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Computation of scattering resonances in absorptive and dispersive media
with applications to metal-dielectric nano-structures

Juan C. Araújo C.1, Carmen Campos2, Christian Engström3, Jose E. Roman2

Abstract

In this paper we consider scattering resonance computations in optics when the resonators consist
of frequency dependent and lossy materials, such as metals at optical frequencies. The proposed
computational approach combines a novel hp-FEM strategy, based on dispersion analysis for com-
plex frequencies, with a fast implementation of the nonlinear eigenvalue solver NLEIGS. Numerical
computations illustrate that the pre-asymptotic phase is significantly reduced compared to stan-
dard uniform h and p strategies. Moreover, the efficiency grows with the refractive index contrast,
which makes the new strategy highly attractive for metal-dielectric structures. The hp-refinement
strategy together with the efficient parallel code result in highly accurate approximations and short
runtimes on multi processor platforms.

Keywords:
Plasmon resonance, Resonance modes, Nonlinear eigenvalue problems, Helmholtz problem, PML,
Dispersion analysis, leaky modes, resonant states, quasimodes, quasi-normal modes

1. Introduction

Metallic nano-structures play an important role in many applications in physics, including
surface enhanced Raman scattering and optical antennas [1]. Surface plasmons that may exist in
these structures cause an enormous electromagnetic field enhancement near the surface of noble
metals. In nanomedicine gold nanoparticles are used in the forefront of cancer research since they
not only support plasmon resonances but also have excellent biocompatibility [2].

The material properties of metals are characterized by the complex relative permittivity func-
tion ε, which changes rapidly at optical frequencies ω. The most common accurate material model
is then the Drude-Lorentz model

εmetal(ω) := ε∞ +

Np∑
j=0

fjω
2
p

ω2
j − ω2 − iωγj

, (1)

where ε∞ ≥ 1 and fj , ωp, ωj , γj are non-negative [3]. Hence, the Maxwell eigenvalue problem in
the spectral parameter ω is nonlinear for metal-dielectric nanostructures. Research in operator
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theory for this type of non-selfadjoint operator functions is in its infancy and has been focused on
photonic crystal applications [4].

In this article, we consider open systems in nano-optics, where the material properties are
modeled by (1). The most common approach to characterize the optical properties of open metal-
dielectric nanostructures is to solve a source problem in time-domain and search for peaks in the
amplitude of the field [5]. Another common strategy is to solve a source problem for a fixed real
frequency and perform a frequency sweep in a region of interest [6]. These two strategies give
valuable information of the structure for a given source. A highly attractive alternative that is
used in this paper is to characterize the behavior of the system using scattering resonances [7, 8].
Scattering resonances are a discrete set of complex frequencies that refer to a metastable behavior
(in time) of the corresponding system and the corresponding functions are called scattering modes.
Scattered waves can be expanded in terms of scattering resonances and scattering modes and
replace in a sense Fourier series expansions for problems posed on non-compact domains [7]. Here,
we assume that the scalar relative permittivity ε(x1, x2, ω) is independent of the space coordinate
x3 but dependent on the frequency ω. Furthermore, we assume that ε = 1 outside a cylinder
of radius r0 and consider electromagnetic waves propagating in the (x1, x2)-plane. The Maxwell
problem in R3 is then reduced to Helmholtz type of equations in R2 for the so called TM and TE
polarizations [3].

Resonances are solutions to a nonlinear eigenvalue problem with a Dirichlet-to-Neumann map
(DtN) on an artificial boundary [9, 10]. An attractive alternative is to use a perfectly matched
layer (PML) [11, 12]. This method was introduced for source problems in electromagnetics by
Berenger [13] and it is related to complex coordinate stretching developed in quantum mechanics
[14, Chapter 16]. The application of the PML method for resonance problems has the advantage
that for non-dispersive refractive indices the resulting matrix eigenvalue problem is linear, and the
eigenvalue problem is rational when a Drude-Lorentz model is used. Resonance computations with
a dispersive refractive index are demanding since nonphysical eigenvalues may appear in the region
of interest if the approximation properties of the used finite element space are not very good; See
[15] for a discussion of spurious eigenvalues in the one dimensional case.

The linear algebra problem that must be solved in this kind of computations is a rational
eigenvalue problem, a particular case of the nonlinear eigenvalue problem T (ω)ξ = 0. Recently,
several numerical methods have been proposed to compute a few eigenvalues ω (and corresponding
eigenvectors ξ) of large-scale nonlinear eigenvalue problems [16, 17, 18]. Some of these methods
are available in the SLEPc library [19]. Essentially, there are three types of methods: Newton-
type methods, contour integral methods, and linearization methods. Newton-type methods rely
on having a good initial guess, otherwise the iteration may converge to an eigenvalue far from
the search region. Contour integral methods compute all eigenvalues contained in a prescribed
region of the complex plane, but they require having a good estimate of the number of enclosed
eigenvalues, and on the other hand they have a high computational cost since they require a matrix
factorization at each integration point. In this paper, we consider a method of linearization type,
namely NLEIGS, see §4.5. Two of the authors of this paper are also developers of SLEPc and
during this work a SLEPc solver that implements NLEIGS was developed and tuned using as
benchmarks the challenging computational examples presented in §6.
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2. Resonances in optical nano-structures

Our aim is to compute resonances in nano-structures using accurate material models for e.g.
metals at optical frequencies. This requires a permittivity function ε that depends on the spectral
parameter ω. For many metals, the real part of ε is negative in the optical region, which is explored
in plasmonics [1]. Below, we state well known properties for isotropic passive materials that are
valid for any fixed x ∈ Rd. Let

C+ := {z ∈ C : 0 ≤ arg z < π, z 6= 0}.

Then, ωε(ω) ∈ C+ for ω ∈ C+, where ε never vanishes in C̄+ [3]. The most common material
model for solid materials such as Gold, Silver, and Silica is the Drude-Lorentz (1) model. This
rational model of ω satisfies the stated analytical requirements and will be used in the applications
part of the article.

Assume that ε(x, ω) = ε(x1, x2, ω) is independent of x3 and consider waves propagating in the
(x1, x2)-plane. The x3-independent electromagnetic field (E,H) is then decomposed into transverse
electric (TE) polarized waves (E1, E2, 0, 0, 0, H3) and transverse magnetic (TM) polarized waves
(0, 0, E3, H1, H2, 0) [3]. This decomposition reduces Maxwell’s equations to one scalar equation for
H3 and one scalar equation for E3. The TM-polarized waves and the TE-polarized waves satisfy
formally

−∆E3 − ω2εE3 = 0 and −∇ ·
(

1

ε
∇H3

)
− ω2H3 = 0, (2)

respectively. The full vector fields (E,H) are then obtained from Maxwell’s equations

E =
−1

iω ε(ω)
∇×H, and H =

1

iω
∇×E. (3)

For simplicity, we consider first resonances in the TM-case with an ω-independent permittivity
function ε ≥ 1, where ε − 1 has compact support. Let L2

comp denote the space of L2- functions
vanishing outside some compact set and let L2

loc denote the space of functions that are in L2(K)
for every compact subset K of Rd. Define the operator A : L2(Rd) → L2(Rd) with domain
domA = H2(Rd) by Au := −ε−1∆u. The spectrum [0,∞) is then continuous [14] and we denote
by R(ω) : L2(Rd)→ L2(Rd) the resolvent

R(ω) := (A− ω2)−1, Imω > 0.

The operator function R is a meromorphic family of operators that can be extended to

R̂(ω) : L2
comp(Rd)→ L2

loc(Rd), R̂(ω) := (A− ω2)−1, Imω > 0.

The scattering resonances are then defined as the poles of the meromorphic continuation of R̂ to C.
The functions in L2

loc(Rd) that correspond to a scattering resonance are called resonance modes [7].
Note that for metal-dielectric nanostructures the operator A in the TM-case is replaced with an
operator function in ω. In the next sections, we will describe two common approaches to compute
resonances and the restriction of resonance modes to a compact subset of Rd. In the following, we
use the notation

−∇ · (ρ∇u)− ω2ηu = 0, (4)

where u := Ez, ρ := 1, η := ε for the TM-case and u := Hz, ρ := 1/ε, η := 1 for the TE-case.
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2.1. Scattering resonances in R
Resonances as discussed in section 2 can also be determined from a problem with a Dirichlet-

to-Neumann (DtN) map [9, 20]. In one space dimension the resonance problem restricted to
Ia := (−a, a) is formally: Find a non-zero u and a complex ω such that

−
(
ρu′
)′ − ω2ηu = 0 for x ∈ Ia, (5)

where the Dirichlet-to-Neumann (DtN) map at x = ±a is

u′(−a) = −iω u(−a), u′(a) = iω u(a). (6)

Let Z denote the set of values ω that are zeros or poles of ε and set D := C \ Z. Define for
u, v ∈ H1(Ia) and ω ∈ D ⊂ C the forms

t̂0(ω)[u, v] :=

∫ a

−a
ρu′v′ dx, t̂1[u, v] := −iu(a)v(a)− iu(−a)v(−a), t̂2(ω)[u, v] := −

∫ a

−a
ηuv dx.

The nonlinear eigenvalue problem is then as follows: Find vectors u ∈ H1(Ia)\{0} and ω ∈ D
satisfying

t1(ω)[u, v] := ω2t̂2(ω)[u, v] + ωt̂1[u, v] + t̂0(ω)[u, v] = 0 (7)

for all v ∈ H1(Ia).
Let Ia = I0∪ . . . INr denote a partitioning of Ia and χIm the characteristic function of the subset

Im. For material properties that are piecewise constant in x, we assume a permittivity function in
the form

ε(x, ω) :=

Nr∑
m=0

εm(ω)χIm(x), x ∈ Ia, ω ∈ D, (8)

where the dependencies on ω in εm for m = 0, 1, . . . are of Drude-Lorentz type (1). Note that (7)
is a quadratic eigenvalue problem if ε is independent of ω and a rational eigenvalue problem for
Drude-Lorentz type of materials.

