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Free vibration analysis for non-straight helicopter blades 

Nicolás Capmany, Department of Mechanical Engineering, University of Bristol 

ABSTRACT: This paper describes the derivation of two simple two degree of freedom (D.O.F) 
multibody models, implemented to evaluate the frequency spectrum of a helicopter blade. The 
first model proposed was a Lag-Flap blade model, accounting for the structure’s typical in-
plane and out-of-plane motion during aircraft flight. The second model, Flap-Flap, only 
considered the blade’s out-of-plane vibrations. Lagrangian mechanics was applied to achieve 
the equations of motion of both systems. MATLAB’s standard differential equation solver 
ODE45 was used to solve the system of differential equations for each model. Results 
achieved with ODE45 were validated with a physical simulation of the multibody systems.  
These were performed using Simscape blocks, and suitable results were achieved for a static 
case with an initial deformation applied to the structure. The models, were subsequently 
utilised to evaluate any alterations in the structure’s frequency spectrum with a changing blade 
curvature. A shift of the natural frequency peaks towards the lower end of the spectrum was 
observed for an increasing blade curvature for the out-of-plane vibrations. Regarding the in-
plane vibratory motion, no significant modifications were appreciated. A maximum number of 
two excitation modes were observed, the setup used did not prove to be ready for industrial 
applications. However, it provides a starting point to different methodologies, which could be 
applied as an alternative measure for the techniques used by industry.  

1 INTRODUCTION & LITERATURE REVIEW 

1.1 Introduction 

Aircraft design implies considering the impact of a vast range of parameters. On one hand, 
such parameters can be key to assess the aircraft’s effectiveness for a certain mission. An 
example could be the by-pass ratio of a civil aircraft’s engine, which ensures reasonable fuel 
consumption and economic viability. On the other hand, different parameters are focused on 
guaranteeing the aircraft’s safe performance subject to several flight conditions (e.g. helicopter 
blade’s natural frequencies).  

Helicopter blade’s natural frequencies require higher rotary regimes than those needed to lift 
the vehicle. Meanwhile, lower regimes are desirable with the purpose of reducing fuel 
consumption, resulting in lower CO2 emissions, since environmental issues are a major global 
concern. Natural frequencies of helicopter blades, must not coalesce with the main rotor’s 
regime, as this would bring the blades into resonance. As a consequence, these would vibrate 
with a linearly increasing amplitude, leading to structural failure at a certain point in time. 
Therefore, the aircraft’s rotary regime is determined by these natural frequencies, which are 
strongly dependent on the blade’s geometry and inertial characteristics.  

Helicopter blades are subject to a wide range of geometrical modifications in order to achieve 
the highest aerodynamic attainment, which is mainly accomplished by non-linear geometry 
aspects. Therefore, knowing the impact of the blade’s geometric parameters on its natural 
frequencies allows tailoring these, hence their importance. Finite Element Analysis (FEA), is 
the standard design technique implemented by industry, requiring sophisticated software 
packages which are computationally intensive, require thorough training and are time 
consuming. 

 

 

Here, we propose the use of a simple mathematical tool such as MATLAB’s ODE45 solver, to 
compute the natural frequencies of non-straight blades, providing a reasonable trade-off 
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between accuracy and computational time. A relatively simple mathematical model was 
developed, based on three interlinked rigid bodies. The junctions amongst these solids, are 
provided by means of high stiffness torsional springs, in conjunction with torsional dampers 
with significant damping coefficients. The purpose of implementing these elements, was to 
approximate the multibody structure, to a single rigid body that resembled the non-straight 
profile of current commercial blades.  

Subsequently, a kinematic study was conducted to achieve the position and velocity 
expressions required to apply Lagrangian mechanics. Calculations were performed in 
MATLAB, using its Symbolic Math Toolbox. Final results were accomplished using MATLAB 
ODE45 solver, and validated afterwards for a static case, with an initial blade deformation. 
Validation was achieved by means of a physical simulation creating a SIMSCAPE model. 
These kind of models are tools within MATLAB’s Simulink environment, which offer an 
alternative method to tackle natural frequency acquisition, with a visual programming 
environment.  

1.2 Software 

MATLAB software is one the most relevant products of MathWorks corporation and “is a 
powerful technical computing system for handling scientific and engineering calculations.” 
(Hahn and Valentine 2019, p. 3). With the aim of achieving this purpose, MATLAB implements 
its own high-level programming language. The software was designed to relieve the 
computational cost of matrix calculations, therefore, programs and routines developed with its 
programming language, are optimised with variable vectorisation. MATLAB includes a wide 
range of mathematical tools, enabling the user to solve numerical and analytical problems with 
different methodologies. Amongst these tools, we can find Symbolic Math Toolbox and ODE45 
solver.  

MathWorks (2020) provides the following definitions for Symbolic Math Toolbox and ODE45 
solver:  

What is Symbolic Math Toolbox and ODE45? 

MATLAB’s Symbolic Math Toolbox, is a package that provides functions for solving, 
plotting and manipulating symbolic math equations. The toolbox provides functions in 
common mathematical areas such as calculus, ordinary differential equations, or 
equation simplification. In addition, it allows the user to analytically perform 
differentiation, integration, transforms, and equation solving.  

ODE45 is a MATLAB tool designed to solve systems of ordinary differential equations, 
containing one or more derivatives of a dependent variable, with respect to a single 
independent variable. Amongst the 8 solvers offered by MATLAB, ODE45 is specifically 
convenient for non-stiff problems providing a medium accuracy. 

What is Simulink and Simscape? 

Simulink is a block diagram environment for multi-domain simulation and Model-Based 
Design. It supports system-level design, simulation, automatic code generation and 
continuous test and verification of embedded systems. Simulink provides a graphical 
editor, customisable block libraries, and solvers for modelling and simulating dynamic 
systems (MathWorks 2020).  

Simscape enables you to rapidly create models of physical systems within the 
Simulink environment. With Simscape, you build physical component models based on 
physical connections that directly integrate with block diagrams and other modelling 
paradigms. (MathWorks 2020).  
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2 METHODOLODY 

2.1 Single Degree of Freedom Model 

 Configuration  

We consider an inertial reference frame placed at the centre of the helicopter’s rotor, the latter, 
has a constant rotational speed. In practice, a helicopter blade under a rotating prescribed 
motion, undergoes two constituent free motions outside this reference frame. The first occurs 
about a hinge commonly known as (L) or lead-lag hinge, which describes the structure’s in-
plane vibrations with respect to the blade’s 2D motion plane. Figure 1a represents the first of 
these vibrational movements, usually referred to as the blade’s lead-lag motion. The second, 
represents the blade’s out-of-plane vibrations, occurring about a second hinge placed along 
the span, often known as (F) or flapping hinge. This second type of movement is often called 
flapping motion, illustrated by Figure 1b. Both vibrational phenomena take place throughout 
the aircraft’s performance, and represent the structure’s natural vibratory behaviour. 

With the purpose of addressing the simulation of a helicopter blade in a first attempt, two simple 
separate models were suggested, where the blade’s motion was restricted to the rotary motion 
provided by the hub and one of the two previously mentioned free motions, Figures 1a and 1b.  

 

 

 

Figure 1 Some pictures of (a) an isometric view of a single D.O.F model with a rotating hub 
(blue) and a simple leag-lagging blade (red) moving about hinge (L) and (b) a side 
view of a single D.O.F model, showing a rotating hub (blue) and a simple flapping 
blade (green) linked by hinge (F).  

Two final blade models resulted from the combination of these two simple cases. Figures 2, 3, 
4 and 5 picture them. The first, known as the Lag-Flap model (L-F) has a blade subject to in-
plane and out-of-plane vibrations. The second, known as the Flap-Flap model (F-F), has 
different parts of the blade’s structure only undergoing out-of-plane vibrations.  
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Figure 2 Plan view of the L-F model, according to the assumptions made. Generic 
configuration applied to derive the system’s kinematic expressions. 
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Figure 3 Isometric view of the L-F model according to the assumptions made. 
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Figure 4 Plan view of the F-F model according to the assumptions made. Generic 
configuration applied to derive the systems kinematic expressions. 
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Figure 5 Isometric view of the F-F model according to the assumptions made.  

 

Assumptions  

The equations describing the motion of both models, are derived under several assumptions: 
1) A helicopter hub simplification is implemented assuming a rod-like structure, the same 
procedure is applied to the rest of the blade to simplify visual perspective; 2) The mass of the 
hub and the lead-lag/flapping segments, are contemplated to act as point masses located at 
the end of each corresponding rod; 3) Torsional springs and dampers are used to represent 
the blade’s non-linear geometry, while introducing rigidity and approximating the multibody 
system to a single body; 4) We considered a perfectly rigid hub, implying the absence of motion 
on the hub in case no rotary motion was prescribed. As a result, the same effect should be 
expected if a predefined deformation was applied to the structure, for example, with non-zero 
initial conditions; 5) Dimensions of the lead-lag and flapping hinges (L and F) respectively were 
only considered for calculations involving the curved section of the blade, (green segment). 
Hinges are represented by sets of short parallel lines at the end of each rod. The lengths of 
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the segments which comprise the blade, are represented by common letters of the roman 
alphabet, Figures (2-5).      

