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Abstract

Fog computing improves the execution of computationally intensive ser-
vices for remote client nodes, as part of the data processing is performed
close to the location where the results will be delivered. As opposed to other
services running on smart cities, a major challenge of eHealth services on the
fog is that they typically span multiple computational activities performing
big data processing on sensible data that must be protected. Using the ca-
pacities of current processors can improve the servicing of remote patient
nodes. This paper presents the design and validation of a framework that
improves the service time of selected activities at the fog servers; precisely,
of those activities requested by remote patients. It exploits the capacities of
current processors to parallelize specific activities that can be run on reserved
cores, and it relies on the quality of service guarantees of data distribution
platforms to improve communication and response times to mobile patients.
The proposed approach is validated on a prototype implementation of simu-
lated computationally intensive eHealth interactions, decreasing the response
time by 4x when core reservation is activated.

Keywords: Fog computing, Resource management, Multicore, Distribution
software, Quality of service, eHealth services, computation intensive services

1. Introduction

Running services on the cloud may result in latencies that are not suited
for some application domains; precisely, providing real-time and predictable
cloud computing [16] brings in great challenges that are still being researched.
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Fog computing relies on the IoT (Internet of Things) geographically dispered
nodes to bring computations closer to the physical devices and sensors. For
this reason, fog computing enables improved provisioning of distributed ser-
vices and applications as compared to the cloud paradigm [3]. The new
paradigm of Social Dispersed Computing [17] embraces complex logic like
augmented reality, voice translation or drone traffic control [14]; these com-
plex applications find a more efficient model in the fog, as distributed services
can be partly run closer to the delivery point, reducing the amount of data
exchanged with the cloud.

The evolution of hardware is turning the prior resource constraint de-
vices and sensors into medium capacity processing nodes; but still such nodes
have reduced computation capacity if compared to, e.g., current single board
computers. These nodes are typically complemented by proximity nodes in
the form of, what we call, a federation or cloudlet [6]. Having federations
provides autonomy and liberty to the participating nodes as mobility is facil-
itated; however, since they are under the supervision of an outstanding node
(i.e., proximity node) in the federation, this provides a means to order the
chaos of the fog.

The interaction among the physical devices and sensors and the proximity
nodes requires distribution software to provide flexible, efficient, and quality
of service (QoS) operation. Although QoS parameters are application depen-
dant, it is the case that typically these refer to timing behavior and reliability
characteristics of the systems, including timeliness, robustness, error limits
for data transmission, data processing rates, etc.

The progressive increase of the computation power of the hardware has
boosted the possibilities of distributed computation. More powerful hardware
brings closer and closer to reality the desired real-time behavior that IoT
devices and systems require [8]. It is now posible to provide mobile users
with more computationally intensive services as these can offload some of
the involved tasks in sorrounding cloudlet and fog servers, with multicore
processors that can speed up their execution. Among these services, one
may find eHealth and medical systems’ services [13] that can be brought
nearer the increasingly mobile patient residing far from the care centers; these
patients can be monitored in real-time, from the distance, by embedding
some of the most computationally expensive services that s/he may need in
her/his sorrounding proximity infrastructures. Then, it is now easier that
eHealth and medical systems can progressively adopt execution paradigms
as the fog to provide improved services to patients, e.g., processor intensive
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data analysis from multiple environmental and health domains, to provide
recommendations to patients in need of health monitoring.

This paper supports the cross-fertilization of the fog computing paradigm
and the operating system techniques to control the execution in the nodes,
and it achieves efficient remote servicing of patient nodes. On the one hand,
current contributions on eHealth address service provisioning from an appli-
cation perspective, and they marginally consider the performance side de-
rived from the accurate control of the code functions on the nodes. On the
the other hand, the recent scientific literature dealing with fog computing is
crowed with contributions on how to enable the deployment of cloudlets and
fog computing for supporting heavy computations in real-time. Most of the
contributions address mobility by developing architectures for heterogeneous
node interaction, and programming solutions to support interoperability and
flexible service specification, publishing, and utilization across all participat-
ing nodes. However, these perspectives have not dealt with the objectives
of this contribution that are to support timely servicing of mobile patients,
exploiting the characteristics of the nodes’ hardware and the QoS posibilities
of the distribution software.

This paper proposes a software framework to support QoS aware inter-
action across devices that relies on the use of the data distribution system
standard in order to use a de facto standard for QoS properties. One of the
major contributions relies on the efficient usage of the general purpose mul-
ticore processors at the fog servers in order to provide shorter service times
to remote patient requests. The proposed software framework is aware of
the underlying hardware structure in those fog nodes that have a multicore
processor that can be used to parallelize some offloaded processing tasks.
The paper considers the importance of security mechanisms in the fog; it
complements the traditional security schemes by providing a model that can
be used to accelerate the response time of the security algorithms through
core reservation.

1.1. Objectives

This section summarizes the paper contributions that are the following:

• Provisioning a low level execution model that considers the fog ele-
ments for improving the capacity to support computationally intensive
eHealth-like services with differentiated services to prioritized remote
patient nodes.
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• Leveraging the processing capacity of the fog servers and their multicore
nature to accelarate the response time of services by parallelizing their
operations and to prioritize particular activities.

• Providing an extended data distribution layer as the communication
backbone across participating nodes that intercepts offloading requests
from mobile patient devices and decides whether these are serviced
depending on the current available spare capacity.

• Integration of parallelization infrastructures and operating system fine
tunning mechanisms at the fog server side to speed up execution and
providing real-time response to patients.