2.2. Scattering resonances in R2

Resonances in R2 can also be approximated by (4) with a DtN-map on an artificial boundary
[9, 10]. However, the nonlinearity in the DtN-map is more complicated in dimensions larger than
one. Then, an attractive alternative to the DtN-map is a complex coordinate stretching technique
called Perfectly Matched Layers (PML). This approach does not add any non-linearity to the
problem. Hence, in our setting we will obtain a rational eigenvalue problem. Approximation of
resonances using a radial PML was analyzed in [11] and we consider the truncation of the infinite
PML problem to the disc Ω in R2.

Let Ωa denote a disk of radius a, and let Ω1, Ω2, ...,ΩNr denote the subsets of Ωa corresponding
to the resonators. Set Ωr := ∪Ni=1Ωi, Ω0 := Ωa \Ωr and attached to Ωa an outer layer ΩPML. Then,
the computational domain is the disc Ω := Ωa ∪ ΩPML as illustrated in Fig. 1.

We define the complex stretching functions in polar coordinates (r, θ), similarly as presented in
[21, 11]:

σ̃(r) :=


0, if r < a
P (r), if a ≤ r ≤ b
σ0, if r > b

,

α̃(r) := 1 + iσ̃(r), r̃(r) := (1 + iσ̃)r = α̃(r) r,

σ(r) := σ̃(r) + r
∂σ̃

∂r
, α(r) :=

∂r̃

∂r
= 1 + iσ(r),

(9)
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Figure 1: Left) Arbitrary configuration of resonators. Right) PML stretching function.

where the polynomial P (r) is required to be increasing in [a, b]. Moreover, σ̃(r) ∈ C2(0, b+ `), and
σ(r) = ∂(rσ̃)/∂r. For this we introduce the fifth order polynomial P (r) satisfying P (a) = P ′(a) =
P ′′(a) = P ′(b) = P ′′(b) = 0 and P (b) = σ0.

From the given curved coordinate representation, we transform to Cartesian coordinates and
define A ∈ C2(Ω)2×2 and B ∈ C2(Ω) by

A :=


α̃
α cos2 θ + α

α̃ sin2 θ

(
α̃
α −

α
α̃

)
sin θ cos θ(

α̃
α −

α
α̃

)
sin θ cos θ α̃

α sin2 θ + α
α̃ cos2 θ

 , B := αα̃. (10)

The PML coefficients are illustrated in Fig. 1, and it can be seen that A and B are identities for
r ≤ a.

Let (·, ·)Ωj denote the inner product in L2(Ωj). The nonlinear eigenvalue problem is then: Find
u ∈ H1

0 (Ω) \ {0} and ω ∈ D such that for all v ∈ H1
0 (Ω)

t2(ω)[u, v] = 0, (11)

where t2(ω)[u, v] := t̃0(ω)[u, v] + t̃1(ω)[u, v] with

t̃0(ω)[u, v] := (ρ∇u,∇v)Ωa − ω2(ηu, v)Ωa , t̃1(ω)[u, v] := (A∇u,∇v)ΩPML
− ω2(Bu, v)ΩPML

.

3. A-priori based hp-FEM for eigenvalue problems

It is well known that the accuracy of a finite element approximation of the Helmholtz problem
−∆u − ω2u = f deteriorates with increasing frequency ω. A major problem is that the discrete
frequency of the FE solution is different from the frequency of the exact solution. This effect called
pollution has been studied intensively. Particularly, for a uniform mesh size h the asymptotic
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error estimates for linear elements [22, Sec. 4.4.3] yield the condition ω2h < 1, which for large
ω results in prohibitively expensive meshes. However, the dispersion analysis [22, 23, 24] yields
pre-asymptotic estimates of the form ωh < 1, which is a significant improvement. Moreover, it was
realized that higher order elements are advantageous to reduce the pollution effect.

A-posteriori estimators are powerful tools when the pollution is negligible, but in the presence
of pollution the error in the solution is typically underestimated [25]. For Helmholtz equation with
ω > 1 and FE of order p the conditions p = O(log(ω)) and ωh/p = O(1) are sufficient for accurate
a posteriori error estimation [25]. Recently, error estimates that are explicit in the eigenvalue ω2

have also been developed [26]. However, the minimal dimension of a finite element space such that
the relative eigenfunction error is below 100% is unknown even in the selfadjoint case with analytic
coefficients (see [26, Remark 6.1]).

Our aims are (i) to extend the dispersion analysis in [24] to the case with a complex frequency
ω, (ii)

to propose an a-priori hp-strategy for non-selfadjoint eigenvalue problems with piecewise con-
stant coefficients based on an element-wise application of (i). The a-priori strategy for enriching the
finite element space developed in this paper can in principle also be combined with an a-posteriori
based strategy such as [27, 28].

3.1. Numerical dispersion for a real frequency ω

The case with a real frequency ω and constant coefficients has been studied extensively and
[22, 23, 24, 29] derived explicit estimates depending only on ω, h, and p. In this subsection we
review those results and consider in the following subsection extensions to complex ω.

In the one dimensional setting, the normalized (wave speed c = 1) homogeneous wave equation
reads

∂2w

∂t2
− ∂2w

∂x2
= 0. (12)

The general solution of the wave equation can be expressed as the superposition

w(x, t) =

∫ ∞
−∞

[
a(k)ei(kx+ωt) + b(k)ei(kx−ωt)

]
dk, (13)

for some functions a and b. The frequency ω and the wave number k are in this case related by
the exact dispersion relation w2 = k2.

We now turn into the numerical solution of (12), where the discrete wave number khp is a
FE approximation to k. Let {xj}, j ∈ Z be a uniform distribution of points on R, with mesh
size h := xj+1 − xj , and let ϕj be the nodal shape functions of polynomial degree p. Then, semi-
discrete solutions are written in the form whp(x, t) = uhp(x)e−iωt, and at nodal values the FE space
representation becomes uhp(xj) =

∑
j ξjϕj(xj). By analogy with (13), we search for solutions of

the form whp(xj , t) = bhp(khp)e
i(khpxj−ωt), which implies ξj = bhpe

ijkhph.
The variational formulation of the problem is then: Find uhp ∈ Vhp ⊂ H1(R) such that

Bω(uhp, vhp) := (u′hp, v
′
hp)− ω2(uhp, vhp) = 0, (u, v) :=

∫
R
uv̄ dx, (14)

for all vhp ∈ Vhp. The explicit form of ϕj in (14) leads to a discrete dispersion relation of the
form cos(khph) = Rp(ωh), where the numerical cosine Rp(ωh) consists of rational terms involving
ω, h, and p; see [22, 23, 24] for further details. The dispersive error for (12) is defined as Ep :=
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Rp(ωh)− cos(ωh), from where dispersion analysis refers to studying the convergence of |Ep| with
respect to ω, h and p. The outcome of the analysis is that Ep is an excellent measurement of the
finite element space approximative properties for wave problems as motivated by [22, 23, 24].

We use the following notations: κ = ωh/2, Ne = bp/2c, No = b(p+ 1)/2c, where bxc stands
for the integer part of x. Ainsworth [24, Sec. 4] proved that when ω ∈ R, the function Ep can be
written in the form

Ep(ωh) =
sinωh

ωh

{
Epo sin2

(
ωh

2

)
+ Epe cos2

(
ωh

2

)}{
1 +

sinωh

2ωh
(Epo − Epe )

}−1

,

Epe (κ)
cos2(ωh/2)

ωh
= −Q2Ne+3/2(κ){1−Q2Ne+3/2(κ) tanκ}−1,

Epo (κ)
sin2(ωh/2)

ωh
= −Q2No+1/2(κ){1 +Q2No+1/2(κ) cotκ}−1,

(15)

with

Qm(κ) :=
Jm(κ)

Ym(κ)
, m = integer +

1

2
. (16)

It was shown [24, Theorem 3.3] that the error Ep for real ω passes through three phases as the order
p is increased: An oscillatory phase, a transition zone, and finally superexponential decay of Ep. In
the remaining of the section we consider numerical dispersion analysis for hp-FEM computations
of Helmholtz type of problems with a complex frequency ω.

This is of interest since scattering resonances are complex and the results in Section 3.2 are the
base for the hp-FEM strategy proposed in Section 4.2.

3.2. Numerical dispersion for a complex frequency ω

First, we show that the results in [22, 24] can be extended from ω ∈ R to a region in the complex
plane. This extension requires that several issues are addressed. Namely, that the expressions can
be analytically continued to the complex plane, and the identification of possible branch cuts and
poles of the different expressions involved when deriving the estimates in [24]. We rely on the
results in [30, 31, 32], where many of the subtleties of working with Bessel functions of complex
argument are addressed.

It can be verified that (15) also holds for ω ∈ C with | argω| < π. First, by introducing
standard sesquilinear forms and following the derivations in [24]. Particularly, equation [24, (4.12)]
is reached by using [33, (8.461), (8.465)], which in turn hold for complex arguments. Note that in
the case ω ∈ R, the subscripts o, e in (15) are reserved for odd, and even, respectively.

3.2.1. Numerical dispersion analysis for small |ωh|
In this subsection, we consider Ep for small |ωh| and address the case with large |ωh| in the

next section. In the procedure we need the following lemma.