2.2 Lag-Flap Model Equations  

Position  

The expressions implemented in our MATLAB routine comprised 12 equations describing the 
position of three key points in the blade’s structure along the x, y and z axis. According to 
Figures 2 and 3, these points, labelled as (1), (2) and (3), denote the location of the 
concentrated mass of each segment in the multibody system. The equations of motion can be 
written as:  

             𝑥1 =     𝑎 ∙ sin (Ω ∙ 𝑡) (1) 

             𝑦1 =  −𝑎 ∙ cos (Ω ∙ 𝑡) (2) 

              𝑧1 =     0 (3) 

 𝑥2 =     𝑏 ∙ sin (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁) (4) 

 𝑦2 = −𝑏 ∙ cos (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁) (5) 

              𝑧2 =     0 (6) 

              𝑥2ℎ =     𝐵 ∙ sin (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁) (7) 

              𝑦2ℎ = −𝐵 ∙ cos (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁) (8) 

              𝑧2ℎ =   0 (9) 

             𝑥3 =     𝑐 ∙ cos (𝛽0 + ∆𝛽) ∙ sin (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁 − 𝛾) (10) 

             𝑦3 = −𝑐 ∙ cos (𝛽0 + ∆𝛽) ∙ cos (Ω ∙ 𝑡 + 𝜁0 + ∆𝜁 − 𝛾) (11) 

             𝑧3 =     𝑐 ∙ sin (𝛽0 + ∆𝛽) (12) 

where ∆ζ(t), ∆β(t) represent the lead-lag and flapping angular displacements of the blade 
respectively; ζ0, β0  are their corresponding equilibrium positions, determined by design criteria; 
a stands for the hub’s radius, b represents segment 1’s length along the blade, from hinge (L) 
to hinge (F); B is segment 1’s length plus an increment due to both hinges’ dimensions; c is 
the blade’s flapping segment length (refer to Figure 2); Ω describes the rotating regime of the 
vehicle’s rotor; t represents the independent variable representing time; x1, y1, z1 stand for the 
coordinates of the hub’s concentrated mass, located at point (1) with respect to the reference 
frame; x2, y2, z2  are the coordinates denoting the relative displacement of segment 1’s point 
mass located at point (2), with respect to point (1)’s location; x2h, y2h, z2h are the coordinates of 
hinge (2), which are computed adding a length increment to x2h, y2h, z2h, to account for both 
hinges’ dimensions; x3, y3, z3 stand for the relative displacement of segment 2’s point mass, 
located at point (3), with respect to point (2), and γ denotes the blade’s sweep angle or 
curvature. 

Note that the effect of the hinge’s length in the model’s dimensions was only considered when 
both hinges were involved to determine the location of a point within the model. Therefore, the 
effect of hinge (1)’s dimensions were neglected until reaching hinge (2) along the blade.  

Considering that equations (1-12) are relative displacements, the absolute coordinates of 
these points about the inertial reference frame, are obtained with a suitable addition of these 
relative displacements, yielding the following equations:  

𝑥ℎ𝑢𝑏 =  𝑥1 (13) 

𝑦ℎ𝑢𝑏 =  𝑦1 (14) 

𝑧ℎ𝑢𝑏 =  𝑧1 (15) 

𝑥𝑠𝑒𝑔1 =  𝑥1 + 𝑥2 (16) 
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𝑦𝑠𝑒𝑔1 =  𝑦1 + 𝑦2 (17) 

𝑧𝑠𝑒𝑔1 =  𝑧1 + 𝑧2 (18) 

𝑥𝑠𝑒𝑔1ℎ =  𝑥1 + 𝑥2ℎ (19) 

𝑦𝑠𝑒𝑔1ℎ =  𝑦1 + 𝑦2ℎ (20) 

𝑧𝑠𝑒𝑔1ℎ =  𝑧1 + 𝑧2ℎ (21) 

𝑥𝑠𝑒𝑔2 =  𝑥1 + 𝑥2ℎ + 𝑥3 (22) 

𝑦𝑠𝑒𝑔2 =  𝑦1 + 𝑦2ℎ + 𝑦3 (23) 

𝑧𝑠𝑒𝑔2 =  𝑧1 + 𝑧2ℎ + 𝑧3 (24) 

where xhub, yhub are the absolute coordinates of point (1), xseg1, yseg1 are the absolute 
coordinates of point (2), xseg1h, yseg1h are the absolute coordinates of hinge (2), xseg2, yseg2 
represent the absolute coordinates of point (3), and the rest of variables remain the same with 
respect to the description provided for equations (1-12). Note that expressions for xhub, yhub and 
zhub remain the same as those achieved in equations (1, 2 and 3) respectively; their coordinates 
were already calculated with respect to the inertial reference frame, according to Figure 2. 

Velocity 

Differentiating expressions (13-24) with respect to time yields:  

𝑣𝑥ℎ𝑢𝑏 =  
𝑑𝑥ℎ𝑢𝑏

𝑑𝑡
=  Ω ∙ 𝑎 ∙ cos(𝛺 ∙ 𝑡) (25) 

𝑣𝑦ℎ𝑢𝑏 =  
𝑑𝑦ℎ𝑢𝑏

𝑑𝑡
=  Ω ∙ 𝑎 ∙ sin(𝛺 ∙ 𝑡) (26) 

𝑣𝑧ℎ𝑢𝑏 =  
𝑑𝑧ℎ𝑢𝑏

𝑑𝑡
=  0 (27) 

𝑣𝑥𝑠𝑒𝑔1 =  
𝑑𝑥𝑠𝑒𝑔1

𝑑𝑡
=  Ω ∙ 𝑎 ∙ cos(𝛺 ∙ 𝑡) + 𝑏 ∙ cos (𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) (28) 

𝑣𝑦𝑠𝑒𝑔1 =  
𝑑𝑦𝑠𝑒𝑔1

𝑑𝑡
=  Ω ∙ 𝑎 ∙ sin(𝛺 ∙ 𝑡) + 𝑏 ∙ sin (𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) (29) 

𝑣𝑧𝑠𝑒𝑔1 =  
𝑑𝑧𝑠𝑒𝑔1

𝑑𝑡
=  0 (30) 

𝑣𝑥𝑠𝑒𝑔1ℎ =  
𝑑𝑥𝑠𝑒𝑔1ℎ

𝑑𝑡
=  Ω ∙ 𝑎 ∙ cos(𝛺 ∙ 𝑡) + 𝐵 ∙ cos (𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) (31) 

𝑣𝑦𝑠𝑒𝑔1ℎ =  
𝑑𝑦𝑠𝑒𝑔1ℎ

𝑑𝑡
=  Ω ∙ 𝑎 ∙ sin(𝛺 ∙ 𝑡) + 𝐵 ∙ sin (𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) (32) 

𝑣𝑧𝑠𝑒𝑔1ℎ =  
𝑑𝑧𝑠𝑒𝑔1ℎ

𝑑𝑡
= 0 (33) 

𝑣𝑥𝑠𝑒𝑔2 =  
𝑑𝑦𝑠𝑒𝑔2

𝑑𝑡
=  {

Ω ∙ 𝑎 ∙ cos(𝛺 ∙ 𝑡) + 𝐵 ∙ cos(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) +

+𝑐 ∙ cos(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡 − 𝛾) ∙ cos(𝛽0 + ∆𝛽) ∙ (Δ�̇� + Ω) −

−𝑐 ∙ sin(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡 − 𝛾) ∙ sin(𝛽0 + ∆𝛽) ∙ ∆�̇�

} (34) 

𝑣𝑦𝑠𝑒𝑔2 =  
𝑑𝑦𝑠𝑒𝑔2

𝑑𝑡
=  {

Ω ∙ 𝑎 ∙ sin(𝛺 ∙ 𝑡) + 𝐵 ∙ sin(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡) ∙ (Δ�̇� + Ω) +

+𝑐 ∙ sin(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡 − 𝛾) ∙ cos(𝛽0 + ∆𝛽) ∙ (Δ�̇� + Ω) −

−𝑐 ∙ cos(𝜁0 + Δ𝜁 + 𝛺 ∙ 𝑡 − 𝛾) ∙ sin(𝛽0 + ∆𝛽) ∙ ∆�̇�

} (35) 

𝑣𝑧𝑠𝑒𝑔2 =  
𝑑𝑧𝑠𝑒𝑔2

𝑑𝑡
=  c ∙ cos (𝛽0 + ∆β) ∙ ∆�̇� (36) 

where vxhub, vyhub, vzhub are the velocity components of the hub’s point mass in the x, y and 
directions respectively; vxseg1, vyseg1, vzseg1 are the velocity components of the concentrated mass 
of the blade’s lead-lagging segment; vxseg1h, vyseg1h, vzseg1h are the velocity components at the 
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flapping hinge, (hinge 2), and vxseg2, vyseg2, vzseg2 are the velocity components of the flapping 
segment’s point mass.   

Kinetic Energy 

𝐸𝑘ℎ𝑢𝑏 =  
1

2
∙ 𝑀ℎ𝑢𝑏 ∙ (𝑣𝑥ℎ𝑢𝑏

2 + 𝑣𝑦ℎ𝑢𝑏
2 + 𝑣𝑧ℎ𝑢𝑏

2) (37) 

𝐸𝑘𝑠𝑒𝑔1 =  
1

2
∙ 𝑀𝑠𝑒𝑔1 ∙ (𝑣𝑥𝑠𝑒𝑔1

2 + 𝑣𝑦𝑠𝑒𝑔1
2 + 𝑣𝑧𝑠𝑒𝑔1

2) (38) 

𝐸𝑘𝑠𝑒𝑔2 =  
1

2
∙ 𝑀𝑠𝑒𝑔2 ∙ (𝑣𝑥𝑠𝑒𝑔2

2 + 𝑣𝑦𝑠𝑒𝑔2
2 + 𝑣𝑧𝑠𝑒𝑔2

2) (39) 

𝐸𝑘 =  𝐸𝑘ℎ𝑢𝑏 + 𝐸𝑘𝑠𝑒𝑔1 + 𝐸𝑘𝑠𝑒𝑔2 (40) 

where Mhub represents the hub’s concentrated mass, Mseg1 is the blade’s lead-lag section’s 
mass, Mseg2 is the mass of the blade’s flapping section, Ekhub, Ekseg1, Ekseg2 stand for the kinetic 
energies of the hub, lead-lag section and flapping section respectively, and Ek is the system’s 
total kinetic energy.  

