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This paper deals with the construction of numerical stable solutions of random
mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with
advection. The construction of the numerical scheme is performed in two
stages. Firstly, a semidiscretization technique transforms the original contin-
uous problem into a nonlinear inhomogeneous system of random differential
equations. Then, by extending to the random framework, the ideas of the expo-
nential time differencing method, a full vector discretization of the problem
addresses to a random vector difference scheme. A sample approach of the ran-
dom vector difference scheme, the use of properties of Metzler matrices and
the logarithmic norm allow the proof of stability of the numerical solutions in
the mean square sense. In spite of the computational complexity, the results are
illustrated by comparing the results with a test problem where the exact solution
is known.
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1 INTRODUCTION

Time-dependent and spatial heterogenous diffusion-advection-reaction models are frequent in genetics and population
dynamics problems related to emigration or invasion biological problems.1-4 Branching and species creations although
they answer to reorganizations and genetic mutations have a random component.

Most of the results in population dynamics are treated in the deterministic framework, but the random models deserve
attention to picture more realistic situations. In fact, the spatial heterogeneity, the contact distribution, sexual distribu-
tion among the population, the rate of increase of the population, the speed of the wind in a direction, and even the
carrying capacity, all these issues are essentially random. These facts motivate the study of random partial differential
diffusion-advection-reaction models.

Deterministic biological invasions models have been treated both theoretically and numerically in previous studies.1,5-13

Deterministic spatial varying coefficient models linked to heterogeneity have been treated in previous studies.3,14-16

A numerical Monte Carlo approach for these problems has been used in Faou.17 Fisher-Kolmogorov-Petrosky-Piskunov
(Fisher-KPP) models introducing uncertainty throughout Wiener processes and Itô calculus have been studied in pre-
vious studies.3,6,18-20 Fisher-KPP models with non-Wiener randomness, involving random stationary ergodic coefficient
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have been studied theoretically in Berestycki and Nadin21 and Nadin.22 In this paper, we follow the mean square approach
developed for both the ordinary and partial differential case in previous studies.23-25 This approach has two suitable
properties. The first is that our solution coincides with the one of the deterministic case, ie, when the random data are
deterministic. The second, is that if un(t) is a mean square approximation to the exact mean square solution u(t), then the
expectation and the variance of un(t) converges to the expectation and the variance of u(t), respectively.26

Since early 1960s, semidiscretization method, so called the method of lines, has been widely used because it takes
advantage of the powerful results of systems of ordinary differential equations (ODEs).27 These advantages come out
from both the theoretical and practical points of view, typically studying partial differential equations (PDEs) models;
see previous studies28-31 and references therein. The method of lines is easy to use from a practical point of view, ie,
engineering applications, but it presents serious challenges from the analysis point of view because of the fact that when
the stepsizes discretization tend to zero, the size of the arrival system of ODEs tends to infinity.32 To our knowledge, the
method of lines has not been used before in the random numerical analysis framework. One of the aims of this paper is to
introduce the method of lines in the framework of PDEs models with randomness, in particular in the Fisher-KPP model.
As the best model may be wasted with a disregarded analysis, it is also suitable the numerical analysis in the random
model case.

In this paper, we consider a one-dimensional random Fisher-KPP equation modeling the stochastic process (s.p.) of the
density of population of the invasive species u(x, t) depending on time t and spatial variable x

ut(x, t) = D(x)uxx(x, t) + B(x)ux(x, t) + G(x,u) , (x, t) ∈]0,𝓁[×]0,+∞[ , (1)

u(x, 0) = Φ0(x) , x ∈ [0,𝓁] , (2)

u(0, t) = Φ1(t) , t ∈]0,+∞[ , (3)

u(𝓁, t) = Φ2(t) , t ∈]0,+∞[ , (4)

where the random reaction term takes the form

G(x,u) = A(x) [u(x, t) (1 − u(x, t))] . (5)

The coefficients and initial condition of the random mean square problems (1) to (5) are s.p.'s defined in a complete
probability space (Ω, ,P) and the boundary conditions (3) and (4) are random variables (r.v.'s). To be more specific, the
s.p.'s D(x), B(x), A(x), and Φ0(x) are described as continuous functions of x with 1-degree of randomness, that is, every one
depends on a single r.v. 𝛿(𝜔), 𝜌(𝜔), 𝛼(𝜔), and 𝛾(𝜔), respectively. The same results are available, but with more complicated
notation, by considering random functions with a finite degree of randomness, see Soong.26, p37 In addition, we assume
the following conditions over the s.p.'s D(x), B(x), A(x), and Φ0(x), respectively, satisfy the following conditions on their
sample realizations:

D(x, 𝜔) = d(x)𝛿(𝜔) , 0 < d1 ≤ D(x, 𝜔) ≤ d2 < +∞ , x ∈]0,𝓁[ , for almost every (a.e.)𝜔 ∈ Ω , (6)

B(x, 𝜔) = b(x)𝜌(𝜔) , |B(x, 𝜔)| ≤ b1 < +∞ , x ∈]0,𝓁[ , for a.e.𝜔 ∈ Ω , (7)

A(x, 𝜔) = a(x)𝛼(𝜔) , 0 ≤ a1 ≤ A(x, 𝜔) ≤ a2 < +∞ , x ∈]0,𝓁[ , for a.e.𝜔 ∈ Ω , (8)

Φ0(x, 𝜔) = 𝜙0(x)𝛾(𝜔) , 0 ≤ Φ0(x, 𝜔) ≤ 1 , x ∈ [0,𝓁] , for a.e.𝜔 ∈ Ω . (9)

The random boundary conditions (3) and (4), Φ1(t) and Φ2(t), are s.p.'s with differentiable realizations Φi(t, 𝜔) and
verifying

0 ≤ Φi(t, 𝜔) ≤ 1 , for a.e. 𝜔 ∈ Ω , t > 0 , i = 1, 2 . (10)

Note that for the sake of coherence among the initial and boundary conditions, one must satisfy

Φ0(0, 𝜔) = Φ1(0, 𝜔) , Φ0(𝓁, 𝜔) = Φ2(0, 𝜔) , for a.e. 𝜔 ∈ Ω. (11)

The organization of the remaining part of the paper is as follows. Section 2 that may be regarded as a preliminary one,
includes notations, the statement of previous results, and the proof of new results about random systems of ODEs using a
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mean square approach. In particular, the transformation of a nonlinear inhomogeneous initial value problem for a system
of random ODEs into an equivalent random integral equation is shown. Section 3 deals with the semidiscretization,
further full discretization, the construction of the numerical scheme, and, for the sake of clarity in the presentation, the
proof of some technical results that will be used in the next section. The main part of the paper that is Section 4 is devoted
to the study of qualitative properties of the numerical solution of the random Fisher-KPP model and the random stability
of the random numerical solution.

