities to each tissue 
(see [241] for details). Finally, the ECG in each precordial lead was 
computed as the extracellular potential at the electrode location referred 
to the Wilson Central Terminal, as done in the clinical practice. The 
total activation time (TAT) of the ventricular mesh was estimated as the 
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time interval between the first and last depolarized node in the mesh 
above a threshold of −10mV. 

 
 Results 
 

4.3.1 Changes in electrical activation and ECG under different 
severities of acute ischemia 

 
Figure 4.3A shows ventricular activation maps under healthy 

conditions and under three different severities of acute ischemia. In 
non-pathological conditions, endocardial activation of the LV started 
18 ms after the His stimulation, and 9 ms later the RV activation began. 
This results are similar to those obtained by Durrer et al. in human 
hearts [47]. The total activation time (TAT) of the ventricles was 
approximately 100 ms, comparable to [47], [181]. The last activated 
part in the LV was the antero-lateral region, while the latest areas 
depolarized in the RV were the outflow tract and postero-basal regions. 

 
Under ischemic conditions, the electrical conduction in the sections 

of the His-Purkinje system located in the ischemic region was slower. 
This reduction in the propagation velocity led to a delay in the onset of 
ventricular activation. Accordingly, when mild ischemia was simulated, 
the LV and RV activation started at 26 ms and 30 ms, respectively. 
During moderate ischemia conditions, the electrical impulse from the 
His bundle arrived first to the RV endocardium at 34 ms, while the LV 
activation started 7 ms after the onset of RV activation. In severe 
ischemia, the first activation in the RV and LV occurred at 40 ms and 
69 ms, respectively. Furthermore, a wavefront from the RV reached the 
LV endocardium in the apical septal region at 74 ms, which depolarized 
the apex and the endocardial lateral wall through myocardial 
propagation and retrograde conduction through the HPS. In this last 
case, an incomplete left bundle branch block (LBBB) was observed. 
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Figure 4.3 Simulated myocardial activation maps and ECG signals under 
different ischemic severities. (A) Posterior view (top row) and anterior cross-
sectional view (bottom row) of the biventricular model showing the activation 
on the epicardium (upper) and endocardium and midmyocardium (lower), 
respectively. White curves represent the ischemic central zone. (B) 
Comparison between simulated precordial lead signals (top row) and clinical 
recordings of a patient before and 3 minutes after an RCA occlusion (bottom 
row). Patient data were taken from the STAFF III database of the Physionet 
repository [257]. 

 



Analysis of Vulnerability to Reentry in Acute Myocardial Ischemia 

79 

Similarly, a reduced conduction velocity in the ischemic region led 
to a progressive increase in the TAT and a change in the latest activated 
area. In mild ischemic conditions, the activation of the whole 
myocardium took 110 ms. The last activated areas in the RV were the 
same regions than in healthy conditions. However, the latest area 
depolarized in the LV was shifted slightly to the lateral region. During 
moderate ischemic conditions, the TAT was increased to 148 ms and 
the latest activated region in the LV was the postero-lateral wall next to 
the ICZ. Under severe ischemic simulations, a marked increase in the 
TAT to 248 ms was obtained. In addition, the ICZ was the latest 
activated region, although in healthy conditions this region was one of 
the first parts of the LV epicardial wall to be activated. 

 
Figure 4.3B shows a comparison between the computed ECG in the 

precordial leads for simulations in a healthy heart and under three 
different severities of acute ischemia (top panel), and clinical 
recordings of a patient before and 3 minutes after an RCA occlusion 
(bottom panel). Data were taken from the Physionet repository 
(https://physionet.org/), STAFF III database, patient 8 [257], [258]. In 
non-pathological conditions, the duration of the QRS complex (QRSd) 
was approximately 90 ms, in accordance with human data [56], [57]. 
Under ischemic conditions, the QRSd was increased to 98, 121, and, 
133 ms for mild, moderate, and severe ischemia, respectively. This last 
value supports the diagnosis of an incomplete LBBB, caused by a 
reduced conduction velocity in the main branches of the His-Purkinje 
system probably due to the severe level of ischemia. 

 
Several changes in the T-wave morphology of the precordial leads 

were observed during ischemic simulations. Our results show an 
increment in the T-wave amplitude, especially in leads V2 and V3, 
similarly to the clinical record of the example patient after RCA 
occlusion (red trace), as recorded as well in clinical practice [119]. In 
addition, a transition of the T-wave in lead V1 from negative in healthy 
conditions to a biphasic behavior during moderate ischemia (≈ 5 min 
after the onset of ischemia) was found, which agrees with the clinical 

https://physionet.org/
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recording 3 minutes after RCA occlusion (red trace). This finding is 
considered very specific of ischemia [119], [121]. For severe ischemic 
conditions, an inverted T-wave was obtained in lead V1, in accordance 
with experimental data [119]. 

 
Finally, an elevation of the ST segment in leads V1‒V3 was 

measured at the J point (end of the QRS complex) for a moderate 
ischemic condition (8, 110, and 100 µV, respectively). This alteration 
was also observed in the clinical ECG, although in a different degree 
(71, 81, and 70 µV). Conversely, the simulated ECG under severe 
ischemia displayed a marked ST depression of ‒426, ‒573, and ‒457 
µV in leads V1‒V3 compared to non-pathological tissue. This 
depression represents the combined effect of acute ischemia and LBBB, 
which is in accordance with the second criterion of Sgarbossa (ST 
segment depression ≥ 1 mm in V1, V2, and/or V3) for the diagnosis of 
a patient with these two pathologies [259], [260]. 

   
4.3.2 Effect of acute ischemia in the action potential 

 
Figure 4.4 shows the alterations in APD and resting membrane 

potential (RMP) during mild, moderate, and severe acute ischemia. As 
shown in Figure 4.4A, simulations under ischemic conditions produced 
APD shortening, a reported effect in patients with this pathology [114]. 
In healthy conditions, the APD values ranged 232 ‒ 347ms, depending 
on the location within the ventricles. The longest APDs were found in 
PMJ sites on the endocardial wall, whereas the shortest APDs were 
found in sites close to the latest electrically activated area on the 
epicardium wall, which is in accordance with experimental 
observations [236], [261], [262]. 

 
Under pathological conditions, the longest APDs remained 

localized at the functional PMJs, which is in accordance with [236], 
whereas the shortest APDs were found in the ischemic region. Under 
mild, moderate, and severe ischemia, APD was reduced by a maximum 
of 18%, 27%, and 49% of the normal values, which agrees with [114]. 
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Furthermore, the degree of APD shortening varied spatially throughout 
the ischemic tissue, as reported in other studies [263]. This spatial 
heterogeneity was greater during severe ischemia. Co-existing areas 
were found inside the ICZ with and without APD reduction (ΔAPD = 
45% and ΔAPD = 0%, respectively) (Figure 4.4A, green circle). To 
investigate the differences in APDs in this region, we analyzed the 
propagation patterns. Our results show that a wavefront entering the 
ICZ from its right side was able to stimulate the proximal ICZ, 
maintaining the peak potential and avoiding APD reduction in the 
region. However, the central section of the ICZ was stimulated by 
several wavefronts of reduced amplitude that led to APD shortening. 