 

Potential Energy 

Following the schematics depicted by Figures 6a and 6b, we derived the generic expressions 
to compute the elastic potential energy (EPE), for the lead-lag and flapping torsional springs 
included in the multibody model:  

𝐸𝑝 𝑠𝑒𝑔1 =  
1

2
∙ 𝑘𝑧 ∙ (∆𝜁)2 + 𝑀𝑠𝑒𝑔1 ∙ 𝑔 ∙ 𝑧𝑠𝑒𝑔1 (41) 

𝐸𝑝 𝑠𝑒𝑔2 =  
1

2
∙ 𝑘𝑏 ∙ (∆𝛽)2 + 𝑀𝑠𝑒𝑔2 ∙ 𝑔 ∙ 𝑧𝑠𝑒𝑔2 (42) 

𝐸𝑝 =  𝐸𝑝𝑠𝑒𝑔1 + 𝐸𝑝𝑠𝑒𝑔2 (43) 

where Epseg1 is the EPE of the lead-lag torsional spring, Epseg2 is the EPE of the flapping 
torsional spring, and Ep stands for the system’s total EPE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Some pictures of (a) a plan view of the rotor and lead-lag section with its 
corresponding spring and damper and (b) a side view of hinge (2) linking the lead-
lag and flapping segments with its corresponding spring and damper.    
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Damping 

Considering that two torsional dampers were included in the proposed multibody model, 
represented by Figures 6a and 6b, the following expressions are calculated to account for their 
energy dissipation:  

𝐷𝑧 =  
1

2
∙ 𝑐𝑧 ∙ (∆�̇�)

2
 (44) 

𝐷𝑏 =  
1

2
∙ 𝑐𝑏 ∙ (∆�̇�)

2
 (45) 

 

where Dz, Db are the lead-lag torsional damper and the flapping torsional damper functions 
respectively, and cz, cb stand for the torsional damping coefficients of the lead-lag torsional 
damper and the flapping torsional damper in that order. 

External Forces Applied  

With the objective of exciting several vibration modes, a sinusoidal impulse with a varying 
(chirped) frequency was applied. Therefore, the following expression represents the external 
non-conservative forces applied on the system:  

𝑄1 =  𝑄𝑎𝑚𝑝 ∙ sin (𝑠𝑟𝑎𝑡𝑒 ∙ 𝑡2) (46) 

𝑄2 =  𝑄𝑎𝑚𝑝 ∙ sin (𝑠𝑟𝑎𝑡𝑒 ∙ 𝑡2)  (47) 

where Q is the external force applied, Qamp is the force’s amplitude, srate is the frequency’s rate 
of change, and t denotes time. Noteworthy, two different cases were assessed for the L-F 
model: 1) A case with an external force Q1 applied on the system’s first D.O.F (∆ζ); 2) A case 
with an external force Q2 applied on the system’s second D.O.F (∆β).  

Lagrangian & Equations of motion 

Subtracting equation (43) from (40) to represent the system’s conservative forces, yields: 

𝐿 =  𝐸𝑘 − 𝐸𝑝 (48) 

where L is the system’s lagrangian. Considering the case where the L-F model is excited by 
the external force Q1, L is substituted into Lagrange’s equations of motion. The final step 
consisted on equating the expressions to the non-conservative forces:  

𝑑

𝑑𝑡
∙ (

𝜕𝐿

𝜕∆�̇�
) − (

𝜕𝐿

𝜕∆𝜁
)  = − (

𝜕𝐷𝑧

𝜕∆�̇�
) + 𝑄1  (49) 

𝑑

𝑑𝑡
∙ (

𝜕𝐿

𝜕∆�̇�
) − (

𝜕𝐿

𝜕∆𝛽
) = − (

𝜕𝐷𝑏

𝜕∆�̇�
) (50) 

For the case where the system is excited by the external force Q2, the resulting system of 
equations would be:  

𝑑

𝑑𝑡
∙ (

𝜕𝐿

𝜕∆�̇�
) − (

𝜕𝐿

𝜕∆𝜁
)  = − (

𝜕𝐷𝑧

𝜕∆�̇�
) (51) 

𝑑

𝑑𝑡
∙ (

𝜕𝐿

𝜕∆�̇�
) − (

𝜕𝐿

𝜕∆𝛽
) = − (

𝜕𝐷𝑏

𝜕∆�̇�
) + 𝑄2 (52) 

For the L-F model, equations (49 and 50) and (51 and 52), showed the following arrangement:   

{
𝑎 ∙

𝜕2∆𝜁

𝜕𝑡2 = 𝑏 ∙ (
𝜕∆𝜁

𝜕𝑡
)

2
+ 𝑐 ∙ (

𝜕∆𝛽

𝜕𝑡
)

2
+ 𝑑 ∙ (

𝜕∆𝜁

𝜕𝑡
) + 𝑒 ∙ (

𝜕∆𝛽

𝜕𝑡
)

𝑓 ∙ (
𝜕∆𝜁

𝜕𝑡
∙

𝜕∆𝛽

𝜕𝑡
) + 𝑔 ∙ ∆𝜁 + ℎ ∙ ∆𝛽 + 𝑗 ∙ (∆𝜁 ∙ ∆𝛽) + 𝑘1

} (53) 

{
𝑙 ∙

𝜕2∆𝛽

𝜕𝑡2 = 𝑚 ∙ (
𝜕∆𝜁

𝜕𝑡
)

2
+ 𝑛 ∙ (

𝜕∆𝛽

𝜕𝑡
)

2
+ 𝑝 ∙ (

𝜕∆𝜁

𝜕𝑡
) + 𝑞 ∙ (

𝜕∆𝛽

𝜕𝑡
)

𝑟 ∙ (
𝜕∆𝜁

𝜕𝑡
∙

𝜕∆𝛽

𝜕𝑡
) + 𝑠 ∙ ∆𝜁 + 𝑡 ∙ ∆𝛽 + 𝑢 ∙ (∆𝜁 ∙ ∆𝛽) + 𝑘2

} (54) 
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where the roman alphabet letters are the constant common factors multiplying each of the 
terms in equations (53 and 54) and k1, k2 are independent constants. This result was of 
significant importance, as it provided information about the coupling terms between both 
degrees of freedom; As a result, we were able to appreciate the model’s parameters with a 
higher influence on the system’s response to an external excitation, (Appendix C). 

2.3 Flap-Flap Model Equations 

Contemplating Figures 4 and 5, the location of each segment’s point mass was initially 
computed with the following expressions:  

             𝑥1 =         𝑎 ∙ sin (Ω ∙ 𝑡) (55) 

             𝑦1 =     −𝑎 ∙ cos (Ω ∙ 𝑡) (56) 

              𝑧1 =        0 (57) 

 𝑥2 =        𝑏 ∙ cos (𝜁0 + ∆𝜁) ∙ sin (Ω ∙ 𝑡) (58) 

 𝑦2 =    − 𝑏 ∙ cos (𝜁0 + ∆𝜁) ∙ cos (Ω ∙ 𝑡) (59) 

              𝑧2 =         𝑏 ∙ sin (𝜁0 + ∆𝜁) (60) 

              𝑥2ℎ =      𝐵 ∙ cos (𝜁0 + ∆𝜁) ∙ sin (Ω ∙ 𝑡) (61) 

              𝑦2ℎ =  − 𝐵 ∙ cos (𝜁0 + ∆𝜁) ∙ cos (Ω ∙ 𝑡) (62) 

              𝑧2ℎ =      𝐵 ∙ sin (𝜁0 + ∆𝜁) (63) 

             𝑥3 =        𝑐 ∙ cos (𝛽0 + ∆𝛽) ∙ sin (Ω ∙ 𝑡 − 𝛾) (64) 

             𝑦3 =    −𝑐 ∙ cos (𝛽0 + ∆𝛽) ∙ cos (Ω ∙ 𝑡 − 𝛾) (65) 

             𝑧3 =        𝑐 ∙ sin (𝛽0 + ∆𝛽) (66) 

where ∆ζ denotes the first flapping angle of the Flap-Flap model, ∆β is the model’s second 
flapping angle, and the rest of variables are the same as those previously described in 
equations (1-12). An equivalent procedure to the steps followed for expressions (1-12) was 
applied to equations (55-66) of the F-F model. The steps will be omitted for the sake of brevity. 
Note that the elements accounting for the system’s torsional springs and dampers are no 
longer pictured by Figures 6a and 6b, but by Figures 7a and 7b instead. Also, note that the 
inertial reference frame has now changed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Some pictures of (a) a side view of the rotor and its first flapping section,linked by 
hinge (1), with its corresponding spring and damper and (b) a side view of hinge 
(2) linking the first and second flapping sections, with its corresponding spring and 
damper.    

(a) (z)

Rotor Hub

kz

cz
(2)

-ζ

(1)

Hinge (1)

kb

cb(2)

(3)

-β

Hinge (2)

(b) 
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 The final step yielded to expressions, showing the following general arrangement:  

{
𝑎 ∙

𝜕2∆𝜁

𝜕𝑡2 + 𝑏 ∙
𝜕2∆𝛽

𝜕𝑡2 = 𝑐 ∙ (
𝜕∆𝜁

𝜕𝑡
)

2
+ 𝑑 ∙ (

𝜕∆𝛽

𝜕𝑡
)

2
+ 𝑒 ∙ (

𝜕∆𝜁

𝜕𝑡
) + 𝑓 ∙ (

𝜕∆𝛽

𝜕𝑡
)

𝑔 ∙ (
𝜕∆𝜁

𝜕𝑡
∙

𝜕∆𝛽

𝜕𝑡
) + ℎ ∙ ∆𝜁 + 𝑗 ∙ ∆𝛽 + 𝑙 ∙ (∆𝜁 ∙ ∆𝛽) + 𝑘1

} (67) 

{
𝑚 ∙

𝜕2∆𝜁

𝜕𝑡2 + 𝑛 ∙
𝜕2∆𝛽

𝜕𝑡2 = 𝑝 ∙ (
𝜕∆𝜁

𝜕𝑡
)

2
+ 𝑞 ∙ (

𝜕∆𝛽

𝜕𝑡
)

2
+ 𝑟 ∙ (

𝜕∆𝜁

𝜕𝑡
) + 𝑠 ∙ (

𝜕∆𝛽

𝜕𝑡
)

𝑡 ∙ (
𝜕∆𝜁

𝜕𝑡
∙

𝜕∆𝛽

𝜕𝑡
) + 𝑢 ∙ ∆𝜁 + 𝑣 ∙ ∆𝛽 + 𝑤 ∙ (∆𝜁 ∙ ∆𝛽) + 𝑘1

} (68) 

where the roman alphabet letters represent the constant common factors multiplying each of 
the terms in equations (67 and 68) and k1, k2 are independent constants. The F-F model’s 
results showed additional coupling terms, corresponding to those represented by the D.O.F’s 
second time derivatives. This topic will be further discussed in Section 3, where the effect of 
the blade’s curvature (γ) will be evaluated.  

