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Abstract Giant magnetostrictive actuators are suit-
able for applications requiring large mechanical displace-

ments under low magnetic fields; for instance Terfenol-

D made out of rare earth-iron materials can produce im-

portant strains. But these actuators exhibit hysteretic

non-linear behavior, making it very difficult to exper-
imentally characterize them. Therefore, sophisticated

numerical algorithms to develop computational tools

are necessary. In this work, theoretical and numeri-

cal formulations within the finite element method are
developed to simulate magnetostriction. Theoretically,

within the framework of non-equilibrium thermodynam-

ics, the hysteresis is introduced by the Debye-memory

relaxation. Numerically, the main novelty is the time

integration, coupled Newmark-β (for mechanical) and
convolution integrals (for magnetic constitutive equa-

tions); the non-linearity is solved with the standard

Newton-Raphson algorithm. Constitutive non-linearities

are incorporated with the Maxwell stress tensor, quadrat-
ically dependent on the magnetic field. The numerical

code is validated using analytical and experimental so-

lutions; several examples are presented to demonstrate

the capabilities of the present formulation.
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1 Introduction

Nowadays, sensors and actuators are typically used in

many mechatronic devices, for instance those assembled
in smart structures for civil and aeronautic engineering

[1], medical applications [2], energy harvesting [3] and

robotics [4]. For this reason the study, understanding

and characterization of smart materials are important

challenges for the theoretical, experimental and numer-
ical scientific and engineering communities.

Smart materials such as piezoceramics are common

in applications that require small mechanical displace-

ments. On the contrary, rare earth-iron materials ex-

hibiting giant magnetostriction under relatively low ap-
plied magnetic fields, are more suitable for large-displacement

applications. However, the main drawback of these mag-

netostrictive materials emerges from their inherent mag-

netism resulting in hysteretic non-linearities. In partic-

ular, this hysteresis produces double-valued responses
and the accurate experimental characterization of mag-

netostrictive materials becomes very difficult if not im-

possible. Therefore, a robust numerical formulation of

magnetostrictive materials, including non-linearities and
hysteresis phenomena, is of central importance to de-

velop computational tools for the proper characteriza-

tion of these materials by using, for example, inverse

problems based on models.

In the literature, there is a wide range of experi-
mental and theoretical works on magnetostrictive ac-

tuators [5,6,7]. Numerically, the electrical engineering

community has developed several formulations based
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on equivalent physical models, for example see [8]. In

contrast, the continuum mechanics community often

uses the Finite Element (FE) method to model mag-

netostriction. In this sense, non-linear FE formulations

based either on vector potential [9]—requiring to model
both the ferromagnetic part and the coil—, or scalar

potential [10]—facilitating the application of boundary

conditions but missing some physics—have been devel-

oped by the authors of the present work.
In the framework of the FE method, non-linearities

are introduced either by: i) the consideration of the

Maxwell stress tensor (MST) in the formulation, as in

[9,10,11] or, ii) the introduction of non-linear constitu-

tive equations [12]. The first procedure is more robust
than the second since it does not require complex trial

and error calibrations that depend on the material. In

addition, the MST is the best physical descriptor of

non-linearities, as argued in [13].
Concerning the hysteresis modeling, there exist sev-

eral approaches in the literature:

– Phenomenological-based approaches as in [14], the

main drawback of which is an additional lack of ro-

bustness.
– Models with hysteresis operators such as Preisach

and Jiles-Atherton, for instance [8,15].

– Thermodynamic consistent models, based on macro-

scopic descriptions that satisfy the second law of
thermodynamics. The independent variables of the

internal energy are split into reversible and irre-

versible contributions, [16].

The present work adheres to the last approach and

presents a formulation and a variational development
based on FE to numerically study the non-linear be-

havior of magnetostrictive actuators.

Theoretically, non-linearities are introduced in the

linear momentum balance by the MST, while the hys-

teresis of the magnetic field is incorporated with an
irreversible term in the total internal energy, according

to non-equilibrium thermodynamics [17]. The presence

of this term results in a frequency-dependence governed

by a relaxation time, producing a magnetic viscosity-
like behavior.

Numerically, a displacement-based weak formula-

tion, which considers scalar magnetic potential is de-

veloped. The weak forms are discretized by standard

three-dimensional shape functions of the Lagrangian
type, and a monolithic residual-based formulation is

developed to solve the non-linearities by the standard

Newton-Raphson algorithm. One of the main novel-

ties of the present work is the time integration scheme
that combines the Newmark-β algorithm for mechan-

ical dynamics [18] with convolution integrals for the

time-dependent constitutive equations.

The numerical formulation is implemented into the

research code FEAP [20], from the University of Califor-

nia at Berkeley (USA). The numerical tool is validated

against analytical and experimental results and, finally,

two time-dependent electric intensities are prescribed in
the model of a commercial magnetostrictive actuator to

show the benefits of the present formulation.

Several simplifications are assumed:

i) For the mechanic field, small strain and absence of

dissipative effects such as viscoelasticity or plastic-

ity.
ii) Since the scalar magnetic potential will be used,

electric flux sources jf are dropped. Assuming low

electromagnetic frequencies, the electromagnetic mo-

mentum will be neglected in comparison to the me-

chanic one.
iii) Adiabatic processes: the effects of temperature T

are not considered.

iv) The constitutive tensors are considered constant,

not function of the magnetic field or T .