For the sake of clarity in the presentation, we recall some notation, definitions, and results that will be used later.
A matrix M ∈ Rp×q is said to be nonnegative, denoted M ≥ O, if all its entries mi,j ≥ 0. A square matrix M ∈ Rp×p is

said to be a Metzler matrix if all nondiagonal entries are nonnegative. If M is a Metzler matrix in Rp×p, then its exponential
eM t ≥ O for all t ≥ 0.33 We recall that for a rectangular matrix M ∈ Rp×q, its ||M||∞ is defined by

||M||∞ = max
1≤i≤p

q∑
𝑗=1

|mi,𝑗|, (12)

see Golub and Van Loan.34, chap. 2 If M is an arbitrary square matrix inRp×p its𝜇∞-logaritmic norm, denoted by𝜇∞[M],35, p33

can be computed as

𝜇∞[M] = max
1≤i≤p

(
mi,i +

∑
𝑗≠i

||mi,𝑗||
)
. (13)

By Dahlquist,36 we have the inequality ‖‖eM t‖‖∞ ≤ et𝜇∞[M] , t ≥ 0 . (14)

Throughout the paper, we will denote 1p the vector in Rp having all its entries equal to one.

2 PRELIMINARIES AND NEW RESULTS ON LP-RANDOM MATRIX
CALCULUS

For the sake of clarity in the presentation, we denote Lp(𝛺) the space of all real valued r.v.'s x ∶ Ω → R of order p, endowed
with the norm ||x||p =

(
E[|x|p]

)1∕p =
(
∫Ω

|x(𝜔)|p𝑓x(𝜔)d𝜔
)1∕p

< +∞ , (15)

where E[·] denotes the expectation operator and fx the density function of the r.v. x.
The space of all random matrices, Lm×n

p (Ω) endowed with the norm

||X||p =
m∑

i=1

n∑
𝑗=1

‖‖xi,𝑗‖‖p , xi,𝑗 ∈ Lp(Ω) , (16)

has a Banach space structure. Although we use the same notation for the norms || · ||p, no confusion is possible because
lower case letters are used for scalar quantities and capital letters are used for matrix quantities.

We recall that the matrix norm || · ||p in spaces Lm×n
p (Ω) is not submultiplicative

Proposition 2.1. (Casabán et al25, prop. 1) Let X = (xi,k) ∈ Lm×q
2p (Ω) and Y = (𝑦k,𝑗) ∈ Lq×n

2p (Ω). Then,

||X Y ||p ≤ ||X||2p ||Y ||2p . (17)

Definition 2.2. Let
{

X(t) = (xi,𝑗(t)), t ∈  }
be a matrix s.p. in Lm×n

p (Ω). We say that X(t) is p-continuous at t ∈  , if
it verifies

lim
h→0

||X(t + h) − X(t)||p = 0 , t, t + h ∈  .

Then, it is sufficient that its entries xi,j(t) are all p-continuous at t ∈  in order to guarantee the p-continuity of a matrix
s.p. X(t).

Lemma 2.3. Let {P(t), t ∈  } and {Q(t), t ∈  } be matrix s.p.'s in Lm×q
2p (Ω) and Lq×n

2p (Ω), respectively. Assume that P(t)
and Q(t) are 2p-continuous at t ∈  . Then, the matrix s.p. P(t)Q(t) ∈ Lm×n

p (Ω) and is a p-continuous matrix s.p. at t ∈  .
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Proof. Using Proposition 2.1, one follows

||P(t + h)Q(t + h) − P(t)Q(t)||p = ||P(t + h)(Q(t + h) − Q(t)) + (P(t + h) − P(t))Q(t)||p

≤ ||P(t + h)||2p||Q(t + h) − Q(t)||2p + ||P(t + h) − P(t)||2p||Q(t)||2p , t, t + h ∈  ,

Then, taking into account that P(t) ∈ Lm×q
2p (Ω) and Q(t) ∈ Lq×n

2p (Ω), that is, ||P(t)||2p < +∞ and ||Q(t)||2p < +∞; and
finally, the 2p-continuity of the matrix s.p.'s P(t) and Q(t), one gets

lim
h→0

||P(t + h)Q(t + h) − P(t)Q(t)||p = 0, t, t + h ∈  .

The next result is a rule for differentiability of the product of two differentiable matrix s.p.'s, and it will play a key role
later

Proposition 2.5. (Villafuerte et al24, prop. 2) Let F(t) and G(t) ∈ Ln×q
2p (Ω) be differentiable s.p.'s at  ⊆ R, being F ′(t) and

G′(t) its derivatives, respectively. Then, H(t) = F(t)G(t) ∈ Lm×q
p (Ω) is a differentiable s.p. and

H′(t) = F′(t)G(t) + F(t)G′(t) .