Equation setup 

Solver ODE45 is able to solve a system of higher order differential equations; as long these 
are represented as a system of ordinary differential equations. Both, L-F and F-F models, 
equations (53 and 54), and equations (67 and 68) respectively, contained second order time 
derivatives. Therefore, with the aim of satisfying the solver’s requirements, both systems of 
equations were converted from a system of two second order differential equations, into a 
system of four ordinary differential equations. The following example shows the general 
procedure applied to the L-F model, equations (53 and 54).  

Firstly, a change of variable is applied to the system’s degrees of freedom (∆ζ, ∆β):  

𝜌1 = ∆𝜁(𝑡) (69) 

𝜌2 =  𝜌1̇ (70) 

𝜎1 = ∆𝛽(𝑡) (71) 

𝜎2 =  𝜎1̇ (72) 

yielding the expressions: 

{
𝑎 ∙

𝜕𝜌2

𝜕𝑡
= 𝑏 ∙ (𝜌2)2 + 𝑐 ∙ (𝜎2)2 + 𝑑 ∙ 𝜌2 + 𝑒 ∙ 𝜎2

𝑓 ∙ (𝜌2 ∙ 𝜎2) + 𝑔 ∙ 𝜌1 + ℎ ∙ 𝜎1 + 𝑗 ∙ (𝜌1 ∙ 𝜎1) + 𝑘1

} (73) 

        
𝜕𝜌1

𝜕𝑡
= 𝜌2 (74) 

{
𝑙 ∙

𝜕𝜎2

𝜕𝑡
= 𝑚 ∙ (𝜌2)2 + 𝑛 ∙ (𝜎2)2 + 𝑝 ∙ 𝜌2 + 𝑞 ∙ 𝜎2

𝑟 ∙ (𝜌2 ∙ 𝜎2) + 𝑠 ∙ 𝜌1 + 𝑡 ∙ 𝜎1 + 𝑢 ∙ (𝜌1 ∙ 𝜎1) + 𝑘2

} (75) 

        
𝜕𝜎1

𝜕𝑡
= 𝜎2 (76) 

which are now in a suitable form for using MATLAB’s ODE45 solver. The system (73-76) 
consists of a set of equations of the following form:  

         𝑀(𝑡, 𝑥(𝑡)) ∙ 𝑥(𝑡)̇ = 𝐹(𝑡, 𝑥(𝑡)) (77) 

where M is the system’s mass matrix, t is the independent time variable, x is a generic time-
dependent space variable, and F is the right-hand-side of equations from a system of first-
order differential algebraic equations (DAEs). As a result, the term representing the system’s 
degrees of freedom in equation (77) is isolated, yielding the final expression, introduced as 
one of ODE45’s arguments:  

   𝑥(𝑡)̇ = [𝑀(𝑡, 𝑥(𝑡))]−1 ∙ [𝐹(𝑡, 𝑥(𝑡))] (78) 

Numerical values for the model’s parameters can be found in Appendix E.   
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Amongst the parameters shown by the parameter table in Appendix E, certain quantities were 
not directly achieved from the literature, but derived from data provided by it. This process 
involved certain assumptions which must be highlighted. Firstly, we decided to compare our 
simple multibody model with a real commercial blade design. The design chosen was the 
BERP IV, implemented on AW101 helicopters (Titurus 2019). Figure 8, extracted from the 
same reference’s lecture notes, illustrates the design:  

Figure 8 Planform view of the BERP IV design. 

Consequently, the blade’s span was calculated subtracting the generic hub radius (a), provided 
by Stroub et al. (1987), from the AW101’s rotor radius given by Leonardo S.p.A Company.  

         𝐵𝑙𝑎𝑑𝑒 𝑆𝑝𝑎𝑛 = 𝑏 + 𝑐 = 𝑅𝑜𝑡𝑜𝑟 𝑅𝑎𝑑𝑖𝑢𝑠 − 𝐻𝑢𝑏 𝑅𝑎𝑑𝑖𝑢𝑠 (79) 

In addition, Seddon and Newman (2002) state that an analogous BERP blade model has 15% 
of its span swept back from the outboard, at an angle of approximately 20º. Therefore, the 
length of segments 1 and 2, (b and c) respectively, were computed with the following 
expressions:  

         𝑐 = 0.15 ∙ 𝐵𝑙𝑎𝑑𝑒 𝑆𝑝𝑎𝑛                                           𝑏 = (1 − 0.15) ∙ 𝐵𝑙𝑎𝑑𝑒 𝑆𝑝𝑎𝑛 (80) 

With respect to the segment’s weights, a linear mass distribution was assumed, in order to 
provide an educated guess for the mass of each segment in the multibody system. Martínez 
Santín (2009), states a reasonable average blade weight of 40.55 kg for standard helicopters, 
basing his work on calculations from Prouty (1986).  

The values for the torsional damping coefficients were accomplished with the use of an 
expression from Titurus (2018), which yields the damping coefficient of a passive damper:  

          𝑐∆𝜁 = 𝑐∆𝛽 = 𝑐1 ∙ 𝐴𝑝
2
 (81) 

Where c1 is the pressure-volumetric flow coefficient and Ap stands for the wetted cross-
sectional area of the damper’s piston. Moreover, the required data to compute the value of the 
damping coefficients, was extracted from a case study provided by the same reference.  

Parameter Units Value 

Laminar Flow Coefficient (c1) kg∙m-4∙s-1 1.0485∙109 

Wetted Piston Area (Ap) m2 6.9115∙10-4 

Table 1 Numerical values for calculating the torsional damping coefficientes, extracted 
from the case study provided by Titurus (2018). 

An important detail to be noticed, are the units of the damping coefficients calculated with 
equation (81) and the data in Table 1. The units yielded were linear damping coefficient units, 
(N∙m) instead of torsional damping units (N∙m∙s∙rad-1). However, information regarding 
parameters of commercial helicopter dampers was scarce, and the magnitude achieved was 
assumed as a guide value (≈500 N∙m∙s∙rad-1). 

Considering the objective of this study is to evaluate the effect of the blade’s curvature on its 
natural frequency spectrum, a set of values for the blade’s sweepback angle (γ) was selected 
from the following range (-45º ≤ γ ≤45º). 
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3 RESULTS & DISCUSSION 

3.1 MATLAB Model Validation 

With the purpose of validating our MATLAB multibody model, a Simscape physical simulation 
was conducted. The validating case, consisted on a static blade response to an initially applied 
deformation. The blade assessed in this case, had a sweepback angle of –π/4 rad and an 
applied external excitation, equation (46), at its ∆ζ D.O.F; the case corresponded to that 
represented by equations (49 and 50). Table 2 illustrates the initial conditions applied to both 
L-F and F-F models:  

Parameter Units Value 

Initial Zeta Position  (∆𝜁0) rad π/20 

Initial Beta Position  (∆𝛽0) rad -π/20 

Initial Zeta Velocity  (∆𝜁0
̇ ) rad∙s-1 0 

Initial Beta Velocity  (∆𝛽0
̇ ) rad∙s-1 0 

Table 2 Initial conditions applied to MATLAB’s multibody model and Simscape’s simulation 
for model validation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9      Some plots of the L-F model’s (a) ∆ζ time response (b) ∆ζ frequency spectrum.  
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Figure 10 Some plots of the L-F model’s (a) ∆β time response (b) ∆β frequency spectrum. 

.  

 

Figure 11 F-F model’s ∆ζ time response.  
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(b) 
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Figure 12 F-F model’s ∆ζ frequency spectrum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13    Some plots of the F-F model’s (a) ∆β time response (b) ∆β frequency spectrum. 

Plots illustrated by Figures (9-13) showed significant coincidence between the mathematical 
multibody system and the physical simulation performed with Simscape. A curious fact worth 
mentioning, is that even though both signal’s frequency spectra show an almost identical 

(a) 

(b) 
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resemblance, the time responses predicted by Simscape appear to show a slightly higher 
amplitude and a positive phase shift with respect to the response predicted by the MATLAB 
model, despite being conducted in the same conditions. Despite achieving suitable validation 
results with Simscape for this case, the multibody model could not be validated for the 
helicopter’s rotor regime and initial conditions typed in Table 1.  

The main reason for the inconsistency amongst MATLAB’s and Simscape’s results, lies on the 
fact that Simscape limits the user to solely select initial conditions related to an element’s 
position (∆ζ0, ∆β0). Therefore, considering that results yielded by the system’s equations of 
motion, (e.g. equations 49 and 50), are strongly dependent on the initial conditions considered, 
validation for these situations was unattainable. In addition, trials were conducted with the rotor 
regime illustrated by the table in Appendix E; Moreover, zero initial velocity conditions 
(∆ζ0=∆β0=0) were applied, with the aim of verifying if the responses’ dissidence, was merely 
attributable to the initial condition’s mismatch. As a result, we achieved a fairly suitable degree 
of similarity for the spectrums of certain degrees of freedom, but not as satisfactory as for the 
blade’s static case.  

As a consequence, the multibody model could not be validated for helicopter operating 
conditions due to Simscape’s limitations. Nevertheless, the mathematical model it was still 
implemented to assess the effect of the blade’s curvature angle (γ) on the blade’s frequency 
spectrum. This fact implies that we assumed that the signal discordance between our 
mathematical model and Simscape’s simulation, was only a consequence of Simscape’s 
unfitness to predict a response for the helicopter’s working conditions.  

3.2 Lag-Flap Model 

The system’s response did not present any difference whether the external force applied was 
at the ∆ζ D.O.F (Q1) or at the ∆β D.O.F (Q2) on both L-F and F-F models. Therefore, only the 
results upon Q1 excitations are displayed.  The lack of relevance related to the external force 
applied on the resulting frequency spectrums, might be attributable to an underestimated 
magnitude of the force’s amplitude (Qamp).  

The results achieved for the L-F model’s ∆β D.O.F are illustrated by Figures (14-17). A first 
look reveals that only a single flapping mode was excited with the parameters and simulation 
conditions implemented. Secondly, the model’s first flapping frequency (F1), experienced a 
shift towards the lower end of the spectrum with an increasing blade curvature.  A table 
computing the values corresponding to the peaks showed by Figures 15 and 17 can be 
consulted in Appendix E. 