The simplification i) is here a good approximation
due to the relative high stiffness of the magnetostric-

tive material. In ii), the two assumptions imply that

only ferromagnetic materials can be modeled, but in

exchange the magnetic field generated by coils can be
easily prescribed through the Biot-Savart’s law, as in

[11,15]. Assuming iv) means that the magnetostrictive

material cannot be studied in full saturation: this is

again not a shortcoming since Mini Actuators (MA) do

not usually work in this zone.

Finally, Cartesian coordinates are assumed and the

symbols ( ˙ ), (¨), ∇, a · b = a⊤b, a : b = (a · b⊤) : I,
a⊗b = a b⊤, ( )⊤, (·),j denote time derivative, double

time derivative, del or nabla operator, dot product, dou-

ble contraction product, outer product, transposition

and differentiation with respect to the j-coordinate, re-
spectively. In addition, I denotes the second-order iden-

tity tensor.

2 Theoretical formulation

The aim of this section is to develop the governing

equations for the hysteretic non-linear magnetostric-
tive model. To this end, the linear and angular mo-

mentum balances are obtained from classical contin-

uum mechanics theory and from Maxwell’s laws of elec-

tromagnetism. Then, the compatibility equations are
stated and a non-equilibrium thermodynamic approach

is performed to obtain the constitutive equations. Fi-

nally, boundary and initial conditions are introduced.
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Fig. 1 A magnetostrictive domain Ω, its boundary Γ with
outward normal n; randomly oriented magnetic dipoles mi,
body forces f and boundary tractions t.

2.1 Momentum balances

Consider the generic solid of Fig. 1; the magnetic nature

of the medium has been represented by a number i of

magnetic dipoles with north and south poles, and the

magnetic moment of each dipole is denoted by mi.

Since Ω is filled with magnetostrictive material, the

momentum balances must include mechanic and elec-

tromagnetic contributions. The latter will be obtained

from the magnetic Maxwell’s laws [22] in the absence

of jf :

∇ ·B = 0, ∇×H −
∂D

∂t
= 0, (1)

where D, B and H denote electric displacement, mag-
netic induction and magnetic field, respectively. Since

in the present model there are no electric degrees of

freedom, the electric Maxwell equations do not need to

be included.

Associated to these laws, the electromagnetic con-

stitutive equations that relate magnetizations M with

both H and B is expressed as:

B = µ0

(
H +M

)
, (2)

where µ0 is the permeability of vacuum.

Given that the Lagrangian function is independent

of the reference system and of the angle of measurement
[21] and according to continuum physics, the domain

must satisfy linear and angular momentum balances.

From [22], the electromagnetic linear momentum

reads:

f
EM

= ∇ · σ⊤

Mx
−

∂p
EM

∂t
, (3)

where σ
Mx

, f
EM

and p
EM

denote the MST, electro-

magnetic body forces and electromagnetic momentum,

respectively. As commented, electromagnetic frequen-

cies are greater than mechanical one and, consequently,

p
EM

is neglected.

While f
EM

represents long-range forces related with

ponderomotive forces due to electromagnetic sources,

the MST is closely related to short-range forces, re-

sponsible for magnetostrictive behavior [13]; this tensor

must be incorporated in the constitutive equations as

argued in [24,25]. The magnetic part of the MST may

be explicitly expressed as:

σ
Mx

= B ⊗H −
B ·B

2µ0
I. (4)

The symmetric form of (4) reads:

σsy
Mx

=
µ0B ⊗H + µ0H ⊗B −B ·B I

2µ0
, (5)

Inside matter and for anisotropic magnetostrictive
materials, σ

Mx
is non-symmetric and therefore the an-

gular momentum will not be conserved directly. To en-

sure the conservation, the sum of electromagnetic and

mechanic momentums must result in a symmetric total
stress tensor σ

T
:= σ

Cl
+ σ

Mx
, where σ

Cl
is a non-

symmetric Cauchy-like tensor and σ
T
is related with a

theoretical mechatronic vector t
EM

= σ⊤

T
· n, see [23].

Since this “traction” t
EM

is associated with a tensor,

it represents the short-range forces and combines both
electromagnetic and mechanic tractions.

Taking advantage of the previous definition of σ
T
,

the total (mechanic and magnetic) linear momentum

balance becomes:

d

dt

∫

Ω

ρm u̇ dΩ =

∮

Γ

t
EM

dΓ +

∫

Ω

f dΩ, (6)

where u denotes the mechanic displacement field, ρm
the mass density and f the body forces. Applying the

divergence theorem to the first term in the right-hand

side of (6), the total linear momentum in local form

becomes:

ρm ü = ∇ · σ⊤

T
+ f . (7)

Since by construction σ
T
= σ⊤

T
, the total angular mo-

mentum is conserved as stated by the Noether’s theo-

rem, [21]. According to [28], the skew-symmetric parts

of σ
Cl

and σ
Mx

cancel each other, and the symmetric

part of the first is simply the Cauchy stress tensor σ
C
;

then the total stress is rewritten as:

σ
T
= σ

C
+ σsy

Mx
. (8)

The present formulation allows to calculate σ
C

from
standard thermodynamic approaches of the mechanic

field (see Section 2.3), and σ
T
by the addition of two

classical tensors.

The theory of total stress tensor and related aspects

are the subject of an ongoing work [23].
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2.2 Compatibility equations

Following a standard continuum mechanic approach,

the compatibility equation for the mechanic field is ob-

tained from the displacement gradient:

u⊗∇ = ∇sy u := S, (9)

where only the symmetric part of the tensor is consid-
ered and the small strain tensor is denoted by S.