2.1 Random linear nonhomogeneous matrix differential systems
This subsection deals with the construction of a solution for this type of random linear nonhomogeneous matrix
differential systems

Y ′(t) = LY (t) + M(t),
Y (t0) = Y0,

}
, t ∈  (t0) = [t0 − 𝛿, t0 + 𝛿] ⊂ R, t0 > 0, 𝛿 > 0 , (18)

where Y(t) and Y0 are in ∈ Lm×n
p (Ω), and the square random matrix L = (𝓁i,𝑗) ∈ Lm×m

2p (Ω) verifies that for its entries (𝓁i,j)
there exist positive constants si,j, hi,j satisfying that their absolute moments of order r are bounded, that is,

E
[|𝓁i,𝑗|r] ≤ si,𝑗

(
hi,𝑗

)r
< +∞ , ∀r ≥ 0 ,∀i, 𝑗 ∶ 1 ≤ i, 𝑗 ≤ m . (19)

Furthermore, assume that matrix s.p. M(t) ∈ Lm×m
2p (Ω) of (18) is continuous in  (t0). Then, under all these hypotheses by

Casabán et al,25, theorem 1 it is clear that
Y1(t) = eL(t−t0)Y0 (20)

is the solution s.p. of the random homogeneous problem

Y ′(t) = LY (t),
Y (t0) = Y0,

}
, t ∈  (t0) , t0 > 0 . (21)

Now, we show that

Y2(t) = eL(t−t0) Y3(t) = eL(t−t0) ∫
t

t0

e−L(s−t0) M(s)ds (22)

is the solution of the non homogeneous problem (18).
In fact, by Soong,26, p103 the m.s. derivative of Y3(t) is

Y ′
3(t) = e−L(t−t0) M(t) , t ∈  (t0) . (23)

By (20) to (23) and Proposition 2.5, we have

Y ′
2(t) = eL(t−t0) Y ′

3(t) + LeL(t−t0) Y3(t)

= eL(t−t0) e−L(t−t0) M(t) + LeL(t−t0) ∫
t

t0

e−L(s−t0) M(s)ds

= M(t) + LY2(t) ,
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with Y2(t0) = 0. By superposition and linearity of equation of problem (18), the matrix s.p.

Φ(t) = Y1(t) + Y2(t) = eL(t−t0) Y0 + eL(t−t0) ∫
t

t0

e−L(s−t0) M(s)ds

= eL(t−t0)
{

Y0 + ∫
t

t0

e−L(s−t0) M(s)ds
}

(24)

is the m.s. solution of the random linear nonhomogeneous matrix differential system (18); see Soong.26, sec. 5.1.2

Summarizing, the following result has been established.

Proposition 2.6. Let L ∈ Lm×m
2p (Ω), Y0 ∈ Lm×n

2p (Ω), and M(t) ∈ Lm×n
2p (Ω). Assume that random matrix L verifies

condition (19) and the matrix s.p. M(t) is 2p-continuous in t ∈  (t0). Then, the unique solution of the random linear
nonhomogeneous matrix differential system (18) in Lm×n

2p (Ω) is given by (2.1).

Now, we consider the more general random linear nonhomogeneous matrix differential system where the right-hand
side depends on the unknown Y(t)

Y ′(t) = LY (t) + B𝑓 (Y (t)),
Y (t0) = Y0,

}
, t ∈  (t0) , t0 > 0 . (25)

We assume Y (t) ∈ Lm×1
p (Ω), the random initial condition Y0 ∈ Lm×1

2p (Ω) and the square random matrices L,B ∈ Lm×m
2p (Ω)

are mutually independent with L verifying condition (19). In (25), the term f(Y(t)) is a nonlinear random vector s.p. in
Lm×1

2p (Ω) depending on unknown Y(t).
Inspired by the deterministic method of variation of constants, we look for a solution of (25) of the form

Y (t) = eL(t−t0) C(t) , (26)

being C(t) ∈ Lm×1
2p (Ω) a differentiable s.p. in t ∈  (t0) with 2p-derivative C′(t). Imposing that Y(t), given by (26), is a

solution of (25) for the computation of its p-derivative Y′(t), and using Proposition 2.5, one gets

Y ′(t) = LeL(t−t0) C(t) + eL(t−t0) C′(t) ,
Y ′(t) = LeL(t−t0) C(t) + B𝑓

(
eL(t−t0) C(t)

)
,

that is, eL(t−t0) C′(t) = B𝑓
(

eL(t−t0) C(t)
)
. Hence,

C′(t) = e−L(t−t0)B𝑓
(

eL(t−t0) C(t)
)
. (27)

Assuming that vector s.p. 𝑓
(

eL(t−t0) C(t)
)

is 2p-continuous in  (t0), we can integrate expression (27) in the interval [t0, t],
t0 > 0 and then use the initial condition of problem (25) obtaining

C(t) − Y0 = ∫
t

t0

e−L (s−t0)B𝑓 (Y (s)) ds . (28)

Substituting (28) in (26), we have just determined a p-solution s.p. of integral type for the problem (25) given by

Y (t) = eL(t−t0)
[

Y0 + ∫
t

t0

e−L (s−t0)B𝑓 (Y (s)) ds
]
= eL(t−t0) Y0 + ∫

t

t0

eL (t−s) B𝑓 (Y (s)) ds .

Summarizing, the following result has been established.

Proposition 2.7. Let L ∈ Lm×m
2p (Ω), B ∈ Lm×m

2p (Ω) and Y0 ∈ Lm×1
2p (Ω). Assume that random matrix L verifies condition

(19) and the nonlinear vector s.p. 𝑓 (Y (t)) ∈ Lm×1
2p (Ω) is 2p-continuous in t ∈  (t0), t0 > 0. Then, the random linear

nonhomogeneous matrix differential problem (25) is equivalent to the non linear random integral equation

Y (t) = eL(t−t0) Y0 + ∫
t

t0

eL (t−s) B𝑓 (Y (s)) ds , t0 > 0 . (29)
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Remark 2.8. Thinking in further applications in Section 3, if we consider a partition of the interval  (0) = [0,T] of
the form tn = nk, n = 0, … ,NT, k = T

NT
, we write the solution of the random linear equation of (25) for the time

[tn, tn+1] and the initial condition at tn

Y (tn+1) = eL(tn+1−tn)Y (tn) + ∫
tn+1

tn
eL (tn+1−s)B𝑓 (Y (s)) ds. (30)

Taking into account the substitution z = tn+1 − s into (30), one gets

Y (tn+1) = eL kY (tn) + ∫
k

0
e−L zB𝑓

(
Y (tn+1 − z)

)
dz. (31)

Remark 2.9. Taking sample realizations of the random linear integral Equation (31) for each fixed 𝜔 ∈ Ω, we have

Y (tn+1, 𝜔) = eL(𝜔)kY (tn, 𝜔) + ∫
k

0
e−L(𝜔) zB(𝜔)𝑓

(
Y (tn+1 − z, 𝜔)

)
dz , (32)

that is, the solution of the sample deterministic problem

Y ′(t, 𝜔) = L(𝜔)Y (t, 𝜔) + B(𝜔)𝑓 (Y (t, 𝜔)) , t ∈ [tn, tn+1], 𝜔 ∈ Ω fixed. (33)

for Y(tn, 𝜔) given.