• Achieving a robust architecture that tolerates execution on noisy fog
servers, preserving the normal operation.

1.2. Paper structure

The rest of the paper is structured as follows. Section 3 describes the
baseline technologies for this work. Section 2 describes a selection of the
previous work that is most related to the present contribution. Section 4
presents the problems in execution of computation intensive functions on fog
servers. Section 5 describes the proposed architecture. Section 6 reports the
validation of the proposed model and highlights the obtained results. Section
7 concludes the paper and draws future research lines as continuation work.

2. Related work

As technology improves, increasingly complex smart systems are made
posible. Over the last decade, light weight and highly available communica-
tion infrastructures that support the interaction across the participant nodes
of the smart domains have backed up their realization. Now, it appears that
fog computing will be the next key technological step that will support a
major progress in the performance and effective realization of smart services.
However, fog computing technologies are still very immature and there is
no actual fog computing infrastructure that fully implements its promising
vision.

Merging fog computing and eHealth/medical systems can be a major
advance for society as it can enable remote real-time monitoring, recommen-
dation, and guidance to mobile patients, increasing their autonomy, confi-
dence, and also reducing the on site costs. Patients will be able to preserve
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their normal life activity, through personalized health care solutions such as
[30] wherever they are; low cost mobile devices and sensors can provide a
low cost infrastructure to exchange data with the environment and remote
servers and collect rich information from the daily conditions of the patient
or from her/his sorroundings such as weather conditions, city information on
traffic [5], pollution, routes, etc.

Collecting all this information will result in the generation of big data
that will be fed to eHealth services capable of analysing the data applying
machine learning techniques [4], combining them with historical records and
data from other medical sources. Such data cross-processing and analytics
requires high computation power from either the cloud (that will result in
increased latencies) or from the sorrounding fog infrastructure to which part
of the eHealth services can be offloaded.

The fog brings in a number of challenges to proper interaction across
nodes. Also, the security of data is challenged as extensively described in
[26]; for this, a number of solutions have to be put in place such as data
forensics [34, 7]; or security models for medical data transmission in IoT
healthcare [12].

Contributions on smart eHealth have mostly dealt with the specific com-
putation algorithms to derive statistical information of certain illness such as
diabetes and the relation to information searches over the Internet (e.g. [23]);
cloud-based execution of eHealth services such as [13] that yield increased la-
tencies for the user; or strategies for efficient access to data bases for big data
processing such as [20]. Also, eHealth solutions have addressed the applica-
tion level functional requirements such as image encryption techniques for
privacy preservation [21, 32, 33]. A number of platforms for dealing with the
big data generated in eHealth have also been presented such as [11]; whereas
other contributions such as [25] provide a platform for IoT big data handling
in health services, but strictly from a security-centric perspective.

To the best of our knowledge there are no contributions that aim at inte-
grating the different required levels (i.e., from data distribution and resource
management) with the logic to achieve control over the assignment of the
processing resources of the available multicore processors to the application
level eHealth activities. Although there are efficient distribution software
designs such as [18] that has been used for real-time video transmission over
dynamic distributed service oriented systems, it is unaware of the underlying
structure of multicore processors. To exploit the potential of the availble
IoT infrastructures and deliver timely services to patients, it is needed to
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consider the computation capacity and possibilities of the execution nodes.
In the context of cyber physical systems, rigurous design techniques will
have to be applied such as [19] that follows a pragmatic approach based on
parametric models that guarantee the temporal properties in the presence of
uncertainty.

3. Background technologies

This section describes the basic techniques to enable the control of the
execution in the hardware by providing an overview of different technologies
for parallelization and scheduling control. Precisely, OpenMP (Open Multi-
Processing) [2] as a libraty for parallelization with shared memory and the
Message Passing Interface (MPI) [1] are introduced. The former is a state of
the art library for parallelization with shared memory, whereas the latter is
an interface specification for message passing.

3.1. Parallel processing infrastructures

OpenMP [2] is a parallelization infrastructure that provides an application
programming interface (API) consisting on a set of compiler/preprocessor
directives, library routines, and environment variables for shared memory
parallel programming [10], which constitutes a language for multi-threaded
applications. It uses Pthreads on some operating systems, which favors the
development of portable solutions.

An advantage of OpenMP over other parallel programming paradigms is
that it can be easily integrated on existing code and some studies suggest that
using OpenMP over threads with Pthreads increases the robustness without
sacrificing performance [24]. The spawning strategy is typically based on a
fork-join model for parallelizing tasks such as used in OpenMP. In the specific
target system, the parallelizable activities are parts of the eHealth services
that are run on the fog servers.

In multicore processors, multi-threading may increase significantly the
performance of an application as several computations are performed at the
same time on different processors. Threads are like processes for the system in
terms of execution, they have their own stack and program counter, but they
have access to the same virtual memory address space of its parent process.
A process can be either single- or multi-threaded. The proposed system uses
threads as they result in more efficient execution given their reduced context
switch cost. As threads of a same parent process have a shared memory space,
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they can communicate through shared memory (global variables); this comes
at the cost of needing synchronization to avoid race conditions.

The most attractive feature of OpenMP for our eHealth processing frame-
work is the magic loop parallelization. Element-wise operations on arrays can
be performed simultaneously on different processors. Code 1 shows the ba-
sics of loop parallelization with OpenMP. In the example, all the variables
are shared, except the iteration index i. The reduction directive indicates
that each processor maintains a private copy of the shared variable x, and
that these private copies are combined with the indicated operation at the
end of the parallel execution area.

