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Abstract 

Cardiovascular disease remains the main cause of death in Europe. Cardiac 

arrhythmias are an important cause of sudden death, but their mechanisms are 

complex. This denotes the importance of their study and prevention. Research 

on cardiac electrophysiology has shown that electrical abnormalities caused by 

mutations in cardiac channels can trigger arrhythmias. Surprisingly, a wide 

variety of drugs have also shown proarrhythmic potential, including those that 

we use to prevent arrhythmia. Current guidelines designed a test to identify 

dangerous drugs by assessing their blocking power on a single ion channel to 

address this situation. Study of drug-channel interactions has revealed not only 

compounds that block multiple channels but also a great complexity in those 

interactions. This could explain why similar drugs can show vastly different 

effects in some diseases. There are two important challenges regarding the 

effects of drugs on cardiac electrophysiology. On the one hand, companies and 

regulators are in search of a high throughput tool that improves proarrhythmic 

potential detection during drug development. On the other hand, patients with 

electrical abnormalities often require safer personalized treatments owing to 

their condition. Computer simulations provide an unprecedented power to 

tackle complex biophysical phenomena. They should prove useful determining 

the characteristics that define the drugs’ beneficial and unwanted effects by 

reproducing experimental and clinical observations.  

In this PhD thesis, we used computational models and simulations to address 

the two abovementioned challenges.  We split the study of drug effects on the 

cardiac activity into the study of their safety and efficacy, respectively. For the 

former, we took a wider approach and generated a new easy-to-use biomarker 

for proarrhythmic potential classification using cardiac cell and tissue human 

action potential models. We integrated multiple channel block through IC50s 

and therapeutic concentrations to improve its predictive power. Then, we 

quantified the proarrhythmic potential of 84 drugs to train the biomarker. Our 

results suggest that it could be used to test the proarrhythmic potential of new 

drugs. For the second challenge, we took a more specific approach and sought 

to improve the therapy of patients with cardiac electrical abnormalities. 

Therefore, we created a detailed model for the long QT syndrome-causing 

V411M mutation of the sodium channel reproducing clinical and experimental 

data. We tested the potential benefits of ranolazine, while giving insights into 

the mechanisms that drive flecainide’s effectiveness. Our results suggest that 

while both drugs showed different mechanisms of sodium channel block, 

ranolazine could prove beneficial in these patients. 
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Resumen 

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte 

en Europa. Las arritmias cardíacas son una causa importante de muerte súbita, 

pero sus mecanismos son complejos. Esto denota la importancia de su estudio 

y prevención. La investigación sobre electrofisiología cardíaca ha demostrado 

que las anomalías eléctricas causadas por mutaciones que afectan a canales 

cardíacos pueden desencadenar arritmias. Sorprendentemente, se ha 

descubierto una gran variedad de fármacos proarrítmicos, incluidos aquellos 

que usamos para prevenirlas. Las indicaciones de uso de fármacos actuales 

intentaron solucionar este problema diseñando una prueba para identificar 

aquellos fármacos que podían ser peligrosos basado en el bloqueo de un solo 

canal iónico. El estudio de las interacciones fármaco-canal ha revelado la 

existencia no sólo de compuestos que bloquean múltiples canales, sino también 

una gran complejidad en esas interacciones. Esto podría explicar por qué 

algunos medicamentos pueden mostrar efectos muy diferentes en la misma 

enfermedad. Existen dos desafíos importantes con respecto a los efectos de los 

fármacos en la electrofisiología cardíaca. Por un lado, las empresas y entidades 

reguladoras están buscando una herramienta de alto rendimiento que mejore la 

detección del potencial proarrítmico durante el desarrollo de fármacos. Por otro 

lado, los pacientes con anomalías eléctricas a menudo requieren tratamientos 

personalizados más seguros. Las simulaciones computacionales contienen un 

poder sin precedentes para abordar fenómenos biofísicos complejos. Deberían 

ser de utilidad a la hora de determinar las características que definen tanto los 

efectos beneficiosos como no deseados de los fármacos mediante la 

reproducción de datos experimentales y clínicos. 

En esta tesis doctoral, se han utilizado modelos computacionales y 

simulaciones para dar respuesta a estos dos desafíos. El estudio de los efectos 

de los fármacos sobre la actividad cardíaca se dividió en el estudio de su 

seguridad y de su eficacia, respectivamente. Para dar respuesta al primer 

desafío, se adoptó un enfoque más amplio y se generó un nuevo biomarcador 

fácil de usar para la clasificación del potencial proarrítmico de los fármacos 

utilizando modelos del potencial de acción de células y tejidos cardíacos 

humanos. Se integró el bloqueo de múltiples canales a través de IC50 y el uso 

de concentraciones terapéuticas con el fin de mejorar el poder predictivo. 