Again assuming low frequencies ∂D/∂t = 0, the

right (1) or Ampère’s law defines a scalar magnetic po-
tential ϕ, according to the Helmholtz’s decomposition

theorem:

∇×H = 0 ⇒ H = −∇ϕ. (10)

Then the Ampère’s law of (1) is directly enforced
from this choice of ϕ. For more details on scalar and

vector potentials, the reader is referred to [10].

2.3 Material constitution

According to the theory of magnetism [26], there are

two main types of magnetic materials depending on

their dipole moment orientation:

– Paramagnetic: randomly oriented dipoles, Fig. 2 left.

– Ferromagnetic, such as magnetostrictives: dipoles
predominantly parallel to each other, Fig. 2 middle.

For both of them the dipoles tend to align more par-

allel upon application of H and the material becomes

more ferromagnetic; consequently, the effect M is pro-

portional to the cause H.

In practice, magnetic materials are neither perfectly

paramagnetic nor perfectly ferromagnetic. Therefore, a

momentary delay appears (Fig. 2 right) when the mag-

netic dipoles return to their original orientations upon
removal of H , as long as the coercive field has not been

reached. This delay is measured by the magnetic re-

laxation time τ
M

and its consideration will require the

addition of an irreversible term in the total internal en-
ergy. Notice that this delay is similar to that of electric

dipoles τ
P

in the Debye memory effect for dielectric

materials, [19].

Thermodynamically, the first and second laws of
thermodynamics must be satisfied, and their rate ex-

pressions may are:

d

dt

(
U +K

)
=

d

dt

(
Qr +Wr

)
+

d

dt

(
Qi +W i

)
,

T
dS

dt
≥

d

dt

(
Qr +Qi

)
,

(11)
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MP F Dm

Fig. 2 Dipole moment orientation: paramagnetic P (left),
ferromagnetic F (middle), magnetic Debye memory Dm

(right). τ
M

relaxation time for dipole to return to original
position when magnetic field is removed.

where U , K, Q, W and S denote internal energy, kinetic
energy, heat, work and entropy, respectively. Since τ

M

introduces dissipation, reversible (·)r and irreversible

magnitudes (·)i have been defined and, consequently,

the second law is described by the Clausius’ inequality

of the second equation of (11).
To expand (11), first the rate of internal and kinetic

energies in Ω can be expressed in continuum form as:

d

dt

(
U +K

)
=

∫

Ω

ρm
(
u̇+ ü · u̇

)
dΩ, (12)

where u denotes the specific internal energy.

Second, the rate of total entropy is also rewritten
in continuum form. The reversible part is the entropy

flux j
s
flowing through Γ and the irreversible part is

the entropy production Σs inside Ω; mathematically:

dS

dt
= −

∮

Γ

j
s
· n dΓ +

∫

Ω

Σs dΩ. (13)

Notice that the process would be reversible in absence

of Σs and in this situation the second law given in (11)

(bottom) becomes an equality.

Third, the rate of total work (including reversible

and irreversible contributions) is given by:

d

dt

(
Wr +W i

)
=

∮

Γ

t
EM

· u̇ dΓ +

∫

Ω

f · u̇ dΩ

+

∫

Ω

Hr · Ḃ dΩ + Ẇ i.

(14)

Finally, applying the divergence to the boundary

integrals, introducing (12), (13) and (14) in (11) and

taking into account the linear momentum balance (7),
the balance of energy in local form becomes:

ρmu̇ = −T ∇· j
s
+T Σs+σ⊤

T
: Ṡ

r
+Hr · Ḃ+ Ẇ i. (15)

Since the process is adiabatic, the entropy flux—

first term of (15) right-hand side—is neglected and two
conclusions are extracted:

– In the absence of entropy production (reversible pro-

cess), the total internal energy is a function of strain

and magnetic induction, namely U = U(Sr,B).
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– The entropy production that introduces dissipations,

is due to the irreversible rate of work:

Σs = −
Ẇ i

T
, (16)

where W i contains only magnetic contributions due to

assumption i) from Section 1.

From the energy defined in the first conclusion, a
conservative constitutive equation is developed in Sec-

tion 2.3.1. To satisfy the result of the second conclusion,

a dissipative term deduced from non-equilibrium ther-

modynamics is applied in Section 2.3.2.

2.3.1 Equilibrium thermodynamics

The choice of the scalar magnetic potential (10), per-

mits an amenable displacement-based FE formulation

with degrees-of-freedom u and ϕ. For that, a Legendre

transformation must be applied to U(Sr,B) to obtain
an expression for a thermodynamic potentialΠ(Sr,Hr).

In other words, it is intended to exchange B by Hr as

the depending magnetic variable. Furthermore, a nat-

ural state for which a residual stress σ
R
exists is con-

sidered, since many of the magnetostrictive devices are
preloaded.

Mathematically and in a first and good approxima-

tion, Π may be calculated by a Taylor series expansion

in the neighborhood of its natural state, see [10], to
give:

Π(S,Hr) = σ
R
: Sr − eϕ : Sr ·Hr +

Sr : C : Sr −Hr · µ ·Hr

2
,

(17)

where C, µ and eϕ denote the fourth-order elastic,

second-order permeability and third-order piezomag-

netic tensors, respectively.
Since Π is linear and non-dissipative, σ

C
and B are

directly obtained by applying the standard thermody-

namic approaches:

σ
C
=

∂Π

∂Sr = C : Sr − (eϕ)⊤ ·Hr + σ
R
,

B = −
∂Π

∂Hr = eϕ : Sr + µ ·Hr.