Code 1: Parallelized loop with OpenMP

#pragma omp p a r a l l e l f o r r educt i on (+:x )
f o r ( i =0; i < n ; i++) {

c [ i ] = a [ i ] + b [ i ] ;
x += a [ i ] ;

}

The other main infrastructure used for parallelization is MPI [1], that is
a language independent specification for interprocess message passing. MPI
is designed for systems with distributed memory, cluster environments of
single processor machines, but since version 3 it incorporates an extension
for shared memory processing. It has several implementations that comply
with the specification, like IntelMPI [22] and OpenMPI [15].

Although the current version of MPI is suitable for shared memory appli-
cations, OpenMP has a simpler syntax, being easier to use and to debug for
shared memory systems like current symmetric multiprocessor computers.

Hybrid systems with different memory spaces, with any of them associ-
ated with several processors, are a challenge to application design. Existing
applications using either OpenMP or MPI may implement the extensions of
their current infrastructure to scale to the new scenario. Nevertheless, both
platforms are compatible and can be used together carefully to increase the
performance [31].

3.2. Execution control and instrumentation

The fundamental functions for controlling the processor are provided by
the operating systems and they are: process scheduling and memory manage-
ment. The default scheduling policy for some operating systems (e.g. Linux)
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can be customized to suit different applications targets such as real-time.
The following are some selected kernel functions to control the execution of
activities and their assignment to individual cores. Table 1 shows the main
facilities used for controlling the distributed eHealth processing.

Table 1: Activity processing support functions at the fog server

Function Purpose

Scheduling, process management Prioritize eHealth activity execution
Threading and concurrency Prevent shared data race conditions
Priorities and processor affinity Core assignment to eHealth activities
Signals Handle communication interrupts
File I/O Log of eHealth activities’operation
Transport level transmission Data communication
Real-time clocks Precision delay measurements
Memory management Efficient consumption avoiding leaks

The proposed framework uses standard runtime support functions by
means of POSIX threads (Pthreads) that is also used in the core distribution
software to handle the concurrency accessing the received packets queue and
through OpenMP for parallelizing the computations.

The required high precision execution time measurement is performed
through clock gettime(clockid t clk id, struct timespec *tp) method,
selecting a high resolution clock (real time, wall time, or process time)
with nanoseconds precision (typically 1ns resolution) to obtain the requested
timestamp (timespec).

3.3. Communication backbone

The data distribution service (DDS) [27] implementations can integrate
with the standard operating system interface, Posix. Data distribution ser-
vice provides publish-subscribe (P/S) interaction relying on the concept of a
global data space where entities exchange messages based on their type and
content. Types are based on the concept of topics that are constructions that
enable the actual data exchange. Topics are identified by a unique name, a
data type and a set of quality of service (QoS) policies. Topics can use keys
that enable the existence of different instances of a topic so that the receiving
entities can differentiate the data source.
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One of the most successful elements of the data distribution system stan-
dard is the set of quality of service parameters that it defines, namely QoS
policies. Some of these policies are related to the temporal behavior of the
communication; others provide different guarantees over the data transmis-
sion. In the proposed distribution model, the policies that influence the
communication time and the overhead of the system are indicated below:

• Deadline is the maximum expected elapsed time between arriving data
samples (unkeyed data) for the data readers; and it is the maximum com-
mitted time to publish data samples or instances for the data writter.

• History stores the sent or received data in cache. It affects Reliability and
Durability (receive samples sent prior to joining) QoS policies.

• Resource limits is the limit to the allocated memory (message queues for
history, etc.). It limits the queue size for History when the Reliability
protocol is used.

• Latency budget is an indication on how to handle data that requires low
latency. It provides a maximum acceptable delay from the time the data
is written to the time it is received by the subscribing applications.

• Timed based filter limits the number of data samples sent for each instance
per a given time period.

• Transport priority establishes a priority for the data sent by a writer. The
accomplishment of the priority indicated by transport priority is actually
dependent on the transport characteristics and also supported only by
some operating systems.

• Reliability is a global policy that specifies whether or not data will be
delivered reliably. It can be configured on a per data writer or data reader
basis.

3.4. Security concerns at the fog

Current research challenges in fog computing are many and highly diverse
such as data breaching. In general, the risk of malicious insider attacks and
other privacy problems increases in fog environments. Here, it is presented
an overview of the security issues in the fog infrastructure in relation to the
execution of eHealth services.
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Security can be viewed from two different perspectives: (1) design of
algorithms for identification, non-repudiation, authorization, data integrity,
encryption, etc.; and (2) providing low-cost execution infrastructures that
improve the execution speed and response times of the former algorithms.
This contribution deals with (2), but below, we acknowledge the major chal-
lenges and their implications for eHealth:

• Malicious fog nodes can cause data breach, that call for efficient and
secured end-to-end schemes for IoT devices to perform data storage
and access. For this, encryption (or proxy-encryption) and low cost
end-to-end schemes need be designed.

• Malicious insider attacks may steal private key and access user data.
A possible solution is to deploy decoy technology to reduce the amount
of stolen data; but it is needed to select the right location of this tech-
nology placement in the fog.

• Fog forensics [34] provides evidence by reconstructing the past events
in the fog environment. However, this brings in an additional problem
such as how to retrieve log data from the large number of possible fog
nodes. There are some contributions such as [7] that identifies how fog
and cloud forensics differ, requiring international rules for addressing
cross-border challenges.