Luego, se entrenó el biomarcador cuantificando el potencial proarrítmico de 

84 fármacos. Los resultados obtenidos sugieren que el biomarcador podría 

usarse para probar el potencial proarrítmico de nuevos fármacos. Respecto al 

segundo desafío, se adoptó un enfoque más específico y se buscó mejorar la 
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terapia de pacientes con anomalías eléctricas cardíacas. Por lo tanto, se creó un 

modelo detallado de la mutación V411M del canal de sodio, causante del 

síndrome de QT largo, reproduciendo datos clínicos y experimentales. Se 

evaluaron los posibles efectos beneficiosos de ranolazina, a la par que se aportó 

información sobre los mecanismos que impulsan la efectividad de la flecainida. 

Los resultados obtenidos sugieren que, si bien ambos fármacos mostraron 

diferentes mecanismos de bloqueo de los canales de sodio, un tratamiento con 

ranolazina podría ser beneficioso en estos pacientes.  
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Resum 

Les malalties cardiovasculars continuen sent la principal causa de mort a 

Europa. Les arrítmies cardíaques són una causa important de mort sobtada, 

però els seus mecanismes són complexos. Això denota la importància del seu 

estudi i prevenció. La investigació sobre electrofisiologia cardíaca ha 

demostrat que les anomalies elèctriques que afecten a canals cardiacs poden 

desencadenar arrítmies. Sorprenentment, s'ha descobert una gran varietat de 

fàrmacs proarrítmics, inclosos aquells que utilitzem per a previndre-les. Les 

indicacions d'ús de fàrmacs actuals van intentar solucionar aquest problema 

dissenyant una prova per a identificar aquells fàrmacs que podien ser perillosos 

basada en el bloqueig d'un sol canal iònic. L'estudi de les interaccions fàrmac-

canal ha revelat l'existència no sols de compostos que bloquegen múltiples 

canals, sinó també una gran complexitat en aquestes interaccions. Això podria 

explicar per què alguns medicaments poden mostrar efectes molt diferents en 

la mateixa malaltia. Existeixen dos desafiaments importants respecte als 

efectes dels fàrmacs en la electrofisiologia cardíaca. D'una banda, les empreses 

i entitats reguladores estan buscant una eina d'alt rendiment que millore la 

detecció del potencial proarrítmic durant el desenvolupament de fàrmacs. 

D'altra banda, els pacients amb anomalies elèctriques sovint requereixen 

tractaments personalitzats més segurs. Les simulacions computacionals 

contenen un poder sense precedents per a abordar fenòmens biofísics 

complexos. Haurien de ser d'utilitat a l'hora de determinar les característiques 

que defineixen tant els efectes beneficiosos com no desitjats dels fàrmacs 

mitjançant la reproducció de dades experimentals i clíniques. 

En aquesta tesi doctoral, s'han utilitzat models computacionals i simulacions 

per a donar resposta a aquests dos desafiaments. L'estudi dels efectes dels 

fàrmacs sobre l'activitat cardíaca es va dividir en l’estudi de la seva seguretat i 

la seva eficacia. Per a donar resposta al primer desafiament, es va adoptar un 

enfocament més ampli i es va generar un nou biomarcador fàcil d'usar per a la 

classificació del potencial proarrítmic dels fàrmacs utilitzant models del 

potencial d'acció de cèl·lules i teixits cardíacs humans. Es va integrar el 

bloqueig de múltiples canals a través d'IC50 i l'ús de concentracions 

terapèutiques amb la finalitat de millorar el poder predictiu. Després, es va 

entrenar el biomarcador quantificant el potencial proarrítmic de 84 fàrmacs. 

Els resultats obtinguts suggereixen que el biomarcador podria usar-se per a 

provar el potencial proarrítmic de nous fàrmacs. Respecte al segon desafiament, 

es va adoptar un enfocament més específic i es va buscar millorar la teràpia de 

pacients amb anomalies elèctriques cardíaques. Per tant, es va crear un model 
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detallat de la mutació V411M del canal de sodi, causant de la síndrome de QT 

llarg, reproduint dades clíniques i experimentals. Es van avaluar els possibles 

efectes beneficiosos de ranolazina, a l'una que es va aportar informació sobre 

els mecanismes que impulsen l'efectivitat de la flecainida. Els resultats 

obtinguts suggereixen que, si bé tots dos fàrmacs van mostrar diferents 

mecanismes de bloqueig dels canals de sodi, un tractament amb ranolazina 

podria ser beneficiós en aquests pacients.  
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Acronyms 