 

 

 

 

 

 

 

 

 

 

Figure 14 L-F model’s ∆β spectrum for negative sweepback angles. 
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Figure 15 L-F model’s ∆β frequency spectrum peaks, first flapping frequency (F1), for 
negative curvature angles.  

 

 

 

 

 

 

 

 

 

 

Figure 16 L-F model’s ∆β spectrum for positive sweepback angles. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 L-F model’s ∆β frequency spectrum peaks, first flapping frequency (F1), for positive 
curvature angles.  
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The remaining plots have been omitted for the sake of visibility. These were included in 
Appendix D of the present document.  

In addition, it was noticed that the peak’s values did not depend on the angle of curvature’s 
sign, but on its magnitude exclusively. In order to explain this phenomena, the L-F model’s 
equations of motion, (equations 49 and 50), were linearized. Subsequently, the Fourier 
transform of the expression was taken, (Appendix C), yielding the following frequency 
response function for the system’s ∆β D.O.F: 

          ∆𝛽(𝜔) =
𝑔∙𝑐

−𝑐2∙𝜔2+𝑐∙(𝑎+𝑏+𝑐)∙Ω2∙cos(𝛾)−(𝑘𝑏 𝑀𝑠𝑒𝑔2⁄ )
 (82) 

where ω is the system’s natural flapping frequency and the remaining variables have been 
previously defined. With the aim of accomplishing further insight on the parameters altering 
the frequency spectrum, an algebraic expression for the denominator’s roots in equation 82 
was calculated:  

           𝜔 = √
𝑐∙(𝑎+𝑏+𝑐)∙Ω2∙cos(𝛾)−(𝑘𝑏 𝑀𝑠𝑒𝑔2⁄ )

𝑐2  (83) 

From equation 83, light was shed with respect to the spectrum peak’s behaviour. Firstly, it 
shows that the blade’s curvature angle (γ) lies within a cosine function. This explains the 
spectrum’s non-dependence on the direction of the blade’s curvature, as this is an even 
function. Moreover, it also provides a reasonable explanation for the progressive decrease of 
the system’s first flapping frequency (F1). Cosine function’s values decrease with an increase 
in the angle lying within its operand. Therefore, the highest frequency value should be expected 
for a linear-straight blade (γ= 0º), and it should decrease with an increasing angular magnitude. 
The values yielded by equation 83, related to the model’s first flapping frequency (F1), were 
also typed in a table located in Appendix F. An additional column was added to assess the 
relative error between the non-linear model (ODE 45) and its linearized version (equation 83). 

On the other hand, the model’s lead-lag frequency did not show any changes which could 
result of particular interest. Results can be consulted in Appendix F. Following the same 
procedure as for the flapping D.O.F (∆β), Lagrange’s equations of motion were linearized, and 
the Fourier transform performed, with the purpose of achieving the lead-lag D.O.F (∆ζ) 
frequency response:  

          ∆𝜁(𝜔) =
−𝑀𝑠𝑒𝑔2∙𝑎∙𝑐∙Ω2∙sin (𝛾)

−𝜔2∙[𝑀𝑠𝑒𝑔2∙(𝑏2+𝑐2+2∙𝑏∙𝑐∙cos(𝛾))+𝑀𝑠𝑒𝑔1∙𝑏2]+𝑀𝑠𝑒𝑔2∙[𝑎∙𝑏∙Ω2+𝑎∙𝑐∙Ω2∙cos(𝛾)]+𝑀𝑠𝑒𝑔1∙𝑎∙𝑏∙Ω2−𝑘𝑧
 (84) 

where ω is the system’s natural lead-lag frequency, and the remaining variables are defined 
in Table 1. The linearized system’s lead-lag frequency was computed following the same steps 
as those applied for equation 83:  

           𝜔 = √
𝑎∙Ω2∙(𝑏+𝑐∙cos(𝛾)+𝑏∙(𝑀𝑠𝑒𝑔1 𝑀𝑠𝑒𝑔2⁄ ))−(𝑘𝑧 𝑀𝑠𝑒𝑔2⁄ )

𝑏2+𝑐2+2∙𝑏∙𝑐∙cos(𝛾)+(𝑀𝑠𝑒𝑔1 𝑀𝑠𝑒𝑔2⁄ )∙𝑏2  (85) 

Similar to the case for the flapping D.O.F (∆β), the blade’s curvature angle lies within a cosine 
function’s operand, explaining why the lead-lag spectrum’s remains unaffected from the sweep 
angle’s sign. Additionally, the lead-lag frequency’s rate of change with respect to the sweep 
angle was derived to justify the negligible variation appreciated. The expression, (Appendix 
C), reflects a stronger dependency on the sweep angle’s sine function in comparison to its 
cosine. This fact could clarify why the lead-lag frequency suffers a slight shift towards the 
higher range of the spectrum, although a thorough analysis would provide deeper insight.  

3.3 Flap-Flap Model 

The results accomplished for the F-F model’s ∆β D.O.F are illustrated by Figure 11. Contrary 
to the spectrum yielded by the L-F model, more than a single excitation mode was appreciated 
for the system. These results were expected, as the equations of motion developed with 
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Lagrange’s expression, (equations 68 and 69), contained a higher number of coupling terms 
amongst the two degrees of freedom (∆ζ and ∆β). Moreover, Figures 11b and 11d picture a 
magnified image of the spectrum’s second flapping frequency (F2), as it presents a clear view 
of the frequency dependence on the blade’s curvature.  

In acordance with the results achieved for the ∆β D.O.F of the L-F model, both of the blade’s 
natural flapping frequencies (F1 and F2), undergo a noticeable shift towards the lower end of 
the frequency spectrum, with an increasing blade curvature. In addition, these were only 
dependent on the sweep angle’s manitude, remaining indifferent to its sign. Table (Appendix 
F), compute the frequency values achieved for ∆β and ∆ζ degrees of freedom respectively. 
Following the same methodology as in Section 3.2, the system’s frequency response function 
was derived:  

          ∆𝛽(𝜔) =
𝑀𝑠𝑒𝑔2∙𝑔∙𝑐

−𝑀𝑠𝑒𝑔2∙𝑐2∙𝜔2+𝑀𝑠𝑒𝑔2∙𝑐∙Ω2∙[𝑐+(𝑎+𝑏)∙cos(𝛾)]−𝑘𝑏
 (86) 

where ω is the system’s natural flapping frequency and the remaining variables are defined in 

Table 1. Consequently, the natural frequencies of the linearized multibody system for the ∆β 
D.O.F were given by:  

          𝜔 = √
𝑐∙Ω2∙[𝑐+(𝑎+𝑏)∙cos(𝛾)]−(𝑘𝑏 𝑀𝑠𝑒𝑔2) ⁄

𝑀𝑠𝑒𝑔2∙𝑐2  (87) 

Taking into consideration that, in order to achieve equation 87, several non-linearities were  
ignored, this expression was only able to provide the system’s first flapping natural frequency 
(F1). For the same reasons exposed in section 3.2, the system’s natural frequencies decrease, 
with an increasing absolute value of the blade’s curvature (γ). 

Note that in this case, the degrees of freedom (∆ζ and ∆β) represent the same type of motion 
(out-of-plane) of the system. Therefore, the frequency spectrum’s corresponding to the ∆ζ 
D.O.F were omitted, as they presented equivalent results. In addition, the ∆β D.O.F spectrum 
plots offered a clearer view of the system’s second excitation mode. Finally, the second natural 
flapping frequencies, accomplished with Figures 18 and 19, were computed in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 F-F model’s ∆β frequency spectrum peaks, second flapping frequency (F2), for 
negative curvature angles.  
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Figure 19 F-F model’s ∆β frequency spectrum peaks, second flapping frequency (F2), for 
positive curvature angles.  

4 CONCLUSION AND FUTURE RESEARCH 

The purpose of this study was to examine the capabilities of relatively simple methods to 
perform a suitable assessment of the frequency spectrum of helicopter blades. On one hand, 
one of the underlying motivations consisted on testing how many excitations modes would a 
common MATLAB solver such as ODE 45, be able to predict. On the other hand, verifying the 
solver’s sensitivity to alterations related to the blade’s geometry, which are customary of 
industrial innovations to enhance performance or for commercial purposes. 

For multibody models that present a combination of different motions, such as the Lag-Flap 
model (in-plane and out-of-plane), only a single excitation mode could be appreciated in the 
resulting frequency spectrum for each degree of freedom. The reason behind this fact, was the 
reduced number of coupling terms within its equations of motion, linking the system’s degrees 
of freedom. On the other hand, two excitation modes were detected for models with degrees 
of freedom reflecting a similar motion, such as the Flap-Flap model (out-of-plane and out-of-
plane). Concerning the blade’s sweep angle, similar effects were observed for the proposed 
models. The Lag-Flap system did not suffer any noticeable effect on its lead-lag natural 
frequency (∆ζ D.O.F spectrum). Nevertheless, a remarkable decrease on its flapping 
frequency (∆β D.O.F spectrum), was perceived with an increasing curvature angle, regardless 
of its direction. The Flap-Flap system suffered similar effects. This confirmed that for the range 
of frequencies we were enabled to inspect, only the natural frequencies arising from the blade’s 
flapping motion, were affected by the geometric configurations proposed. 