Lemma 1. Let m = n+ 1/2 for n ∈ Z and define Qm as in (16). Then,

Qm(κ) = −1

2

[
(m− 1

2)!

(2m− 1)!

]2
(2κ)2m

2m
+ · · · , (17)

for all κ ∈ C with |κ| � 1 and | arg κ| < π.
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g(w)

g−1(z)

Figure 2: Illustration of Definition 3 and the action of the mapping g(z): Left) Domain K, used to characterize the
behavior of Bessel functions of complex argument. Right) the domain D is the unit disk.

Proof. We follow the steps in the proof of [24, Lemma A1], which is based on the representation
formulas in [33, (8.440)]. Those formulas are under the assumption | arg κ| < π, also valid for
complex κ. Since, in addition |κ| � 1, the representation formulas [33, (8.440), (8.465-1) ] hold:

Jν(κ) =
(κ

2

)ν ∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

(κ
2

)2k
,

Yn+1/2(κ) = (−1)n−1J−n−1/2(κ), | arg κ| < π.

(18)

By retaining only the first term in this series and using properties of the Γ function, we obtain
(17).

The following theorem extends [24, Thm 3.2] to complex frequencies ω.

Theorem 2. Let p ∈ N, and |ωh| � 1. The discrete dispersion relation Ep is then

Rp(ωh)− cos(ωh) =
1

2

[
p!

(2p)!

]2 (ωh)2p+1

2p+ 1
+O(ωh)2p+4. (19)

Proof. Lemma 1 is stated for complex κ, with | arg κ| < π, then by plugging (17) into (15), the
result follows from the discussion in the proof of [24, Thm 3.2].

3.2.2. Numerical dispersion analysis for large |ωh|
The case |κ| � 1, with κ = ωh/2, is of central importance for the paper. To simplify the

presentation of this case, we map a particular region of the complex plane on concentric disks.

Definition 3. Let D = {z : |z| < 1} and denote by K ⊂ C the open region enclosed by the
parametric curve w = ±(τ coth τ − τ)1/2 ± i(τ2 − τ tanh τ)1/2, 0 < τ < τ0, where τ0 is the solution
of coth τ = τ . For δ > 0, define Sδ := {z : 1 − δ < |z| < 1 + δ}. Then, we define a continuous
bijective mapping g : C → C, where the range satisfies Ran g|K = D and g maps the set {z :
dist (z, ∂K) < δ} on Sδ. Finally, g is the identity map on R (see Fig. 2).
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The mapping g in Definition 3 allows us to split the complex plane in three zones by using
concentric disks. The region K has previously been used [31, 30] to derive a uniform expansion
of the Bessel functions Jν(νz), Yν(νz) for large order ν and complex argument z. The behavior
of Jν(νz), Yν(νz) depends on the location of z with respect to K. Particularly, we use the result
that |Jν(νz)| decays or grows rapidly with | Im z|, depending on whether z lies inside or outside K.
Similarly, |Yν(νz)| grows unbounded as dist(z, ∂K) increases. Finally, Yν(νz) has complex zeros
outside K, which become poles of Qν(νz). Those zeros are located close to ∂K, in the transition
zone.

The following lemma is used to extend the dispersion analysis to complex ω.

Lemma 4. Define δν = (x2 − x1)/2, where x1, x2 ∈ R+ are the first two real roots of Yν(x). Let
H+ := {z : 0 < arg z < π, with Im z > δν} and H− := {z : −π < arg z < 0, with Im z < −δν}.
Then, for ν, |z| large, and |νg(z/ν)| > ν + ν1/3 the following approximations hold:

Qν(z) ≈ ∓i, z ∈ H±. (20)

Proof. By the conditions stated above, [34, eqs. (9.2.3), (9.2.4)] hold, and g(z/ν) ∈ C \ (D ∪ Sδ).
From the identities Jν(z) = 1

2(H
(1)
ν (z) + H

(2)
ν (z)), Yν(z) = 1

2i(H
(1)
ν (z) − H

(2)
ν (z)) and [34, eqs.

(9.2.3), (9.2.4)], we obtain the quotient

Qν(z) = i
H

(1)
ν (z) +H

(2)
ν (z)

H
(1)
ν (z)−H(2)(z)

≈ i e
ixe−yeiθ + e−ixeye−iθ

eixe−yeiθ − e−ixeye−iθ
, x, y ∈ R, θ = −νπ

2
− π

4
, (21)

where we set z := x+ iy. Assume that z ∈ H±, then (21) implies that Qν(z) ≈ ∓i.

The following theorem extends [24, Thm 3.3] to complex frequencies ω.

Theorem 5. Let p ∈ N, ω, κ ∈ C, assume that |ωh| � 1, and take σ = (2p+ 1) · g(ωh/(2p+ 1)).
Then the error |Ep| in the discrete dispersion relation passes through three distinct phases as the
order p is increased:

i) Non-decaying zone: For 2p + 1 < |σ| − o(|σ|1/3), the difference |Ep| does not decay as p is
increased. For the case with small | Imω|, then |Ep| oscillates, but does not decay, as p is
increased.

ii) Transition zone: For |σ| − o(|σ|1/3) < 2p+ 1 < |σ|+ o(|σ|1/3), and ωh not a pole of (15), the
error |Ep| decays at rate:

|Ep| ≈
∣∣∣∣sin(ωh)

Ai(ξ)

Bi(ξ)

∣∣∣∣ , ξ = −
(

2

p

)1/3 ωh− 2p

2
, (22)

where Ai, Bi denote Airy functions.

iii) Superexponential decay: For 2p + 1 > |σ| + o(|σ|1/3), |Ep| decreases at a superexponential
decay rate:

|Ep| ≈
∣∣∣∣sin(ωh)

2
f(
√

1− (ωh/(2p+ 1))2)p+1/2

∣∣∣∣ , (23)

where f : w → (1 − w)/(1 + w) exp(2w), with |f(w)| < 1. In particular, for the case
2p+ 1 > |ωh|e/2 with e = exp(1), we have

|Ep| ≈

∣∣∣∣∣sin(ωh)

2

[
ωhe

2(2p+ 1)

]2p+1
∣∣∣∣∣ . (24)
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Proof. In the case ω ∈ R+, then σ = ωh and the theorem was proved in [24, Thm. 3.3]. In the
rest of the proof we assume that Imω 6= 0 and set κ = ωh/2. For ωh fixed, the error |Ep| in (15)
decays as |Qm| goes to zero. Then we describe the behavior of |Qm(κ)| in different regions of the
complex plane as p is increased.

i) In this regime |g(κ/m)| > 1, which implies that the point κ is in the complement of K. Let
δm = (x2 − x1)/2, where x1, x2 are the first two positive roots of Ym(x). Then, Qm(κ) is close to
a pole on the real line if −δm < Imκ < δm. If | Imκ| < δm, then by [34, eqs. (9.2.1), (9.2.2)] the
function Qm is oscillatory and dominated by Reκ, with an error e| Imκ|O(|κ|−1); Compare with
[24, Sec. A.1.1].

For | Imκ| > δm, we let ẑ = κ/m, and write Qm(mẑ) in terms of Airy functions. For this, we
use the uniform asymptotic expansions [30, (10.20.4),(10.20.5)] with k = 0, and neglect the m−5/3

term. The transformation [30, (10.20.3)] can be analytically continued to the complex plane,
provided that ẑ is located outside K. This is true by the assumptions of theorem. Then, we use
[30, (9.6.6),(9.6.8)] to obtain a representation in terms of the Bessel functions J1/3, J−1/3 of fixed
order, which is analogous to [24, (A.7)]. Similarly as in [24, Sect. A.1.1], we use Watson formulas
[33, (8.440-1),(8.440-2)] to obtain [24, (A.8)] that holds for complex ω. Finally, the argumentation
given in [24, Sect. A.1.1] also holds in the present case. Additionally, Lemma 4 implies that
for the current region |Qm(κ)| ≈ 1, while the order of |Ep| is dominated by | sinκ|, which grows
exponentially with | Imκ|.

ii) As κ is not a pole of Qm(κ), we use asymptotic expansions for Bessel functions, which are
valid in the transition zone. Particularly, we truncate the series [30, (10.19.8)] with k = 0. For κ
fixed, the resulting formula becomes

Qm(κ) ≈ −Ai(ξ)

Bi(ξ)
, ξ = −

(
2

m

)1/3

(κ−m). (25)

Then for large p, we have that 2m ≈ 2p, and with the use of (15) we obtain (22). The same
result is obtained by using Olver’s uniform expansions in [30, (10.20.4), (10.20.5)]. As a remark,
we mention that even if [24, (A.9)] is a valid linearization of (25), the approximation is quite rough
in the complex case because minm∈Z+1/2 |κ − m| ≥ | Imκ| may be large. However, in the case
Imκ = 0, the linearization becomes a close approximation to (25) in the transition zone, which
implies that Ep decays algebraically at rate O(p−1/3).

iii) In this region |g(κ/m)| < 1, or equivalently κ/m ∈ K. By [31, Sec. 4], it follows that |Qm(κ)|
decays. The approximation [24, (A.10)] is justified for complex arguments if the transformations
w =

√
1− (κ/m)2, z = m(arctanhw − w), and z = 2

3ξ
3/2 are analytic continuations of its real

valued versions. This is easily verified by writing z ◦w(κ) explicitly, using the identity arctanhw ≡
log((1 +w)/

√
1− w2). After a direct calculation we obtain

√
1− w2 = κ/m. Substitution of these

into z/m = (arctanhw − w) results in equation [31, eq. (4.6)], which holds for z/m ∈ K. Finally,
by having validated [24, (A.10)], we proceed as in [24] and derive (A.12), (A.13), (A.14), and
(A.15). Hence, the results [24, Sec. A.2.2] hold, which finalizes the proof. Alternatively, (24) is
straightforwardly obtained by the use of [30, (10.19.1),(10.19.2)] and (15).

