. mathematics

Article

An Analysis of a KNN Perturbation Operator: An Application
to the Binarization of Continuous Metaheuristics

José Garcia 1*1

check for

updates
Citation: Garcia, J.; Astorga, G.;
Yepes, V. An Analysis of a KNN
Perturbation Operator: An
Application to the Binarization of
Continuous Metaheuristics.
Mathematics 2021, 9, 225.
https:/ /doi.org/10.3390/math9030225

Academic Editor: Amir Mosavi
Received: 28 December 2020
Accepted: 20 January 2021
Published: 24 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-
censee MDPI, Basel, Switzerland. This
article is an open access article distributed
under the terms and conditions of the
Creative Commons Attribution (CC BY)
license (https:/ / creativecommons.org/
licenses /by /4.0/).

, Gino Astorga %1

and Victor Yepes >*

Escuela de Ingenieria en Construccién, Pontificia Universidad Catdlica de Valparaiso,
Valparaiso 2362807, Chile

Escuela de Negocios Internacionales, Universidad de Valparaiso, Valparaiso 2361864, Chile;
gino.astorga@uv.cl

Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia,
46022 Valencia, Spain; vyepesp@cst.upv.es

*  Correspondence: jose.garcia@pucv.cl

1t  These authors contributed equally to this work.

Abstract: The optimization methods and, in particular, metaheuristics must be constantly improved
to reduce execution times, improve the results, and thus be able to address broader instances.
In particular, addressing combinatorial optimization problems is critical in the areas of operational
research and engineering. In this work, a perturbation operator is proposed which uses the k-
nearest neighbors technique, and this is studied with the aim of improving the diversification and
intensification properties of metaheuristic algorithms in their binary version. Random operators are
designed to study the contribution of the perturbation operator. To verify the proposal, large instances
of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon
statistical test are used to determine the operator contribution. Furthermore, a comparison is made
using metaheuristic techniques that use general binarization mechanisms such as transfer functions
or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator
improves significantly the results.

Keywords: combinatorial optimization; machine learning; KNN; metaheuristics; transfer functions

1. Introduction

In many areas of the industry, it is necessary to make decisions that are increasingly
complex given the scarcity and cost of resources. The amount of elements that are con-
sidered today means that these decisions are made on a large number of assessments
which constitute combinatorial optimization problems (COPs) to find a result that, on
the one hand, is feasible and, on the other hand, satisfactory. In the industry, there are
several areas where this situation occurs such as automatic learning [1], transport [2],
biology [3], logistics [4], civil engineering [5], sustainability [6], among others. Among the
optimization problems are the so-called NP-hard problems, which are difficult to solve.
Various techniques can be applied to solve these problems, ranging from the application
of exact techniques to the use of approximate techniques. Within the latter, we find the
metaheuristics which allow us to tackle large problems and find good solutions, which is
not necessarily optimal, but in a reasonable computing time. Metaheuristics are an active
line of research in the areas of computer science and operational research that allow us to
obtain robust algorithms associated with the solution of COPs.

The need to find better results has allowed the development of new lines of research,
where the hybridization stands out, to obtain more robust methods on the one hand
in relation to the quality of the solution and on the other hand in improving the times
of convergence. In hybridization there are four lines of work: The first corresponds
to the combination of heuristics with mathematical programming [7], the second to the
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combination of different heuristic methods [8], the third line corresponds to the combination
between simulation and heuristic methods [9], and finally the fourth line corresponds to
the combination between heuristics and machine learning. This last line is an emerging
area of interest for researchers where this combination (heuristics-machine learning) can
occur in such a way that metaheuristics help machine learning algorithms to improve
their results ([10,11]) or it can also occur in the reverse direction, where machine learning
techniques help to obtain more robust metaheuristic algorithms (for example, in [12]).
In Section 2.1, the different ways of hybridization are presented in detail.

In this work, in order to improve the diversification and intensification properties,
and taking into account the different lines of research presented above, the k-nearest
neighbors algorithm is applied to a perturbation operator. The contributions of this work
are presented below.

e Inspired by the work in [13], an improvement is proposed to the binarization technique
that uses transfer functions, developed in [14], with the objective of metaheuristics
which were defined to function in continuous spaces, efficiently solve COPs. This
article includes the K-nearest neighbor technique to improve the diversification and
intensification properties of a specific metaheuristic. Unlike in [13], in which the
perturbation operator is integrated with the k-means clustering technique, in this
article the perturbation operator is integrated with transfer functions, and these
functions perform the binarization of the continuous metaheuristics. For this work,
the Cuckoo Search (CS) metaheuristic was used. This algorithm was chosen due to
its ease in parameter tuning, in addition to the existence of basic theoretical models
of convergence.