0D usually refers to isolated cellular models 

1D usually refers to one-dimensional tissues 

3D usually refers to three dimensional matrices of simulation 

results 

A accuracy 

AMP adenine monophosphate 

AP action potential 

APA action potential amplitude 

APDx action potential duration at x% repolarization 

ATP adenine triphosphate 

ATX-II anemone toxin II 

AUC area under the curve 

BCL basic cycle length in milliseconds 

C, D refers to compound concentrations 

C++ programming language 

CiPA comprehensive in vitro in vivo proarrhythmia assay 

Cmax maximum blood concentrations 

CVD cardiovascular disease 

DAD delayed after depolarization 

EAD early after depolarization 

EC50 concentration that produces 50% of the Emax 

ECG electrocardiogram 

EFTPC estimated free therapeutic plasma concentration 

Emax maximum effect 

FDA federal drug administration 

gap proteins that enable ion flow between cells 

H the Hill coefficient in the simple pore model 

HEK human embryonic kidney 

hERG human ether-à-go-go related gene coding for IKr 

IC50 concentration that inhibits a current to a 50% of its drug-

free conditions 

ICH international conference of harmonization 

IKr rapid component of the potassium delayed rectifier current 
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INaf fast component of the sodium current 

INaL slow component of the sodium current 

Ix membrane current called x 

Jx ion flux called x 

LOO leave-one-out 

LQTS long QT syndrome 

M Molarity/Molar, a measure of concentration 

max dV/dt maximum upstroke velocity during depolarization 

mM, µM, M millimolar, micromolar, molar 

MOT mean opening time 

ODE ordinary differential equation 

ORd model O'Hara Rudy model of the human ventricular action 

potential 

P first wave of the normal ECG 

pIC50 negative decimal logarithm of the IC50 

QRS three-wave complex of the normal ECG 

QSAR quantitative structure-activity relationship 

QT time interval between the onset of the Q and the end of the 

T waves in the ECG 

QTc QT interval corrected by a formula that takes heart rate into 

account 

R onset of the QRS complex of the normal ECG 

RMP resting membrane potential 

ROC reciever operating characteristic 

SCN5A gene coding for the human cardiac sodium current Ina 

T usually the last wave of the ECG 

TdP torsade-de-pointes 

TNR true negative rate or specificity 

TPR true positive rate or sensitivity 

TTX tetrodotoxin 

Tx proarrhythmicity biomarker developed during this PhD 

thesis 

US Unites States of America 

USD US Dollar 

Vm membrane voltage 

WT wild type 
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Structure of this thesis 

Chapter 1: Introduction. A brief presentation of the reasons that motivate the 

development of this PhD thesis and an overview of its main objectives. 

Chapter 2: State of the art. In this chapter we explore the concepts that will 

contribute to this PhD thesis’ ease of understanding. 

Chapter 3: Development of an in-silico TdP biomarker for early 

proarrhythmicity detection. This chapter focusses on studying drug safety.  

Simple drug-channel interactions and human action potential models allow us 

to create a tool for TdP prediction during early stages of drug development. 

Chapter 4: Study and modeling of a channelopathy and testing of specific 

treatments. This chapter focusses on studying drug efficacy. Detailed Ion 

channel dynamics and drug-channel interactions are used for the development 

of mutation-specific models to test the potential of an alternative treatment 

with ranolazine for patients carrying the SCN5A V411M mutation. At the 

same time, we provide deeper knowledge of drug-channel interactions which 

explain the obtained results.  

Chapter 5: General conclusions. In this chapter, we review the degree of 

accomplishment of our main objectives. 

Chapter 6: Future Work. An overview of the research paths that would 

extend the results of this PhD thesis. 

Chapter 7: Contributions. A list of the works that have been directly or 

indirectly published owing to the development of this PhD thesis. 

Appendix. Optimization procedure. Detailed information on the methods 

that we follow in Chapter 4. 

References. A list of the references that have been consulted for the 

development of this PhD thesis. 
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Chapter 1. Introduction 
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1.1 Motivation 

According to an article from the European Commission, cardiovascular disease 

(CVD) is the leading cause of death in Europe. In 2016, it took the lives of 1.83 

million people, or the 35.7% of all deaths, which is almost ten percentage 

points greater than the second most prevalent cause of death1. Around 10 

million patients suffering from circulatory diseases are discharged from 

hospitals every year. Among those, patients with conduction disease or 

arrhythmia account for 1.6 million people, a value that is bound to rise when 

reports from all countries become available. The average length of stay of these 

patients ranges from 4.3 days to values as high as 12.6 days depending on the 

country, highlighting the difficulties that are related to treating these conditions. 