As an illustration of the results in this section, we present in Fig. 3, a dispersion comparison
between cos(ωh), Rp(ωh) for ω = 20−0.5i and polynomial order p = 20, followed by a convergence
plot showing exponential decay for both real and imaginary parts of the difference Rp(ωh)−cos(ωh).
Notice that convergence starts at p = 20 and h = 2, where we see in the two first panels that h = 2 is

10



0 2 4 6
-3

-2

-1

0

1

2

3

0 2 4 6
-3

-2

-1

0

1

2

3

0 20 40 60
10 -20

10 -15

10 -10

10 -5

10 0

Figure 3: In the first two panels we present a comparison of cos(ωh), Rp(ωh) for ω ∈ C, by using p = 20 and show
left) real parts, middle) imaginary parts versus h in the horizontal axis. In the right panel, we show convergence for
Re Ep, Im Ep vs. p, with fixed h = 2.0.

the largest mesh size where the difference is small. The natural extension of the discrete dispersion
relation to higher dimensions on tensor product meshes is presented in [24, Sec. 2.3]. We refer
the interested reader to the work in [35], where it is shown that the results from [24] are also
important for the analysis of the dispersive properties of high order edge FE used for the full
Maxwell equations.

In the following sections we make use of the dispersion analysis revised in the current section,
for the FE computation of resonances in one and two dimensions with quadrilateral elements. Par-
ticularly, we design a-priori strategies for problems with piecewise constant coefficients, considering
each element in our triangulation separately.

Dispersion analysis for piecewise constant refractive index:

Consider a problem similar to (14) with ω2 replaced with ω2n2, and a refractive index profile
n defined by the constants nj for x ∈ Ij . The problem for u can then be formulated as the
solution of a linear system with matrix entries Ql,m given by the exponentials cl,me

injωxl defined
in Ij . For a piecewise polynomial approximation uhp, we obtain a corresponding matrix Qhp(ω)

that approximates Q(ω). Then, each entry El,m = |Ql,m − Qhpl,m| can be treated similarly as the
dispersive error (15), which motivates the use of the dispersion analysis described in Section 3.2.

4. Discretization, a-priori refinement strategies, and solution of the nonlinear eigen-
value problem

In this section we describe the computational details used to obtain the approximated resonant
pairs as the solution of the nonlinear eigenvalue problems described in Section 2. In particular, we
introduce an initial FE triangulation, which by assumption is conforming and regular. Additionally,
we are given a region in C where we search for eigenvalues. Then, the initial triangulation is refined
depending on the permittivity function defined in the computational domain. The mesh refinement
is performed following a-priori strategies that are presented below. We motivate the extension to
higher dimensions and describe how to obtain the resulting matrix problem in dimensions d = 1, 2.
Finally, we describe our strategy for the solution of the resulting nonlinear eigenvalue problem.
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4.1. Discretization with the FE method

The domain Ω ⊂ Rd is covered with a regular and quasi uniform finite element mesh T (Ωa)
consisting of elements {Kj}Nj=1. The mesh is designed such that the permittivity function ε(ω) is
constant in each Kj . Let hj be the length of the largest diagonal of the non-curved primitive Kj

and denote by h the maximum mesh size h := maxj hj .
In the following, Pp denotes the space of polynomials on Rd of degree ≤ p in each coordinate

and the script hp := {h, p} labels the discrete pairs. Furthermore, we assign per element Kj a
local polynomial degree pj satisfying 1 ≤ pj ≤ p. We define the finite element space Shp(Ω) :=
{u ∈ H1(Ω) : u|Kj

∈ Ppj (Kj) for Kj ∈ T }, and N := dim(Shp(Ω)) [36]. Furthermore, in the

case d = 2, all the computations are done in the approximated domain Ωhp by using curvilinear
elements following standard procedures [36]. The used FE meshes are shape regular in the sense
of [37, Sec. 4.3], and consist of quadrilaterals with curvilinear edges that deviate slightly from
their non-curved primitives. Finally, we assume that the PML is set up following the discussions
in [11, 15], which accounts for large enough ` and σ0 such that the search region is feasible [15].
We assume that the FE space in ΩPML is good enough and concentrate on the physical region Ωa.

4.2. A-priori refinement strategies

In the current section, we present two novel a-priori refinement strategies to be used for the
computation of Helmholtz resonances with piecewise constant coefficients. Following the dispersion
analysis sketched in Section 3, the aim is that a given initial mesh is refined (a-priori) such that
the resulting mesh satisfies the conditions for superexponential decay of the dispersive error in
Theorems 2 and 5. Resonances are then approximated by the eigenvalues of a rational matrix-
valued function. The refractive index is by assumption the constant nj on element Kj . Then for
x ∈ Kj , both the TM-case and the TE-case can be written in the form −∆uj − (ωjnj)

2uj = 0. A

shift value µ is then introduced, and eigenvalues are approximated in the closed ball Λ := B(µ, rµ)
centered at µ with radius rµ in the complex plane. In practice rµ should be large enough to allow
the computation of several eigenvalues at once, but small enough such that nj(ω) does not vary
excessively. We choose Λ such that all nj(ω) are continuous functions for ω ∈ Λ.

Additionally, we define

λj := arg max
ω∈Λ

|nj(ω)|, ñj := nj(λj), and let kj :=

{
|µ| if |ñj | < 1

|ñjµ| otherwise,
(26)

where we assume that the arguments of the maxima consists of one point λj . For the description
of our strategy, we use the following definition of an extended mesh.

Definition 6. Extended mesh: Let Kj be a one dimensional element of size hj := xj2 − xj1
defined by the nodes in [xj1, x

j
2]. The extended mesh M(Kj) is then defined as the partition with

points x̂l = lhj, for all l ∈ Z.

From this stage we estimate locally the dispersive properties of the finite element space, moti-
vated by the results in Section 3.2. Refinement strategies can be designed so that for given kj , a
finite element space defined overM(Kj) satisfies the conditions in Theorems 2, and 5 for superex-
ponential decay. In this way, we obtain target values for pj and hj that can be easily computed in
each FE cell. In Section 4.3, we present two alternative ways to achieve this.
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In an a-priori refinement strategy, we first estimate the initial state of an input FE mesh by
using a global mesh indicator γ0. This is done by first checking the constraints of the desired
mesh: the minimum mesh size or maximum polynomial degree that we are allowed to use. This
information is contained in k0, h0, defined below. Consecutively, we check each cell Kj and refine
hj , pj if needed according to a specific goal.

The goal of the refinement is to guarantee that in each Kj , our FE eigenfunctions restricted to
Kj , satisfy the conditions for superexponential decay of the error on the extended mesh M(Kj)
as it has been described in Section 3. Particularly, equations (19) and (24) suggest a relationship
between p and h when the dispersive error Ep is in the superexponential decay region. In the case
of small |ωh|, we can rewrite the leading term in (19) as Ep ≈ c · γ2, with c and γ given by

c =
1

4

ωh

2p+ 1

(e
2

)2p
, γ :=

(
ωh

2p

)p
, (27)

where we have used Stirling’s approximation. For increasing p, the decay of |γ|2 is faster than the
increase of |c|. From Theorem 5 with 2p > |ωh|e/2 it follows that the decay of |γ| in (27) implies
the decay of |Ep| in (24).

Finally, for Helmholtz problems in higher space dimensions with real ω, the quotient γ is found
to play an important role in the estimation of the dispersive FE errors [22, 26, 25]. For all these
reasons, γ is a natural indicator to be used for designing a-priori strategies for the control of
dispersive FE errors.

The proposed refinement strategy for enriching the finite element space is based on the goal

Goal 7. For given kj and γ0, find hj and pj such that the condition(
kjhj
2pj

)pj
≤ γ0 (28)

is satisfied in Kj.

Remark 8. Depending on kj and γ0, Goal 7 may be unfeasible. Then we say that the target finite
element space is unreachable for the given input parameters.

4.3. Proposed refinement strategies

In the following, we present two strategies in order to verify that the condition (28) is satisfied
in each FE cell Kj . The proposed a-priori refinement procedure is sketched in Algorithm 1.

In the h-strategy we assume that pj is fixed, and we perform a standard h-refinement: split the
cell Kj in 2d new cells and update T (Ωa) [38]. Similarly, in the p-strategy we keep hj fixed and
find a suitable pj .

The initial mesh T (Ωa) is by assumption a conforming triangulation of Ωa without ghost nodes;
see [38]. Then, a fixed polynomial degree pj = p0 ≥ 1 is assigned to each element Kj , j ∈ I0 :=
{j : 1 ≤ j ≤ N}. The refractive index profile nj is known per element, and the region Λ ⊂ C
containing the shift µ has been specified. From (26), we assign the constants kj to each element
Kj of mesh size hj . Then, a parameter γ0 is introduced in order to account for the state of the
initial mesh. In the case γ0 < 1, we perform an a-priori refinement of the mesh, and continue with
the steps of Algorithm 1. Otherwise we go back to beginning of Algorithm 1 and ask the user to
modify the input parameters.

Below we propose two strategies for achieving Goal 7.