 

 
Figure 4.4 Electrophysiological changes in the action potential under acute ischemia. 
Simulated maps of action potential duration (APD) variation (A) and resting 
membrane potential (RMP) (B) under mild, moderate, and severe ischemia conditions. 
The white curves represent the ischemic central zone (ICZ), while the green circle 
shows the epicardial region within the ICZ where spatial heterogeneity was greater. 
 

Similarly, our results (Figure 4.4B) show a less negative RMP under 
acute ischemia conditions, as in previous experimental and simulation 
studies [168], [228], [264]. In non-pathological tissue, the RMP was 
approximately ‒88mV, while in the ICZ RMP was ‒73mV, ‒68mV, 
and ‒63mV for mild, moderate, and severe ischemia, respectively. In 
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the BZ, resting potentials values varied between the healthy and 
ischemic values. 

 
4.3.3 Role of acute ischemia in the generation of reentries 

 
In order to assess the effect of the degree of ischemia in the 

generation of reentry, the vulnerable window during each ischemic 
condition was calculated by applying a premature stimulus (S2) in an 
area of the border zone in the epicardial wall (point P1 in Figure 4.5), 
as explained in the Methods section. S2 was delivered at different time 
intervals (coupling intervals) after the fifth sinus (S1) beat. Figure 4.5A 
shows the VW obtained during four different ischemic severities: mild, 
moderate, moderate-severe, and severe. Our results predict a VW of 
approximately 5 ms in moderate ischemic conditions, corresponding to 
a CI between 335 and 340 ms. A change in the ischemic severity to a 
moderate-severe condition yielded the maximum width of the VW (45 
ms), with a range of CIs between 345 and 390 ms. Conversely, no 
reentries were found from mild or severe conditions. In summary, our 
results suggest that the ischemic severity plays an important role in the 
generation of reentries. A unimodal behavior of the VW during the first 
10 minutes of ischemia was observed. In other words, a premature 
stimulus applied only in a moderate (≈ 5 minutes after occlusion) or 
moderate-severe level (≈ 7.5 minutes after occlusion) of acute ischemia 
could generate a reentry. 

 
To evaluate the effects of each ischemic component (hyperkalemia, 

hypoxia, and acidosis) on the generation of reentries, we quantified the 
VW during seven different scenarios of acute ischemia in the 
biventricular model with and without the HPS (Figure 4.5B). Each 
scenario corresponded to different severities of each of the three 
components of ischemia (e.g. mild hyperkalemia + moderate acidosis + 
moderate hypoxia). Computational simulations in the model that 
included the HPS (red bars) showed a VW approximately of 5 ms under 
a moderate ischemic level in all components, with CIs originating 
reentries between 335 and 340 ms. An individual change of 
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hyperkalemia, hypoxia or acidosis from moderate to severe led to an 
increment to 25 ms in the VW with CIs between 380 and 405 ms, 45 
ms with CIs between 320 and 365 ms, and 40 ms with CIs between 340 
and 380 ms, respectively. Conversely, no reentry (VW = 0 ms) was 
found during the individual reduction of each ischemic parameter to 
mild. 

 

 
Figure 4.5 Vulnerable window (VW) for reentry. (A) VW under four different 
ischemic severities: mild, moderate, moderate-severe, and severe. These conditions 
correspond to 2.5, 5.0, 7.5, and 10.0 minutes of ischemia, respectively. (B) VW under 
seven different scenarios of acute ischemia. The severity of each ischemic component 
(hyperkalemia, hypoxia, and acidosis) in each scenario is shown at the bottom. Red 
and blue bars represent the results of simulations with and without the HPS, 
respectively. Stimulation point (P1) of the premature stimulus is show in light green 
inside the inset. 

 
On the other hand, computational simulations in the model without 

the HPS (Figure 4.5B, blue bars) yielded reentries only for a CI = 335 
ms under moderate ischemic conditions for all components of ischemia. 
An individual change of hyperkalemia, hypoxia or acidosis level from 
moderate to severe led to an increase in the VW to 25 ms with CIs 
between 380 and 405 ms, 40 ms with CIs between 320 and 360 ms, and 
35 ms with CIs between 340 and 375 ms, respectively. Finally, any 
change of any ischemic component from moderate to mild did not 
generate reentries (VW = 0 ms). 
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The influence of the His-Purkinje system in the width of the VW 
was analyzed in the different scenarios. Results without HPS, but 
maintaining the normal sinus activation by stimulating the PMJ 
locations (as described in the Methods section), showed slight 
reductions in the VW width (blue bars in Figure 4.5B) with respect to 
simulations including the HPS (red bars). Under moderate ischemic 
conditions, the VW was reduced to less than 5 ms. An increment in the 
hyperkalemia level from moderate to severe did not produce changes in 
the VW between simulations with and without retrograde conduction 
(VW = 25 ms). On the other hand, when hypoxia or acidosis were 
individually increased to the severe level, the VW was reduced in 5 ms 
in simulations without the HPS. Furthermore, the suppression of the 
retrograde conduction through the HPS affected the VW only for the 
highest CI values (blue blocks). In summary, our results show that 
hypoxia has the most significant effect on the width of the VW and that 
the HPS is a fundamental element in the generation of reentry for higher 
CI values of the VW. Furthermore, the HPS provides propagation 
pathways favoring the maintenance of reentry. 

 
The most common reentrant pattern observed during our acute 

ischemia simulations was a figure-of-eight reentry, which is in 
accordance with many experimental observations [112], [129], [265]. 
Also, the position, size and pattern of the reentrant circuit changed from 
beat to beat. Figure 4.6 shows the propagation patterns of a macro-
reentry obtained in our biventricular model including the HPS. 
Simulated ischemic conditions were moderate hyperkalemia and 
acidosis, and severe hypoxia. Reentrant activity started with a 
premature stimulus (S2) in the right BZ occurring 320 ms after the fifth 
sinus beat (S1). In the first reentrant cycle, a unidirectional block within 
the ICZ (straight line, second row) gave rise to two circus movements 
around it, which were completed at 310 ms after S2 (third row). In the 
HPS, wavefronts were propagated by means of both retrograde and 
anterograde conduction. 
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Figure 4.6 Reentrant pattern of a macro-reentry using the biventricular/torso model. 
(A) Ventricular potential maps that show the generation of a figure-of-eight reentry. 
(B) Body surface potential maps and ECG recorded at precordial leads during the 
reentry. The simulated ischemic conditions were moderate hyperkalemia and acidosis, 
and severe hypoxia. Arrows indicate the propagation direction of the wavefront, while 
the straight lines indicate unidirectional conduction block. The black circle in the last 
row shows the location where a new wavefront was generated due to current flow 
from the myocardium to HPS. 
 

In the second reentrant cycle, the reentrant pattern also showed two 
circus movements. The lower circus movement was established around 
a zone of conduction block located in the lower part of the ischemic 
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region. The diameter of the block region was approximately 1.5 cm. 
The circus movement ended at 630 ms after S2 (fourth and fifth rows). 
The upper circus movement was established around the ICZ. This 
wavefront was combined with a fragmented wavefront coming from the 
lower circus movement, and this gave rise to the third cycle. In the HPS, 
a temporary conduction block was observed in two sections located on 
the septal wall (fourth row in Figure 4.6A). 