(18)

For the sake of convenience, these equations and

their inverse are expressed in compact form as:






σ
C
− σ

R

B






=





C −(eϕ)⊤

eϕ µ











Sr

Hr






, (19)







Sr

Hr






=





A11 A12

−A21 A22











σ
C
− σ

R

B






, (20)

with:

A11 = [1+C−1(eϕ)⊤µ−1eϕ]−1C−1,

A12 = [1+C−1(eϕ)⊤µ−1eϕ]−1C−1(eϕ)⊤µ−1,

A21 = [I + µ−1eϕC−1(eϕ)⊤]−1µ−1eϕC−1,

A22 = [I + µ−1eϕC−1(eϕ)⊤]−1µ−1.

(21)

2.3.2 Non-equilibrium thermodynamics

In the framework of non-equilibrium thermodynamics

[17], the entropy production of (16) is closely related
to both the irreversible strain Si = S − Sr and the

irreversible magnetic field Hi = H −Hr:

Σs =
σ̇

C
:
(
S − Sr

)

T
+

Ḃ ·
(
H −Hr

)

T
, (22)

where σ̇
C
and Ḃ denote flux-like magnitudes called rate

of stress and of magnetic induction, respectively.

The time-dependent constitutive equation may be

obtained as recommended in [17]: in a first and good

approximation σ̇
C

and Ḃ are by linearly related with
Si and H i. Operating Eqs. (21) to (22):







σ̇
C

Ḃ






=





A−1
11 /τσ 0

0 A−1
22 /τM











S − Sr

H −Hr






. (23)

As observed in (23), two new phenomenological co-

efficients, commonly called relaxation times τ
σ
and τ

M
,

are incorporated to take into account the material dis-

sipation. These coefficients are measured as function of
the frequency from indirect experiment, and in particu-

lar τ
M

is closely related to the magnetic Debye memory,

as drawn in Fig. 2.

The coupling coefficients of (23) representing phys-

ical interactions, and are commonly neglected for most

magnetostrictive applications at macro-scale in the ab-
sence of mechanical dissipations.

Finally, introducing (20) into (23), the time-dependent
constitutive equations become:

τ
σ
σ̇

C
+ σ

C
= C : S − (eϕ)⊤ ·H + σ

R
,

τ
M
Ḃ +B = eϕ : S + µ ·H.

(24)

The present work assumes τ
σ
= 0 due to assumption i)

from Section 1.



6 R. Palma et al.

2.3.3 Constitutive equations

The set of two coupled, time-depend and non-linear

constitutive equations are finally obtained by combin-

ing (24) and (8) to give:

σ
T
= C : S − (eϕ)⊤ ·H + σsy

Mx
+ σ

R
,

B,τ +B = eϕ : S + µ ·H := G.

(25)

At this point, several observations are highlighted:

– The material non-linearity is incorporated by adding

the symmetric part of the MST.

– The definition B,τ := ∂B/∂τ has been applied and

also it has been non-dimensionalized by the change

of variable τ = t/τ
M
.

– G is introduced to simplify the subsequent notation.

– Classical piezomagnetic equations are recovered if

the dissipation coefficient τ
M

= 0, the symmetric

MST and the residual stress are neglected.

2.4 Boundary and initial conditions

The set of two coupled partial differential equations first

of (1) and (7) along with the constitutives (25) is com-
pleted defining proper boundary and initial conditions.

In this work, boundary conditions are composed of

Dirichlet and Neumann type. Furthermore, both condi-

tions must include mechanical and electrical terms since

the problem is coupled:

Dirichlet type Neumann type

u = u, σ⊤

T
· n = t

EM
,

ϕ = ϕ, B · n = 0,

(26)

where u, ϕ, t
EM

denote prescribed displacements, scalar

magnetic potential and mechatronic vector all of them

on Γ , respectively. Notice that:

– t
EM

must combine both mechanical and electrical

contributions since they cannot be independently

measured, [28].

– B ·n is nil due to the apparent absence of magnetic
monopoles in nature.

Regarding initial conditions, mechanical displace-

ments, velocities and magnetic induction require initial
values, assumed to be zero in the present work:

u(t = 0) = u̇(t = 0) = Ḃ(t = 0) = 0. (27)

3 Finite element formulation

The governing equations reported in the previous sec-

tion are discretized in the present one.

3.1 Weak forms

As is common in the FE framework, the governing equa-

tions are expressed in weak forms. To this end, the bal-

ance equations are multiplied by arbitrary test func-

tions of the degrees of freedom: δu and δϕ. The diver-

gence theorem is then applied and natural (Neumann)
boundary conditions are enforced: from (7) and the first

(1):

∫

Ω

[

δu·(f − ρmü)− δS : σ⊤

T

]

dΩ +

∮

Γt

δu · t̄
EM

dΓ = 0,

∫

Ω

δH ·B dΩ = 0,

(28)

where the notation δS = ∇sy(δu) and δH = −∇δϕ

has been introduced for clarity.