13



Algorithm 1: A-priori hp-FE refinement strategy

Input: p0, Kj , hj , nj , Λ, and µ ∈ Λ. Each element is assigned pj = p0.
1 Compute kj in each element
2 Set h0, k0 and compute γ0 according to the strategies 4.3.1 or 4.3.2
3 Check feasibility of refinement: if γ0 ≥ 1 then restart with modified input parameters
4

5 for j = 1 , . . . , N do
6 Check Goal 7 for element Kj

7 if Goal 7 not satisfied then refine hj or pj
8

9 end
10 Start the assembly of the FE matrices

11 Start the NEP solver with shift µ and compute the pairs (uhpm , ω
hp
m )

4.3.1. h-strategy (sh-FE)

Let k0 = minj∈I0 kj and define I := {j : kj = k0}, h0 := minj∈I hj . Then, we check the state
of the initial mesh for given k0, h0 ∈ R, and define the global mesh indicator as

γ0 :=

(
k0h0

2p0

)p0
.

Consecutively, we perform h-refinements in all cells Kj , with j ∈ I0, such that Goal 7 is satisfied.
The last statement implies satisfying the condition

hj ≤
(
k0

kj

)
h0. (29)

After this, we iteratively refine cells Kj such that each cell has neighboring cells that are at most
one level of refinement higher than itself. For this, we allow ghost nodes, and we do not coarsen
cells.

4.3.2. p-strategy (hp-FE)

Let k0 = maxj∈I0 kj and define I := {j : kj = k0}, h0 := maxj∈I hj . We compute the pj
corresponding to the element Kj such that (28) is satisfied. The last statement requires solving
for the zeros zi of the nonlinear equation

Fj(z) :=

(
kjhj
2z

)z
− γ0 = 0, with γ0 :=

(
k0h0

2p0

)p0
. (30)

We choose the solution zi ≥ 1 that minimizes |p0 − zi|. Finally, we take pj := dzie, where dzie is
the smallest integer greater than or equal to zi.

Remark 9. In order to solve (30) we compute the derivative with respect to z, and solve by using
a scalar Newton-Raphson root finder. We use z0 = p0 as initial guess and search for solutions in
zi ∈ [1, p0]. If the only roots are such that zi < 1, then the resulting zi is not feasible. Possible
workarounds are to increase the input parameter p0, or a further uniform h-refinement may be
needed before starting the strategies.
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4.4. Assembly of FE matrices

In this subsection, we consider the assembly of the FE matrices for the 1D problem (7) and
the 2D problem (11). Assume that the set of shape functions {ϕ1, . . . , ϕN} is a basis of the space
Shp(Ωhp) defined in section 4.1. Then uhp ∈ Shp(Ωhp) has the representation

uhp =

N∑
j=1

ξj ϕj . (31)

4.4.1. Discrete problem in 1D

From (7), with Ihp ⊂ R, we state the corresponding finite element problem: Find uhp ∈
Shp(Ihp) \ {0} and ωhp ∈ D, such that t1(ωhp)[uhp, v] = 0 is satisfied for all v ∈ Shp(Ihp).

Similarly, we state the corresponding matrix problem: Find the eigenpairs (ωhp, ξ) ∈ D × CN
such that

T1(ωhp)ξ :=

(
Nr∑
m=0

{
ρm(ωhp)Am − ω2

hpηm(ωhp)Mm

}
− iωhpρ0E

)
ξ = 0, (32)

with finite element matrices

Amij =

∫
Im

ϕ′jϕ
′
i dx, M

m
ij =

∫
Im

ϕjϕi dx, Eij = (ϕj(−a)ϕi(−a) + ϕj(a)ϕi(a)) , (33)

for m = 0, . . . , Nr.

4.4.2. Discrete problem in 2D

From (11), with Ωhp ⊂ R2, we state the corresponding finite element problem: Find uhp ∈
Shp(Ωhp) \ {0} and ωhp ∈ D, such that t2(ωhp)[uhp, v] = 0 is satisfied for all v ∈ Shp(Ωhp). The
entries in the finite element matrices become

A0
ij = (∇ϕj ,∇ϕi)Ωhp

0
+ (A∇ϕj ,∇ϕi)Ωhp

PML
, M0

ij = (ϕj , ϕi)Ωhp
0

+ (B ϕj , ϕi)Ωhp
PML

Amij = (∇ϕj ,∇ϕi)Ωhp
m
, Mm

ij = (ϕj , ϕi)Ωhp
m
,

(34)

with m = 1, . . . , Nr.
The nonlinear matrix eigenvalue problem reads: Find the eigenpairs (ωhp, ξ) ∈ D × CN \ {0}

such that

T2(ωhp) ξ :=

(
Nr∑
m=0

ρm(ωhp)Am − ω2
hpηm(ωhp)Mm

)
ξ = 0. (35)

All numerical experiments have been carried out using the finite element library deal.II [39]
with Gauss-Lobatto shape functions [40, Sec. 1.2.3]. For fast assembly and computations with
complex numbers the package PETSc [41] is used.

The computational platform used for the executions is Tirant 3, consisting of 336 computing
nodes and on each of them two Intel Xeon SandyBridge E5-2670 processors (16 cores each). The
processors, running at 2.6 GHz with 32 GB of memory, are interconnected with an Infiniband
FDR10 network. All runs are scheduled for at most 4 MPI processes per node.
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4.5. Solution of the nonlinear eigenvalue problem

For solving the nonlinear eigenvalue problems we use SLEPc [19] and in particular its NEP
module [42]. We provide a target value µ and request to compute a few eigenvalues (and corre-
sponding eigenvectors) close to that value. This process is repeated for several values of µ in order
to cover the region of interest.

The user interface to SLEPc allows the representation of the nonlinear eigenproblem by passing
a list of matrices and a list of corresponding scalar nonlinear functions. In our case, the matrix
problem to be solved is (35), from where the functions that multiply the matrix coefficients are
either polynomial (1 and −ω2) or rational (−ω2ε(ω) and 1/ε(ω)). SLEPc provides a simple mecha-
nism to define these functions, either by providing the coefficients of numerator and denominator,
or by combining other functions (e.g., additive combination as required in (1)).

In this work, we use SLEPc’s implementation of the NLEIGS method [43], which was developed
in the course of this paper. We next provide a brief description of this method, together with some
implementation details that improve the solver’s efficiency. We express the eigenvalue problem as

T (ω)ξ = 0, with T (ω) =

d∑
i=1

Aifi(ω), (36)

where ω is the eigenvalue, ξ is the eigenvector, Ai are constant matrices and fi are scalar nonlinear
functions. NLEIGS aims at finding eigenvalues located inside a certain region of the complex plane
Σ.

For this, it first approximates T in that region with a rational matrix Fd whose poles are
selected from the set of singularities of T , denoted by Γ. The rational approximation has the form

Fd(ω) :=
d∑
j=0

bj(ω)Dj (37)

and is constructed so that it interpolates T at nodes σj ∈ ∂Σ (the boundary of Σ), using the
rational basis functions with poles at γj ∈ Γ defined by the recursion

b0(ω) = 1, bj(ω) =
ω − σj−1

βj(1− ω/γj)
bj−1(ω), j = 1, 2, . . . . (38)

The βj ’s are normalization factors chosen so that maxω∈∂Σ |bj(ω)| = 1. The interpolation nodes
and poles that determine the approximation Fd(ω) are obtained as a sequence of Leja–Bagby points
for (Σ,Γ) [43]. The interpolation conditions Rj(σj) = T (σj) determine that the coefficient matrices
Dj of (37) (called rational divided differences) can be computed via the recurrence

D0 = β0T (σ0), Dj =
T (σj)−Rj−1(σj)

bj(σj)
, j = 1, 2, . . . . (39)

Since T is expressed in the form (36), they can be written as

Dj =

d∑
i=0

djiAi, j ≥ 0, (40)

where dji denotes the jth rational divided difference corresponding to the scalar function fi, which
can be computed with a cheap and numerically stable procedure detailed in [43]. Here we use this
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latter form (40), but in our implementation the Dj matrices are not computed explicitly. Instead
the solver works with them implicitly, operating with the Ai matrices that appear in the definition
of T .

The solver is implemented for the case of a general nonlinear function T . However, if the
problem is rational, which is the case we are concerned in this paper, the degree d is equal to
max{p, q} if T is a rational matrix-valued function of type (p, q), and also the singularity set Γ is
equal to the set of poles of T . In that case, the interpolant Fd of (37) is exact for any choice of the
sampling points σk. In other words, Fd is just a rewrite of T .

Once Fd has been obtained, the problem Fd(ω)ξ = 0 is solved via linearization, that is, a linear
eigenvalue problem is constructed

L0y = ωL1y, (41)

whose eigenvalues ω are the same and whose eigenvectors have the form

y =

 b0(ω)ξ
...

bd−1(ω)ξ

 . (42)

The matrices L0 and L1 of the linearization (41) have a particular block structure,

L0 =


D0 D1 . . . Dd−2 (Dd−1 − σd−1

βd
Dd)

σ0I β1I
. . .

. . .

. . . βd−2I
σd−2I βd−1I

 , L1 =



0 0 . . . 0 −Dd
βd

I β1
γ1
I

. . .
. . .
. . . βd−2

γd−2
I

I
βd−1

γd−1
I


. (43)

We use the static NLEIGS variant [43], where the linearization matrices are created a priori and
then the linear eigenproblem (41) is solved (as opposed to the dynamic variant where the ap-
proximation and linearization are built incrementally as the Krylov subspace grows). To solve
the linear eigenproblem, we implement a customized version of the shift-and-invert Krylov–Schur
method [44], as described next.

The dimension of the linear eigenproblem (41) is equal to d · N , where d is the number of
terms in the rational approximation and N is the dimension of the original nonlinear problem.
Since this dimension may be quite large, it is important to exploit the block structure of the
linearization matrices in order to solve the linear problem efficiently (in terms of memory and
computational effort). The block structure is considered when operating with the matrices, and
also in the management of the subspace basis, as explained next.