 
During the third cycle of the reentry, two circus movements around 

the ICZ and another propagation circuit throughout the ICZ were 
established. The wavefront from the ICZ was combined with the upper 
wavefront. Later, both the lower and upper wavefronts were also 
combined to retrogradely cross the ICZ. During this same cycle, a 
wavefront was transmurally propagated to give rise to reentrant activity 
in the endocardium (black circle, fifth row). In the HPS, a new 
wavefront was generated in one of the RV PMJs due to current flow 
from the myocardium to the HPS. This event was produced during the 
repolarization of the RV septum when the HPS section located in the 
septum was able to allow electrical conduction (black circle, last row). 

 
Figure 4.6B displays the body surface potential maps (BSPMs) and 

the ECG obtained during this particular reentry. As shown in the figure, 
positive and negative potential areas were registered on the torso during 
each reentrant cycle. A rotary clockwise pattern seems to occur in 
different planes. In that sense, when a reentrant cycle begins, a region 
of positive potential appears near the location of leads V2 and V3. Then, 
this region moves towards the left shoulder and from that site to the 
lower part of the back. Finally, the zone of positive potential returns to 
its initial location, giving rise to a new cycle. A clear example of this 
movement can be seen in the ECG computed in the precordial leads 
(Figure 4.6B, right). The ECG shows the typical pattern of a ventricular 
tachycardia with a mean cycle length of around 320 ms (which 
corresponds to approximately 188 beats per minute). 
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Figure 4.7 illustrates the role of the HPS in the generation of reentry 
during moderate ischemia elicited with a premature stimulus (S2) 340 
ms after the onset of the last sinus beat. In the model including the HPS, 
a sustained reentry of at least 3 reentrant cycles was obtained (Figure 
4.7A, C blue trace). Conversely, no reentry was generated under the 
same ischemic conditions when the HPS was removed from the model 
(Figure 4.7B, C red trace). In this last case, a bidirectional conduction 
block was observed at the right border of the ICZ. 

 

 
Figure 4.7 Role of the His-Purkinje system on reentry generation. (A) Macro-reentry 
obtained with the model that includes the HPS. (B) No reentry in the ischemic 
simulation using the model without HPS. (C) ECG simulated in lead V1 for both 
cases. Simulations were performed under moderate ischemia.  
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When the S2 stimulus was applied (first row), a conduction block in 
the ICZ produced two reentrant circuits in both scenarios (second row). 
This fragmented wavefront proceeded retrogradely into the ICZ and 
entered the NZ, sustaining the reentry during the simulation with the 
HPS (Figure 4.7A, third row). Conversely, the fragmented wavefront 
entered the ICZ but was blocked in the still refractory NZ in the 
simulation without HPS (Figure 4.7A, third row). Our results reveal a 
slow conduction velocity in the ischemic region for both scenarios. 
However, areas with high PMJs density within the ischemic region had 
a further slight reduction in conduction velocity due to current flowing 
from the myocardium to the HPS during the wavefront propagation 
through the myocardium. This slower conduction velocity in the 
simulations with the HPS allowed the NZ to recover once the wavefront 
had crossed the ICZ. 

 
 Discussion  
 
In this study, a set of acute ischemic simulations were performed in 

a 3D biventricular/torso model with a realistic ischemic region and 
cardiac conduction system. We analyzed the influence of the three main 
components of ischemia (hyperkalemia, hypoxia, and acidosis) and the 
role of the HPS in reentry generation. Our simulations were performed 
using a modified version of the O’Hara et al. [37] action potential model 
in which we included the main ionic changes related to acute ischemia. 
The simulations results obtained with the model are in accordance with 
previous experimental and simulation studies and shed light into the 
mechanisms responsible for reentrant activity during acute ischemia. 

 
The major findings of this study are the following. First, the severity 

of ischemia plays an essential role in determining the likelihood of 
reentrant arrhythmic activity. The worst scenario for arrhythmia 
development is moderate ischemia. Second, the single ischemic 
component with the most significant effect on the VW for reentry was 
hypoxia. Third, the retrograde conduction from the myocardium to the 
HPS in the ischemic region plays a decisive role in reentry generation 
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for higher CI values within the VW. Fourth, the hyperkalemia level in 
Purkinje cells affects the generation of reentries. And fifth, the 
maintenance of the sinus excitation overlapped with the reentrant 
activity does not significantly alter the wavefront propagation in the 
arrhythmic myocardium. 

 
4.4.1 Role of ischemic severity in the generation of reentries 

 
During the first 10 ‒ 15 minutes of acute myocardial ischemia, 

metabolic changes in the injured tissue produce a series of electrical 
alterations in the affected cells, such as APD shortening, CV reduction 
and RMP increment to less negative values [28], [48], [114], [228]. 
These ischemia-induced alterations are not homogeneous within the 
ischemic region, but appear in the form of gradients between the ICZ 
and the BZ [255], [263]. In our study, simulation results for different 
severities (or minutes) of acute ischemia were consistent with the 
experimental and simulation data mentioned above. A combined effect 
of hyperkalemia, hypoxia, and acidosis due to ischemia led to a 
dispersion of refractoriness and CV in the ischemic myocardium, 
setting the pro-arrhythmic substrate for reentries generation [255], 
[266]. 

 
Previous experimental observations during acute myocardial 

ischemia reported that arrhythmias occur in two distinct phases: before 
10 minutes, and between 20 and 40 minutes after coronary artery 
occlusion [94], [97], [266]. In our study, we only analyzed the 
appearance of arrhythmic activity during the first 10 minutes of 
ischemia. According to our results, reentries were triggered between the 
first 5 to 7.5 minutes of ischemia (moderate to moderate-severe 
ischemic conditions), corresponding with said first phase of 
arrhythmias. These results are also in agreement with the studies 
performed by Smith et al. [97] and Kaplinsky et al. [93], which reported 
that reentries occur 2 to 10 minutes after the occlusion, with the peak of 
arrhythmic events at 5 to 6 minutes approximately. Similarly, Morena 
et al. [25] reported a higher occurrence of arrhythmias and ventricular 
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fibrillation (VF) episodes between 3 and 8 minutes after the occlusion 
of the left anterior descending artery (LAD) in pigs. Finally, in the study 
by Coronel et al. VF was induced with one ventricular premature beat 
after 5 minutes of ischemia, but not after 10 minutes during LAD 
occlusion in perfused porcine hearts [230]. For this last experiment, an 
[K+]o value between 8.0 and 13.5 mM was a necessary condition for the 
induction of VF. 

 
In our simulations, reentries were generated for values of [K+]o of 

10 and 11 mM, which is in accordance with [230]. Also, in the study by 
Hirche et al. [253], [K+]o levels between 10.7 ± 1.9 and 14 ± 2.9 mM 
were measured during the first phase of ventricular arrhythmias in pigs 
with acute coronary artery occlusion. Conversely, Tobar et al. [34] in 
their simulation study reported that reentries were not generated for 
values of [K+]o greater than 9 mM. A possible explanation between the 
different results obtained in the present study and the one by Tobar et 
al. [34] lies on the most recent action potential model used in our 
simulations and the most realistic form of modeling the effects of acute 
ischemia in the AP ventricular model. In addition, the simulation study 
by Martinez-Navarro et al. [122] reported reentries for [K+]o = 9.5 mM 
using the O’Hara model. This value is close to the levels of [K+]o that 
induced reentries in our study. However in the work by Martinez-
Navarro et al. [122] a realistic ischemic region and a detailed HPS were 
not included, as in the present research study. 