3.2 Discretizations

The continuum domain of Fig. 1 is discretized into N

three-dimensional (3D) eight-node brick elements of do-

main Ωe and boundary Γe, satisfying Ω ≈
∑N

Ωe. Fur-

thermore, standard shape functions N of Lagrangian
type are used to interpolate Cartesian coordinates, de-

grees of freedom and test functions:

x ≈ N a x̃a, u ≈ N a ũa,

u̇ ≈ N a
˜̇ua, ü ≈ N a

˜̈ua, δu ≈ N a δũa,

ϕ ≈ N a ϕ̃a, δϕ ≈ N a δϕ̃a,

(29)

where x̃a, ũa, ϕ̃a denote a nodal value at the local node

(numbered a or b) belonging to the element e. In the

previous equation, the Einstein summation convention

is adopted. Using these expansions, the discrete forms
of the compatibility equations (9) and (10) become:

S ≈ ∇syN a ũa := Bsy
a ũa,

H ≈ −∇N a ϕ̃a := −Ba ϕ̃a.
(30)

Using now Voigt’s notation with indexes 1, 2, 3, 4, 5, 6

≡ 11, 22, 33, 12, 23, 13, the B-matrices (30) are explicitly
given by:

B
sy
a =











Na,1 0 0

0 Na,2 0

0 0 Na,3

Na,2 Na,1 0

0 Na,3 Na,2

Na,3 0 Na,1











, Ba =







Na,1

Na,2

Na,3






. (31)
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As commented previously and due to the dissimilar-

ity between mechanical and magnetic equations, they

are discretized by two different approaches.

3.2.1 Mechanical discretizations: Newmark-β method

The mechanical constitutive (25) is directly discretized
using (30) to give:

σn+1
T

≈ C B
sy
a ũn+1

a + (eϕ)⊤ Ba ϕ̃n+1
a +σsy

Mx
|n+1 +σ

R

(32)

The supra-indices n+1 and n represent the current
and previous time steps, respectivelly.

Now the time discretization of the displacements is

solved using the standard Newmark-β method:

ũn+1
a = ũn

a +∆t ˜̇un
a +∆t2

[(1

2
− β

N

)

˜̈un
a + β

N
˜̈un+1
a

]

,

˜̇un+1
a = ˜̇un

a +∆t
[(
1− γ

N

)
˜̈un
a + γ

N
˜̈un+1
a

]

,

(33)

where β
N
, γ

N
are the parameters that control stability

and accuracy and the time increment is ∆t = tn+1− tn.

3.2.2 Magnetic discretizations: Convolution integrals

The magnetic constitutive (25) bottom is an ordinary

differential equation that can be solved by convolu-

tion integrals. A preliminary attempt to numerically

discretize this equation for electric Debye memory was
developed by the authors of the present work in [19].

The present approach includes modifications for a bet-

ter formulation.

By assumption iv) of Section 1 the properties are

constant in the range of study; then applying the change
of variable from (25) to the forward time tn+1 = τ

M
τn+1,

the second (25) is integrated using variation of param-

eters to give:

B(τ) =

∫ τ

0

e−(τ−τ ′) G(τ ′) dτ ′. (34)

where τ ′ is a generic adimensional time within the in-

terval [τn+1, τn]. This equation has the same form as

the one reported in [17] for Debye theory of dielectrics.

Evaluating at τn+1 the previous integral and substitut-

ing the equality τn+1 = τn +∆τ :

B(τn+1) =

[∫ τn

0

e−(τn+1−τ ′) G(τ ′) dτ ′ +

∫ τn+1

τn

e−(τn+1−τ ′) G(τ ′) dτ ′
]

=

e−∆τ B(τn) +

∫ τn+1

τn

e−(τn+1−τ ′) G(τ ′) dτ ′

(35)

Introducing an additional change of variable η = τ ′−τn,
the tensor G(τ ′) can be linearly interpolated between

its value at τn (noted by Gn) and that of τn+1 (by

Gn+1) with:

G(τ ′) = Gn +
η

∆τ

(

Gn+1 −Gn

)

. (36)

Finally introducing (36) in the last (35) gives:

B(τn+1) = e−∆τ B(τn) +

e−∆τ

∫ ∆τ

0

eη
[

Gn +
η

∆τ

(

Gn+1 −Gn

)]

dη

(37)

The previous integrals may now be evaluated in
closed form as:

∫ ∆τ

0

eη dη = e∆τ − 1,

1

∆τ

∫ ∆τ

0

η eη dη = e∆τ −
e∆τ − 1

∆τ
.

(38)

With the definition φ(∆τ) =
(
1− e∆τ

)
/∆τ , the previ-

ous closed form results allow (37) to be written as the

direct expression:

B(τn+1) = e−∆τ B(τn) +

(
1− e−∆τ

)
Gn +

[

1− φ(∆τ)
] (

Gn+1 −Gn

)

(39)

As observed, the function φ(∆τ) is not defined at the
origin; however, taking limits φ(0) → 1. Therefore, for

small values of the time increment, this function is eval-

uated using a series expansion of the exponential.
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3.3 Residuals and tangent matrices

Since the present problem is non-linear, a residual-based

FE formulation is grounded on mechanical and mag-

netic residuals Ru and Rϕ minimized by the Newton-
Raphson algorithm [29].

Mathematically, the residuals are calculated intro-

ducing the discretizations (29) and (30) into the weak
forms (28):

Ru,n+1
a = −

∫

Ωe

Bsy⊤
a σn+1

T
dΩe +

∮

Γe

N⊤

a t̄ dΓ e +

∫

Ωe

N⊤

a

(
f − ρm N b

˜̈un+1
b

)
dΩe

Rϕ,n+1
a =

∫

Ωe

B
⊤

a Bn+1 dΩe.

(40)

There exist several procedures to numerically solve
coupled problems. For instance, stagger techniques are

based on two steps: first, magnetic distributions are ob-

tained and then applied to the calculation of the me-

chanical displacements. These procedures require less
calculation time but their results have lower accuracy

than those obtained with monolithic approaches, for

which fully coupled tangent stiffness matrices must be

developed.