In order to enhance the solver’s performance in the future, more realistic damping coefficient 
values could be implemented on the model’s torsional dampers. These values could take into 
account other effects such as the blade’s aerodynamic damping, providing a closer approach 
to a real helicopter blade. However, this would imply considering an aerofoil model for the 
blade, as certain properties like the section’s moment of inertia and lift coefficient would be 
needed to compute this effect. In addition, if a particularly thin aerofoil was considered, thin 
aerofoil theory could be applied along the blade’s span. This would enable the user to rapidly 
compute a relatively simple lift distribution. Consequently, a more realistic approach to the 
periodic loads suffered by the structure could be implemented, which would be more adequate 
than an educated guess. Moreover, taking into account that Lagrange’s equations are strongly 
dependent on the initial conditions applied, a thorough selection might significantly improve 
ODE45’s performance. If a scaled prototype of a helicopter blade-rotor system and a set of 
sensors were available, more realistic values of the blade’s boundary conditions could be 
accomplished by means of dimensional analysis. A future study which might be worth 
conducting, would be performing a range different Simscape model arrangements, in order to 
verify the full extent of Simscape’s competence for standard helicopter operating conditions. 
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Additionally, the blade structure could be discretised into a higher number of solid rigid bodies 
interlinked with more dampers and springs. This, despite being laborious, would allow for a 
homogeneous distribution of the blade’s characteristics, such as its stiffness and damping 
along its span. Furthermore, the possibility to include other components of the rotor-blade 
system, such as the blade’s pitch-link mechanism might be of interest. As it would provide a 
suitable approximation to the real rotor-blade system, and an assessment of the spectrum’s 
accuracy could be conducted to verify any improvement accomplished.  
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Appendix A 

Two D.O.F Blade Model - Non Linear  

Defining Variables 
clearvars; 
clear all; 
clc; 
syms a b c M_hub M_seg1 M_seg2 kz cz kb cb Omega g A Qamp srate real  
syms t gamma z10 b20 dz10 db20 real  
syms ze(t) be(t) Q1(t) Q2(t) 
d1ze = diff(ze,t); 
d1be = diff(be,t); 
d2ze = diff(ze,t,2); 
d2be = diff(be,t,2); 

Case Selection & Position Equations  

Case Selection 

 system_id = 'LF'; % Lag-Flap System 

% system_id = 'FF'; % Flap-Lag System 

 

switch system_id 
    case 'LF' 

         

% Position Equations for 'LF' 

 

% Blade root 
x1 =  a*sin(Omega*t); 

y1 = -a*cos(Omega*t); 

z1  =  0; 

 

% First Segment (mass & hinge) 
 

% Mass 
x2 =  b*sin(Omega*t+ze); 

y2 = -b*cos(Omega*t+ze); 

z2  =  0; 

 

% Hinge 
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x2h =  A*sin(Omega*t+ze); 

y2h = -A*cos(Omega*t+ze); 

z2h =  0; 

 

% Second Segment 
 

x3 =  c*cos(be)*sin(Omega*t+ze-gamma); 
y3 = -c*cos(be)*cos(Omega*t+ze-gamma); 

z3 =  c*sin(be); 

  

    case 'FF' 

         

%  Blade root 

x1= a*sin(Omega*t); 

y1=-a*cos(Omega*t); 

z1=0; 

 

% First Segment (mass and hinge) 
 

% Mass 
x2=  b*cos(ze)*sin(Omega*t); 

y2= -b*cos(ze)*cos(Omega*t); 

z2=  b*sin(ze); 

 

% Hinge 
x2h= A*cos(ze)*sin(Omega*t); 

y2h=-A*cos(ze)*cos(Omega*t); 

z2h= A*sin(ze); 

 

 

% Second Segment 
x3=  c*cos(be)*sin(Omega*t-gamma); 

y3= -c*cos(be)*cos(Omega*t-gamma); 

z3=  c*sin(be); 

   

end 
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Position at the end of the Hub  

x_hub = x1; 

y_hub = y1; 

z_hub = z1; 

Position at the end of Segment 1 

x_seg1 = x1 + x2; 

y_seg1 = y1 + y2; 

z_seg1 = z1 + z2; 

Position at the end of Segment 2  

x_seg2 = x1 + x2h + x3;  

y_seg2 = y1 + y2h + y3; 

z_seg2 = z1 + z2h + z3; 

Velocity Equations 

Velocity at the end of the Hub  

dx_hub = diff(x_hub,t); 

dy_hub = diff(y_hub,t); 

dz_hub = diff(z_hub,t); 

Velocity at the end of Segment 1 

dx_seg1 = diff(x_seg1,t); 

dy_seg1 = diff(y_seg1,t); 

dz_seg1 = diff(z_seg1,t); 

Velocity at the end of Segment 2 

dx_seg2 = diff(x_seg2,t); 

dy_seg2 = diff(y_seg2,t); 

dz_seg2 = diff(z_seg2,t); 

Kinetic Energy Equations  

Kinetic Energy at the end of the Hub 

Ek_hub = 0.5*M_hub*(dx_hub^2+dy_hub^2+dz_hub^2); 

Kinetic Energy at the end of Segment 1 

Ek_seg1 = 0.5*M_seg1*(dx_seg1^2+dy_seg1^2+dz_seg1^2); 

Kinetic Energy at the end of Segment 2 

Ek_seg2 = 0.5*M_seg2*(dx_seg2^2+dy_seg2^2+dz_seg2^2); 

System's Total Kinetic Energy 

Ek = Ek_hub + Ek_seg1 + Ek_seg2;  
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Potential Energy Equations 

Potential Energy of the Lead-Lag Torsional Spring 

Ep_seg1 = 0.5*kz*ze^2 + M_seg1*g*z_seg1; 

Potential Energy of the Flapping Torsional Spring  

Ep_seg2 = 0.5*kb*be^2 + M_seg2*g*z_seg2; 

System's Total Potential Energy  

Ep = Ep_seg1 + Ep_seg2; 

Energy Dissipation Functions 

Lead-Lag & Flapping Damping Function 

D = 0.5*cz*d1ze^2 + 0.5*cb*d1be^2; 

Lagrangian  
L=Ek-Ep; 
simplify(L); 

Lagrange's Equation 
LHS=functionalDerivative(L,[ze,be]); 
dD_dqi=[cz*d1ze;cb*d1be];   % Manual diff of D 
Q1=Qamp*sin(srate*t^2); 
Q2=0; 
LHS=-LHS-[Q1;Q2]*1+dD_dqi;  % Setting up the correct signs 
simplify(LHS); 

Space Model 
[eqs,vars]=reduceDifferentialOrder(LHS,[ze,be]); 
[M,F]=massMatrixForm(eqs,vars); 
fs=M\F; 

Numeric Parameters 

Structural Parameters 

a=0.381;                      % In m 

b=7.162;                      % In m 

A =7.362;                     % In m  

c=1.367;                      % In m 

g=9.81;                       % In m/s^2 

M_hub=36.26;                  % In kg 

M_seg1=31.88;                 % In kg 

M_seg2=6.08;                  % In kg 

Omega= 109.22*1;                % In rad/s 

kz=30659;                      % In Nm/(rad) 
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kb=6691;                      % In Nm/(rad) 

cz= 500;                       % In Nm/(rad/s) 

cb= 500;                       % In Nm/(rad/s) 

gamma= -pi/18*0;                  % In rad 

Qamp=15*4;                    % In (N) 

srate=2;                      % [-] 

Initial Conditions 

z10 =      pi/20; 

b20 =     -pi/20; 

dz10 =         1; 

db20 =        -1; 

 

Initial Conditions (deg) 

% z10  

 

fprintf(['The initial condition position for the lead-lag angle z10 is %.3f 
rads' ... 
    ' which is %.3f degrees'],z10,z10*(180/pi)) 

% b20 
 

fprintf(['The initial condition position for the flapping angle b20  is %.3f 
rads' ... 
    ' which is %.3f degrees'],b20,b20*(180/pi)) 

% dz10  
 

fprintf(['The initial condition velocity for the lead-lag angle dz10 is %.3f 
rads' ... 
    ' which is %.3f degrees'],dz10,dz10*(180/pi)) 

% db20  
 

fprintf(['The initial condition velocity for the flapping angle db20 is %.3f 
rads' ... 
    ' which is %.3f degrees'],db20,db20*(180/pi)) 

Numeric Substitutions and ODE 45 Equation Setup 
fs=subs(fs); 
odeFs=odeFunction(fs,vars); 

ODE 45 Solver  
t_start = 0; 
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t_end = 55; 
samples = 2e3; 
tspan=linspace(t_start,t_end,samples); 
t_step = tspan(2)-tspan(1); 
x0=[z10;b20;dz10;db20]; %x0=[(rand(2,1)*2-1)*pi/20;(rand(2,1)*2-1)*0.1]; 
[T,X]=ode45(odeFs,tspan,x0); 

Graphs  

4.1.1.1 D.O.F Plot 

X(:,1) = X(:,1)*(180/pi); % Conversion from Radians to Degrees 

figure,plot(T,X(:,1),'b','LineWidth',2); hold on,  

title(sprintf('Angle Zeta for Omega = %.3f (rad/s)',Omega)) 

xlabel('time(s)'); 

ylabel('angle zeta (deg)'),grid 

hold off  

4.1.1.2 D.O.F Plot 

X(:,2) = X(:,2)*(180/pi); % Conversion from Radians to Degrees 

figure, plot(T,X(:,2),'r','LineWidth',2); hold on; 

title(sprintf('Angle Beta for Omega = %.3f (rad/s)',Omega)) 

xlabel('time(s)'); 

ylabel('angle beta (deg)'); 

grid 

hold off 

% Postprocessing 
figure, box on, grid on, hold on 
plot(T,X(:,1:2)) 
legend('1','2') 
title('Results'), hold off 

Data Post-Processing 

FFT applied to the (Δζ) D.O.F signal 

% Converting Delta-Zeta signal from (deg) to (rad) 

 

FFT_X1= X(:,1)*(pi/180); % Angle  
FFT_T = T; % Time  

 

% Visualising Delta-Zeta Signal in Time Domain 
figure, plot(FFT_T,FFT_X1,'m','LineWidth',2), hold on, grid  

xlabel('Time (s)');  

ylabel('Lead-Lag angle (rad)');  

title(sprintf('Angle Zeta for Omega = %.3f (rad/s)',Omega)) 
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hold off 

% Applying the Fast Fourier Transform  
fft_points_ze = 2^nextpow2(size(FFT_X1,1));  
frequency_spectrum_ze = fft(FFT_X1,fft_points_ze);  
frequency_spectrum_ze = frequency_spectrum_ze(1:end/2,:); 
frequency_step_ze = 1/(fft_points_ze*t_step); 
frequency_ze = ([1:fft_points_ze/2]-1)*frequency_step_ze; 
 

% Normalising the spectrum with respect to the amplitude's maximum value  
 

normalised_ze = abs(frequency_spectrum_ze/max(frequency_spectrum_ze)); 
normalised_ze = log(normalised_ze); 
 