The linearization matrices (43) are never built explicitly, and instead the Krylov–Schur method
proceeds by operating with their nonzero blocks only. To generate a new Krylov vector, we need
to multiply the last vector of the basis with matrix

S = (L0 − µL1)−1L1, (44)

where L0 and L1 are given in (43), and µ ∈ Σ is the shift (a value around which the eigenvalues are
sought). We derive a set of recurrences that implicitly apply matrix S to a vector, by considering a
block LU factorization of (L0−µL1). The operations in these recurrences are expressed in terms of
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the problem matrices Ai instead of the divided differences Di. The required computations involve
vector axpy operations, matrix-vector products with the matrices, and the construction of Fd(µ)
and its inverse. Rather than building the inverse explicitly, a sparse linear solver is used (usually
via a factorization).

The block structure of the matrices L0 and L1 can also be exploited to allow a compact
representation of the Krylov basis. The idea is to derive linear dependency relations among the d
blocks of the generated Krylov vectors, whose global dimension is d ·N . In this way, it is possible
to define a basis Uk+d of vectors of length N , from which all blocks of the Krylov basis Vk can be
reconstructed, resulting in the relation

Vk = (Id ⊗ Uk+d)Gk, (45)

for some matrix of coefficients Gk. That is, if the Krylov basis Vk is divided in d blocks of N
consecutive rows, {V i

k}
d−1
i=0 , then they can be expressed as

V i
k = Uk+dG

i
k, i = 0, . . . , d− 1, (46)

where {Gik}
d−1
i=0 are the blocks of Gk. Both Uk+d and Gk must have orthonormal columns by con-

struction. This is called the TOAR representation and has been described in [45] in the context
of polynomial eigenvalue problems. We have adapted this technique to the NLEIGS lineariza-
tion (43), so that a number of vector recurrences are employed to compute the columns of Uk+d

together with the entries of Gk in the context of the Arnoldi iteration. The compact represen-
tation not only reduces the storage requirements for the basis in roughly a factor d, but it also
reduces the computational cost associated with the orthogonalization of the basis vectors. Our
implementation also incorporates additional optimizations such as restart and eigenvalue locking.
Further details about the NEP module can be found in [42]. In summary, the main operations
involved in the NLEIGS solver are orthogonalization and other operations with length-N vectors,
sparse matrix-vector products with the problem matrices A, matrix axpy operations to form Fd(µ)
explicitly, and sparse factorization of Fd(µ) for linear solves (also of size N). The last one is the
most expensive operation, but it is much cheaper than a size d ·N factorization in matrix S (44)
that would be required in a naive implementation of NLEIGS. Moreover, all the computation can
be done in parallel (using MPI), enabling the solution of large-scale problems.

5. Applications to metal-dielectric nanostructures

In this section we study four interesting metal-dielectric configurations, from where numerical
approximations to resonances and resonant modes are computed. These configurations are used in
Section 6 for comparing the error convergence in standard h- and p-FE, against the novel strategies
presented in Section 4.3. First, geometries with simple symmetries are introduced. This allow us
to determine exact pairs explicitly for both TM and TE polarizations. Finally, we describe a more
demanding test case.

The first two configurations serve as Benchmarks for testing strategies 4.3.1 and 4.3.2 applied
to problems with non-dispersive and piecewise constant material properties. In the last two con-
figurations we are motivated by realistic applications in nano-photonics, where a metal coating is
introduced. For these, three different relative permittivity models are used: εv := 1 (Vacuum),
ε := 2 (Silica), and εmetal (Gold), modeled by a sum of Drude-Lorentz terms (1). For εmetal we use
the data given in Table 1 gathered in [46]. This model of Gold has been extensively tested and has
validity for ω ∈ [0.5, 6.5] eV , where eV denotes electron volt.

18



ε∞ = 1 ωp = 9.03 -
f0 = 0.76 ω0 = 0 γ0 = 0.053
f1 = 0.024 ω1 = 0.415 γ1 = 0.241
f2 = 0.01 ω2 = 0.83 γ2 = 0.345
f3 = 0.071 ω3 = 2.969 γ3 = 0.87
f4 = 0.601 ω4 = 4.304 γ4 = 2.494
f5 = 4.384 ω5 =13.32 γ5 = 2.214

Table 1: Drude Lorentz data for Gold, taken from [46], with time convention e−iωt.

5.1. Scaling

In finite precision arithmetic we prefer to work with dimensionless quantities, where we trans-
form from dimensionless variables to physical variables (denoted with ˜). We use common physical
constants in SI units: ~ is the scaled Planck’s constant, c is the speed of light in vacuum, and e is
the electron charge. In the numerical computations, we use the scaling factors W = eV/~ in Hertz
and L = 2πc/W in meters. Then, we define the dimensionless quantities

x =
x̃

L
, ω =

ω̃

W
satisfying LW = 2πc. (47)

The resulting length factor is L = 1239.842nm, from where our spectral window becomes numeri-
cally equivalent to eV scaling.

5.2. Benchmarks in 1D

We focus on the problem described in Section 2.1 for even refractive index profiles. The
computational domain is reduced to I := I+

a := (0, a), by imposing u(0) = 0. This choice allows
us to approximate the odd eigenfunctions of (5) and (6). For the derivation of reference solutions,
we consider the following problem with a = 1.

Let {xj}Nj=0 denote nodes with x0 = 0, xN = 1 and introduce the partition consisting of
Ij := (xj−1, xj), j = 1, 2, . . . , N . Assume that the refractive index n =

√
ε is the constant nj over

Ij and let uj denote the restriction of u to Ij . Furthermore, we assume that n = 1, for x > 1. Then
(ρj , ηj) = (1, n2

j ) for the TM-case and (ρj , ηj) = (1/n2
j , 1) for the TE-case. The coupled problems

for the TE/TM-case reads: Find (u1, u2, . . . , uN , ω) such that

− d

dx

(
ρju
′
j

)
− ω2ηjuj = 0, x ∈ Ij , (48)

where u1 and uN satisfy the boundary conditions

u1(0) = 0, and u′N (1) = iω uN (1), (49)

and the solutions of (48) are subject to the compatibility conditions

uj(xj) = uj+1(xj), and ρju
′
j(xj) = ρj+1u

′
j+1(xj), for j = 1, . . . , N − 1. (50)

The general solutions to (48) can be written in the form

uj := Aje
injωx +Bje

−injωx, x ∈ Ij , (51)
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with the 2N unknowns Aj , Bj , j = 1, 2, · · · , N . The conditions (49) and (50) imply that the
unknowns are solutions of a matrix system

Q(ω)z = 0, z = (A1, B1, A2, B2, · · · , AN , BN )T , (52)

where the entries corresponding to boundary conditions are placed in the last two rows. If there
exist nontrivial solutions to (52), they satisfy det[Q(ωm)] = 0 for some value ωm that corresponds
to a resonance of the system.

5.2.1. Slab problem

In this section, we consider the problem (48), (49), and (50) for the case N = 2, with n(x) = n1

for x ∈ I1 := (0, 0.5), and n(x) = 1 for x ∈ I2 := (0.5, 1). The corresponding exact resonances for
TM polarization are given by

e2in1ωa = −µ, ωm =
(2m+ 1)π − iLog(µ)

2n1a
, µ =

n1 + 1

n1 − 1
, (53)

with the corresponding eigenfunctions as in (51), with

2
A2

A1
= (n1 + 1)eiωa(n1−1) + (n1 − 1)e−iωa(n1+1), B1 = −A1, B2 = 0. (54)

Similarly, the corresponding exact resonances for TE polarization are given by:

e2in1ωa = µ, ωm =
2mπ − iLog(µ)

2n1a
, µ =

n1 + 1

n1 − 1
, (55)

with the corresponding eigenfunctions as in (51), with

2n1
A2

A1
= (n1 + 1)eiωa(n1−1) − (n1 − 1)e−iωa(n1+1), B1 = −A1, B2 = 0. (56)

5.2.2. Multiple slab problem

Split the interval I := (0, 1) in four uniform intervals Ij of length 1/4 and let n := (1, 10, 2, 5)T

denote a vector with the refractive indexes nj . Using this refractive index profile results in an
eigenvalue problem that is more demanding for FEM than the slab problem. We compute very
accurate Newton reference eigenvalues ωm from det[Q(ωm)] = 0, with Q(ω) given in (52). For
simplicity, we only study eigenvalue convergence of this problem for

TM : ω14 = 10.105 348 365 841− 0.065 215 027 533i,
TE : ω14 = 10.156 176 418 185− 0.048 229 922 564i.