The present work uses a monolithic approach with

the tangent matrices obtained from a linearization of

the residuals with respect to the degrees of freedom

ũn+1
b and ϕ̃n+1

b . The resulting monolithic assembled
system is:





Kuu
ab + c3 Muu

ab K
uϕ
ab

K
ϕu
ab Kϕϕ

ab





k 





dũn+1
b

dϕ̃n+1
b







k

=







Ru,n+1
a

Rϕ,n+1
a







k

,

(41)

where the tangent stiffness K and massMmatrices are

explicitly reported in Section 7, and k is the iteration

number of the Newmark algorithm and the coefficient

c3 results from linearizing (33):

dũn+1
a = β

N
∆t2 d˜̈un+1

a , c3 =
1

β
N
∆t2

. (42)

4 Validations

In order to validate the numerical implementation, this

section presents three comparisons (called “cases”) be-

tween numerical and analytical/experimental results.

In particular, a one-dimensional (1D) analytical solu-

tion is used for cases I and II, and case III compares

3D FE results against experimental responses reported

in [5]. For clarity, all cases are summarized in Table 1.

The material Tb0.3Dy0.7Fe1.92 (with commercial na-

me Terfenol-D) magnetized along its long dimension is

considered for all cases. This material provides a giant

magnetostriction of 1000-2000 (ppm) at 50 (kA/m) ac-
cording to [8], and its properties taken from [11] are

listed in Table 2.

For cases I and II, a 1D fixed-free rod of length 6

(mm) is studied. Magnetically, ϕ̄b = 0 is prescribed at

the fixed end and its value at the other end is given by

ϕ̄t = −NaIa (Biot-Savart law); in the previous expres-

sion Na and Ia denote the number of turns in the coil
and prescribed electric current, respectively.

The rod is free-to-expand, then σ
T
is zero; from (25)

and (5) a 1D closed solution for the strain S33 (along the
magnetization direction) versus the applied magnetic

field H3 reads:

S33 =
eϕ33
CH

33

H3

︸ ︷︷ ︸

linear

+
(µT

33)
2 − 2µ0µ

T
33

2µ0CH
33

H2
3

︸ ︷︷ ︸

MST

−
σ
R33

CH
33

︸︷︷︸

Preload

, (43)

where µT
33 = µS

33 +(eϕ33)
2/CH

33 and σ
R33

is a stress along

the length from a compressive preload, applied prior to

the magnetic field.

Figure 3 plots S33 versus H3 distribution calculated

with FE for case I, considering and not considering the

MST. The analytical and numerical solutions agree very

well for both solutions, and the following points may be
stated:

– w/o MST, the slope of the distribution is d33 =

eϕ33/C
H
33 = 4.3× 10−9 (m/A), the piezomagnetic co-

efficient provided by the manufacturer.
– w/ MST, the curve is slightly non-linear due to the

H2
3 dependency shown in the second term of (43).

Numerically, the last solution is reached after four it-
erations of the Newton-Raphson algorithm; in particu-

lar, a quadratic convergence is observed from the initial

7.17× 102 to the final 6.17× 10−7 residual norm.

There is not much difference between the two distri-

butions, but in a more realistic 3D case (see for instance

that of Fig. 7) the effective coefficient CH
33 in the denom-

inators of (43) would be smaller due to the two Poisson
effects and the quadratic MST term more important.

The influence of the residual stress (with values σ
R33

=

10, 50, 100 [MPa]) on the response of the magnetostric-
tive material, namely case II, is shown in Fig. 4. As

observed, the residual stress shifts the curve and as ex-

pected, the strain decreases with the increase of σ
R33

;
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Case Purpose Solution

I 1D comparison with and without MST Analytical
II 1D comparison with MST and σ

R
-”-

III 3D comparison with MST and σ
R

Experimental

Table 1 Summary of cases for numerical validations: I and II compare numerical and one-dimensional analytical solutions;
III numerical and experimental responses from [5].

Property Value Units

CH
11 / CH

33 / CH
44 / CH

66 / CH
12 / CH

13 116 / 162 / 89 / 86 / 77 / 78 ×109 (N/m2)
e
ϕ
31 / e

ϕ
33 / e

ϕ
15 580 / 700 / 550 (N/A·m)

µS
11/ µS

33 8.9 / 10 ×10−6 (H/m)
ρm 9250 (kg/m3)

Table 2 Material properties of Terfenol-D from [11]: CH
ij fourth-order stiffness tensor, eϕij third-order piezomagnetic tensor,

µS
ij second-order permeability tensor and ρm mass density. Supra-indices H, ϕ and S denote the constant magnitude at which

the coefficient is measured.
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(-
)

Analytical w/o

Analytical w/

FE w/o

FE w/

Fig. 3 Case I: Strain vs. applied magnetic field without
(w/o) and with (w/) Maxwell stress tensor. Analytical (lines)
and Finite Element (circles and rectangles).
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Fig. 4 Case II: Strain vs. applied magnetic for several resid-
ual stresses using Finite Elements and Maxwell tensor. Ana-
lytical (lines) and numerical (circles).

this reduction and the values fit very well with the ex-

perimental responses from [32].

In case III, the MA experimentally measured in [6]

is modeled. The cross section of the device is shown

in Fig. 5 and its geometric dimensions listed in Table

Description Value Units

Rod length 6 (mm)
Rod radius 0.56 (mm)

End plate width 3.86 (mm)
End plate thickness 3.81 (mm)

Coil # turns 176 –

Table 3 Geometrical dimensions of the magnetostrictive
mini actuator from [5].