 

% Visualising Delta-Zeta Signal in Frequency Domain 
figure, plot(frequency_ze,normalised_ze,'Color',[0.9290 0.6940 
0.1250],'LineWidth',2),hold on 
grid 
xlabel('Frequency (Hz)');  
ylabel('Normalised Amplitude in Log Scale');  
title(sprintf('Frequency Spectrum in Hertz of Lead-Lag Angle for Gamma = %.3f 
(deg)',gamma*-180/pi)) 
 

hold off 

FFT applied to the (Δβ) D.O.F signal 

% Converting Delta-Beta signal from (deg) to (rad)  

 

FFT_X2= X(:,2)*(pi/180); % Angle  
FFT_T = T; % Time  

 

% Visualising Delta-Beta Signal in Time Domain 
figure, plot(FFT_T,FFT_X2,'g','LineWidth',2), hold on, grid  

xlabel('Time (s)');  

ylabel('Flapping angle (rad)');  

title(sprintf('Angle Beta for Omega = %.3f (rad/s)',Omega)) 

hold off 

% Applying the Fast Fourier Transform  
fft_points_be = 2^nextpow2(size(FFT_X2,1));  
frequency_spectrum_be = fft(FFT_X2,fft_points_be);  
frequency_spectrum_be = frequency_spectrum_be(1:end/2,:); 
frequency_step_be = 1/(fft_points_be*t_step); 
frequency_be = ([1:fft_points_be/2]-1)*frequency_step_be; 
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% Normalising the spectrum with respect to the amplitude's maximum value 
normalised_be = abs(frequency_spectrum_be/max(frequency_spectrum_be)); 
normalised_be = log(normalised_be); 
 

 

% Visualising Delta-Beta Signal in Frequency Domain 
figure, plot(frequency_be,normalised_be,'Color',[0.6350 0.0780 
0.1840],'LineWidth',2),hold on 
grid 
xlabel('Frequency (Hz)');  
ylabel('Normalised Amplitude in Log Scale');  
title(sprintf('Frequency Spectrum in Hertz of Flapping Angle for Gamma = %.3f 
(deg)',gamma*-180/pi)) 
hold off 

 

Simscape Model Parameter Setup [Lag-Flap Model] 

Parameter Format Conversion from 'double' to 'string' 

% Here I am converting the Numeric Parameters to a String value because  

% the command 'set_param' allows me to substitute those parameters into  

% my Simscape model. I am only substituting the 

% parameters below into the model, the rest of them have been typed 

% manually.  

 

kz=      num2str(kz); 
kb=      num2str(kb);  

cz=      num2str(cz); 

cb=      num2str(cb); 

M_hub=   num2str(M_hub);  

M_seg1=  num2str(M_seg1); 

M_seg2=  num2str(M_seg2); 

gamma =  num2str(gamma); 

z10 = num2str(z10);  

b20 = num2str(b20); 

dz10 = num2str(dz10); 

db20 = num2str(db20); 

k_hub = (200e8); 

k_hub = num2str(k_hub); 

c_hub = (8e8); 

c_hub = num2str(c_hub); 
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Parameter Substitution in Simscape Lag-Flap Model  

% Joint 1 

 

% Internal Mechanics 
set_param('LF_Final_Simscape_Model/RevoluteJoint1','SpringStiffness',k_hub); 

 

set_param('LF_Final_Simscape_Model/RevoluteJoint1','DampingCoefficient',c_hub; 
 

 

% Joint 2 
 

% Internal Mechanics 
set_param('LF_Final_Simscape_Model/RevoluteJoint2','SpringStiffness',kz); 

 

set_param('LF_Final_Simscape_Model/RevoluteJoint2','DampingCoefficient',cz); 
 

set_param('LF_Final_Simscape_Model/RevoluteJoint2','PositionTargetValue',z10); 
 

 

% Joint 3 
 

% Internal Mechanics 
set_param('LF_Final_Simscape_Model/RevoluteJoint3','SpringStiffness',kb); 

 

set_param('LF_Final_Simscape_Model/RevoluteJoint3','DampingCoefficient',cb); 
 

set_param('LF_Final_Simscape_Model/RevoluteJoint3','PositionTargetValue',b20); 
 

 

% Mass of the Hub 
 

set_param('LF_Final_Simscape_Model/SphericalSolid1','Mass',M_hub); 
 

% Mass of Segment 1 
 

set_param('LF_Final_Simscape_Model/SphericalSolid2','Mass',M_seg1); 
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% Mass of Segment 2 
 

set_param('LF_Final_Simscape_Model/SphericalSolid3','Mass',M_seg2); 
 

Simscape Model Parameter Setup [Flap-Flap Model] 

Parameter Format Conversion from 'double' to 'string' 

% Here I am converting the Numeric Parameters to a String value because  

% the command 'set_param' allows me to substitute those parameters into  

% my Simscape model. I am only substituting the 

% parameters below into the model, the rest of them have been placed 

% manually.  

 

kz=      num2str(kz); 
kb=      num2str(kb);  

cz=      num2str(cz); 

cb=      num2str(cb); 

M_hub=   num2str(M_hub);  

M_seg1=  num2str(M_seg1); 

M_seg2=  num2str(M_seg2); 

gamma =  num2str(gamma); 

z10 = num2str(z10);  

b20 = num2str(b20); 

dz10 = num2str(dz10); 

db20 = num2str(db20); 

k_hub = (200e8); 

k_hub = num2str(k_hub); 

c_hub = (8e8); 

c_hub = num2str(c_hub); 

Parameter Substitution in Simscape Flap-Flap Model  

% Joint 1 

 

% Internal Mechanics 
set_param('FF_Final_Simscape_Model/RevoluteJoint1','SpringStiffness',k_hub); 
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set_param('FF_Final_Simscape_Model/RevoluteJoint1','DampingCoefficient',c_hub; 
 

% Joint 2 
 

% Internal Mechanics 
set_param('FF_Final_Simscape_Model/RevoluteJoint2','SpringStiffness',kz); 

 

set_param('FF_Final_Simscape_Model/RevoluteJoint2','DampingCoefficient',cz); 
 

set_param('FF_Final_Simscape_Model/RevoluteJoint2','PositionTargetValue',z10); 
 

% Joint 3 
 

% Internal Mechanics 
set_param('FF_Final_Simscape_Model/RevoluteJoint3','SpringStiffness',kb); 

 

set_param('FF_Final_Simscape_Model/RevoluteJoint3','DampingCoefficient',cb); 
 

set_param('FF_Final_Simscape_Model/RevoluteJoint3','PositionTargetValue',b20); 
 

% Mass of the Hub 
 

set_param('FF_Final_Simscape_Model/SphericalSolid1','Mass',M_hub); 
 

% Mass of Segment 1 
 

set_param('FF_Final_Simscape_Model/SphericalSolid2','Mass',M_seg1); 
 

 

% Mass of Segment 2 
 

set_param('FF_Final_Simscape_Model/SphericalSolid3','Mass',M_seg2); 
 

Exporting Signals From Simscape to Matlab Workspace  
% Extracting Simscape's exported values from the Structure 'out' 
 

Simscape_time = out.zeta(:,1);  
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Simscape_zeta = out.zeta(:,2); 
Simscape_beta = out.beta(:,2); 
 

% Plot to check if the Exported data is correct 
 

% Simscape Delta-Zeta  
figure, plot(Simscape_time,Simscape_zeta), grid, hold on 
title(sprintf('Simscape Zeta Angle for Gamma = %.3f',gamma*-180/pi)) 
xlabel('Time (s)') 
ylabel('Zeta angle (deg)') 
hold off 

 

% Simscape Delta-Beta 
figure, plot(Simscape_time,Simscape_beta), grid, hold on 
title(sprintf('Simscape Beta Angle for Gamma = %.3f',gamma*-180/pi)) 
xlabel('Beta angle (deg)') 
ylabel('Time (s)') 
hold off 

Simscape Signal Post-Processing  

Interpolation (Spline) for D.O.F 

int_Sim_zeta = interp1(Simscape_time,Simscape_zeta,tspan,'spline'); 

 

% Auxiliary Check Plot  
figure,plot(tspan,int_Sim_zeta,'b','LineWidth',2); hold on,  

title(sprintf('Interpolated Simscape Angle Zeta for Gamma = %.3f 
(rad/s)',gamma*-180/pi)) 

xlabel('time(s)'); 

ylabel('angle zeta (deg)'),grid 

hold off 

Interpolation (Spline) for D.O.F 

int_Sim_beta = interp1(Simscape_time,Simscape_beta,tspan,'spline'); 

 

% Auxiliary Check Plot  
figure,plot(tspan,int_Sim_beta,'r','LineWidth',2); hold on,  

title(sprintf('Interpolated Simscape Angle Beta for Omega = %.3f 
(rad/s)',Omega)) 

xlabel('time(s)'); 

ylabel('angle beta (deg)'),grid 

hold off 
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Fast Fourier Transform to Simscape Signal  

FFT applied to the Simscape (Δζ) D.O.F signal 

% Defining  

 

FFT_SL= int_Sim_zeta*(pi/180); % Angle  
FFT_SL = FFT_SL'; 

FFT_ST = tspan'; % Time  

 

% Applying the Fast Fourier Transform  
fft_points = 2^nextpow2(size(FFT_SL,1));  

frequency_spectrum = fft(FFT_SL,fft_points);  

frequency_spectrum = frequency_spectrum(1:end/2,:); 

frequency_step = 1/(fft_points*t_step); 

frequency = ([1:fft_points/2]-1)*frequency_step; 

 

% Normalising the spectrum with respect to the amplitude's maximum value 
normalised = abs(frequency_spectrum); 

normalised = log(normalised); 

maximum = max(normalised); 

normalised = normalised./maximum; 

 

 

% Visualising Simscape Delta-Zeta Signal in Frequency Domain 
figure, plot(frequency,normalised,'Color',[0.4660 0.6740 
0.1880],'LineWidth',2),hold on 

grid 

xlabel('Frequency (Hz)');  

ylabel('Amplitude');  

title(sprintf('Spectrum in (Hz) Int Simscape Lead-Lag Angle for Omega = %.3f 
(rad/s)',Omega)) 

hold off 

4.1.1.3 FFT applied to the Simscape (Δβ) D.O.F signal 

% Converting signal from (deg) to (rad)  