¢ Unlike in [13], in which the multidimensional knapsack problem was tackled, this
article addresses the set covering problem (SCP). This combinatorial problem has been
widely studied and, because of that, instances of different difficulties are available
which facilitate our analysis. In this work, we have chosen to use large size instances
in order to adequately evaluate the contribution of the KNNperturbation operator.

e  For a suitable evaluation of our KNN perturbation operator, we first use a parameter
estimation methodology proposed in [15] with the goal to find the best metaheuristic
configurations. Later, experiments are carried out to get insight into the contribution
of the KNN operator. Finally, our hybrid algorithm is compared to the state-of-the-art
general binarization methods. The numerical results show that our proposal achieves
highly competitive results.

The rest of the work is presented as follows. In Section 2, a state-of-the-art of inte-
grating metaheuristics with machine learning is developed. Then, in the same section,
the different binarization methods are summary. Later, in Section 3, the optimization set
covering problem is explained. Then, in Section 4, the detail of the perturbation operator
and the algorithm that solves SCP is explained. After that, the results obtained are detailed
in Section 5. Finally, in Section 6, the conclusions and new research lines are developed.

2. Related Work

In the industry there are a series of problems that must be solved, and in this sense the
optimization allows to give solution to some of them. Within the optimization techniques
are the metaheuristics which in recent years have gained much ground, especially in those
areas where the exact techniques do not have a good performance.

Among the most used metaheuristics are the last generation calls [16] where they are found:
Harmony Search [17], Artificial Bee Colony [18], Biogeography-based, Cuckoo Search [19],
Gravitational Search Algorithm [20], Teaching-learning-Based [21], Krill Herd [22], and Social
spider optimization [23].

The metaheuristics have been used to solve important problems in several productive
areas such as engineering, bioinformatics, communications, operational research, and
geophysics, among others [24].
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The metaheuristics, unlike exact techniques, do not perform a complete search of the

search space, so it is of utmost importance to use the right techniques to obtain good results.

2.1. Hybridizing Metaheuristics with Machine Learning

In the process of finding good solutions, important auxiliary data are generated such

as as trajectories, movements, solutions, fitness, among others. These data allow the
researchers use machine learning (ML) techniques with the aim of improving results. The
use of ML in metaheuristics occurs on three main fronts:

The first front is to apply ML at the level of the problem to be solved. This first front
considers obtaining expert knowledge about the characteristics of the data of the
problem under consideration. The problem model can be reformulated or it can be
broken down to achieve a more efficient and effective solution. The good knowledge
of the characteristics allows to design efficient metaheuristics and to understand
the behavior of the algorithms. The benefits are varied, ranging from allowing the
selection of an appropriate metaheuristic for each type of problem [25] to the possibility
of finding an appropriate configuration of parameters [26]. For the knowledge of
the ML characteristics it has several methods that can be used: neural networks [27],
Bayesian networks [28], regression trees [26], support vector regression [29], Gaussian
process [30], ridge regression [25], and random forest [30].

The second front is to apply ML at the level of the components of metaheuristics.
On this front, ML can be used to find suitable search components (or to find a good
configuration of parameter values the latter in sin is an optimization problem. ML can
be used to find good initial solutions which allows to improve the quality of the
solutions and reduce processing costs since currently the initial solutions are randomly
generated and of not very good quality [31]. Another participation of ML is in the
design of the search operators: constructive, unary, binary, indirect, intensification,
and diversification. Furthermore, ML can be present in the important task of finding a
good configuration of parameters as this activity has direct impact on the performance
of the algorithm [32]. Usually, the assignment of parameters is done by applying the
technique of trial and error, which undoubtedly causes a loss of resources, especially
time [33]. The number of parameters can vary between one metaheuristic and another,
which makes experience an important factor.

In general there are two major groups of parameters: those where the values are given
before the execution of the algorithm known as static or offline parameters and there
are also the parameters where the values are assigned during the execution of the
algorithm also known as online or dynamic parameter setting. In the case of the offline
parameters, the following ML methodologies can be used: unsupervised learning,
supervised learning, and surrogate-based optimization. For the case of sustainable
wall design, the k-means unsupervised learning technique was used in [34] to allow
algorithms that work naturally in continuous spaces to solve a combinatorial wall
design problem. In the allocation of resources, the db-scan technique was used
in [35], to solve the multidimensional knapsack problem. For the case of online
parameter value assignment, where parameters are changed during the execution of
the algorithm, the knowledge obtained during the search can serve as information
to dynamically change the values of the parameters during its execution using ML
methodologies, as they are Sequential learning approach, Classification/regression
approach and Clustering approach. In [36], an algorithm has been proposed in order
to carry out an intelligent initiation of algorithms based on populations. In this
article, clustering techniques are used for the initiation. The results indicated that the
proposed intelligent sampling has a significant impact, as it improves the performance
of the algorithms with which it has been integrated. The integration of the k-nearest
neighbors technique with a quantum cuckoo search algorithm was proposed in [37].
In this case, the proposed hybrid algorithm was applied to the multidimensional
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knapsack problem. The results showed that the hybrid algorithm is more robust than
the original version.