 
4.4.2 Separate role of the ischemic component in the generation 

of reentries 
 
Cells affected by acute ischemia experience hyperkalemia, hypoxia, 

and acidosis due to the lack of blood flow [253], [267]. However, the 
influence of each ischemic component on arrhythmogenesis is difficult 
to analyze experimentally. For this purpose, computational models have 
become an important tool in understanding the mechanisms responsible 
for reentry. For instance, Ferrero et al. [231] used computational 
simulations to analyze the mechanisms involved in figure-of-eight 
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reentry in a ring-shaped 1-dimensional strand of cardiac cells. The 
results of this study suggested that the most pro-arrhythmic ischemic 
component would be hypoxia. Subsequently, the same group studied 
the role of each ischemic component in the establishment of figure-of-
eight reentry in a 2D model [229]. They reported that a sustained reentry 
can be generated under conditions of strong hyperkalemia alone ([K+]o 
> 11.9 mmol/L), and that severe hypoxia tends to reduce myocardial 
vulnerability to reentry. Similar results were reported in the study by 
Trenor et al. [228]. In the latter, the authors observed that a lower 
hyperkalemia ([K+]o ≤ 11 mmol/L) level did not lead to reentry 
generation regardless of the presence of hypoxia or acidosis. In 
addition, a similar role of acidosis and hypoxia in the widening of the 
VW was reported in this study. Both computational analyses were 
performed using the Luo-Rudy AP model [63]. On the other hand, a 
more recent study by Tobar et al. [34] investigated the effects of 
hyperkalemia on the VW for reentry using the ten Tusscher AP model 
[36] in a 3D biventricular mesh. Their results showed that [K+]o had a 
significant effect on the size of the VW. However, effects of hypoxia 
and acidosis were not analyzed. 

 
In our study, a modified version of the O’Hara AP model was used 

to evaluate the individual effects of hyperkalemia, hypoxia, and 
acidosis in the width of VW for reentry. From a moderate ischemic 
severity in the three ischemic components, an individual change of a 
single ischemic component to mild or severe conditions was applied, 
resulting in a total of seven scenarios of ischemic severity analyzed (see 
Figure 4.5B). Our model showed that all components of ischemia affect 
the VW, although in a different degree and via different mechanisms. 
Indeed, our simulation results suggest that hypoxia has the most 
significant effect on the width of the VW, i.e., hypoxia could be the 
most pro-arrhythmic individual component of ischemia in accordance 
with Ferrero et al. [231]. However, this effect was only slightly major 
(a difference of 5 ms) compared to a change in acidosis alone, which 
brings our results closer to the observations reported by Trenor et al. 
[228], who observed a similar effect of hypoxia and acidosis on the 
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VW. The recent study by Lawson et al. [268] demonstrated that the 
wavelength (calculated as the product of APD times CV) is the most 
critical factor in reentry initiation, with hypoxia being the primary 
determinant of this factor, while acidosis had a minor effect. However, 
the authors mentioned that their results may underestimate the role of 
the lack of oxygen due to simplifications adopted by the reduced ten 
Tusscher ionic model used in their study. Experimentally, the relative 
contribution of each ischemic component to the genesis of ventricular 
arrhythmias is not established. That said, Wilde, in his review study 
about the role of ATP-sensitive K+ channel current in ischemic 
arrhythmias, reported that the activation of the IK(ATP) current (activated 
by hypoxia) in the early phase of acute ischemia potentially contributes 
to the development of ventricular arrhythmias [269]. Moreover, the 
study by Said et al. [270] suggests that the presence of acidosis in 
perfused rat hearts may affect intracellular calcium management, 
causing the initiation of arrhythmias. 

 
On the other hand, our study also shows that hyperkalemia was the 

ischemic component with less effect in the VW. Despite this, a 
minimum value of [K+]o of 10 mM was necessary to trigger a reentry 
even in the presence of moderate hypoxia and acidosis. This result 
suggests that hyperkalemia level could play an important role in reentry 
generation, in agreement with the simulation study by Tobar et al. [34] 
and with the experimental study by Morena et al. [25]. In the latter, the 
regional combination of hypoxia with acidic perfusion did not generate 
early arrhythmia in porcine hearts. However, when hypoxia was 
combined with a [K+]o around 10 mM, VT was observed after 10 
minutes and VF after 20 minutes. A similar result was reported in the 
study performed in dogs by Senges et al. [227]. 

 
Finally, our model shows that an individual and combined change 

of the three ischemic components could produce opposite effects in the 
VW width. Indeed, an increment solely of hyperkalemia, hypoxia, or 
acidosis to severe conditions led to a widening of the VW, while the 
simultaneous increment of all components reduced the VW to 0 ms (i.e., 
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no reentries were observed). This result shows the importance of the 
concomitant effects of the ischemic components on arrhythmogenesis, 
in accordance with other studies [227], [230]. In the work by Senges et 
al. [227] in canine hearts, the regional combination of hypoxia plus 
lactic acidosis, without hyperkalemia, failed to trigger reentrant 
arrhythmias, which were indeed observed when regional hyperkalemia 
was included. Similar results were reported in the study by Coronel et 
al. [230], which analyzed the effects on the arrhythmogenesis of both 
hyperkalemia and ischemia (i.e., all ischemic components). The results 
of their experiments showed that a reentrant arrhythmia could be 
generated in a tissue with [K+]o between 8 and 13.5 mM, but only in 
hypoxic and acidotic conditions. 

 
4.4.3 Role of His-Purkinje system in the generation of reentries 

 
The role of the HPS in the generation and maintenance of 

ventricular arrhythmias is controversial. Experimental studies, such as 
Cha et al. [30] have reported that in the absence of the HPS, VF in dogs 
could continue but at a slower rate. Other study by Livia et al. [29] 
observed that the elimination of Purkinje fibers with irreversible 
electroporation reduced the threshold/vulnerability toward VF 
induction during an experiment with 8 canine hearts. Conversely, Janse 
et al. [27] reported that after the destruction of the subendocardium 
including the HPS, ectopic beats in the myocardium were triggered by 
ischemia, but none of these beats degenerated into VF. 

 
In our study, simulation results showed a slight reduction of the VW 

when the HPS was removed from the biventricular model, in 
accordance with experimental observations reported by Livia et al. [29]. 
The inclusion of the HPS in the anatomical model played a double role 
in the generation of reentry. First, the HPS played an irrelevant role in 
the generation of reentrant activity in approximately 83% of the 
simulations where reentries were generated and sustained. This means 
that reentries were triggered without the need for HPS in 83% of the 
simulations. However, when the HPS was included in the model, 
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reentrant circuits which included the HPS in their pathways were 
observed in all simulations, as in [235], [271]. These circuits allowed 
an earlier activation of distant regions to the ischemic zone through 
retrograde and anterograde fast conduction, which suggests that the 
HPS could help to maintain a reentry as in the simulation study by Deo 
et al. [235]. In the latter work, authors reported that propagation 
pathways throughout the HPS prolong the arrhythmic activity and that 
the HPS plays an additional role in maintaining the later stages of 
reentry, although the CIs range for reentry inducibility in simulations 
with and without the HPS were similar. Second, in our simulations the 
inclusion of the HPS in the biventricular model was a necessary 
condition in the generation of reentries for higher CI values within the 
VW, opposite to the simulation results obtained by Deo et al. [235]. 
Indeed, our simulations revealed that the HPS further reduces 
conduction velocity in the ischemic region with high density of PMJs. 
This additional reduction allowed the NZ to recover once the wavefront 
had crossed the ICZ, generating a reentry. 