3 DISCRETIZATION AND RANDOM NUMERICAL SCHEME
CONSTRUCTION

This section deals with the construction of the full discretized random numerical scheme for solving problems (1) to
(4) in two steps. Firstly, we develop a semidiscretization of the PDE into the spatial variable using central difference
approximations of the spatial derivatives. Then, the resulting system of random ODE's is discretized in time using a kind
of exponential differencing method.37,38

Let us consider the uniform partition of the interval [0,𝓁], of the form xi = ih, 0 ≤ i ≤ N, with Nh = 𝓁. The spatial
discretization of a realization 𝜔 ∈ Ω of Equation (1) at the mesh points yields

dui(t, 𝜔)
dt

= D(xi, 𝜔)
ui−1(t, 𝜔) − 2ui(t, 𝜔) + ui+1(t, 𝜔)

h2 + B(xi, 𝜔)
ui+1(t, 𝜔) − ui−1(t, 𝜔)

2h
+ G(xi,u, 𝜔) , (34)

where ui(t, 𝜔) = u(xi, t, 𝜔) is the numerical approximation of the solution s.p. of (1) for all t > 0, and G(xi,u, 𝜔) =
A(xi, 𝜔)ui(t, 𝜔)(1 − ui(t, 𝜔)), taking into account (5). The resulting semidiscretized system of ODE's in time (34) can be
rewritten in the following vector form, for each fixed 𝜔 ∈ Ω,

d
dt

u(t, 𝜔) = M(𝜔)u(t, 𝜔) + g(u, 𝜔) , t > 0 ,

u(0, 𝜔) = [Φ0(x0, 𝜔), … ,Φ0(xN , 𝜔)]T
,

⎫⎪⎬⎪⎭ , (35)

where
u(t, 𝜔) = [u0(t, 𝜔), … ,uN(t, 𝜔)]T = [Φ1(t, 𝜔),u1(t, 𝜔), … ,uN−1(t, 𝜔),Φ2(t, 𝜔)]T ∈ R

N+1 , (36)

M(𝜔) = 1
h2

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0
m1,0 m1,1 m1,2 0 · · · 0

0 m2,1 m2,2 m2,3 · · · 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 · · · mN−1,N−2 mN−1,N−1 mN−1,N
0 0 · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R

(N+1)×(N+1) , (37)

6



CASABÁN ET AL.

it is a tridiagonal band matrix with two zero rows and random nonzero entries

mi,i−1 = mi,i−1(𝜔) = D(xi, 𝜔) −
B(xi,𝜔)h

2
,

mi,i = mi,i(𝜔) = −2D(xi, 𝜔) ,
mi,i+1 = mi,i+1(𝜔) = D(xi, 𝜔) +

B(xi,𝜔)h
2

,

⎫⎪⎬⎪⎭ , 1 ≤ i ≤ N − 1 , (38)

and
g(u, 𝜔) = g(x, t,u(t, 𝜔), 𝜔) =

[
Φ′

1(t, 𝜔),G(x1,u, 𝜔), … ,G(xN−1,u, 𝜔),Φ′
2(t, 𝜔)

]T
, (39)

where the derivatives Φ′
i(t, 𝜔) means the classic derivative of the realizations Φ′

i(·, 𝜔) regarded as functions of t.
In order to achieve the full discretized scheme, we consider a partition of the time interval  (0) = [0,T], where T

is the target time in the fixed station sense. In accordance with Remark 2.8, we denote the time mesh points tn = n k,
n = 0, … ,NT, k = T

NT
.

Using Remark 2.9, with L(𝜔) = M(𝜔), 𝜔 ∈ Ω, fixed, B(𝜔) = I, when I denotes the identity matrix, the sample
deterministic differential system

d
dt

u(t, 𝜔) = M(𝜔)u(t, 𝜔) + g(u, 𝜔) , 𝜔 ∈ Ω fixed, t ≥ tn , (40)

for a given value u(tn, 𝜔), evaluated at t = tn+1 states the deterministic linear integral equation for a fixed 𝜔 ∈ Ω,

u(tn+1, 𝜔) = eM(𝜔)k u(tn, 𝜔) + ∫
k

0
eM(𝜔) z g

(
u(tn+1 − z, 𝜔), 𝜔

)
dz. (41)

We approximate u(tn+1, 𝜔) in (41) substituting the value g
(
u(tn+1 − z, 𝜔), 𝜔

)
for all z ∈ [0, k] by the corresponding value

at z = k, g (u(tn, 𝜔), 𝜔), obtaining the approximation u(tn+1, 𝜔) ≈ vn+1(𝜔)

vn+1(𝜔) = eM(𝜔)k u(tn, 𝜔) +

(
∫

k

0
eM(𝜔) z dz

)
g
(
u(tn, 𝜔), 𝜔

)
. (42)

From Cox and Matthews,37 we have

vn+1(𝜔) = u(tn+1, 𝜔) + O(k2) , 𝜔 ∈ Ω fixed. (43)

As M(𝜔) ∈ R(N+1)×(N+1) is a singular matrix, instead of computing the exact integral ∫ k
0 eM(𝜔) z dz, we approximate this by

using the Simpson quadrature rule

∫ k
0 eM(𝜔) z dz = kΛ[M(𝜔), k] + O(k5) ,

Λ[M(𝜔), k] = 1
6

(
I + 4eM(𝜔) k

2 + eM(𝜔)k
)
,

⎫⎪⎬⎪⎭ , (44)

see Atkinson.39 Hence, using (39) and (42) and (44), we obtain the following discretization un+1(𝜔) ≈ u(tn+1, 𝜔)

un+1(𝜔) = eM(𝜔)k un(𝜔) + k Λ[M(𝜔), k] gn(𝜔) , 0 ≤ n ≤ NT − 1 , (45)

where for a fixed 𝜔 ∈ Ω,

gn(𝜔) =
[ΔΦn

1(𝜔)
k

,G(x1,un
1 , 𝜔), … ,G(xN−1,un

N−1, 𝜔),
ΔΦn

2(𝜔)
k

]T

∈ R
N+1, (46)

and
ΔΦn

i (𝜔)
k

= Φi(tn+1, 𝜔) − Φi(tn, 𝜔)
k

, i = 1, 2 (47)

denotes the approximation of the derivative Φ′
i(t, 𝜔). Note that matrix M(𝜔) has its first and last zero rows, the ith row for

i = 0,N of matrices eM(𝜔) k and Λ[M(𝜔), k] take the form(
eM(𝜔)k)