(57)

5.3. Benchmarks in 2D

The next two problems have radial symmetry centered at the origin, and the solutions expressed
in polar coordinates (r, θ), will be written in terms of Bessel and Hankel functions of integer order
m. In this simple case outgoing solutions of (4) satisfy

u = H(1)
m (ωR)

(
cosmθ
sinmθ

)
, for x ∈ ∂B(0, R), and m ∈ Z, (58)

where supp (n − 1) ⊂ B(0, R). In subsections 5.3.1 and 5.3.2, we present solutions satisfying (4)
and (58) for specific permittivity profiles.
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Figure 4: Convergence plots (Relative errors vs. N) for the slab problem 5.2.1 in TM and TE polarizations. The upper
horizontal stripe corresponds to classical h-FE error convergence for n1 = 2, 5, 10 consecutively. Optimal convergence
rates (62) are indicated with solid, dashed, and dotted black lines. The following horizontal stripes correspond to
classical h-FE and p-FE convergence marked with stars, and convergence with the a-priori strategies sh-FE (4.3.1),
and hp-FE (4.3.2) are marked with circles.
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m j ReωTM ImωTM ReωTE ImωTE

0 1 1.771 128 241 −0.040 209 598 3.028 519 953 −0.249 632 742
1 2 2.507 165 546 −0.308 861 246 1.276 108 857 −0.022 849 842
2 3 2.637 054 638 −0.400 052 296 1.857 593 240 −0.103 922 955
3 4 3.312 034 818 −0.666 590 209 2.444 174 749 −0.314 200 015
4 5 3.406 691 805 −0.693 670 033 2.506 083 838 −0.291 213 845
5 6 3.525 244 074 −0.743 331 707 2.324 925 787 −0.200 153 901
6 7 3.613 595 702 −0.818 203 122 3.126 303 493 −0.462 545 189
7 8 3.671 987 538 −0.878 964 710 2.510 146 419 −0.300 384 680
8 9 3.720 376 782 −0.925 532 212 5.549 482 036 −0.741 472 675
9 10 3.762 296 208 −0.963 866 600 3.201 508 932 −0.529 576 832

Table 2: Reference eigenvalues for the single coated disk problem described in Section 5.3.2.
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Figure 5: Convergence plots (Relative errors vs. N) for the multiple slab problem 5.2.2 in TM and TE polarizations.
Classical h-FE and p-FE convergence are marked with stars, and convergence with the a-priori strategies sh-FE
(4.3.1), and hp-FE (4.3.2) are marked with circles.
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5.3.1. Single disk problem

Denote by u = u1, n = n1 the restrictions of u, n to Ω1 := B(0, a), and set n = n2 = 1
elsewhere. The corresponding exact eigenfunctions to (4) and (58) read:

u1 = NmJm(n1ωr)

(
cosmθ
sinmθ

)
, u2 = H(1)

m (ωr)

(
cosmθ
sinmθ

)
, Nm :=

H
(1)
m (aω)

Jm(an1ω)
. (59)

The eigenvalues ω corresponding to m = 0 are simple and those corresponding to m > 0 are
degenerated and have algebraic multiplicity α = 2. The exact eigenvalue relationship for TM and
TE can be written as

Jm(an1ω)H(1)′
m (aω)− g J ′m(an1ω)H(1)

m (aω) = 0, (60)

where g = n1, g = 1/n1 corresponds to the TM polarization and TE polarization respectively.

5.3.2. Single coated disk problem

In this configuration, we consider a resonator consisting of a dielectric disk with a uniform
coating layer. The geometry is described by two concentric circumferences of radii 0 < R1 < R2,
with vacuum as surrounding medium. The inner disk has constant relative permittivity index, and
is coated by a layer of gold. We set n1 =

√
εs, and n2 :=

√
εmetal is the value such that Imn2

(absorption coefficient) is positive.
The exact solutions satisfy (4), and (58) with R ≥ R2. The resonance relationship reads

fm1 (ω) = g1J
′
m(ωn1R1)H

(1)
m (ωn2R1)− g2Jm(ωn1R1)H

(1)′
m (ωn2R1),

fm2 (ω) = g3Jm(ωn1R1)H
(2)′
m (ωn2R1)− g4J

′
m(ωn1R1)H

(2)
m (ωn2R1),

fm3 (ω) = g5H
(1)
m (ωn2R2)H

(1)′
m (ωR2)− g6H

(1)′
m (ωn2R2)H

(1)
m (ωR2),

fm4 (ω) = g7H
(1)
m (ωR2)H

(2)′
m (ωn2R2)− g8H

(1)′
m (ωR2)H

(2)
m (ωn2R2),

Fm(ω) := (fm1 f
m
4 − fm2 fm3 )(ω) = 0,

(61)

where for TM, g := (n1, n2, n2, n1, 1, n2, n2, 1), and for TE, g := (n2, n1, n1, n2, n2, 1, 1, n2). The
parameters used for the computation are R1 = 0.8, R2 = 1.0 with scaling factor L = 1239.842nm.

A complex Newton root finder [47] is then used to compute very accurate approximations of
the resonances. For each m in equation (61), we search numerically the resonances ωm,1, ωm,2, . . .
with machine precision stopping criterion. In Table 2, we list a selection of resonances computed
from (61), which are used as a benchmark for studying the proposed hp-FE strategies 4.3.1 and
4.3.2 together with the proposed NEP strategy.

5.4. Coated disk dimer problem

The final configuration consists of two coated disks, each with equal dimension as the one
presented in Sec. 5.3.1. The coated disks are surrounded by vacuum, and are separated vertically
by a distance s = 0.2. For this problem we compute reference solutions by solving the problem on
a very fine mesh.

23



10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

10 3 10 4 10 5 10 6
10 -7

10 -5

10 -3

10 -1

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0.5 1 1.5 2

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

104× 104× 104×

104× 104× 104×

Figure 6: Convergence plots (Relative errors vs. N) for TM and TE polarizations: single disk problem 5.3.1 and
contrast n1 = 5. Upper panels correspond to h-FE for p = 2, and bottom panels to p-FE convergence. We mark with
circles the a-priori strategies sh-FE and hp-FE, and with stars classical FE refinements. Each vertical strip shows
different eigenpairs with j = 1, 2, 4, featuring different angular numbers m = 0, 2, 6.
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Figure 7: Spectral window for the single coated disk problem: polarizations TM (left) and TE (right). We mark with
circles reference (Newton) eigenvalues ω computed from (61). FEM+NLEIGS eigenvalues ωhp for a discretization
p = 10, r = 2 are shown with dots, poles z of ε(ω) with squares and its zeros with diamonds. The plasmonic branch
points are marked with × and +.

6. Numerical experiments and results

In this section we perform numerical computations to test the reliability and performance of
the proposed solution strategy. Particularly, we present a comparison of classical finite element
error convergence against convergence of the a-priori strategies presented in Section 4.3. For the
comparison, we define the gain as the percentage of reduction in degrees of freedom compared
to using classical FE refinement strategies at a fixed relative error. From a conforming coarse
triangulation T (Ω) with no ghost nodes, the classical h refinement strategy consists in keeping p
fixed, and performing consecutive refinements by splitting each element in 2d new elements. The
classical p refinement strategy consists in keeping the number of elements constant and increasing
p uniformly in each cell.

6.1. Results for non-dispersive problems

The studies are performed on the problems described in Section 5, where expressions for the
reference solutions are given for most problems. Furthermore, all given study cases have piecewise
analytic coefficients and the domains have no corners. Hence, the expected optimal asymptotic
error estimates are:

‖u− uh‖l ≤ C(ω)hp−l+2‖u‖l, for h-FE with l = 0, 1,

‖u− uh‖l ≤ C(ω) e−αlN
1/d‖u‖l, for p-FE with l = 0, 1,

(62)

where we denote by ‖ · ‖l the standard H l(Ω) norm. For the convergence studies, we use the
relationship N ≤ ch−d, c > 0 valid for shape regular meshes [37, Sec. 4.3].

In the following sections we discuss the results of the convergence study.
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Figure 8: Resulting polynomial degree distribution pj from strategy in section 4.3.2 for shifts µ = 4.162 − 0.2648i
(left), µ = 2.9− 0.422i (right), and corresponding start values p0 = 7 and p0 = 10, respectively. In colors we give the
computed pj.

j ReωTM ImωTM ReωTE ImωTE

1 0.391 206 696 −0.117 682 733 1.275 203 310 −0.017 729 356
2 0.392 635 042 −0.118 062 545 1.407 446 763 −0.351 566 607
3 0.809 151 314 −0.171 363 257 1.518 834 290 −0.459 714 126
4 1.775 357 827 −0.032 801 891 1.833 732 651 −0.071 556 523
5 2.553 994 710 −0.278 675 516 2.122 066 617 −0.294 491 051
6 2.654 205 934 −0.403 812 208 2.212 801 536 −0.162 351 126
7 2.889 635 797 −0.420 955 865 2.904 693 880 −0.427 303 148
8 2.907 250 975 −0.426 266 060 2.905 243 670 −0.423 913 316
9 3.613 338 577 −0.811 314 585 2.905 244 289 −0.423 897 437

10 3.668 597 318 −0.875 944 785 3.034 308 619 −0.251 533 276
11 4.152 064 265 −0.280 206 808 3.104 957 066 −0.446 726 774
12 4.459 080 468 −0.244 143 721 4.087 887 349 −0.794 352 424
13 5.565 335 954 −0.248 309 435 4.297 453 212 −0.269 106 228
14 5.952 378 524 −0.278 171 454 4.491 337 149 −0.744 646 034
15 6.175 153 470 −0.890 257 000 5.248 059 111 −0.596 147 639
16 6.636 767 136 −0.423 048 913 5.560 206 560 −0.251 973 018
17 6.672 655 322 −0.452 937 916 5.809 753 794 −0.884 187 579
18 7.251 741 950 −0.616 774 531 6.078 619 602 −0.730 690 710
19 8.155 796 969 −0.628 012 814 7.196 957 492 −0.638 546 672
20 8.855 927 311 −0.444 228 537 8.961 786 233 −0.520 547 479

Table 3: Reference eigenvalues for the coated disk dimer problem described in Section 5.4.
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Figure 9: Left) Spectral window for the coated dimer problem 5.4 with TM polarization. FEM+NLEIGS eigenvalues
ωhp are shown with dots, poles z of ε(ω) with squares and its zeros with diamonds. The plasmonic branch points are
marked with × and +. Right) In colors we plot ‖Ej‖ from the resonant mode corresponding to ωj listed in table 3.
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Figure 10: Spectral window for the coated dimer problem 5.4 with TE polarization. FEM+NLEIGS eigenvalues ωhp

are shown with dots, poles z of ε(ω) with squares and its zeros with diamonds. The plasmonic branch points are
marked with × and +. Right) In colors we plot ‖Ej‖ from the resonant mode corresponding to ωj listed in table 3.