 
Although our results indicate that the HPS plays an important role 

in the generation of reentries, they also suggest that this role depends 
on the degree of hyperkalemia that affects Purkinje cells. To confirm 
this observation, simulations under moderate ischemia were repeated in 
the biventricular model including the HPS, but without the effects of 
hyperkalemia in Purkinje cells (results not shown), i.e. no changes were 
made to the Purkinje AP model in ischemic conditions [236]. This 
change was applied in order to mimic the resistance of Purkinje to 
ischemia observed in several experimental studies [30], [272]. Under 
this consideration, no reentries were found for moderate ischemic 
conditions (VW = 0 ms). These results were different to the ones 
obtained in simulations that included the effects of hyperkalemia in the 
Purkinje cell (VW ≈ 5 ms). An explanation for the different behaviors 
lies on the slow CV and conduction blocks in discrete sections of the 
HPS due to hyperkalemia. These effects led to a delay in ventricular 
activation that allowed the recovery of excitability in areas of the NZ 
stimulated by the premature stimulus (S2). Thus, a wavefront that 
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propagates throughout the ICZ is able to re-stimulate the repolarized 
tissue. Our results are in agreement with experimental observations 
previously reported [273], [274]. These studies proved that slow 
conduction through discrete regions of Purkinje fibers subject to high 
[K+]o may result in reentrant arrhythmias. Similar results were obtained 
in the study by Senges et al. [227] performed in the canine ventricular 
conduction system. In the latter study, researchers also observed that 
during regional hypoxia or lactic acidosis, no arrhythmias were 
generated, while regional increases of [K+]o may be the predominant 
ischemic component to generation of reentrant arrhythmias. 

 
Whenever reentry was induced, a typical figure-of-eight reentrant 

pattern was obtained in all our simulations with the biventricular model, 
as reported in canine and porcine hearts [112], [129], [265]. Changes in 
location, revolution time and size were observed in a beat-to-beat basis 
during each reentry. However, a changing reentrant pattern (e.g. a 
circus and double circus pattern) was obtained with the model that 
includes the HPS, similar to those observed by Janse et al. [112], [129]. 
All our reentries showed a VT pattern which did not evolve in VF, in 
accordance with other studies in animals [96], [97], [275]. In these 
studies, evolution from VT into VF was rare during the first phase of 
ischemic arrhythmias (phase 1A of arrhythmias). 

 
Experimental evidence on the effects of heart rate on the occurrence 

of ventricular arrhythmias is scarce. Observations in dog hearts by 
Chadda et al. [276] have suggested that the sinus rhythm could be 
related with the initiation of ventricular arrhythmias. In this study, the 
authors observed that after coronary occlusion the incidence of VT and 
VF occurs mainly at slow and rapid heart rates. On the other hand, our 
simulation results showed that a sustained sinus rhythm at 100 
beats/min (BCL = 600 ms) does not induce the generation or abolition 
of reentries. This result is supported by Sung et al. [277], who reported 
that tachycardia triggered by potential delayed afterdepolarizations, 
could be initiated by accelerating the sinus rate, but only in 3 of 21 
patients with clinical evidence of recurrent sustained VT. Another study 
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performed in 262 subjects during 6 hours of infarction observed 
primary VF in 20 patients [278]. Within this group, 7 patients developed 
tachycardia, 10 had a sinus rate between 60 ‒ 100 beats/min and 2 
bradycardia immediately prior to VF. In summary, our results together 
with the experimental evidence, suggest that the effects of heart rate on 
reentry generation could vary among patients. 

 
 Limitations 
 
An AP model of Purkinje cells that includes the effects of the main 

ischemic components has yet to be developed due to the lack of 
experimental information, especially in human hearts. Several studies 
in animals have reported that the HPS is more resistant to the effects of 
ischemia than cardiomyocytes, with many Purkinje fibers surviving 
after infarcts [272], [279], [280]. However, during the initial phase of 
acute ischemia it is not certain whether, or to what extent, the 
subendocardial Purkinje fibers change their electrophysiological 
properties. In this study, effects of hypoxia and acidosis in Purkinje 
cells were not simulated while hyperkalemia was introduced by 
increasing the [K+]o as in the nearest cardiomyocyte. This [K+]o  

increment has been reported as the potential predominant factor of the 
ischemic components that facilitates the onset of reentrant arrhythmias 
in Purkinje cells [227]. Although our results have been compared with 
experimental studies and clinical observations, a most realistic model 
of the effects of acute ischemia in the HPS could alter our results. Thus, 
the main findings should be carefully validated both in a set of 
computational models of different patients (with different HPS 
configurations) and in clinical studies. 

 
To quantify the VW for reentry, a premature stimulus was applied 

in a region of the BZ. However, the location of the stimulation region 
in the BZ has been shown to affect the VW [122]. For this reason, a 
future study should investigate whether the effect of the three main 
ischemic components in the width the VW could be influenced by the 
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location of the premature stimulus or by the location of the ischemic 
region in the heart. 
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                                      CHAPTER 5 

5 General discussion 
 
This chapter summarizes and briefly discusses the main 

contributions of the present thesis, going beyond the state of the art in 
the optimization of CRT in heart failure patients and in the 
understanding of arrhythmogenic mechanisms during acute myocardial 
ischemia. 

 
 Heart failure and cardiac resynchronization therapy 
 
The study of the electrical activity of the heart, its pathologies and 

associated therapies using computational models has revealed 
additional insights for diagnosis, analysis and treatment of patients with 
different cardiac diseases that might otherwise have remained 
concealed. For instance, research in the field of CRT has made a 
substantial effort to improve the effectiveness of this treatment [219], 
[281]. Despite this, there are around 30% – 40% patients with HF and 
HF + LBBB who still do not respond favorably [134], [282]. Currently, 
CRT optimization, i.e., the determination of the optimal pacing leads 
location, as well as the optimal AVD and VVD values, is a hot research 
topic. Indeed, new techniques, such as His bundle pacing, endocardial 
electrodes and multi-sites pacing are being currently investigated.  
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In the present study, we performed CRT optimization in a 3D 
biventricular human model under HF + LBBB conditions, using the 
shortest QRSd criterion. Then, the results were compared with other 
optimization criteria. Our first main finding showed that the optimal 
leads location was the RV upper septum and the LV mid posterior 
region, in agreement with some experimental studies [141], [194]. 
These positions also minimize TAT, and therefore reduce the electrical 
dyssynchrony. In addition, better results were obtained with LV 
endocardial pacing compared to LV epicardial pacing, as in previous 
studies [184]. 

 
Our second main finding showed that the optimal delay 

configuration corresponded to AVD = 140 ms and VVD = 30 ms. These 
results were different to the AVD and VVD values leading to the 
minimum TAT. Thus, the best electrical synchrony may not be totally 
achieved using only the shortest QRSd criterion for CRT optimization, 
or to optimize biventricular pacing delay. In clinical practice, although 
optimization of AVD and VVD is crucial during CRT application [199], 
it is rarely performed.  