0 = (Λ[M(𝜔), k])0 = [1, 0, … , 0] , (48)

7
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and (
eM(𝜔)k)

N = (Λ[M(𝜔), k])N = [0, 0, … , 1] . (49)

Thus, first and last rows of un+1(𝜔) given by (45) state as

un+1
0 (𝜔) = un

0(𝜔) + k
ΔΦn

1(𝜔)
k

= un
0(𝜔) + ΔΦn

1(𝜔) = Φ1(tn+1, 𝜔) ,

un+1
N (𝜔) = un

N(𝜔) + k
ΔΦn

2(𝜔)
k

= un
N(𝜔) + ΔΦn

2(𝜔) = Φ2(tn+1, 𝜔) .
(50)

Recovering the boundary conditions (3) and (4) at level tn+1. This is the reason why we consider the approximation (47)
instead of the derivatives Φ′

i(t
n, 𝜔), i = 1, 2.

The discretization of the initial condition, in agreement with (2) to (4) and (9) to (11), takes the form

u0(𝜔) = [Φ1(0, 𝜔),Φ0(x1, 𝜔), … ,Φ0(xN−1, 𝜔),Φ2(0, 𝜔)]T
, (51)

and note that 0 ≤ u0(𝜔) ≤ 1N+1 a.e. for 𝜔 ∈ Ω.
For the sake of clarity in the presentation, we include the following technical lemma.

Lemma 3.1. Let M(𝜔) and Λ[M(𝜔), k] be the matrices defined by (37) and (38) and (44) and let us assume that M(𝜔) is
a Metzler matrix. Then

(i)
(

eM(𝜔)k)
i,r ≥

(
eM(𝜔)k∕2)

i,r , r = 0,N.
(ii) (Λ[M(𝜔), k])i,r ≤ (

eM(𝜔)k)
i,r , 0 ≤ i ≤ N; r = 0,N.

Proof. From the identity eM(𝜔) k = eM(𝜔) k/2eM(𝜔) k/2, it follows that

(
eM(𝜔)k)

i,r =
N∑

s=0

(
eM(𝜔)k∕2)

i,s

(
eM(𝜔)k∕2)

s,r =
(

eM(𝜔)k∕2)
i,r

(
eM(𝜔)k∕2)

r,r +
N∑

s=0
s≠r

(
eM(𝜔)k∕2)

i,s +
(

eM(𝜔)k∕2)
s,r. (52)

As M(𝜔) is a Metzler matrix, from (48), (49), and (52) one gets part (i). Note that from (44)

(Λ[M(𝜔), k])0,0 = (Λ[M(𝜔)k])N,N =
(

eM(𝜔)k)
0,0 = 1 ,

and for i ≠ 0, i ≠ N, one gets

(Λ[M(𝜔), k])i,r =
1
6
(

I + 4eM(𝜔)k∕2 + eM(𝜔)k)
i,r ≤ 5

6
(

eM(𝜔)k)
i,r <

(
eM(𝜔)k)

i,r.

Hence, the result is established.

As the use of the exponential of a random matrix requires the hypothesis (19), we need to assume this condition in
order to transit from the sampled deterministic scheme (45) to a random scheme. Hence, we assume that for each fixed
x ∈ [0,𝓁], the r.v.'s D(x) and B(x) satisfy (19) and (45), obtaining the random difference scheme

un+1 = eM k un + k Λ[M, k] gn , 0 ≤ n ≤ NT − 1 . (53)

Here, un and gn are random vectors in L(N+1)×1
2p (Ω) being

gn =
[ΔΦn

1

k
,G(x1,un

1), … ,G(xN−1,un
N−1),

ΔΦn
2

k

]T

, (54)

with G is defined by (5); M is the random matrix in L(N+1)×(N+1)
2p (Ω) defined by (37); and Λ[M, k] is the random matrix in

L(N+1)×(N+1)
2p (Ω) given by

Λ[M, k] = 1
6

(
I + 4eM k

2 + eM k
)
. (55)

8
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The random initial condition of the random scheme (53) becomes

u0 = [Φ1(0, 𝜔),Φ0(x1, 𝜔), … ,Φ0(xN−1, 𝜔),Φ2(0, 𝜔)]T
. (56)

The numerical solution s.p. of the random problem (1) to (10) at each mesh point xi = ih and time tn+1 = (n + 1)k turns
out from (53) to (56)

un+1
i =

(
eM k)

i un + k (Λ[M, k])i gn , 1 ≤ i ≤ N , 0 ≤ n ≤ NT − 1 ,

u0
i = Φ0(xi) , 0 ≤ i ≤ N ,

⎫⎪⎬⎪⎭ , (57)

where
(

eM k)
i and (Λ[M, k])i denote the ith row of the random matrices eM k and Λ[M, k], respectively.

In the next section, we deal with the numerical analysis of the random scheme (57). For the sake of clarity in the
presentation, we recall the concept of || · ||p-stability, in the fixed station sense with respect to the time, of a random
numerical scheme. That captures the same essence as in the deterministic case, with the only difference that we consider
the || · ||p of the random numerical solution.

Definition 3.3. The random numerical scheme (57) is said to be || · ||p-stable in the fixed station sense in the domain
[0,𝓁] × [0,T], if for every partition with k = Δt, h = Δx such that NTk = T and Nh = 𝓁,

||un
i ||p ≤ C, 0 ≤ i ≤ N, 0 ≤ n ≤ NT , (58)

where C is independent of the stepsizes h, k and of the time level n.