. .

. ...

. .. ...

. .

. .

. .

. .

Terfenol–D 1

Terfenol–D 2

Coil 1

Coil 2

End Plates

Bolt

Fig. 5 Schematic representation of a magnetostrictive ac-
tuator (not cylindrical) cross section from [6]. Parts: active
Terfenol-D rods, flat end plates, precompression bolt and
magnetic coils.

3. The MA is composed of two cylindrical Terfenol-D
rods, two flat end plates made out of Ni-Fe, two coils

to generate the magnetic field and a bolt to preload

the rods. According to [11], the magnetic permeability

of the plates is three orders of magnitude greater than
that of Terfenol-D, allowing for an easy closing of the

magnetic lines.

The magnetic field along the rod axis is generated

by the application of an electric current Ia through the

coils; due to the magneto-mechanical coupling, the end
plates move. In this way, the electromagnetic field pro-

duces strain, due to the rotation of magnetic moments

mi as observed in Fig. 2 right.
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ϕ̄t

ϕ̄b = 0

Fig. 6 Finite element mesh to simulate the MMA of Fig. 5:
precompressed Terfenol-D rods and end iron plates.

From a modeling point of view, only the end plates

and the Terfenol-D rods are discretized with a 3D mesh
composed of 1,140 eight-noded elements as in Fig. 6.

The coils do not need to be simulated since the mag-

netic field generated by them is calculated with Biot-

Savart’s law.

The MA is mechanically clamped at the bottom
plate, see Fig. 6 and as in the experiment of refer-

ence, the top end plate is free to move vertically as

in the experiment. Magnetically, ϕ̄b is set to zero at

the bottom and the prescribed value at the top is again
ϕ̄t = −NaIa, see Table 3.

Figure 7 compares the experimental response re-

ported in [5] (without the effect of the temperature)

against the numerical results obtained by the present

FE formulation, including the MST and under σ
R33

=
9.6 [MPa] according to the reference.

If the MST term is not considered, the prediction is

linear and only valid for small values of Ia completely

failing for medium or high values.

With MST, three different zones in the non-linear
distribution may be observed:

– Ia < 100 [mA]: the response is practically linear and

both experimental and FE results fit very well.

– 100 < Ia < 320 [mA]: the experimental response
exhibits a strong concave shape that cannot exactly

be captured by the FE results.

– Ia > 320 [mA]: numerical and experimental results

agree very well again.

The good agreement in the first and third zones

could be due to the positions of the magnetic dipoles

of Fig. 2: in the first and for a ferromagnetic magne-

tostrictive they are much aligned with H and in the
second almost perpendicular (close to saturation) toH ;

in these two zones, classical continuum mechanics is a

good theory to model the response of the MA.

0 100 200 300 400 500 600

Coil current   (mA)

0

1

2

3

4

S
tr

a
in

 x
1

0
3

  
(-

)

Experimental

FE w/o MST

FE w/ MST

Fig. 7 Case III: Generated strain in the mini actuator
vs. electric current applied to the coils; experimental (circles)
from [6] and numerical (lines) results.

The disagreement of the second zone could be due

to two reasons or the combination of both:

(a) Experimentally is, at least, difficult to measure the

response due to the overheating of the coils, as ar-
gued in [5]: the influence of thermal strains has in-

fluence on the curve.

(b) Numerically, the present FE formulation has three

main simplifications:
• As mentioned, the Joule’s heating of the Terfenol-

D and of the coil is not incorporated in the model.

• The scalar potential FE formulation is a good

approximation but assumes uniform H in the

rods: in reality this field is not uniform due bor-
der effects.

• According to classical continuummechanics, each

material point only transmits linear momentum.

In reality the strain is not only due to stretch but

also to the rotation of magnetic moments mi, which
should be considered in some situations.

5 Debye relaxation

Magnetic viscosity—mathematically described by the

parameter τ
M
, see [33]—causes a frequency-dependent

behaviour in permeability and piezomagnetic material
properties; the second is due to the coupling between

magnetic and mechanical fields. From a mathematical

point of view and in a first and good approximation,

this dependence is represented by the Debye model that
incorporates a parameter fD, the simplest case of the

Cole-Cole equation [34]:

fD(ω) =
1

1 + (ω τ
M
)2
, (44)

where ω denotes angular frequency.
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According to [35] the Debye relaxation is described

by the spin-lattice model: the magnetic dipoles (spin)

must reach thermodynamic equilibrium with its sur-

roundings (lattice). Then, frequency-dependent mate-

rial tensors are approximately split into static (·)st and
dynamic (·)dy contributions:

µ(ω) ≈ µst fD + µdy

(
1− fD

)
,

eϕ(ω) ≈ e
ϕ
st fD + e

ϕ
dy

(
1− fD

)
.

(45)

Combining (45) and (44), two limit cases are obtained:

⊲ (ω τ
M
)2 << 1 ⇒ µ, eϕ → µst, e

ϕ
st: the spin-lattice

system are in isothermal equilibrium state and, con-
sequently, no dissipation appears.

⊲ (ω τ
M
)2 >> 1 ⇒ µ, eϕ → µdy, e

ϕ
dy: the temperature

of the spin increases while that of the lattice does

not change; then dissipation is present.