A third front is the choice of the best algorithm within a portfolio arranged for a certain
problem. There are several metaheuristics to solve complex problems which may
have common characteristics among them. For this reason, we can think of selecting
an adequate metaheuristic to solve a problem with certain characteristics. We know
that there is not a single metaheuristic that can solve a wide variety of problems, so
the use of an alternative is to select from a portfolio of algorithms [38]. ML is a good
tool for an adequate selection of the algorithm [39]. In this case, we can distinguish
between offline learning where information is gathered from a series of instances
in a previous form with the purpose of replicating new instances considering three
approaches: classification, regression, and clustering. On the other hand, there is the
online approach, which has the potential to be adaptive. Additionally, there are some
hybrid approaches [40]. In [41], a cooperative strategy was implemented with the aim
of land mine detection. The results of the strategy show good detection precision and
robustness to environmental changes and data sets.

2.2. Related Binarization Work

There is a group of problems that work in discrete spaces and others particularly in

binary spaces. However, some algorithms that were built to work in continuous spaces,
such as Cuckoo Search (CS) and Particle Swarm Optimization (PSO) are required to work
in discrete spaces.

In [42], the author makes an exhaustive review of the existing binarization methods

where he identifies two big groups: one called two-step binarization and a second group
called continuousbinary operator transformation. Within the first group the most used
techniques are Transfer FunctionBinarization and Angle Modulation-Rule.

Transfer Function-Binarization. This two-step binarization technique is widely used
due to its low implementation cost. In the first step, transfer functions (TF) are used
which produce values between 0 and 1 and then in the second step convert these
values into binary using rules that allow to leave as value 0 or 1.

There are two groups of transfer functions which are associated with the form of
the function, which can be either S or V. A TF takes values of R" and generates
transition probability values of [0.1]". These were used to allow PSO to work with
binary problems by relating the speed of particles to a transition probability. In PSO
a particle is a solution which in each iteration has a position and velocity which is
given by the difference of position between iterations. On the other hand, there are
several rules to convert these values to binary among these are Complement, Static
probability, Elitist, Elitist Roulette, or Monte Carlo.

This technique has been used to solve feature selection problem [43,44], knapsack
problem [45], and set covering problem [2].

Angle Modulation-Rule. This binary technique has as a first step the use of Angle
Modulation was used for phase and frequency modulation of the signal in the telecom-
munications industry [46]. It belongs to the family of four-parameter trigonometric
functions by which it controls the frequency and displacement of the trigonometric
function.

gi(xj) = sin(27'f(xj —a;)b; cos(27'£(xj —a;)c;)) +d; (1)

In PSO, binary heuristic optimization applied to a set of reference functions was used
for the first time [47].

Consider an n-dimensional binary problem, and let X = (x1,x,..x,) be a solu-
tion. First of all, we define a four-dimensional search space. In this space, each
dimension corresponds to a coefficient of Equation (1). As a first stage, using the
four-dimensional space, we get a function. Specifically, from every tuple (a;, b;, ¢;, d;)
in this space, we get a g;. This g; corresponds to a trigonometric function.
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In the second stage, binarization, for each element x;, the rule (2) is applied and
getting an n-dimensional binary solution.

1 ifgi(x;) >0
bij = {O otherwise @

Then, for each initial 4-dimensional solution (a;,b;,c;,d;), we obtain a binary n-
dimensional solution (bj1, by, ..., bj,,) that is a feasible solution of our n-binary problem.
In [48], the authors successfully applied to network reconfiguration problems multi-
user detection in multi-carrier wireless broadband system [49], the antenna position
problem [50], and N-queens problems [51].

The second group of binarization techniques, the most used techniques are quantum
binary and set-based approaches.

*  Quantum binary. In reviewing the areas of quantum and evolutionary computing we
can distinguish three types of algorithms [52]:

1.  Quantum evolutionary algorithms: In these methods, EC algorithms are used in
order to apply them in quantum computing.

2. Evolutionary-based quantum algorithms: The objective of these methods is to
automate the generation of new quantum algorithms. This automation is done
using evolutionary algorithms.

3.  Quantum-inspired evolutionary algorithms: This category adapts concepts ob-
tained from quantum computing in order to strengthen the EC algorithms.

The quantum binary approach is an evolutionary algorithm that adapts the concepts
of g-bits and overlap used in quantum computing applied to traditional computers.
The position of a feasible solution is given by X = (x1, x, ..., X,) and a quantum bit
vector g Q = [Q1, Q2, ..., Qu] where in this approach the probability of change Q is the
probability that x; takes the value 1. For each dimension, a random number between
[0.1] is generated and compared to Qj if rand < Qj, then x; = 1; otherwise, x; = 0.
The updating mechanism of the Q vector is specific to each metaheuristic.

This technique has been used to solve the following problems: unit commitment
problem [53], hydropower generation scheduling [54], knapsack problem [55], and
recognize facial expressions [56].

3. The Set Covering Problem

The classical set covering combinatorial problem (SCP) is an important NP-hard
problem, which has not only theoretical importance in the field of optimization but also
from a practical point of view as it has important practical applications in different areas
of engineering, for example, in the vehicle routing, railroads, airline crew scheduling,
microbial communities, and pattern finding [57-60].