• Privacy preservation is concerned with guaranteeing the undisclosure
of information such as the identity or location of a node (i.e., that can
be attached to a physical object such as a human user or a unmanned
aerial vehicle, etc.). There are a number of techniques to solve this such
as pseudonym modification, group signatures (for disclosure selection
to specific nodes), etc. Challenges such as integration of such nodes
needing high privacy preservation is needed with low cost mechanisms
that reduce the costs of storage, computation complexity, communica-
tion overhead, or additional delays.

Controlling the execution of the activities inside the processor can con-
tribute to preserving data security. Confining the execution of certain code
functions to a specific core, decreases the exposure of data to other code
functions. On the first place, this decreases the execution time of selected
code functions (e.g., those serving a priority patient) as cache invalidations
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due to tranfer of the function to another core are avoided. On the second
place, if a priority function runs on a given core and other functions (possibly
malicious) are not allowed to run there, the data cache will be protected.

4. Computation within the fog servers

This section presents the execution model for intelligent fog services from
two different perspectives in a bottom-up fashion: low level execution con-
trol and the application level logic. Firstly, it is described the fog computing
model that is applied to improve servicing of patients, basically by compu-
tation offloading to fog servers. Secondly, the model for accelerating the
execution of eHealth services in fog servers is described.

4.1. Fog model

The proposed framework is based on the vision of fog computing that is
sketched in Figure 1.

Off load 

Subsystem 1 

Subsystem 2 

Off load 

Cloud 

Figure 1: Computation offloading

In it, there are two different subsystems connected to the Internet and
to the cloud. Subsystem 1 is configured as a LAN to which a number of
heterogeneous nodes are connected, ranging from high-end servers to other
IoT sensors and devices; this corresponds to some organization or especialized
environment such as a hospital, care center, or possibly the smart building
where the targeted patient lives. Subsystem 2 is private space also configured
as a LAN, possibly with a partly adhoc infrastructure, with an overall limited
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processing capacity if compared to Subsystem 1 or the cloud; the latter
corresponds posibly to the patients’ home.

The basic principles of the fog computing model that is the basis for this
proposal are are the following:

• Computation offloading. In a cloud centered design, the computation-
ally complex services are run at the cloud. In a fog computing environ-
ment, part of these complex services can be run at nodes located close
to the point of delivery of the results. Figure 2 shows this by presenting
the software structure of two fog nodes: a fog server and a patient node.
Selected processor intensive activities such as face recognition, voice in-
terpretation, or health recommendations can be run at the fog nodes
close to the patient. Computation offloading results in battery savings
at the IoT nodes and specifically at mobile patient nodes as it implies
that there is a drastic reduction in the amount of data transmitted to
the cloud.

Server system 
Patient system 

Facial 
recognition!

Environment 
analysis!

Health 
analysis!

Physical 
param 

collection!
Offloading 

Facial 
recognition!

Health 
analysis! Results 

Chess game!

Weather 
forecast!

Speech 
recognition!

Figure 2: Using the fog servers for offloading computationally intensive eHealth services

• Latency. The networks used to connect to a cloud server typically
exceed the LAN boundaries, and WAN latencies increase significantly.
In fog computing, data is sent to the fog servers in the vicinity at LAN
speeds, i.e., with very low latencies. If improved latency is required,
the computation intensive activities of mobile patient clients will be
offloaded to more powerful devices within the fog (see figure 2) that
are the middle end servers.

• Network bandwidth. The cloud model has scalability issues in data
intensive application domains. It incurs in high network bandwidth
consumption with an associated that could be prohibitive. Exchanging
data across the fog nodes, mostly in the LAN boundaries will impre-
sively decrease network bandwidth and the derived costs.
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• Security. As data can be partly stored at the fog nodes and need not
circulate to the cloud, systems are less exposed to network security
breaches. Nevertheless, other security problems arise such as those
described in §3.4.

In this framework, more efficient execution in the fog servers is possible,
providing lower service time to the offloaded activities by appropriately con-
trolling the execution on them. As the fog servers are typically middle end
nodes, they have multicore servers that can be exploited to accelerate the
execution of the ehealth services.

4.2. Low level control: Execution acceleration

Current computers, ranging from high-end servers to low cost single board
computers, have multicore processors that support parallel execution. This
characteristic can be exploited to increase the computation power offered to
the offloaded eHealth services, providing them the following benefits:
• To prioritize those activities which are of higher urgency that will allow

to offer differentiated service to higher priority patients;

• To decrease the response time of the servicing so that interactivity is
improved for the requesting patients;

• To improve data security due to the isolation of the execution of some
activities which may manipulate sensible data.

Using the general purpose scheduling facilities of the operating system
does not well address the priorization nor the decreased response-time argu-
ments. The default scheduling of highly efficient operating systems such as
Linux aims at lowering the average service times of all the activities which are
run; this is not suitable in situations where there is an outstanding preferred
activity that should always be run in the first place.

Figure 3 exemplifies the two possible execution situations when a user
requests to offload some computationally intensive activities (Ain, A1,1, A1,2,
A2,1, A2,2, Aout) on the fog. Default scheduling targets at avoiding data
dependency effects by intensively using a single core; in this situation spliting
activities to other cores does not take place unless the current core is near
100% of its capacity.
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Figure 3: Execution possibilities on a fog server.

Consequently, figure 3(a) shows the typical execution of three of the ac-
tivities of the mobile client; although they are parallelizable, they are run
sequentially in one of the cores. This will typically yield acceptable response
times; however, it is not desirable in the event of some unexpected situation
in which the offloading system is heavily loaded or in the event that some
activity of the mobile client has higher priority over the rest where the exe-
cution alternative of figure 3(b) would be required. In (b), it is possible to
assign specific parallelizable tasks to cores and even reserve some cores for
some specific task.