The long QT syndrome, which is characterized by an abnormal elongation of 

the QT segment in the ECG, is one of the causes of death in the young. In fact, 

it accounts for 10% to 15% of the sudden infant death syndromes2, which had 

traditionally been mislabeled. Furthermore, two independent cohort studies 

found that LQTS is the main cause of unexplained cardiac arrest in adults3,4. 

Electrical abnormalities in the cardiac tissue resulting from mutations in genes 

coding for transmembrane ion channels are the main cause of LQTS. They do 

so by altering the electrical dynamics that control the timing and contraction 

of the cardiac muscle. This syndrome is associated with a severe polymorphic 

ventricular tachycardia know as Torsade-de-pointes (TdP). This means that 

leaving the syndrome untreated can rise the mortality rate of the patients up to 

a 71%5. There are asymptomatic cases whose expected 10-year mortality is 

approximately of a 50%6. An appropriate treatment can reduce the mortality 

rate to a 0.3%5. Beta-blockers in combination with sodium channel blockers 

such as mexiletine, lidocaine, flecainide and ranolazine are indicated in 

patients whose QTc shows values over 500 ms,7–9. However, there is some 

concern for LQTS type 3 patients when also presenting features belonging to 

conduction defect or Brugada syndrome. In these cases, high temperature or 

administration of flecainide was able to reveal the presence of the other 

phenotypes, and even trigger life-threatening arrhythmias10,11. Study of the 

drug-channel interaction of the beforementioned drugs has shown that they are 

complex and not restricted to blocking either the fast (INaf) or the late (INaL) 

components of the sodium current. Study of these interactions may provide a 

deeper understanding of the effectiveness of these drugs. Mathematical models 

of the ion channels can help to study ion channel-drug interactions in detail, 

and models of the human action potential allow the study of the impact of those 

in the cardiac ventricular cell’s function. 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

30 

 

Genetic mutations are not the only cause of LQTS and TdP. In fact, in a 

retrospective study in a German hospital, it was found that there was an 

incidence of 2.5 per million males and 4 per million females with drug induced 

QT interval prolongation per year12. The exposure to QT prolonging drugs 

provoked drug-induced LQTS in 6.3% and TdP in 0.33% of the patients13. 

Naturally, the combination of both QT prolonging drugs and genetic mutations 

increases the risk of suffering drug-induced prolongation of the QT-interval. 

The International Harmonization Conference (ICH) published the current 

guidelines to ensure new drugs would not prolong the QT interval14,15. 

However, this came at a high cost due to the low specificity of the test that was 

being used, which could prevent useful drugs from reaching the market16. 

International efforts are currently being made to generate new guidelines that 

improve the arrhythmogenesis prediction. The Comprehensive in vitro-in vivo 

Proarrhythmia Assay (CiPA)17 leads the efforts by providing new guidelines 

to help adopt a new paradigm of drug safety. Importantly, this will be done by 

integrating information from different sources, which include not only clinical 

and experimental data, but also in silico data. Therefore,  mathematical models, 

including those of the human ion channels and action potential, represent a 

fundamental tool to test the effects of drugs17.  

Therefore, there are two main scenarios that would benefit from the use of 

mathematical models of the human ion channels and action potential, namely, 

to either select the best treatment for a particular LQTS syndrome or to 

improve the detection of potentially arrhythmogenic compounds before they 

reach the later stages of drug development.  

Therefore, in this PhD thesis we will be exploring the use of 

electrophysiological models of the human cardiac ion channels and action 

potential both in the detection of potentially arrhythmogenic compounds and 

the study of the effectiveness of drugs in the LQTS. 

1.2 Objectives 

The main objective of this PhD thesis is to predict the effects of drugs on 

cardiac electrophysiology using computational modeling and simulation. This 

PhD thesis focusses on two relevant aspects where cardiac modeling is 

becoming more important, namely, the study of drug safety and efficacy. On 

the one hand, drug cardiotoxicity, which is the possibility of drugs provoking 

arrhythmia, is a key challenge for drug development. On the other hand, 

personalized medicine can improve the therapies of patients with cardiac 
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abnormalities, such as long QT syndrome. Therefore, this thesis was divided 

into two main chapters with the following objectives: 

1. To develop an easy-to-use tool based on cardiac electrophysiological 

models to detect potentially arrhythmogenic drugs in the early stages 

of drug development. 