The SCP consists of choosing a subset of possible locations at the lowest possible cost,
which is given by a fixed cost of construction and implementation, so that all agents are
covered from a set of possible locations that cover them.

Several algorithms have been created to solve this problem. Some of them may be
exact as are exact algorithms that generally rely on the branch-and-bound and branch-
and-cut methods to obtain optimal solutions [61,62]. However, this type of algorithm is
faced with the time required to provide a solution which does not allow them to be used
in industrial problems. As an alternative to this problem, different heuristics have been
proposed [63,64].

Mathematically, the SCP is represented in the next paragraph: Consider A = (a;;) be
an 1 X m zero-one matrix. Then, a column j covers a row i if 2;; = 1, and a column j is
related with a positive real cost c;. Consider | = {1,..m} and I = {1, .., n} be, respectively,
the columns and rows sets of A . Then, the SCP corresponds to a finding a minimum cost
subset S C | for which each row i € I, at least one column j € | coversit, i.e.,
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m
Minimize f(x) = ) _ cjx; 3)
j=1
m
Subjectto ) ajx; > 1,Vie I, and xj € {0,1}, Vj € ] )

j=1

where x; = 1if j € S and x; = 0 otherwise.

4. The Binary KNN Perturbed Algorithm

This section details the binary KNN perturbation algorithm to solve the SCP.
This hybrid algorithm has 4 main operators: A solution initialization operator which
is described in Section 4.1. A binarization operator which uses transfer functions to per-
form the binarization. This operator is detailed in Section 4.4. The perturbation operator
described in Section 4.3 is based on the k-nearest neighbor technique. Finally, a repair
operator in the event the solutions do not meet any of the coverage constraints. This op-
erator is detailed in Section 4.5. Additionally, the KNN perturbation algorithm has a
KNN-perturbation analysis module. The objective of this module is to collect data from the
solutions obtained in the optimization process to later deliver information to the perturba-
tion operator. The detail of this module will be developed in Section 4.2. The algorithm
flow chart is shown in Figure 1.

( Begin )

Solution
Initialization

}

Transfer function
operator

|

Repair operator
execution

Are the stopping Repair operator
criteria met? execution

Perturbance yes KNN perturbation

criteria are met? Solution neighborhood operator
information

KNN perturbation
analysis

Figure 1. A KNNperturbation algorithm flow chart.

4.1. Initialization Operator

The goal of this operator is to initiate solutions. As the first stage, a column will be
selected randomly through the SelRandCol() function. Once we have the first column
selected, compliance with the coverage constraints is evaluated. In the case that they are
not fulfilled, then the Heu() function is called, which will be detailed in Section 4.6. This
function receives a list with the currently selected column or columns (ISol) and returns the
new column nC to be incorporated into the [Sol. This Heu() function is executed until the
coverage constraints are satisfied. The pseudocode for the initiation procedure is shown in
Algorithm 1.
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Algorithm 1 Init Operator

1: Function Init()

2: Input

3: Output [Sol

4: 1Sol + SelRandCol()

5: while not all rows are covered by [Sol do
6:  nC =Heu(ISol)

7:  1Sol.append(nC)

8: end while
9: return [Sol

4.2. KNN Perturbation Analysis Module

This module uses the data generated in the evolution of the metaheuristic algorithm
and, through a measure, suggests a perturbation probability of the elements of the solution.
As a measure of importance, the definition made in [65] is adapted. The objective of
the measure developed in [65] corresponds to identifying the variables that are the most
relevant considering a reduced number of evaluations. This approach models linear and
non-linear effects and the correlation between variables.

Let K points belonging to the search space S. Then, EE;(X) is defined in Equation (5),
where X € S.

EE/(X) = f(X1, s Xis s Xa) = (X) ©)

where f corresponds to the objective function and X; is the complement of X;, that is,
if X; = 1then X; = 0, and i represents the location of the element X; in the solution.
Subsequently, for each dimension, the average y; and the standard deviation ¢;, defined in
Equations (6) and (7) respectively, can be calculated.

1 & ,
Wi = EZ|EE1‘(X])| (6)
=
1 & ,
0 = EZ|EE1‘(X])—#1‘!2 7)
=

When the (y, o) pair is analyzed, interesting interpretations can be obtained. In the
case of obtaining small values of ; and o, it is an indicator that the input variables have a
small impact on the objective function. A small value of # and a high value of o suggest
that the input variables have a nonlinear effect. A linear effect on the objective function is
related to high values of i and small values of ¢. Finally, high values in both indicate that
there are nonlinear effects or interaction with other variables.

In the methods reviewed in [65], the objective is to evaluate the exploration of the
entire space. In our case, the goal is to measure the exploitation of a region around a
solution to later apply a perturbation to the solution. Therefore, to achieve this goal, the
previous calculus must be adapted. In this adaptation, the neighborhood concept must be
incorporated. For our case, instead of calculating the indicators over the entire space, the
calculation will be carried out on the k-nearest neighbors of the solution to be perturbed.
The data set used to obtain the k-neighbors is generated with 25% of the best solutions
obtained in each iteration. Therefore, the elements of the first quartile are being used in the
estimation. For k-neighbors retrieval, we use the k-nearest neighbor algorithm (KNN).
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Because, to perform the perturbation, it is necessary to obtain a value of w; between
0 and 1 for each dimension i. Therefore, in Equation (8), w; is defined. The indicators y;
and ¢ correspond to normalized values between 0 and 1 of y; and 0}, respectively. On the
other hand, V/2 is added to ensure that w; takes values between 0 and 1. The detail of the
w; calculation is shown in Algorithm 2.