5. Fog computing architecture with hardware awareness

5.1. System model

A server node of a fog computing environment can run services on behalf
of requesting mobile nodes. A service sk (e.g. a face recognition functionality)
has, or is implemented by, a set of activities ai. Then, sk = {ai} ∀i =
1, ..., na(sk), where na(sk) is the number of activities of a service, in this case
of service sk. Following, it is summarized the notation used in the framework:
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• N : Set of all fog server nodes.

• S: Set of all services.

• Sj: The set of services running on noje j

• sk: A service, such that sk ∈ S.

• A: Set of all activities.

• ai: Activity i, such that ai ∈ A.

• Aj: Set of activities of node j.

• na(sx): Number of activities of a service sx.

• hp(i): Set of activities with higher priority than, such that ai.

• Ci: Computation time of an activity i.

• Ti: Activation period of an activity i.

• Pi: Priority of an activity i.

• Ui: Utilization of i.

• U : Utilization of server node.

Let j be a server node in the fog computing environment that can be
used for activity offloading. Node j runs a set of activities Aj where Aj ∈ A
and A is the set of all activities that can be run in any computation node.
A given mobile client may request a set of services W to be run on server j.

For the server to provide the requested service to the mobile clients, it
must make sure that it has sufficient spare computation power, that is, if
the total utilization comprising the newly requested activities is less than a
specified system wide threshold value γ. This is done via a utilization based
technique as illustrated in algorithm 1.

The utilization of an activity ai on a specific node is Ui; Ui is calculated
as the fraction of the processor that it consumes during its activation period.
For simplicity, it is assumed that all activities can follow a periodic activation
pattern.
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Ui =
Ci

Ti
(1)

Given that W is the set of services requested by the mobile client, the
utilization of a node nj is the sum of the partial utilizations of all the activities
that it executes, and this is shown in eq. (2).

U =

sx∈(Sj∪W )∑
x=1

na(sx)∑
i=1

Ci

Ti
(2)

Algorithm 1 Utilization of the tasks offloaded to a server j

1: procedure utilization calculation
2: l← γ
3: U ← 0
4: for ai ∈ (Aj ∪W ) do
5: Ui ← Ci

Ti

6: U ← U + Ui

7: if U ≤ l then
8: Aj = Aj ∪ AW

9: for ai ∈ Aj do
10: start(ai)

11: return U

As mentioned before, W is the set of services that a mobile client requests
to be run on a server j. The set of activities contained in W is AW . There-
fore, if the offloading is accepted, the current set of activities of the node is
extended with AW as expressed in equation (3).

Aj = Aj ∪ AW such that AW ⊂ A (3)

5.2. Architecture

The proposed architecture (see figure 4) contains a set of modules that
enhance the logic of the operating system by adding the capacity to: (i) con-
trol the execution of parallelizable activities of the offloaded services; and (ii)
to enforce individual activities over specific hardware cores. Data communi-
cation and distribution facilities are also available to support the execution
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Figure 4: Architecture for hardware accelerated execution of computationally intensive
services

of the offloaded activities with the indicated data upon request from external
entities such as mobile clients.

The main functional blocks that support hardware accelerated computa-
tion are divided by layers as follows:

• Data Distribution Layer (DDL) that contains the functions responsible
for the interaction with the outside clients:

– Communication Functions Module (CFM) that provides the ba-
sic functions to distribute the data among the participating nodes,
basically between the mobile client and the fog server. This mod-
ule implements a communication interface for asynchronous data
communication (efficiency and timeliness is achieved through us-
ing UDP/IP). The base technology used for the realization of this
module is the data distribution system by means of data-centric
topic based transmission.

– Interceptor Module (IM) is an active entity that acts as a first
interception point to collect requests, analyze them, and serve
them at the fog server side.

• Resource Manager Layer (RML) checks the feasibility of the requested
services by running the schedulability analysis algorithm of equation
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(2). This layer has the view over the current execution load of the
server node. This layer detects anomalous situations when the current
load does not allow the execution of additional service functions; then,
an unavailability response to the mobile client is provided.

– Load Monitor Module (LMM) calculates whether it is feasible
to run the requested service by performing a utilization based
analysis that considers the current load of the server activities
and of the activities of the new service.

– Data Base Interface Module (DBIM) is the entry point to the
data base of the server that contains the relevant execution infor-
mation, i.e., the set of services and activities of the server, and
the execution parameters of each of them. The LMM accesses the
data base though this interfacing module.

• Execution Control Layer (ECL) arbitrates the execution of the activi-
ties over the processor cores according to their priority value, security
level, and based on if they can be run in parallel or not.

– Core Affinity Module (CAM) controls the execution of specific
activities over selected cores of the multicore processor. It reserves
specific cores to run given tasks based on priority by means of
processor affinities.

– Activity Parallelization Module (APM) performs the paralleliza-
tion of the application level computations; those activities that
can execute in parallel are effectively run in different cores simul-
taneaously.

– Executor Module (EM) controls the execution of the activities by
assigning them to specific cores or by explicit parallelization de-
pending on their nature by using the functions provided by CAM
and PAM, respectively.

Figure 5 shows the main system component and their interactions as
explained above.