 
Finally, our third main finding revealed that a biomarker based on 

the time to 90% of the QRS area (t90QRSa) is a good predictor of the 
instant at which 90% of the ventricular tissue has been activated (t90). 
Therefore, the minimization of this indicator could be a new or 
complementary tool to the shortest QRSd criterion for the definition the 
optimal location and delay of the pacing leads that produce the faster 
activation of ventricles. 

 
 Acute myocardial ischemia and generation of 

arrhythmias 
 
Patients suffering from acute myocardial ischemia are prone to 

trigger complex ventricular arrhythmias due to electrophysiological 
alterations that occur in the affected myocardium. Experimental studies 
have investigated the mechanisms that initiate and sustain ischemia-
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related arrhythmias [112], [265], [283]. However, it is difficult to 
completely understand these mechanisms using only experimental 
means. Computational simulations have become an important and 
complementary tool for this purpose [35], [284]. 

 
In the present work, we carried out computational simulations of 

acute myocardial ischemia using the most realistic 3D biventricular 
human ischemic model so far, to assess both the effects of 
hyperkalemia, hypoxia and acidosis on the VW to reentry, and the role 
of the HPS and its mechanisms of action in the generation and 
propagation of reentrant activity. In the first part of this investigation, 
our major findings showed that an intermediate ischemic condition is 
the worst scenario for reentry generation, as reported in experiment 
observations [93], [97]. In addition, hypoxia has a greater influence in 
the VW width, suggesting that it could be the most pro-arrhythmic 
individual component of ischemia, supporting the results of a previous 
study obtained with a simpler [231]. 

 
In the second part of this investigation about the HPS role, one of 

our main findings revealed that the retrograde conduction in PMJs 
during the inclusion of the HPS in the model, plays a decisive role in 
reentry generation for higher CI values within the VW. A study in 
canine hearts reported retrograde and anterograde propagation between 
myocardium and HPS during VF [232]. Our second main finding 
demonstrated that the effect the HPS in the onset of reentry depends on 
the degree of hyperkalemia that affects Purkinje cells, in agreement 
with the experimental study by Cranefield et al. [273]. Finally, our third 
main finding showed that the propagation patterns in the myocardium 
are not significantly altered when sinus rhythm overlaps with the 
reentrant activity. In addition, a sustained heart rate of 100 bpm is not 
able to induce reentry, similar to observations reported in the study by 
Sung et al. [277].
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CHAPTER 6  

6 Conclusions and outlook 
 
 Conclusions  
 
The main objective of this doctoral thesis was to study the 

mechanisms underlying ventricular arrhythmias and their response to 
electrical therapies in a three-dimensional realistic anatomical model of 
the human ventricles under HF with LBBB and acute myocardial 
ischemic conditions using computer simulations. To do so, first we 
modified what was the most recent ventricular AP model (developed by 
O’Hara) available at the beginning of this doctoral thesis, validating it 
against the experimental data. Regarding CRT, we can conclude from 
our results that CRT optimization is crucial to reduce the electrical 
dyssynchrony in HF + LBBB patients. However, an optimization based 
solely on the shortest QRSd criterion is not totally effective. If this 
classical criterion is combined with our newly defined index t90QRSa, 
CRT optimization leads to better ventricular synchrony. On the other 
hand, regarding acute myocardial ischemia, we can also conclude that 
patients under moderate ischemic conditions have the highest 
likelihood to develop malignant arrhythmias. The most pro-arrhythmic 
effect of hypoxia during acute ischemia suggests that IK(ATP) could be a 
therapeutic target for the reduction of arrhythmic events. Furthermore, 
the favorable role of the HPS in the onset and maintenance of VTs 
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shows that PMJs could be an optimal site for the termination of 
arrhythmias by radiofrequency ablation. 

 
The following is a summary of our main findings is provided for 

each of the specific aims of this doctoral thesis. 
 
GOAL: To improve the most recent human ventricular AP 

models to more realistically simulate the electrical behavior of the 
heart suffering from HF with LBBB and acute myocardial ischemia 
based on extensive literature review. 

 
CONCLUSION: The O’Hara AP model, considered with our 

modifications, allowed us to overcome the constraints of the original 
model as well as to simulate the main alterations at cellular and 
intercellular level caused by the pathologies of (a) HF with LBBB and 
(b) acute myocardial ischemia. In physiological conditions, our results 
show that changes in the INa and INaL currents formulation lead to a more 
realistic CV and allow realistic electrical propagation in 3D ventricular 
tissue compared to the original model. In the HF + LBBB simulations, 
our new version of the O’Hara model reproduces the reduced CV 
caused by the decrease in connexin43 expression and/or conductance. 
Under acute myocardial ischemic conditions, the modification of 
several currents and the incorporation of others in the AP model 
allowed us to replicate the electrophysiological alterations observed 
experimentally in the ischemic cells, mainly the increase in PRR, a 
phenomenon that does not exist with the original O’Hara model. 

 
GOAL: To improve the 3D anatomical models of the human 

ventricles by incorporating a His-Purkinje system that allows 
obtaining a realistic ECG morphology in the precordial leads in 
healthy and pathological conditions. 

 
CONCLUSION: The HPS incorporated in our 3D anatomical model 

includes the main structural and functional properties published in the 
literature. Simulations performed including the HPS in healthy 
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conditions allowed a synchronized activation of the ventricles with a 
TAT within the physiologic values. Thus, a typical ECG morphology 
was obtained in the precordial leads on the torso surface.  

 
In pathological conditions, simulations with the HPS included in the 

model reproduced the widening of QRSd under HF + LBBB conditions, 
and the opposite effect during the CRT application. Moreover, the 
inclusion of the HPS in the model played an important role in the CRT 
optimization, especially when the LV lead was located in the 
endocardium. For this last scenario, our results show that electrical 
propagation through HPS by retrograde conduction in the PMJs could 
contribute to improve CRT outcomes. 

 
Under acute myocardial ischemic conditions, simulations using the 

model with the HPS included reproduced the main changes in the ST 
segment and T wave reported experimentally. Our simulation results 
revealed that the presence of the HPS increases the likelihood of 
reentry. The flow of current from the myocardium into the HPS in the 
ischemic region, conduction blocks in discrete sections of the HPS, and 
the degree of ischemia affecting the Purkinje cells, are suggested as 
mechanisms that could favor the triggering of ventricular arrhythmias. 

 
GOAL: To analyze the optimal pacing leads location and AVD 

and VVD settings during CRT procedure in a tissue with HF and 
LBBB, based on the shortest QRS duration criterion. 
Subsequently, the results are to be compared with other 
optimization criteria. 

 
CONCLUSION: Optimization of CRT is crucial to improve the 

electrical synchrony of the ventricles and LV ejection fraction in 
patients with HF and LBBB. Based on the shortest QRSd criterion, CRT 
simulations show that the optimal location for the RV lead, as an 
alternative to the RV apex, is the upper septum close to the outflow 
tract. The analysis of the optimal LV lead location revealed that 
endocardial stimulation leads to better CRT outcome than epicardial 
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stimulation. Furthermore, myocardial areas with a higher density of 
PMJ are suggested to improve CRT response. 