JEET o
V2

w; =

Algorithm 2 KNN perturbation analysis module

1: Function weight(ISol)

2: Input Sol

3: Output The list of weights (IWeight)
4: [Weight < []

5: neigbours < getKneighbours(ISol)
6: for (each dimension i in [Sol) do

7 w; < getweight(neighbours)

8 IWeight.append(w;)

9: end for
10: return [Weight

4.3. KNN Perturbation Operator

The goal of this operator is to perturb the solution list when the perturbation criterion
is met. This operator, in the case that the solution is found in 25% of the best solutions
of that iteration, consults the KNN-perturbation analysis module, for the probability of
perturbation for each element of the solution. Otherwise, that is, the solution is not found
in 25% of the best solutions, the solution is randomly perturbed, where the coefficient v
is used in order to manage the force of the perturbation. The criterion used for the list
of solutions to be perturbed, corresponds to a number T of iterations without the best
value changing. In this particular case, the number of T was 35. The pseudocode of the
perturbation operator is shown in Algorithm 3. In the pseudocode, bSolutions corresponds
to 25% of the best solutions and oSolutions to the rest of the solutions.
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Algorithm 3 KNN Perturbation operator

1: Function Perturbation(listSolutions, v)

2: Input Input sol listSolutions, strength of perturbation v
3: Output The perturbed sol listSolutions

4: bSolutions, oSolutions < getBSols(listSolutions)

5: for each [Sol in bSolutions do

6:  for (each dimension i in [Sol) do

7 if (w; > random and i == 1) then
8: remove element i from sol
9: end if

10:  end for

11:  sol < Repair(I/Sol)

12: end for

13: for (each [Sol in 0Solutions) do

14:  for (i=1tov) do

15: Randomly delete an item from [Sol
16:  end for

17:  sol + Repair(sol)

18: end for
19: return listSolutions

4.4. Transfer Function Operator

As CS is an algorithm that works naturally in continuous search spaces, it is necessary
to adapt it to solve the SCP. A widely used method for these situations is transfer functions
(Section 2.2). In this work, the function shown in Equation (9) was used as the transfer
function and the Elitist roulette discretization method shown in Equation (10), to get the
binary solutions.

TF(x) = | tanh (x)| )

Bestd(t),if rand < TF(x%(t+1))

1
0, otherwise (10)

(t41) = {
where Best?(t) corresponds to the best solution obtained by the solution d, up to the
iteration t.

4.5. Repair Operator

Every time the transfer function operator or the perturbation operator is executed,
there is a possibility the solution obtained does not meet the constraints of the problem.
For these cases, a repair operator is used to obtain a viable solution. If there are rows that
are not covered by the solution, the repair operator uses the heuristic function to choose
the necessary elements. Once all the rows have been covered, the operator checks whether
there are disjoint groups of columns that cover the same set of rows. In this case, we
proceed to eliminate what has the highest cost. The pseudocode of the repair operator is
shown in Algorithm 4.
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Algorithm 4 Repair Operator

1: Function Repair(ISol))

2: Input Input sol [Sol

3: Output The repaired sol [Soly.)

4: while needRepair(ISol) == True do
5:  ISol.append(Heu(ISol))

6: end while

7: 1Solyep <+ delRepeatedItem(ISol)
8: return [Solyep

4.6. Heuristic Function

In cases where it is necessary to repair or initialize a solution, a heuristic function
is often used in order to select the most suitable candidates. In our proposal as an input
parameter, the heuristic function considers the list of elements of the solution [Sol. There-
fore, with the elements of [Sol, we obtain the set of rows uR that have not been covered.
Using the Equation (11), the bestRows function returns the first N rows. With this list of
rows, [Rows, and using the Equation (11), the bestCols function returns the first M columns.
Finally, from the list of the selected columns, [Cols, one of these is randomly obtained. The
operation of the heuristic function is shown in Algorithm 5.