 

FFT_SF= int_Sim_beta*(pi/180); % Angle  
FFT_SF = FFT_SF'; 

FFT_ST = tspan'; % Time  
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% Applying the Fast Fourier Transform  
fft_points = 2^nextpow2(size(FFT_SF,1));  

frequency_spectrum = fft(FFT_SF,fft_points);  

frequency_spectrum = frequency_spectrum(1:end/2,:); 

frequency_step = 1/(fft_points*t_step); 

frequency = ([1:fft_points/2]-1)*frequency_step; 

 

 

% Normalising the spectrum with respect to the amplitude's maximum value 
normalised = abs(frequency_spectrum); 

normalised = log(normalised); 

maximum = max(normalised); 

normalised = normalised./maximum; 

 

% Visualising Delta-Beta Signal in Frequency Domain 
figure, plot(frequency,normalised,'Color',[0.4940 0.1840 
0.5560],'LineWidth',2),hold on 

grid 

xlabel('Frequency (Hz)');  

ylabel('Amplitude');  

title(sprintf('Frequency Spectrum in (Hz) Int Simscape Flapping Angle for Omega 
= %.3f (rad/s)',Omega)) 

hold off 
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Appendix B 

 

Lag-Flap Model - Simscape Blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simscape Blocks Applied in the Blade Physical Simulation 

Block Name 
Number of Blocks 

Rigid Transform 
18 

Cylindrical Solid 
4 

Spherical Solid 
3 

Solver Configuration 
1 

World Frame  
1 

Mechanism Configuration  
1 

Constant 
6 

Product 
7 

Add 
1 

Integrator  
1 

Gain 
8 

Sin 
3 

Cos 
1 

Clock 
3 

Square 
2 

Simulink - Ps Converter 
9 

Scope 
12 

External Force and Torque  
2 

Out 
3 
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Flap-Flap Model - Simscape Blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simscape Blocks Applied in the Blade Physical Simulation 

Block Name 
Number of Blocks 

Rigid Transform 
18 

Cylindrical Solid 
4 

Spherical Solid 
3 

Solver Configuration 
1 

World Frame  
1 

Mechanism Configuration  
1 

Constant 
7 

Product 
10 

Add 
0 

Integrator  
1 

Gain 
9 

Sin 
4 

Cos 
2 

Clock 
4 

Square 
2 

Simulink - Ps Converter 
10 

Scope 
12 

External Force and Torque  
3 

Out 
3 
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Lag-Flap Model Scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Helicopter Blade Vibration Analysis Department of Mechanical Engineering 

Nicolás Capmany 39 

Flap-Flap Model Scheme 
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The Lag-Flap Model Force is decomposed (x, y and z axis): 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Helicopter Blade Vibration Analysis Department of Mechanical Engineering 

Nicolás Capmany 41 

The Flap-Flap Model Force is decomposed (x, y and z axis) 
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Force Function Scheme applied in both Models:  
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Appendix C 

 

Lag-Flap Model Lagrangian 
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Lagrangian equations: 
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Specialisation: 

 

a)  Curvature and o=o=0 
 

 

 

b) o= 
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c) Linearization of case with curvature and o=o=0 
 

 

 

And now, taking the Fourier transform:  

, 

: 

 

    
 

   

   

 

    

   

2

2 2 2 2

2 1 2 2 2

2

1

2

2 2 2

2 2

2 cos
sin cos

0

cos

cos

z

ab
M b c bc M b M

ac ac

M ab k

c c b

M c M ac

gc

 
   

  

   

  

     

   
                

     

    
 

          
 
  

 

Which become uncoupled to first order. Solutions are:  

 

 
     2 2 2

2cos b

gc

c c a b c k M
 

 
  

     
 

 

 

That features resonance frequencies at: 

 

     2

2

, 2

cos b

res

c a b c k M

c



 

   
  
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And: 

 

 
 

    

2

2

2 2 2 2 2 2 2

2 1 2 1

sin

2 cos cos z

M ac

M b c bc M b M ab ac M ab k


 

  

 
 

               

 

 

That features resonance frequencies at: 

 

    

 

2

1 2 2

, 2 2 2

1 2

cos

2 cos

z

res

a b c b M M k M

b c bc M M b








   


  
 

 

Its sensitivity to variations in g is given by: 

 

 
    

 
2 2

, ,,

2

1 2 2

2
sin

2 cos

res resres

z

b a c

a b c b M M k M

 
 


 

 
 


      
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Flap-Flap Model Lagrangian 

 

 

 

 

The Lagrangian equations are: 
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Which can be linearized: 

 

 

 

And now, taking the Fourier transform: 

 , 

: 

 

           

         

2 2 2

1 2 2 1 2

2 2 2

2 2 2

cos 0

cos 0

z

b

M M b M b a b c M M gb k

M c M c c a b M gc k

       

       

              

            

 

 

Yielding: 

 

 
 

   

 
   

1 2

2 2 2

1 2 2

2

2 2 2
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z

b

M M gb

M M b M b a b c k

M gc

M c M c c a b k

 
 

 
 


 

        

 
       

 

 

With resonance frequencies given by:  

 

   

 

     

2

2

, 2

1 2

2

2

, 2

2

cos

1

cos

z

res

b

res

b a b c k M

M M b

c c a b k M

M c















     
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Appendix D 

 

Lag-Flap Model Spectrum for ∆ζ D.O.F: 
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Lag-Flap Model Spectrum for ∆β D.O.F: 
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Flap-Flap Model Spectrum for ∆ζ D.O.F: 
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Flap-Flap Model Spectrum for ∆β D.O.F: 

 

 

 



 Helicopter Blade Vibration Analysis Department of Mechanical Engineering 

Nicolás Capmany 58 

 

 

 

 

 

 



 Helicopter Blade Vibration Analysis Department of Mechanical Engineering 

Nicolás Capmany 59 

 
Appendix E 

Parameter Units Value Reference 

Hub radius (a) m 0.381 Stroub et al. (1987) 

1st  Segment length (b) m 7.162 Leonardo S.p.A Company (2020) 

Hinge (1 and 2) length m 0.200 Estimation 

1st  Segment + Hinge length (B) m 7.362 Estimation 

2nd Segment length (c) m 1.367 Leonardo S.p.A Company (2020) 

Gravity (g) m∙s-2 9.810 European Space Agency (2020) 

Hub Mas (Mhub) kg 36.26 Martínez Santín (2009) 

Segment 1 Mass (Mseg1) kg 31.88 Martínez Santín (2009) 

Segment 2 Mass (Mseg2) kg 6.08 Martínez Santín (2009) 

Rotor Regime (Ω) rad∙s-1 109.220 Oxley et al. (2009) 

Spring 1 Stiffness (k∆ζ) N∙m∙rad-1 2900.000 Takahasi (1990) 

Spring 2 Stiffness (k∆β) N∙m∙rad-1 2900.000 Takahasi (1990) 

Damper 1 Coefficient (c∆ζ) N∙m∙rad-1∙s 500.000 Titurus (2018) 

Damper 2 Coefficient (c∆β) N∙m∙rad-1∙s 500.000 Titurus (2018) 

Blade Curvature (γ) [-] -45º to 45º Seddon and Newman (2002) 

Force Amplitude (Qamp) N 60.000 Estimation 

Frequency rate of change 
(srate) 

[-] 2 Estimation 

∆ζ Initial Condition (∆𝜁0) rad π/20 Estimation 

∆β Initial Condition (∆𝛽0) rad -π/20 Estimation 

∆ζ̇ Initial Condition (∆𝜁0
̇ ) rad∙s-1 1.000 Estimation 

∆β̇ Initial Condition (∆𝛽0
̇ ) rad∙s-1 -1.000 Estimation 
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Appendix F 

Lag-Flap Model 1st Lagging Frequency (∆ζ D.O.F): 

 

Curvature Angle (γº) L1 (Hz) [ODE 45] L1 (Hz) [Linear] Relative Error (%) 

45.0 3.99 3.86 3.26 

30.0 3.98 3.85 3.27 

20.0 3.98 3.85 3.27 

10.0 3.98 3.84 3.52 

0.0 3.98 3.84 3.52 

-10.0 3.98 3.84 3.52 

-20.0 3.98 3.85 3.27 

-10.0 3.98 3.84 3.52 

-20.0 3.98 3.85 3.27 

-30.0 3.98 3.85 3.27 

-45.0 3.99 3.86 3.26 

 

 

Lag-Flap Model 1st Flapping Frequency (∆β D.O.F): 

 

Curvature Angle (γº) F1 (Hz) [ODE 45] F1 (Hz) [Linear] Relative Error (%) 

45.0 38.87 37.54 3.42 

30.0 40.81 41.58 -1.89 

20.0 42.75 43.33 -1.36 

10.0 44.70 44.36 0.76 

0.0 44.70 44.71 -0.02 

-10.0 44.70 44.36 0.76 

-20.0 42.75 43.33 -1.36 

-30.0 40.81 41.58 -1.89 

-45.0 38.87 37.54 3.42 
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Flap-Flap Model 1st Flapping Frequency (∆β D.O.F): 

 

Curvature Angle (γº) F1 (Hz)   [ODE 45] F1 (Hz)   [Linear] Relative Error (%) 

45.0 17.65 15.69 11.10 

30.0 17.75 17.06 3.89 

20.0 17.80 17.66 0.79 

10.0 18.81 18.01 4.25 

0.0 17.83 18.13 -1.68 

-10.0 17.81 18.01 4.25 

-20.0 17.80 17.66 0.79 

-30.0 17.75 17.06 3.89 

-45.0 17.65 15.69 11.10 

 

 

 

 

Flap-Flap Model 2nd Flapping Frequency (∆β D.O.F): 

 

Curvature Angle (γº) F2 (Hz)   [ODE 45] 

45.0 43.06 

30.0 46.79 

20.0 48.47 

10.0 49.34 

0.0 49.74 

-10.0 49.34 

-20.0 48.47 

-30.0 46.79 

-45.0 43.06 

 