5.3. Remote service offloading

Figure 6 shows the distributed architecture for the communication among
mobile client and fog server.
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Figure 5: Behavioral diagram: interaction across system components

An asynchronous data-centric scheme is used; the communication is based
on publish-subscribe (P/S) interaction on a global data space where mobile
client and fog server are part of the same domain and exchange messages
based on their type and content through topics. Two topics are created and
identified by unique names that store both the communication from mobile
client to server (OffloadRequestType) and viceversa (ResponseType). These
topics use keys to handle different instances of each topic so that the receiving
entities can differentiate the data source, i.e., the mobile client or server that
the data comes from.

The distributed interaction between mobile client and server is organized
as a domain; a domain defines an application range where communication
among related entities (mobile clients soliciting eHealth recommendation)
can be established. A domain becomes alive when a participant is created.
A participant is an entity that owns a set of resources such as memory and
transport. If an application has different transport needs, then two partici-
pants can be created.

The topic OffloadRequestType (see code 2) is used to communicate the
data sent from mobile clients to server. The information provided refers to
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Figure 6: Distributed configuration for the remote interaction between mobile clients and
offloading servers

the identifer of the source, the requested priority, the unique string with the
requested service name (e.g., eHealth recommender or VoiceInterpreter, etc.)
and a data stream that provides the mobile client data for the server (e.g.
the voice stream or the health parameters of the day).

Code 2: Topic structure template

struct OffloadRequestType{
short nodeid ;
short mcid ;
short p r i o r i t y ;
s t r i n g se rv ;
sequence<octed , TOPIC MAX INFOREQ SIZE> reqdata ;
} ;
#pragma k e y l i s t OffloadRequestType nodeid
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The topic ResponseType (see code 3) stores the information sent from
server to the mobile client in response to the request to offload a service. The
contained data refers to the feasibility of such offloading and the processed
data produced by the service that has been executed. In the event that the
server is malfunctioning or its load is too high to serve the client request, the
feasability string returns an indication of service temporarily unavailable.

Code 3: Topic structure template

struct ResponseType{
short mcid ;
short nodeid ;
s t r i n g f e a s i b i l i t y ;
sequence<octed , TOPIC MAX INFOFLOW SIZE> data ;
} ;
#pragma k e y l i s t OffloadRequestType mcid

A set of quality of service policies are put in place to ensure that the
communication channel is reliable:

• RELIABILITY is set to RELIABLE for guaranteed message delivery, and
it is set both for data reader and data writer that are the server or mobile
client depending on the communication direction.

• HISTORY is set to KEEP ALL that guarantees that samples will be re-
tained until the subscriber retrieves them. It is set for data reader that is
also the server or mobile client in this case.

5.4. Execution control

Hardware reservation techniques are used to allow mobile clients to ex-
press whether or not they require priority service. As a result, the system
can reserve some specific processing core for the execution of selected activ-
ities. Reserving cores improves the processing time, i.e., the response time
to clients. Also, hardware reservation provides enhanced security as it mini-
mizes the interference with the code and data from other activities running
simultaneously on the server.

To control the hardware cores and to enforce the execution of activities
in specific cores the following functions are used:
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• setCPUaff(int cpu); a given entity will run exclusively in the desig-
nated processing core (cpu). This enables the control of the execution of
higher priority activities over lower priority ones as the entity (thread)
servicing low priority activities is not assigned to reserved cores. A
subsequent effect is that the context switches during the execution of
higher priority requests are reduced.

• setCPUsched(int priority, int policy) is used to set the prior-
ity of specific threads and the scheduler policy for thread dispatch-
ing. For the high priority threads, the real time scheduling policies
(SCHED FIFO and SCHED RR) are used which allows to set some
selected threads as real-time and these will always be scheduled be-
fore the non real-time ones. As a consequence, the execution is further
controlled.

Code 4 shows the runtime allocation of an activity run by a thread to a
specific thread set.

Code 4: Activity allocation

c p u s e t t cpuset ;
CPU ZERO(&cpuset ) ;
CPU SET( i , &cpuset ) ;
Act iv ityThreadPtr t = new Activ ityThread ;
pthread t t i d = t−>s t a r t ( ) . id ( ) ;
p t h r e a d s e t a f f i n i t y n p ( t id , s i z e o f ( cpuset ) , &cpuset ) ;

The eHealth service running in the fog server has a set of activities of two
types: dependant and independent. The first ones have data dependencies
and have to be run sequentially, whereas the later ones are decoupled and
can be run simultaneously in different cores.

There are three main strategies for expressing binding of activities to
cores:

• filling up one processor socket before allocating activities to other sock-
ets.

• allocating activities evenly across all sockets and cores.

• explicit allocation only to those cores and sockets that are indicated.
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For the first alternative, activities are allocated one per core, to a single
socket prior to binding to other sockets. Linux follows the same pattern
to start at socket 0 regardless of whether other activities have already been
bound to that socket. Setting an offset to force the binding to another thread
is possible if the hardware configuration is known. For example, to explicitly
allocate to cores 0 and 2, the following envirornment variable can be used:
export KMP AFFINITY=’proclist=[0,2],explicit’.

Parallelization infrastructures (e.g. OpenMP) also allow to define activity
affinity at runtime. For example to run on cores 0 and 2, and environment
variable can be used such as export GOMP CPU AFFINITY=’0,2’.