WeightRow(i) = Ll (11)

i
where L; is the sum of all ones in row i
€

WeightColumn(j) = RO M|
j

(12)

where M,; is the set of rows covered by Col j

Algorithm 5 Heuristic function

1: Function Heuristic()

2: Input Input solution /Sol

3: Output The new column nC

4: [Rows < bestRows(ISol, N=10)
5: 1Cols < bestCols(/Rows, M=5)

6: nC < getCols(ICols)
7. return nC

5. Numerical Results

This section aims to study the contribution of the KNN perturbation operator when
applied to the SCP. As the first stage in Section 5.1, the methodology to perform parameter
tuning is explained. Later, in Section 5.2, the contribution of the KNN perturbation operator
is analyzed. Finally, in Section 5.3 our proposal is compared with other algorithms that
have solved SCP in recent years. The dataset used to develop the experiments considers
the instances E, F, G, and H of the OR-library (OR-Library: http://people.brunel.ac.uk/
~mastjjb/jeb/orlib/scpinfo.html). The configuration of the equipment used in the execution
of the experiments corresponds to an Intel Core i7-4770 with 16GB in RAM. The algorithm
was programmed in Python 3.6. For the analyzes, each instance was executed 30 times
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and box plots, convergence graphs, and the Wilcoxon test were considered to develop
the comparisons.

5.1. Parameter Settings

In this section, the methodology used in the parameter setting is described. The
methodology was proposed in [15] and considers 4 measurements based on the best
value, the worst value, the average value, and the average time obtained by a specific
configuration. The definition of the measures are shown in the Equations (13)—-(16).

1. The percentage deviation of the best value resulting in ten runs compared with the

best-known value:
KBestVal — BestVal

bSolution =1 — KBostVal (13)
2. The percentage deviation of the worst value resulting in ten runs compared to the

best-known value:

. KBestVal — WorstVal
wSolution =1 — KBosiVal (14)

3.  The average percentage deviation value resulting in ten runs compared with the
best-known value:

KBestVal — AverageVal

lution =1 — 1

asolution KBestVal (15)

4.  The convergence time in each experiment is standardized using Equation (16).
WTime — 1 — AvgConvTime — minTime (16)

maxTime — minTime

The different explored configurations were obtained from the Range column in Table 1.
For each configuration, problems E1, F1, G1, and H1 were considered, and each one of
them was executed 10 times. Subsequently, the four previously defined measurements
are obtained for each configuration. These measurements allow to generate a radar plot
and calculate its area for each configuration. The configuration that gets the largest area
corresponds to the selected setting. In the case of CS, the selected configuration is shown
in the Value column of Table 1.

Table 1. Parameter configuration for the CS algorithm.

Parameters Description Value Range
v Perturbation operator coefficient 25% [20, 25, 30]
N Number of Nest 20 [20, 30,40]
K Neighbours for the perturbation 15 [10, 15,20]
% Step Length 0.01 0.01
K Levy distribution parameter 1.5 1.5
Iterations Maximum iterations 1000 [800, 900, 1000]

5.2. Perturbation Operator Analysis

This section aims to describe the experiments that evaluate the contribution of the
KNN perturbation operator in the final result of the optimization. Once the experiments
are detailed, the results will be presented and analyzed. To evaluate the contribution
of the KNN perturbation operator, two algorithms were designed. In the first one, the
KNN perturbation operator is replaced by a random perturbation operator. This random
operator also uses a perturbation coefficient v but does not consider the information
provided by the KNN perturbation analysis module. The perturbation is executed in a
random way, in the same way, that the 0Solutions are perturbed in Algorithm 3. For this
random perturbation operator, 2 values of v, 25, and 50 were used and its algorithms are
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denoted by rand.25, and rand.50, respectively. The first value used, is the same one used by
the KNN perturbation operator.

The second algorithm used to understand the contribution of the perturbation operator
corresponds to an algorithm that does not use a perturbation operator. That is, it is
equivalent to the design in Figure 1; however, in this case, the solutions will never be
perturbed. This algorithm will be denoted by non-perturbed.

For the analysis of the results, a comparative table, Table 2, is generated where the
best value and the average obtained from the 30 executions in the different algorithms,
and for each of the instances are compared. Moreover, in Figures 2 and 3, box plots have
been generated by type of instance. The objective of these box plots is to make a statistical
and visual comparison between the results obtained by the different algorithms. Finally,
in Figures 4 and 5, the convergence charts of the different algorithms by type of instance
are shown.

In Table 2, it is observed for the indicator best value that KNN perturbed algorithm
was the one that obtained the best values in all instances. Rand.25 and rand.50 got similar
values, and the non-perturbed algorithm got the worst values. In the case of the average
indicator, the result is similar to the previous one. Again, the KNN perturbed algorithm
obtained the best results, subsequently followed by rand.25, with non-perturbed being
the one that once again obtained the worst value. The Wilcoxon test indicates that the
difference between the algorithms is statistically significant. In the case of the box plots
shown in Figures 2 and 3, KNN perturbed obtains the best interquartile range values, with
values closer to 0 in all instance types, when comparing it with the other algorithms. In
addition, almost in all cases IQR (IQR = Q3-Q1) is smaller than in the case of the other
algorithms, except in instances E and F in which it has values are very similar to rand.25.
Finally, in Figures 4 and 5, the convergence curves for the 4 types of instances studied are
compared. In the 4 types, we observe that the shape of the convergence charts stabilizes in
the same number of iterations for the different algorithms. However, in the first iterations,
KNN perturbed is separated from the other algorithms, obtaining GAPslower than the rest,
and this difference is maintained during the complete execution of the optimization.