 
Our simulations also demonstrated that CRT optimization based 

only on the shortest QRSd criterion may not be totally effective to reach 
the maximum TAT reduction, or to optimize biventricular pacing delay. 
However, a biomarker based on minimizing the value of t90 (time 
elapsed to 90% of ventricular activation) could be used to determine the 
optimal VVD value. The t90 is related to the time to reach the 90% of 
the QRS area (t90QRSa), allowing it to be calculated non-invasively 
using only the ECG measured on the torso surface. Thus, t90QRSa is 
suggested as an additional index to assess CRT effectiveness to improve 
biventricular synchrony.  

 
GOAL: To investigate the effects of hyperkalemia, hypoxia and 

acidosis, as well as the role of the His-Purkinje system, in the 
vulnerability to reentry during different ischemic severity 
scenarios.  

 
CONCLUSION: Simulation results performed in our 3D 

biventricular model are in accordance with reported experimental data. 
All reentries obtained show a reentrant pattern and ECG morphology 
similar to clinical VTs. The analysis of the VW for reentry under 
different ischemic scenarios showed that reentries can be only 
generated in intermediate ischemic conditions. Individual changes in 
the severity of hyperkalemia, hypoxia and acidosis may have opposite 
effect on the VW than a simultaneous change. In addition, hypoxia is 
the component of acute ischemia with the most significant effect on the 
width of the VW. 

 
On the other hand, the study of the role of the HPS in the onset and 

maintenance of arrhythmias revealed that its inclusion in the anatomical 
model was decisive to generate reentries for higher CI values within the 
VW. Simulations performed to evaluate the Purkinje resistance to 
ischemia show that the degree of hyperkalemia in Purkinje cells 
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influences the triggering of reentries. Finally, the maintenance of the 
sinus excitation overlapped with the reentrant activity does not 
significantly alter the wavefront propagation in the arrhythmic 
myocardium. 

 
 Future work 
 
Some of the limitations encountered in the studies presented in this 

Doctoral Thesis could be overcome by performing future research 
works described in this section. Our results can also be reinforced with 
clinical studies and a set of computational models of different patients. 
In this regard, several guidelines for next investigations are detailed in 
the paragraphs below. 
 
Extension of the study improving HF model. During HF, myocytes 
undergo a series of electrophysiological changes. In the present study, 
in order to simulate HF we reduced the CV by 50% in accordance with 
protein connexin 43 reduction. This change led to QRS modifications 
similar to those observed in the clinical practice. However, a more 
realistic model of HF could also include alterations in the AP and 
calcium handling caused by HF remodeling. Thus, it would be very 
interesting to investigate in a future work the effects of these alterations 
during CRT application. 
 
Coupling a mechanical model to the electrical model of the heart. 
In our study, CRT optimization was assessed from an electrical point of 
view. However, during clinical CRT application it is common to 
analyze the electrical synchrony as well as the hemodynamic response 
(mechanical function) of the heart. Therefore, it is important to evaluate 
whether CRT optimization based on the shortest QRSd leads to the 
better LV ejection fraction. In addition, strategies of multi-site pacing 
could be also evaluated. 
 
Analysis of the t90QRSa as an index to asses CRT effectiveness. 
About one third of HF patients do not respond to CRT; it is thus of vital 
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importance to improve this treatment. A new biomarker based on the 
time to reach the 90% of the QRS area (t90QRSa) was suggested in our 
study as a complementary indicator for CRT optimization. In order to 
investigate the effectiveness of this non-invasive biomarker, it would 
be a crucial complement to this study a deeper analysis using a set of 
3D anatomical models of different patients and validated against 
clinical data.     
 
Study of the influence of ischemic region location and premature 
stimulus location. Simulations results using our anatomical model 
have shown that hypoxia is the ischemic component with the most 
significant effect on the width of the VW. However, factors such as 
location of the ischemic region and location of the premature stimulus, 
have also an influence on this parameter. Thus, an extension of our 
study could determine whether the effect of each ischemic component 
on the VW could be affected by these factors. 

 
Use of improved AP models of Purkinje cell. A recent Purkinje AP 
model based on undiseased human hearts data has been recently 
published [285]. The model reproduces all AP features observed in 
humans, although AP alterations due to acute myocardial ischemia have 
not been studied. It would be valuable to assess and improve the 
response of this new model under ischemic conditions, and then, extend 
the study of role of HPS in the generation and maintenance of 
ventricular arrhythmias. 
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APPENDIX A 
 
 

1. Supplementary Data 
 
 
Original O’Hara et al. formulation [37] 
 
𝑚𝑚∞ =

1

1 + exp �−(𝑉𝑉 + 39.57)
9.871 �

 

 

 

ℎ∞ = 𝑗𝑗∞ =
1

1 + exp �𝑉𝑉 + 82.9
6.086 �

 

 

 
 
 

ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∞ =
1

1 + exp �𝑉𝑉 + 89.1
6.086 �

 

 

 

𝜏𝜏ℎ,𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓 =
1

1.432 · 10−5 · exp �−(𝑉𝑉 + 1.196)
6.285 � + 6.149 · exp �𝑉𝑉 + 0.5096

20.27 �
 

 

𝜏𝜏𝑗𝑗 = 2.038 +
1

0.02136 · exp �−(𝑉𝑉 + 100.6)
8.281 � + 0.3052 · exp �𝑉𝑉 + 0.9941

38.45 �
 

 
𝐺𝐺𝑁𝑁𝐶𝐶 = 75,          𝐺𝐺𝑁𝑁𝐶𝐶𝑁𝑁 = 0.0075 

 
 
Modified O’Hara et al. formulation 
 
𝑚𝑚∞ =

1

1 + exp �−(𝑉𝑉 + 48.97)
7.5 �

 

 

[167] 
 

ℎ∞ = 𝑗𝑗∞ =
1

1 + exp �𝑉𝑉 + 78.5
6.22 �

 

 

[166] 
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ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∞ =
1

1 + exp �𝑉𝑉 + 84.7
6.22 �

 

 

[166] 
 

𝜏𝜏ℎ,𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓 =
1

3.6860 · 10−6 · exp �−(𝑉𝑉 + 3.8875)
7.8579 � + 16 · exp �𝑉𝑉 − 0.4963

9.1843 �
 

 

[168] 
 

𝜏𝜏𝑗𝑗 = 4.8590 +
1

0.8628 · exp �−(𝑉𝑉 + 116.7258)
7.6005 � + 1.1096 · exp �𝑉𝑉 + 6.2719

9.0358 �
 

 

[168] 
 

𝐺𝐺𝑁𝑁𝐶𝐶 = 17          𝐺𝐺𝑁𝑁𝐶𝐶𝑁𝑁 = 0.0144 
 
where  
𝑚𝑚∞ steady state activation gate of the sodium current (INa) 

 ℎ∞   steady state inactivation gate of the INa 
 𝑗𝑗∞ recovery from inactivation for fast INa 
ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∞ phosphorylated steady state inactivation gate of the INa 
𝜏𝜏ℎ,𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓 fast time constant of  gate h 
𝜏𝜏𝑗𝑗 time constant of gate j  
V membrane voltage (mV) 
𝐺𝐺𝑁𝑁𝐶𝐶 INa  conductance  
𝐺𝐺𝑁𝑁𝐶𝐶𝑁𝑁 INaL  conductance 

 
 