From a numerical point of view and in order to study
the influence of the Debye relaxation in the response of

magnetostrictive materials, case III from the last sec-

tion is studied again. Values τ
M

= 0, 17, 23 (ms) are

considered: the zero corresponds to the basic case and
the other two are empirically adjusted in [35] for the

similar magnetostrictive material PMN-PT/CFO. Also,

two time-dependent electric currents of low-medium fre-

quency similar to those presented in [8] (see sketches in

Fig. 8 right column) are prescribed:

1) Sinusoidal Ia = 15 sin(400πt),

2) Harmonic Ia = 15
[
sin(300πt) + sin(100πt)

]
,

Figure 8 plots the FE results for the two currents

and for each of the three relaxation times: M from

(2) versus H (left column), and S versus M (right

column), all of them along the Terfenol-D rod length

described before.
Several points on the results can be highlighted:

a) No hysteretic responses appear when ω τ
M

= 0 and,

consequently, there is not dissipation.

b) The left-column figures show a linear response (with
loops) since the magnetic constitutive (25) bottom

is linear. On the contrary, in the right-column fig-

ures the magneto-elastic coupling (25) top exhibit

clear non-linear responses due to the MST.

c) As expected, the loop width, or dissipation, increases
with τ

M

d) In the left column, the average slope of the loop

slightly decreases with the increase of ω τ
M
, or the

decrease of fD in (44), since the ratio between µst

and µdy is altered.

In the last item, one has to consider that the to-

tal µ of (45) top is the slope of the curves B vs. H .

In the bottom row, several loops of different width ap-

pear since the current includes several amplitudes and

frequencies.

6 Concluding remarks

This work has presented a three-dimensional, mono-

lithic, non-linear, dynamic and dissipative finite ele-

ment formulation to model giant magnetostrictive ac-
tuators.

Theoretically, the approach is consistent since the
constitutive equations have been specially obtained (for

this application) from a thermodynamic potential and

the dissipations—time-dependent constitutive equations—

from the entropy production, according to the non-
equilibrium thermodynamics.

Numerically, one of the novelties is the combina-
tion of Newmark method for the time integration of

the mechanical field and convolution integrals to inte-

grate the time-dependent magnetic constitutive equa-

tion. The use of this convolution allows to solve part

of the equation in closed form and, consequently, it
is more accurate than other numerical schemes such

as finite differences. The problem is non-linear due to

the existence of the MST, quadratically dependent on

the magnetic field; this problem has been solved by a
monolithic finite element formulation based on residu-

als, minimized by the Newton-Raphson algorithm.

The limitations are: small strain and linear elastic-
ity for the mechanic field; absence of free electric cur-

rents (magnetic scalar-based formulation); electromag-

netic frequencies greater than mechanical one; and, ab-

sence of thermal effects.

In conclusion, the present formulation is more ro-

bust than empirical formulations based on hysteretic
operators and it could be used to solve, among other

objectives, inverse problems for a proper characteriza-

tion of magnetostrictive materials.
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Fig. 8 Magnetization (left column) and strain (right column) along longitudinal axis from Fig. 5 vs. prescribed magnetic field
for three relaxation times. Top: i) pure sinusoidal current; bottom: ii) harmonic current.

7 Appendix

For the FE implementation, the tangent stiffness K and

mass M matrices may be explicitly expressed as:

K
uu
ab =

∫

Ωe

B
sy⊤
a

∂σn+1
T

∂ũn+1
b

dΩe,

K
uϕ
ab =

∫

Ωe

Bsy⊤
a

∂σn+1
T

∂ϕ̃n+1
b

dΩe,

K
ϕu
ab = −

∫

Ωe

B
⊤

a

∂Bn+1

∂ũn+1
b

dΩe,

Kϕϕ
ab = −

∫

Ωe

B⊤

a

∂Bn+1

∂ϕ̃n+1
b

dΩe,

M
uu
ab =

∫

Ωe

N a ρm I N b dΩe.

(46)

First, the mechanic and magnetic derivatives are calcu-

lated using (32) and (5) along with (10):

∂σn+1
T

∂ũn+1
b

= C B
sy
b +

∂σsy
Mx

|n+1

∂ũn+1
b

,

∂σn+1
T

∂ϕ̃n+1
b

= (eϕ)⊤ Bb +
∂σsy

Mx
|n+1

∂ϕ̃n+1
b

,

∂σsy
Mx

|n+1

∂ũn+1
b

=
1

2

[
∂Bn+1

∂ũn+1
b

H⊤

n+1 +Hn+1

(
∂Bn+1

∂ũn+1
b

)⊤

−
2

µ0

∂Bn+1

∂ũn+1
b

B⊤

n+1I

]

,

∂σsy
Mx

|n+1

∂ϕ̃n+1
b

=
1

2

[
∂Bn+1

∂ϕ̃n+1
b

(Hn+1)⊤ +Hn+1

(
∂Bn+1

∂ϕ̃n+1
b

)⊤

−Bn+1 B⊤

b −Bb (Bn+1)⊤

−
2

µ0

∂Bn+1

∂ϕ̃n+1
b

B⊤

n+1I

]

.

(47)
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Second, the time-dependent derivatives for the mag-

netic induction are obtained from (39) to give:

∂Bn+1

∂ũn+1
b

=
[

1− φ(∆τ)
]

eϕ B
sy
b ,

∂Bn+1

∂ϕ̃n+1
b

= −
[

1− φ(∆τ)
]

µ Bb.

(48)

Finally, this numerical formulation is implemented in

the FE research software FEAP [20].
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22. J. L. Jiménez, I. Campos and M. A. López-Mariño,
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