E problems F problems
404

T T I

%,
7%

N g N
@é & Algorithm @é X Algorithm
Figure 2. Box plots comparison between non-perturbed, random perturbed, and KNN perturbed

operators for E y F instances.
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Table 2. Comparison between not perturbed, random and KNN perturbation operators.

Instance Best Known Rand.25 (Best) Rand.50 (Best) Non Perturbed (Best) KNN Perturbed (Best) Rand.25(Avg) Rand.50 (avg) Non Perturbed (Avg) KNN (Avg)

E1 29 30 30 31 29 30.6 30.9 318 294
E2 30 31 31 31 30 31.8 32.1 32.1 30.2
E3 27 28 29 29 27 28.7 295 29.7 276
E4 28 29 29 29 28 29.6 295 29.8 28.7
ES5 28 28 28 28 28 28.7 28.8 29.1 284
F1 14 15 15 16 14 15.8 15.7 16.4 14.6
F2 15 15 15 15 15 15.7 16.1 159 152
E3 14 16 15 16 14 16.5 15.9 16.7 14.7
F4 14 15 16 16 14 15.4 165 16.7 14.8
E5 13 15 15 15 13 153 15.8 15.6 13.9
G1 176 179 180 182 176 180.1 181.2 183.2 177.2
G2 154 158 158 160 155 159.7 159.4 161.1 156.6
G3 166 171 172 171 168 172.4 1732 1723 169.2
G.4 168 171 171 171 170 171.9 172.1 171.9 170.2
G5 168 171 171 172 168 172.1 172.0 1732 168.6
H.1 63 65 65 66 64 66.1 66.4 66.8 64.6
H.2 63 65 65 65 64 65.8 65.9 66.1 64.8
H3 59 62 63 63 60 62.4 63.8 64.2 60.7
H.4 58 60 60 60 59 61.3 61.2 61.1 59.4
H.5 55 58 58 58 55 59.2 59.4 59.4 55.2

Average 67.10 69.10 69.30 69.80 67.55 69.96 70.27 70.66 68.20

Wilcoxon 12 x 1074 1.1 x 1075 2.7 x 106

p-value




Mathematics 2021, 9, 225

14 of 20

G problems

i

Gap)

10

H problems

T

1 2

0 L 0 i

> > >
2 2 ) Q 3 el Q
& S o N S § o o?
@ & & & & & S &
& & < < & & < K
@ ¥ Algorithm @ e Algorithm

Figure 3. Box plots comparison between non-perturbed, random perturbed, and KNN perturbed
operators for G y H instances.
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Figure 4. Convergence chart for E and F instances.
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Figure 5. Convergence chart for G and F instances.

In summary, it is observed that the KNN perturbed operator contributes to the final
result. This contribution makes it possible to obtain consistently better results, as well as a
decrease in the dispersion of the values when comparing these with the other proposed
algorithms. Regarding convergence, it is observed that the KNN perturbed operator
contributes in an important way in the initial iterations of the optimization process.
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5.3. Comparisons

This section aims to evaluate the KNN perturbed algorithm against other algorithms
that have efficiently solved the SCP. For this, we select three algorithms. The first is the
Binary Black Hole Algorithm (BBH) [66]. BBH uses a transfer function as a binarization
method. In particular, the function used was 73,7, TR The maximum number of itera-
14e 3
tions allowed for BBH was 4000 and the implementation was done in Java. The second

algorithm [66], corresponds to a Binary Cuckoo Search algorithm (BCS). The BCS also uses

transfer functions, 1d ) asa method of binarization. The algorithm was developed in
T4e i

Java and the maximum number of iterations allowed was 4000. Finally, the last algorithm
used in the comparison [2] executes the binarization through the concept of clustering.
Through the db-scan clustering technique, the solutions are grouped to generate binariza-
tion. The algorithm was developed in Python and the maximum number of iterations
was 800.

The results are shown in Table 3. When analyzing the best value indicator, we observed
that KNN perturbed was superior in 15 of the 20 instances when compared to BBH. When
contrasting with BCS, we see that KNN perturbed was superior in 11 instances and BCS in
none. Finally, the comparison with db-scan-CS showed similar results. KNN perturbed
outperformed db-scan-CS in 4 instances. The latter was superior in 1 instance. When
comparing the final average between KNN perturbed and db-scan-CS, these are practically
the same. The Wilcoxon test indicates that the difference is significant in the cases of BBH
and BCS and is not significant for db-scan.

When analyzing the average indicator, we observe that the difference in favor of KNN
perturbed with respect to BCS and BBH is maintained. In the case of BBH, KNN perturbed
was higher in 18 instances and BHH in 2. The Wilcoxon test indicates that the difference
is statistically significant. In the comparison with BCS, KNN perturbed was superior in
17 instances and BCS in 3. The Wilcoxon test also indicates that the difference is significant.
In the comparison between db-scan-CS and KNN perturbed, the average indicator shows
very similar results between them. Db-scan-CS obtains a better result in 15 instances and
KNN perturbed in 5. However, due to the proximity of the results, the Wilcoxon test
indicates that the difference is not statistically significant.