27



6.1.1. Results for 1D problems

We start by describing general observations resulting from computations on the 1D problems
described in Section 5.2, where the discretization is based on the DtN formulation described in Sec.
2.1. First, we gather results for the single slab problem 5.2.1 in Figure 4. In the upper strip we
present classical h-FE relative errors corresponding to TM eigenvalues and eigenfunctions measured
in L2, and H1 norms. Plots corresponding to n1 = 2, 5, 10 are given for an eigenvalue close to the
shift µ = 10. The results indicate that the optimal convergence rates (62) are reached, and the same
was observed for the TE polarization. The following horizontal strips depict H1 errors for classical
FE and for strategies 4.3.1 and 4.3.2, from where it is observed that both proposed strategies
effectively reduce the convergence’s pre-asymptotic phase compared with classical FE refinements.
However, the asymptotic rate of convergence remains naturally unaltered. Additionally, optimal
convergence rates (62) are reached for both TM and TE polarizations, experiencing the same
gain independently of polarization. The second and third horizontal strips in Figure 4 show a
gain from h-FE of 25%, 44%, and 47%, corresponding to n1 = 2, 5, and 10 for a relative error
around 10−3. Similarly, the fourth and fifth horizontal strips in Figure 4 show a gain from p-FE of
16%, 21%, and 35%, corresponding to n1 = 2, 5, and 10 for a relative error around 10−6. Additional
numerical computations confirm that similar gains were observed for other shifts. Additionally,
we observe from the plots that the gain by using the strategy 4.3.2 increases for higher accuracies.
This is expected as the proposed strategies are designed from Theorem 2, and Theorem 5. The
results confirm that the a-priori strategies 4.3.1 and 4.3.2, achieve convergence with a shorter
pre-asymptotic phase than classical FE-methods, with a gain proportional to the refractive index
contrast. The results from computations on problem 5.2.2 are gathered in Figure 5, where it
becomes evident that the use of the proposed strategies also work well for problems with piecewise
constant coefficients. Computations feature a gain of 37% for a relative error of order 10−3 in
h-FE, whereas 36% gain for a relative error of order 10−6 in p-FE.

6.1.2. Results for the single disk problem

In this section the a-priori strategies 4.3.1, and 4.3.2 are tested for configurations in 2D. In
particular, the results for the problem 5.3.1, with n1 = 5, are gathered in Figure 6. In this problem,
eigenpairs are numbered using the angular integer m as suggested by (59). We compute pairs for
TM with µ = 10.2−0.04i, and for TE with µ = 9.85−0.04i. The results for both polarizations are
very similar to those discussed in Section 6.1.1 for 1D. Particularly, the eigenvalue error for this
problem converges following the optimal rates (62), and both a-priori strategies achieve convergence
with a shorter pre asymptotic phase compared to classical FE-methods. Particularly we achieve a
gain of 36% for the h-strategy with relative error of order 10−6, whereas up to 17% in the p-strategy
with relative error of order 10−8. Furthermore, we see that for the chosen µ, eigenfunctions with
different m exhibit the same gain.

Remark 10. For large angular values m, eigenfunctions in this problem are expected to exhibit
localized oscillations around the boundary of the dielectric disk (juncture with air) that extend to
air. These are known as whispering-Gallery-modes (WGM) [48]. It is observed that the strategies
4.3.1, and 4.3.2 underestimate the FE requirements for correct approximation of these modes, as
we refine cells according to bulk estimators/goals, and contributions from edges are not considered.
However, since we know in advance where to perform mesh refinements it is straightforward to
setup a-priori strategies for accurate computation of these modes. From now on, we exclude these
type of modes from our discussions.
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Problem Matrix size % of nonzeros

Single coated disk, r = 8, p0 = 2 4,288,929 0.00037
Single coated disk, r = 3, p0 = 10 173,725 0.062

Table 4: Dimensions and sparsity of the matrix that is factorized during the execution of the NLEIGS solver, for the
two test cases of Fig. 11. The number of uniform h refinements is denoted with r.

6.2. Results for dispersive problems

In the remainder of the section we gather results from problems described in sections 5.3.2, and
5.4, which feature dispersive material properties. The positive results from last sections indicate
that the a-priori strategies 4.3.1, and 4.3.2 applied to non-dispersive problems perform best when
there is a high contrast in the refractive index. Similarly, we expect to obtain greater gains when
|n(ω)| is large. We start by testing the reliability and performance of the NEP solution strategy
described in 4.5. Particularly, we check that the strategy can be used to obtain good approximations
to the exact resonances even close to the poles and zeros of εmetal(ω) given in (1). Finally, we
consider the error convergence for the problem presented in 5.4, which is computationally more
demanding.

6.2.1. Results for the single coated disk problem

In order to test the reliability of the proposed NEP solver strategy, we use the Benchmark pre-
sented in Section 5.3.2. From (35), we compute approximations to the resonances given by (61). In
Figure 7, we present the result after taking multiple shifts inside a relatively large spectral window,
from where we observe an excellent agreement between approximations and exact resonances. We
conclude that the proposed a-priori strategies together with SLEPc’s implementation of NLEIGS
result in excellent approximations of the exact pairs even close to the poles and zeros of model (1).

Moreover, computations corresponding to TE polarization feature a sequence of resonances
accumulating around the so-called plasmonic branch points of the model, which are the values of ω
such that εmetal = −1, εmetal = −2. For reference, we mark them with ×, and + respectively. From
Figure 7 and TE polarization (right), we observe that the approximation ωhp = 0.6288 − 0.6288i
converged to an eigenvalue of the modified PML problem, which differs considerably from the exact
value ω = 0.5569− 0.6457i. The reason is that ωhp is close to the critical line of the PML [15].

The performance of the solver is evaluated in Fig. 11, where the plots illustrate the strong
scaling of the parallel code, that is, how the execution time varies for increasing number of processes
with a fixed problem size. Since the problem size is constant, for large number of processes the
performance degrades, because the amount of work assigned to each process is too small. We can
see that the run time for 128 processes grows with respect to 64 processes; if the test problems
were bigger this performance degradation would occur later for larger number of processes. Still,
we cannot expect to scale to many more processes since the solver employs a direct linear solver
(MUMPS in our case) for one step of the algorithm, which has limited scalability. The figure
also shows that the total execution time in the case of higher polynomial degree (right plots) is
significantly smaller than for the higher refinement level (left plots). This is due to a much smaller
problem size, see Table 4, even though the generated matrices are much less sparse. A shorter time
and a higher percentage of nonzero elements also implies a worse scalability, as it can also be seen
in the right plots.
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Figure 11: Parallel execution time (in seconds) of the solver for varying number of MPI processes (up to 128),
for problem is 6.2.1. The target used is µ = 5.3 − 0.25i, where top and bottom plots correspond to TM and TE
polariazations respectively. Left plots correspond to a discretization dominant in the h-strategy (r = 8 levels of
refinement, polynomial order p0 = 2), while right plots are for a discretization dominant in the p-strategy (r = 3
levels of refinement, polynomial order p0 = 10).

6.2.2. Results for the coated dimer problem

Finally, we present results for the coated dimer problem described in Section 5.4, from where
the reference values ωj listed in Table 3 were computed from (35) with a very fine discretization. In
Figure 8, we show part of the mesh utilized for this problem, and in colors we give the polynomial
distribution pj per cell resulting by using the p-strategy 4.3.2. The distributions shown correspond
to µ = 4.162 − 0.2648i with p0 = 7 (left), and µ = 2.9 − 0.422i with p0 = 10 (right). We observe
that the resulting a-priori strategy assigns lower polynomial degrees to cells with small diameters.
As seen from Figure 8, the initial mesh contains a wide range of cell diameters. This property
is exploited by the p-strategy 4.3.2, because both h and p play a role when satisfying Goal 7.
The resulting a-priori refinement strategy features remarkable gains ranging from 35% to 48%
compared to the classical p-FE. These gains depend on the selected µ and on the specific shape of
the corresponding eigenfunctions. The error convergence for some of the computed eigenvalues is
gathered in Figure 12, where we show convergence for both polarizations and different µ values.
Similarly to the non-dispersive case, the application of the p-strategy 4.3.2 to this problem results
in shorter pre-asymptotic phase of the error for the computed eigenpairs in both polarizations.
Finally, in the left panels of Figures 9, and 10 we present computed eigenvalues from (35) by
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performing multiple shifts inside a relatively large spectral window. As expected, the location of
the resulting eigenvalues resemble those from the single coated disk in Figure 7. Although being
more densely populated, the spectral windows exhibit similar features like accumulations to poles,
branch points, and similar location of resonances. The Figures 9, and 10 also include color plots for
‖Ej(x)‖ corresponding to the ωj listed in Table 3, where we have excluded the PML layer. These
plots reveal the rich electromagnetic phenomena described by resonances and resonant modes.

7. Conclusions

We have proposed an hp-refinement strategy for approximation of complex scattering resonances
in optics. Numerical computations in demanding 1D and 2D cases indicate that the a-priori hp-
FEM strategy results in a significant reduction of the pre-asymptotic phase in both h-FE and
p-FE. The resulting non-linear matrix eigenvalue problem is solved by SLEPc’s state-of-the-art
implementation of the nonlinear eigenvalue solver NLEIGS. This results in fast and highly accurate
computations of resonances for metal-dielectric resonators.
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