6. Experimental validation

The proposed framework has been implemented in C++ on a POSIX
compliant middleware based on DDS standard [27] that provides publish-
subscribe communication. The prototype setting is partly simulated; a real
distributed deployment with homogeneous nodes of medium processing ca-
pacity is used, which replicates the capacity of the hardware used in a legacy
fog server. The server runs on an Intel E3400 double core with 1MB cache,
2.60 GHz, 800 MHz FSB, and 2GB RAM, running Ubuntu 10.04 Linux of
32 bits and kernel 2.6.32. Experiments have been carried out for a fog server
running synthetic eHealth offloaded services to which only a limited n num-
ber of remote patients (that are mobile clients) can perform simultaneous
requests.

The architecture supports prioritization of certain patient requests; there-
fore, the system supports high and low priority mobile clients. Priorization
is provided by the system as an interface call. In the experiments, half of the
tested remote patients are high priority and half are normal priority. This
is performed to test the effect of the designed system in a proper synthetic
example with multiple remote patients operating simultaneously that belong
to different priority groups and, therefore, compete for service.

To test the achieved response time values, the system is stressed in a way
that each mobile patient performs performs periodic requests. The chosen
period is 100ms. Upon each request, the fog server launches the requested
eHealth service that is implemented by a set of concurrent activities run by
operating system threads. High priority requests are serviced by high priority
threads for which processing cores are reserved; these high priority threads
are real-time ones and they use the SCHED RR scheduling policy at priority
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99. Low priority requests are serviced with the default CFS (completely fair
scheduler) scheduling policy without core reservation.

A number of experiments have been carried out to test the response time
(i.e., the time taken to perform the processing of the requested service and
associated data) and the capacity to tolerate noise at the fog server. On
the one hand, improvement of the respose time is important for increasing
the interaction capacity between patient nodes and the fog servers; it will
support faster and more timely results delivery to patients. On the other
hand, handling noise is key to offering a robust execution environment where
the normal operation on behalf of patient nodes is not altered by the rest of
unrelated activities that may be already running on the fog servers.

In the first tests, the service time for multiple clients is measured. To show
the support of priorization, these mobile patients are placed in two different
priority groups. The requested offloaded services run by the fog server are
computationally intensive operations simulating the computations required
by the eHealth services. Results are displayed in groups of 10 executions,
that are expressed as client position.

To show the advantage of the framework, first the baseline experiment is
performed as follows. Figure 7 shows the response times on a fully distributed
setting in a situation where all mobile clients have equal priority. The figure
shows the response times experienced by dispatched clients over an unmodi-
fied communication library that is not aware of the hardware architecture nor
the core reservation. This is the baseline scenario representing the best effort
case that is put in place by current server side eHealth servicing techniques.

Figure 8 displays the response times experienced by mobile clients that
are dispatched by the proposed architecture that is aware of the multicore
structure of the hardware. Requesting clients are divided in two groups: a
high priority one and a low priority one.

It is observed that the core reservation logic for given activities of A set
has a negligible effect on the service time of the clients. The average cost
of the reservation is in the order of 1 to 10 µs. Higher priority clients are
allocated to cores that are reserved for them; consequently, they experience
shorter service times with a smaller variation between their minimum and
maximum values. Also, it can be seen that low priority clients have shorter
service times.

Without service reservation, all clients have similar service times regard-
less of their priority; this is not an ideal situation in the presence of mobile
patients that require faster response time and priority service. Figure 8 shows
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Figure 7: Remote processing time (in milliseconds) for different load conditions
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Figure 8: Processing time for priority and non-priority activities with core reservation

the service times for clients over the implemented architecture that has pro-
cessing priorization through core reservation. It is seen that high priority
clients (shown on the upper curve) have shorter service times as compared
to low priority clients (shown on the botton curve of the graph); in fact, high
priority clients service times are improved by an average of 3x as comparted
to the situation where the proposed architecture is not run. The dispersion
of the service times is also improved and it is smaller than that of low priority
one; and the worst case service time priority is in the order of 2.5x smaller
than the service time for low priority clients. In summary, low priority clients
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experience larger service times and also the variation in their service times
is larger than that of higher priority clients.

Also the evaluation and analysis of the performance for distributed eHealth
service offloading is performed. The proposed architecture execution layer
that is aware of the multicore uses parallelization functions for running spe-
cific computation activites of the eHealth services within specific cores.

To provide a more realistic setting, the execution hardware is now more
powerful by using Intel i7-5600U processor at 2.60 GHz with 2 cores and
hyperthreading, meaning that 4 threads can run in parallel. A Linux 64 bit
and 3.16 kernel is used.

The data exchange is done by using octets of 1024 elements in a stream
like transmission simulating the communication of big data. Communica-
tion is unidirectional through topics and one topic is used for each direc-
tion (among fog server and mobile patients). By using a publish-subscribe
data centric communication, several mobile patients can transmit data to
the server side that will handle the requests through the executor component
and service the request by checking the available spare processing capacity
of the server. Simultaneous requests are handled concurrently at the server
and the requested service involving the received data is processed efficiently
to guarantee a maximum bound on the delay of the service processing.

The processing of eHealth parameters runs as a service (eHealth service)
in the fog server. The eHealth service runs as a nested loop; the outher loop
updates a control variable that runs the part of the health analysis that is not
parallelizable, i.e., that performs calculations on previous results. The inner
loop performs column-wise operations on the patient data matrix. This inner
loop is parallelized with an OpenMP pragma directive like the one showed
in code 5.