3D ventricular model 
 

Cardiac DE-MRI was acquired by an MRI scanner Magnetom 
Avanto 1.5T (Siemens Healthcare, Erlangen, Germany) using a phased-
array body surface coil, about 15 minutes after the administration of the 
gadolinium-based contrast MultiHance (gadobenate dimeglumine, 529 
mg/ml) (Bracco Diagnostics Inc., Monroe Township, New Jersey, 
USA). The acquisition was synchronized with both ECG (ECG-gated) 
and breathing (navigator-gated), imaging the heart at the end-diastolic 
phase of cardiac cycle. The DE-MRI stack comprised 96 slices of 
256×256 pixels encompassing the whole heart (ventricles and atria), 
with a pixel size of 1.4×1.4 mm and a slice thickness of 1.4 mm, thus 
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resulting in isotropic voxel. The cardiac DE-MRI was acquired from 
the Hospital Clinic Universitari de Valencia (Valencia, Spain). 
Regarding the ethical considerations, the protocol was approved by 
the Ethics Committee for Clinical Research of the Hospital Clinic 
Universitari de Valencia, which certifies that the present study was 
conducted in accordance with the recommendations gathered in the 
Declaration of Helsinki, originally adopted by the General Assembly of 
the World Medical Association in 1964, and in its subsequent revisions. 
Furthermore, the patient, who underwent the standard clinical protocol, 
gave written informed consent for the use of his anonymized clinical 
data in this study. 

 
We generated the 3D patient-specific bi-ventricular model by 

segmenting the short-axis slices from the cardiac DE-MRI using Seg3D 
software (Scientific Computing and Imaging Institute, University of 
Utah, USA) [155]. We did it manually to perform a highly detailed 
segmentation of the whole ventricles, including papillary muscles and 
main endocardial trabeculae (see Figure 3.1). An expert radiologist in 
cardiac imaging checked all segmentations in order to ensure the 
fidelity of the 3D reconstruction of the patient-specific anatomy. From 
the segmented DE-MRI stack, we generated a surface model of the 
ventricles, carefully checked with Blender (Blender Foundation, 
Amsterdam, The Netherlands) to refine and correct defects in the mesh 
at the local level after applying a global smoothing. Then, using the 
surface model as a template, we performed a volume meshing with 
MeshGems-Hexa (Distene S.A.S., Bruyeres-le-Chatel, France), 
obtaining a hexahedra-based volume mesh comprised by 4 million 
nodes (vertices) and 3.71 million elements, with an average edge length 
162 of 0.4 mm. 
 
 
3D torso model   
 

The torso dataset was obtained from the online open repository at 
the Centre for Integrative Biomedical Computing (CIBC) from 
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University of Utah [164]. The whole torso MRI stack was acquired in 
the coronal plane with a slice thickness of 10 mm. We roughly 
segmented the main organs (lungs, liver, heart) and structures (bones, 
body contour, blood pools, great vessels) using Seg3D software. The 
resolution of the torso MRI hampered a detailed reconstruction of some 
important structures, so we used the reconstructed parts of the model as 
landmarks to fit a detailed torso model previously developed [163] by 
means of a linear transformation. Next, we replaced the ventricles in the 
fitted detailed torso model by our patient specific model and removed 
any intersections between our ventricular model and surrounding 
organs. Finally, we used TetGen [286] to mesh the torso volume with 
tetrahedra, which resulted in 1.26 million nodes and 7.38 million 
elements organs. The average edge length was of 0.55 mm. Note that 
the problem of passive propagation of extracellular potentials, i.e. only 
diffusion without reaction component, does not require such a fine 
spatial resolution outside the heart domain [165]; for this reason, the 
mesh is highly refined only in the region of the ventricles. 

 
We automatically labelled every tetrahedral element of the volume 

mesh as belonging to a given organ.  The 3D torso model included 
bones, lungs, liver, whole heart (ventricles and atria) and blood pools 
of all cardiac chambers organs (see Figure 3.1). As in [163], 
conductivity values assigned to different organs and tissues were taken 
from the literature [287]–[291]. We considered isotropic propagation 
for all organs and tissues of our 3D torso model, except for the 
ventricular myocardium where we preserved the anisotropy imposed by 
the orientation of cardiac fibers. As in [290], for the space not covered 
by any organ or anatomical structure we set a conductivity of 0.239 S/m 
calculated as the average of the conductivities for the other tissues, 
including the skeletal muscle that was not considered as a specific 
region in our torso model. Finally, to simulate ECG signals we defined 
virtual electrodes on the surface of torso model corresponding to the 
precordial leads, which were placed in their standard positions (see 
Figure 3.1). 
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Computational simulations 

 
To perform the simulations at the organ level, we used the software 

ELVIRA [170], FEM solver specifically developed for solving the 
anisotropic reaction-diffusion equation of the monodomain model for 
cardiac EP [292]. For the numerical solution of our simulations, we 
applied the conjugate gradient method with an integration time step of 
0.02 ms, using implicit integration for the parabolic partial differential 
equation of monodomain model and explicit integration with adaptive 
time stepping for the systems of ordinary differential equations 
associated with the ionic model [37]. 

 
To obtain ECG signals on the body surface, we used an 

approximation of the bidomain model [293] to compute the 
extracellular potentials across the torso volume. This approximation, 
described elsewhere [174], comprises several steps. First, 
transmembrane potentials, previously computed by simulation at the 
organ level using the solver ELVIRA as explained above, were 
interpolated from the ventricular mesh model to the nodes of torso 
model corresponding to the ventricular myocardium. Then, solving the 
passive term (only diffusion) of the bidomain approach we obtained the 
extracellular potentials in the ventricles from the interpolated 
transmembrane voltages. Finally, applying Dirichlet boundary 
conditions at the ventricles-torso interface and Neumann-type 
conditions at the torso surface, the extracellular potentials were 
computed by using the FEM method to solve the Laplace equation over 
the volume mesh of the 3D torso model. To obtain the numerical 
solution of the problem, we used the conjugate gradient method with 
the incomplete Cholesky decomposition as a preconditioner. 
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2. Supplementary figures and tables 
 

 
Figure A.1 Action potentials simulated in a cube with original O’Hara 
model (blue line) and with modified O’Hara model (red line).  
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Figure A.2 Measurement of QRS duration. (A) QRS Complex where the onset and 
end of the QRS is shown. (B) First derivative of the QRS complex with the thresholds 
used (magenta lines) to determinate the QRS duration. The black lines indicate the 
limits of the time interval. (C) Second derivative of the QRS complex. The blue region 
represents the area under of second derivative and the black line indicates the time to 
95 % of accumulated area. 
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Figure A.3 Activation maps. (A) HF + LBBB configuration showing LV anterior mid 
and basal regions as latest activated areas. (B) Univentricular stimulation with RV 
lead placed in the apex. (C) Univentricular stimulation with RV lead placed in the mid 
septum. (D) Univentricular stimulation with RV lead placed in upper septum. 
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3. Supplementary videos 
 
 
Video 1 CRT 
https://youtu.be/Dp7GBOK6nJk 
 
 
Video 2 Retrograde conduction 
https://youtu.be/2Bqh_AfWzPU 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://youtu.be/Dp7GBOK6nJk?fbclid=IwAR17eBF360-PeHOS6jt_7ihFgdb2XbyYN5t1ProUBdX9rNBGarG2N7-uOSE
https://youtu.be/2Bqh_AfWzPU?fbclid=IwAR2eIGXclXZt7iA6PBT5mf7nXvqRhkglbobSksdj_1J8yZ2axIxXLIHQJwc
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