4 PROPERTIES OF THE RANDOM NUMERICAL SCHEME

In this section, we prove that starting from a random initial population u0, such that 0 ≤ u0(𝜔) ≤ 1N+1 a.e. 𝜔 ∈ Ω, the
random sequence solution {un}n≥0 of the scheme (53) satisfies

0 ≤ un(𝜔) ≤ 1N+1 , a.e. 𝜔 ∈ Ω , (59)

that means that random population un does not overcome the carrying capacity of the habitat, remaining positive. For
the sake of convenience, we will use a sample approach considering the sampled scheme (45) for a fixed 𝜔 ∈ Ω.

The first objective is to find a sufficient condition on the spatial stepsize, h, so that matrix M(𝜔) given by (37) and (38)
is a Metzler matrix uniformly a.e. 𝜔 ∈ Ω. From (37) and (38), note that M(𝜔) is a Metzler matrix if

|B(xi, 𝜔)| h
2
≤ D(xi, 𝜔) , 1 ≤ i ≤ N − 1. (60)

Note that for a pure diffusive Fisher-KPP model (ie, B(x, 𝜔) = 0), condition (60) is satisfied for all h > 0 due to (6) is
assumed. In other case, taking

0 < h ≤ 2 min
{

D(x, 𝜔)|B(x, 𝜔)| ; x ∈]0,𝓁[ , a.e. 𝜔 ∈ Ω
}

, (61)

M(𝜔) is a Metzler matrix, a.e. 𝜔 ∈ Ω. From hypotheses (6), (7), and (61), the inequality (60) is fulfilled if

0 < h ≤ 2d1

b1
. (62)

Now, we can observe that ith row of the vector scheme (45) states as

un+1
i (𝜔) =

(
eM(𝜔)k)

i un(𝜔) + k (Λ[M(𝜔), k])i gn(𝜔) = i
(

un
0(𝜔), … ,un

N(𝜔)
)
, 0 ≤ i ≤ N. (63)

The nonlinear algebraic system for un
𝑗
, 0 ≤ j ≤ N, provides the new solution at the time level n + 1 starting from the

nth one. In order to study the rate of change of  with respect to its arguments, we pay attention to the Jacobian of (𝜔).

9
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From (63) and taking into account (5) and (46), we have for the interior rows, 1 ≤ i ≤ N − 1, of the Jacobian of (𝜔)
𝜕i

𝜕un
𝑗

(𝜔) =
(

eM(𝜔)k)
i,𝑗 + k (Λ[M(𝜔), k])i,𝑗

𝜕gn
𝑗

𝜕un
𝑗

(𝜔)

=
(

eM(𝜔)k)
i,𝑗 + k (Λ[M(𝜔), k])i,𝑗 A(x𝑗 , 𝜔)(1 − 2un

𝑗
(𝜔)) , 1 ≤ 𝑗 ≤ N − 1 . (64)

For the columns j = 0 and j = N of the interior rows, from (37), (38), and (46), it follows

𝜕i

𝜕un
0
(𝜔) =

(
eM(𝜔)k)

i,0 ,
𝜕i

𝜕un
N
(𝜔) =

(
eM(𝜔)k)

i,N , 1 ≤ i ≤ N − 1. (65)

Finally, taking into account (50), we have

un+1
0 (𝜔) = un

0(𝜔) + ΔΦn
1(𝜔) , un+1

N (𝜔) = un
N(𝜔) + ΔΦn

2(𝜔) ,

and the rows i = 0 and i = N of the Jacobian of (𝜔) take the form

𝜕0

𝜕un
𝑗

(𝜔) = 𝛿0,𝑗 ,
𝜕N

𝜕un
𝑗

(𝜔) = 𝛿N,𝑗 , 0 ≤ 𝑗 ≤ N, (66)

where

𝛿k,𝓁 =
{ 1 if k = 𝓁 ,

0 if k ≠ 𝓁 ,

is the well-known Kronecker delta. From (59), we have

|||1 − 2un
𝑗
(𝜔)||| ≤ 1 ,

and thus from (8), (44), (62), and (4), we can write

𝜕i

𝜕un
𝑗

(𝜔) ≥ (
eM(𝜔)k)

i,𝑗 − a2 k (Λ[M(𝜔), k])i,𝑗 , 1 ≤ i, 𝑗 ≤ N − 1. (67)

For the sake of convenience, let us introduce the matrix (k, 𝜔) ∈ R(N+1)×(N+1) defined by

(k, 𝜔) = eM(𝜔)k − a2 kΛ[M(𝜔), k], (68)

and note under hypothesis (62) that from (65) to (68), one gets

𝜕
𝜕un (𝜔) ≥ (k, 𝜔) . (69)

The next objective is to determine the value of the parameter k so that

(k, 𝜔) ≥ 0 , a.e. 𝜔 ∈ Ω. (70)

Let m0(𝜔) be defined as

m0(𝜔) =
1

h2

{
min

0≤i≤N
(mi,i(𝜔))

}
< 0, (71)

and, under hypothesis (62), let R(𝜔) ∈ R(N+1)×(N+1) be the nonnegative matrix defined by

R(𝜔) = M(𝜔) − m0(𝜔)I. (72)

10
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Note that from (72),
eM(𝜔)k = em0(𝜔)k I eR(𝜔)k, (73)

and hence, using (44), (68), and (73) the Taylor series expansion of(k, 𝜔) = em0(𝜔)k I eR(𝜔)k−a2 kΛ[M(𝜔), k] takes the form

(k, 𝜔) = 𝔥0(k)I +
∞∑

s=1
𝔥s(k)

(R(𝜔))s ks

s!
, (74)

where
𝔥0(k) = em0(𝜔)k − a2 k

6

(
1 + 4em0(𝜔)

k
2 + em0(𝜔)k

)
, s = 0 , (75)

𝔥s(k) = em0(𝜔)k − a2 k
6

( 4
2s + em0(𝜔)

k
2 + em0(𝜔)k

)
, s ≥ 1 . (76)

Taylor expansion (75) shows that for some 𝜖(𝜔), such that 0 < 𝜖(𝜔) < k,

𝔥0(k) = 1 − k (a2 − m0(𝜔)) + k2 𝔥
′′

0(𝜖(𝜔))
2

, (77)

where

𝔥′′0 (𝜖(𝜔)) = m2
0(𝜔)em0(𝜔) 𝜖(𝜔) + a2 |m0(𝜔)|

3
em0(𝜔)