Additionally, we have incorporated Table 4 in order to develop a better understanding
of the comparisons. In the Average Gap column of Table 4, the value corresponds to the
average of the Gaps calculated for each instance. Subsequently, in the Gap ratio column,
the gap ratio of each algorithm is calculated using KNN perturbation algorithm as a basis
for comparison.

We noted the following patterns.

e KNN perturbation in the 4 types of problems outperforms BBH and BCS. These
techniques use transfer functions as a method of binarization, the same methods used
by KNN perturbation.

e KNN perturbation outperforms db-scan-CS only on instance G. In all other instances,
db-scan-CS performs better. db-scan-CS uses a binarization mechanism based on
db-scan which adapts iteration to iteration. However, the difference is not statisti-
cally significant.
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Table 3. Comparison between db-scan-CS, BBH, BCS, and KNN-perturbation algorithms.

Instance Best Known db-Scan-CS (Best) BBH (Best) BCS (Best) KNN (Perturbed) (Best) db-Scan-CS (Avg) BBH (Avg) BCS (Avg) KNN (Perturbed) (Avg) Time (s)

E1 29 29 29 29 29 29.0 30.0 30.0 29.4 176
E2 30 30 31 31 30 30.1 31.0 32.0 30.2 19.1
E3 27 27 28 28 27 275 28.0 29.0 27.6 18.6
E4 28 28 29 30 28 28.1 29.0 31.0 28.7 20.1
ES5 28 28 28 28 28 283 28.0 30.0 28.4 182
F1 14 14 14 14 14 14.1 15.0 14.0 14.6 17.8
F2 15 15 15 15 15 15.4 16.0 17.0 152 179
E3 14 14 16 15 14 14.4 16.0 16.0 14.7 19.4
F4 14 14 15 15 14 14.4 16.0 15.0 14.8 19.8
E5 13 14 14 14 13 13.4 15.0 15.0 13.9 18.4
G.1 176 176 179 176 176 176.8 181.0 177.0 177.2 116.2
G.2 154 157 158 156 155 156.8 160.0 157.0 156.6 114.7
G.3 166 169 169 169 168 168.9 169.0 170.0 169.2 113.1
G.4 168 169 170 170 170 170.1 171.0 171.0 1702 110.6
G5 168 169 170 170 168 169.6 169.1 171.0 168.6 117.9
H.1 63 64 66 64 64 64.5 67.0 64.0 64.6 104.2
H2 63 64 67 64 64 64.3 68.0 64.0 64.8 107.5
H3 59 60 65 61 60 60.6 65.0 63.0 60.7 95.6
H.4 58 59 63 59 59 59.8 64.0 60.0 59.4 102.1
H5 55 55 62 56 55 55.2 62.0 57.0 55.2 92.1

Average 67.1 67.8 69.4 68.2 67.6 68.1 70.0 69.2 68.2 63.05

Wilcoxon 0.157 0.0005 0.0017 0.14 0.0001 0.0011

p-value
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Table 4. GAP ratio respect to KNN-perturbation algorithm.
Problems Algorithm Avg Gap Gap Ratio

db-scan-CS 0.2 0.43

E instances BBH 0.8 4.0

BCS 2.0 10

KNN-perturbation 0.46 1.00
db-scan-CS 0.4 0.625

F instan BBH 1.6 2.5
mnstances BCS 14 2.19
KNN-perturbation 0.64 1.00

db-scan-CS 2.04 1.04

Ginst BBH 3.62 1.85
mnstances BCS 2.8 1.43
KNN-perturbation 1.96 1.00

db-scan-CS 1.28 0.96

H instances BBH 56 4.18

BCS 2.0 1.50

KNN-perturbation 1.34 1.00

6. Conclusions

In this work, we have used the K-nearest neighborhood technique in a perturbation
operator, in order to tackle combinatorial problems effectively. The cuckoo search algorithm
was selected for the development of the experiments. Two random operators were designed
in order to determine the contribution of the KNN perturbed operator in the optimization
result. From the experiments, it was concluded that the KNN perturbed operator con-
tributes to improving the quality and dispersion of the solutions, in addition to obtaining
better convergences. Additionally, a comparison was made with other algorithms that
have tackled the SCP efficiently. From the comparison, it is concluded that our proposal
improves the results of the algorithms that use the same binarization mechanism (Transfer
functions). In the comparison with algorithms that use db-scan clustering techniques as a
binarization method, we observed that the results were very close to each other.

As lines of future work, we observe that there is an opportunity in the dynamic
handling of metaheuristics parameters. Here, we intuit that the integration of dynamic pro-
gramming techniques or reinforcement learning is a line that can contribute to improving
the quality and convergence of the metaheuristics algorithms. Another interesting line is
the use of machine learning techniques for the selection of algorithms or parameterizations
of algorithms. Appealing to the no-free-launch-theorem, having a group of algorithms
or algorithm parameterizations together with a selection method of these, based on the
historical behavior of the different algorithms, could contribute to improving the quality of
the solutions obtained.
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