Code 5: Robustness validation through controled noise generation and corresponding core
assignment

no i s eLeve l = loadLeve l ;
f o r ( i n t i = 0 ; i < sy s con f ( SC NPROCESSORS ONLN) ; ++i )

{
c p u s e t t cpuset ;
CPU ZERO(&cpuset ) ;
CPU SET( i , &cpuset ) ;
NoiseThreadPtr t = new NoiseThread ;
pthread t t i d = t−>s t a r t ( ) . id ( ) ;
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p t h r e a d s e t a f f i n i t y n p ( t id , s i z e o f ( cpuset ) , &cpuset )
;

}

In this code, the logic to enforce code assignment is partly shown as part
of the evaluation of the robustness of the eHealth service execution in the
presence of different load conditions. Threads are assigned core affinities to
measure the actual exeution times and interference for the eHealth activities.
To replicate realistic execution conditions at the fog server, noise control is
tested; for this, interfering execution is created explicitly.

A realistic set of load conditions at the fog server are synthesized by de-
signing an internal hook that can dynamically run a thread that creates the
noise (DummyService); this enables the validation of a range of execution
conditions that affect the processor load. One noisy thread is created per
core and started in the system and the core affinity binding is set for all
the threads to different processors. These perform operations that merely
consume processor cycles with a microsecond idle time in between two sonse-
cutiove repetitions. The complexity of the generated load is controlled with
a parameter to set the noise level that can be modified as desired. When the
maximulm noise level is set, the noisy threads skip their waiting and start
consuming all their processor slice before they are preempted. similarly, when
the noise level is set to zero the noisy threads exit the noise generation loop
and terminate their execution.

The parallelization can be configured either dividing the computations
statically or dynamically, and with different number of threads. The most
straightforward solution is to split the computations in equal parts with
one thread per core in order to maximize the utilization of the system and
load balancing. It was evidenced experimentally that there is no significant
difference between static or dynamic splitting and the best performance is
achieved with one thread per core. Although this is true for the best case,
it was found experimentally that dynamic splitting leaving one core free is a
more robust configuration that leads to a shorter worst case processing time
for all noise levels with a minimum difference in the best case performance.

The maximum number of simultaneous streams that the fog server can
process is analyzed, i.e., the capacity of the system. As the intention is to
obtain the timeliness information of the server, a real-time aproximation is
used: each stream is processed by a task (i.e. an activity that is run by a
real-time thread) and its packets (i.e., the data) are modeled as jobs. In this
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Table 2: Processing times of the patient transmitted data in ms

Noise level 0 50 100

data Serial Parallel Serial Parallel Serial Parallel
mean 1.83 1.33 1.85 1.28 3.30 0.98
std 0.39 0.29 0.04 1.10 0.17 0.79
min 1.3 0.83 1.72 0.96 2.13 0.86

25-perc. 1.43 1.01 1.8 0.99 2.86 0.99
median 1.54 1.1 1.88 1.02 3.20 1.04
75-perc. 1.59 1.19 1.92 1.16 3.39 1.12

max 6.02 4.21 2.42 17.66 3.74 16.55

Number of
measures

1000 1000 1000 1000 1000 1000

way, it is possible to use a utilization based analysis as indicated in the logic
for the load monitor component; also, it is possible to use a response time
analysis to check whether all tasks are schedulable: a task i is schedulable if
it finishes before its deadline (being the deadline equal to its next activitation
Ti ).

The cost of stream processing depends on the actual data sent through
the stream and, therefore, of the quality and precision of the transmitted
data. Therefore, the capacity is given by the equation that follows:

nt(N) ≤ 1024

dc · tp
(4)

where nt(N) is the number of streams of the system, dc is the number of data
items sent by the mobile client and tp is the time taken by the fog server to
process a packet of data items sent by a mobile client. A stream generates a
data item every td seconds and these are sent to the server in groups of 1024
data items per packet.

As it is not possible to have a deterministic processing time, it is possible
to use the (100− δ) percentile, where δ is the tolerance of the system to data
loss. For a tolerance to losses of 25%, a capacity of 6 streams is estimated for
the serial data processing and up to 15 when parallelizing the data processing,
depending of the parallelization scheme. The higher value of the 75-percentile
is used among the different noise levels.
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The waiting times caused by the preemptions can be dramatically re-
duced with a flexible parallelization configuration as the one provided by our
proposed system. The increased robustness is explained by the fact that the
engineered system is based on a parallelizing software infrastructure which
reduces the waiting time of activities; the proposed architecture then reduces
the time that tasks are waiting to be dispatched into a core. Even the parallel
threads altogether suffer a total number of preemptions equal to those of a
single process performing the same task.

7. Conclusion and future work

This paper has presented the design, implementation and evaluation of
a framework for accelerating the response to mobile patients requiring the
execution of smart eHealth services. The model supports distributed offload-
ing to fog servers, using the capacity of multicore processors to accelerate its
execution. Services are realized by a number of activities and those activities
that are parallelizable can be allocated to reserved cores. The architecture
integrates facilities for distributed offloading requests, for core allocation, and
for activity parallelization. The framework is validated over a prototype im-
plementation on a fully distributed scenario with synthetic services. Results
show that response times of the mobile patient nodes are decreased when
core reservation is activated, and that priority clients experience decreased
service times. The presence of noise due to other unrelated activities running
on the fog servers is managed in a robust manner.

Goal-oriented models can be used to raise the awareness of our pro-
posed framework with respect to application logic [28]. As proposed in [29],
application-oriented plans are ellaborated by deliberation and runtime en-
gines, and they are later passed to the operating system scheduler. We have
identified as future work the integration of this framework into a higher level
structure comprising a runtime engine and a deliberation engine. Moreover,
this can be combined with an additional logic to calculate the slack and gain
times (e.g. [9]) of the multicore processor to be used for further accelerating
the execution.
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