𝜖(𝜔)
2 + a2 |m0(𝜔)|

6
(2 − |m0(𝜔)|𝜖(𝜔)) (em0(𝜔) 𝜖(𝜔) + em0(𝜔)

𝜖(𝜔)
2

)
. (78)

From (8) and (71), the sum of the two first terms of the Taylor expansion of 𝔥0(k), given in (77),

1 − k (a2 − m0(𝜔)) > 0 , if k <
1

a2 + |m0(𝜔)| , (79)

and by (71) and (6), the condition (79) occurs when

k <
h2

2d2 + a2 h2 . (80)

Since from (79), the term (2− |m0(𝜔)|𝜖(𝜔)) of (78) is positive, from (77) and (78), we obtain that 𝔥0(k) ≥ 0. Also from (75)
and (76), one gets

𝔥s(k) ≥ 𝔥0(k) ≥ 0 , s ≥ 1. (81)

Summarizing, if the spatial stepsize h satisfies (62) and the time stepsize k satisfies (80), from (69), (74), and (81) we have

𝜕
𝜕un (𝜔) ≥ (k, 𝜔) ≥ O , 0 ≤ n ≤ NT − 1. (82)

Under these conditions, the scalar functions i
(

un
0(𝜔), … ,un

N(𝜔)
)

are monotone increasing in each argument un
𝑗
(𝜔) ∈

[0, 1], where 0 ≤ j ≤ N. Hence, from (63), one gets

i
(

un
0 , 0, … , 0,un

N
) ≤ un+1

i (𝜔) ≤ i
(

un
0 , 1, … , 1,un

N
)
, 0 ≤ i ≤ N. (83)

From (5), (44) to (47), and (63), one gets

i
(

un
0 , 0, … , 0,un

N
)
=

(
eM(𝜔)k)

i,0 un
0 +

(
eM(𝜔)k)

i,N un
N + k (Λ[M(𝜔), k])i,0

ΔΦn
1(𝜔)
k

+ k (Λ[M(𝜔), k])i,N
ΔΦn

2(𝜔)
k

=
(

eM(𝜔)k − Λ[M(𝜔), k]
)

i,0 un
0 + (Λ[M(𝜔), k])i,0Φ1(tn+1, 𝜔)

+
(

eM(𝜔)k − Λ[M(𝜔), k]
)

i,N un
N + (Λ[M(𝜔), k])i,N Φ2(tn+1, 𝜔).

(84)

From Lemma -(ii) and (84), it follows that
i

(
un

0 , 0, … , 0,un
N
) ≥ 0. (85)

11
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On the other hand, in order to obtain an upper bound un+1
i , note that from (63) and (84),

i
(

un
0 , 1, … , 1,un

N
)
=

(
eM(𝜔)k)

i

⎛⎜⎜⎜⎜⎜⎝

un
0

1
⋮
1

un
N

⎞⎟⎟⎟⎟⎟⎠
+ (Λ[M(𝜔), k])i,0ΔΦn

1(𝜔) + (Λ[M(𝜔), k])i,NΔΦn
2(𝜔)

= i
(

un
0 , 0, … , 1,un

N
)
+

N∑
𝑗=1

(
eM(𝜔),k)

i,𝑗 .

(86)

Note that if ΔΦn
i (𝜔) ≤ 0, i = 1, 2, from (84), it follows that

i
(

un
0 , 0, … , 0,un

N
) ≤ (

eM(𝜔),k)
i,0Φ

n
1(t

n, 𝜔) +
(

eM(𝜔),k)
i,NΦ

n
2(t

n, 𝜔). (87)

In the case that ΔΦn
1(𝜔) > 0, from Lemma -(ii), one gets(

eM(𝜔),k)
i,0 un

0 + (Λ[M(𝜔), k])i,0ΔΦn
1(𝜔) ≤ (

eM(𝜔),k)
i,0 un

0 +
(

eM(𝜔),k)
i,0ΔΦ

n
1(𝜔) =

(
eM(𝜔),k)

i,0Φ
n
1(t

n+1, 𝜔) . (88)

Analogously if ΔΦn
2(𝜔) > 0, one gets(

eM(𝜔),k)
i,N un

N + (Λ[M(𝜔), k])i,N ΔΦn
2(𝜔) ≤ (

eM(𝜔),k)
i,N Φn

2(t
n+1, 𝜔) . (89)

From (86) to (89), whatever the sign ofΔΦn
i (𝜔), i = 1, 2, be, taking into account that 0 ≤ Φi(t, 𝜔) ≤ 1, i = 1, 2, 0 ≤ t ≤ T,

one gets

i
(

un
0 , 1, … , 1,un

N
) ≤

N∑
𝑗=0

(
eM(𝜔)k)

i,𝑗 =
N∑
𝑗=0

|||(eM(𝜔)k)
i,𝑗
||| ,

and from (12) and (14),
N∑
𝑗=0

|||(eM(𝜔)k)
i,𝑗
||| ≤ ‖‖‖eM(𝜔)k‖‖‖∞ ≤ ek𝜇∞[M(𝜔)]. (90)

Note that from (13), (37), and (38) under condition (62), we have

𝜇∞[M(𝜔)] = 0 , (91)

and from (90), one concludes that
i

(
un

0 , 1, … , 1,un
N
) ≤ 1,

that is,

0 ≤ un+1
i (𝜔) ≤ 1 , 0 ≤ i ≤ N , a.e. 𝜔 ∈ Ω.

Then, (59) has been proved.
Note that as the full discretization of problems (1) to (10) requires the use of Proposition 2.6 and Remarks 2.8 and 2.9,

coefficients D(x), B(x), and A(x) must be 2p-continuous s.p.'s. Hence, summarizing, the following result has been
established

Theorem 4.1. Let D(x), B(x), and A(x) be 2p-continuous s.p.'s satisfying conditions (1) to (8). In addition, let us assume
that for each fixed x ∈ [0,𝓁] the r.v.'s D(x) and B(x) satisfy (19). Let us assume initial condition s.p.Φ0(x) verifies condition
(9) and lies in L(N+1)×1

2NT p (Ω), NT = T∕k. Let us assume boundary condition s.p.'s Φi(t), i = 1, 2, verify condition (10), lies

in L(N+1)×1
2NT p (Ω) and have differentiable realizations Φ′

i(t, 𝜔), i = 1, 2. Furthermore, let us assume that both initial and
boundary condition s.p's verify condition (11).

Then, under discretization stepsize conditions (62) and (80), the numerical solution of the random problems (1) to (10)
constructed by the sampled vector scheme (45) to (51) satisfies for each time level n, 0 ≤ n ≤ NT,

0 ≤ un
i (𝜔) ≤ 1 , 0 ≤ i ≤ N , a.e. 𝜔 ∈ Ω, (92)

12
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Corollary 4.2. With the hypotheses of Theorem 4.1, the random numerical scheme (57) is || · ||p-stable in the fixed station
sense.

Proof. From (92) and (15), it follows that

||un
i ||p =

(
∫Ω

||un
i (𝜔)||p

𝑓un
i
(𝜔)d𝜔

)1∕p

≤
(
∫Ω

𝑓un
i
(𝜔)d𝜔

)1∕p

= 1,

and consequently, random numerical scheme (57) is || · ||p-stable with constant C of (58) having the value C = 1.

Algorithm 1 summarizes the procedure to compute the expectation and the standard deviation of the stable solution
s.p. of random scheme (57).

13
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5 NUMERICAL EXAMPLE

In order to illustrate the analytic results previously established, we consider the following random test heterogeneous
problem with available exact solution.

ut(x, t) = (1 + x2)uxx(x, t) + x ux(x, t) + G(x,u) , (x, t) ∈]0, 1[×]0,+∞[ , (93)

u(x, 0) =
(

1 + e
√

a∕6 arcsinh(x)
)−2

, x ∈ [0, 1] , (94)

u(0, t) =
(
1 + e−5at∕6)−2

, t ∈]0,+∞[ , (95)

u(1, t) =
(

1 + e−5at∕6+
√

a∕6 arcsinh(1)
)−2

, t ∈]0,+∞[ . (96)

Problems (93) to (96) corresponds with the general problems (1) to (5) considering deterministic functions D(x) = 1 + x2

and B(x) = x, and the r.v. A(x) = a. The exact solution s.p. of problems (93) to (96) when a is deterministic; see subsection
1.6.8.1 of Polyanin and Zaitsev,40 is given by

u(x, t) =
(

1 + e−5at∕6+
√

a∕6 arcsinh(x)
)−2

, (x, t) ∈ [0, 1] × [0,+∞[ . (97)

We consider that r.v. a is a Gaussian distribution of mean 𝜇 = 0.75 and standard deviation 𝜎 = 0.08 truncated on the
interval [0.01, 1], ie, a ∼ N[0.01,1](0.75, 0.08). Then it is guaranteed that coefficient A(x) = a is 2p-continuous. The initial
condition s.p. (94) and the boundary condition s.p.'s (95) and (96) verify (9) and (10), respectively.

For the calculations, stepsizes h = 0.1 and k = 0.002 have been used in the partition of the domain [0, 1] × [0,+∞[.
Then conditions (62) and (80) are guaranteed, being in our case a2 = 1 and b1 = d1 = d2 = 1. The fixed time considered
was T = 0.01. Hence, the number of spatial and temporal subintervals were N = 1∕h = 10 and NT = T∕k = 5, respectively.
The initial and boundary condition s.p.'s (94) to (96) lie in L11×1

25p (Ω) because a is a truncated r.v. In addition, it is guaranteed
that boundary conditions (95) and (96) have differentiable realizations, and deterministic coefficients D(x) and B(x) are
2p-continuous because they are continuous. Then the hypotheses of Theorem 4.1 are satisfied.

In Figure 1, we have plotted the evolution of the exact mean (plot A) and the exact standard deviation (plot B) over the
domain (x, t) ∈ [0, 1] × [0, 0.01]. In Figures 2 and 3, we have computed the expectation and standard deviation of (97) and
check that the numerical values, obtained using Algorithm 1, are close to the corresponding exact ones computing the
absolute errors. Computations have been carried out using the software Mathematica.

FIGURE 1 A, Surface of the expectation, E[u(xi, tn)]. B, Surface of the standard deviation,
√

Var [u(xi, tn)]. Both statistical moment
functions correspond to the exact solution s.p. (97) of problems (93) to (96), on the domain (xi = ih, tn = nk) ∈ [0, 1] × [0, T = 0.01] for
0 ≤ i ≤ N = 10 and 0 ≤ n ≤ NT = 5 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 A, Comparative graphics
between the exact values of expectation
of (97), E[u(xi,T)], and the
approximated expectation, E[uNT

i ],
using the random numerical scheme
(53). B, Absolute error of the
expectations represented in plot A. In
both graphics, we have considered
T = 0.01, ie, NT = 5 for k = 0.002, and
h = 0.1

FIGURE 3 A, Comparative graphics
between the exact values of standard
deviation of (97),

√
Var [u(xi,T)], and

the approximated standard deviation,√
Var

[
uNT

i

]
, using the random

numerical scheme (53). B, Absolute
error of the standard deviations
represented in plot A. In both graphics,
we have considered T = 0.01, ie, NT = 5
for k = 0.002, and h = 0.1

6 CONCLUSIONS

Incorporating randomness into the mathematical models improves the quality of the approximation to real problems in 
the measure of the uncertainties are taken into account. This challenge involves the proof of the new intermediate results 
from both the analytic and numerical points of view. In this paper, we use a mean square approach to random Fisher-KPP 
models and a semidiscretization technique allowing the use of previous results of systems of random ordinary differential 
equations. Numerical solutions are generated by constructing a random difference scheme in two steps. Firstly, we use 
a semidiscretization technique, and then the full discretization is achieved by adapting to the random framework the 
ideas of the ETD method.37 Once the random difference scheme is built, a sample approach combined with the results 
of Company et al32 recently obtained for the deterministic case permit the treatment of the stability. In spite of the high 
level of complexity, numerical experiments illustrate the utility of the approach.

[Colour figure can be viewed
at wileyonlinelibrary.com]

[Colour figure
can be viewed at wileyonlinelibrary.com]
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