• To generate matrices with the results of the simulations of 

the effects of blocking relevant membrane ionic currents. 

• To create a prediction tool using a large number of drugs 

with known risk and the results of the simulations. 

• To evaluate the performance of the tool. 

2. To provide evidence for an alternative treatment to flecainide for long 

QT syndrome SCN5A V411M patients when its use is not indicated. 

• To model the SCN5A V411M mutation reproducing its 

dynamics. 

• To simulate the effects of flecainide and ranolazine on 

cardiac electrophysiology. 

• To provide an explanation of the beneficial effects of 

flecainide on SCN5A V411M patients. To test a possible 

alternative treatment for SCN5A V411M patients with the 

drug ranolazine.  
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Chapter 2. State of the Art 
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2.1 The heart 

The heart is at the core of the circulatory system, in the middle of the thoracic 

cage, between the lungs and covered in a protective epithelium called the 

pericardium. Its function is to keep blood flowing constantly eighty times a 

minute on average, powering the organism’s transportation system for oxygen 

and nutrients, among others. To do so, the heart is made of mainly three types 

of tissue, namely, atrial, ventricular, and conductive muscle. Much like skeletal 

muscle cells, ventricular and atrial cells contract and, by doing so, they shrink 

their size pulling from each other. In turn, this reduces the volume of the 

cavities that lie inside the heart, propelling the blood they contain into the 

arteries and powering blood flow.  

 

Figure 1. Anatomical representation of the human Heart. Frontal section 

of the four chambers, main arteries and valves that allow the heart to pump 

blood in the direction indicated by the red arrows. 

Figure 1 shows the main anatomical features of the heart. It contains four 

chambers, two atria and two ventricles. The latter are separated by the 

interventricular septum. The heart can be viewed as two independent pumps 

that feed into two distinct circulatory sub-systems. The left side of the heart 

pumps blood to all organs excluding the lungs, which are connected to the right 
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side of the heart. Red arrows indicate the path that blood follows during a 

heartbeat. Starting from the right side of the heart, deoxygenated blood is 

collected from the organs by both cava veins and funneled into the right atrium. 

In a first, weaker, contraction, it pushes blood into the right ventricle and, 

shortly after, the ventricle contracts funneling blood to the pulmonary arteries. 

Then, blood gets oxygenated before being collected by the pulmonary veins 

into the left atrium. There, it is pumped into the left ventricle, which strongly 

contracts to pump the blood into the aorta artery, feeding the rest of the 

organism and finally closing the cycle. Valves prevent blood from going 

backwards between atria and ventricles and between ventricles and arteries. 

The tricuspid valve lies between the left right atrium and right ventricle, while 

the mitral valve is its left side’s counterpart. The pulmonary valve is placed 

between the pulmonary arteries and the right ventricle, while the aortic valve 

separates the left ventricle from the aorta. 

 

Figure 2. Cardiac conduction system. Representation of the main structures 

of the cardiac conduction system. Filled circles represent the position of the 

nodes. Dark green lines show the paths that signals arising from the nodes 

follow to fully stimulate the cardiac tissue. A red line symbolizes the 

electrophysiological separation of atria and ventricles. 

This cycle ensures the organs receive a constant supply of nutritious 

oxygenated blood, but it would not be possible without the heart’s conduction 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

37 

 

system, as depicted by Figure 2. Every beat starts when a spontaneous signal 

is generated at the sinus node (top green circle), a bundle of self-excitable cells. 

This signal quickly propagates through the atria, triggering their contraction, 

but a layer of non-conducing fibrous tissue between atria and ventricles 

prevents the signal from reaching the latter. Instead, it reaches the auriculo-

ventricular bundle, a slow-conducing tissue that guarantees enough time for 

the blood in the atria to be pumped into the ventricles. From there, the signal 

travels through a high conduction tissue consisting of first the His bundle and 

then the Purkinje fibers, which quickly spread it to the whole ventricular tissue 

so that it contracts synchronously. The period of contraction is called systole, 

while the period of relaxation where blood comes into the atria is called 

diastole18–20. 

2.2 The cardiac tissue. 

Cardiomyocytes are the cells that form the cardiac muscle. There are three 

main types of cardiomyocytes, namely, nodal, working, and conductive. 

However, in this PhD thesis we will be focusing mainly on working cells. 

Figure 3, panel A, represents a cardiomyocyte inside a small section of the 

cardiac tissue. Much like other cells, a cardiomyocyte consists of a lipid bi-

layer membrane enveloping a myoplasm (cytoplasm of a muscle cell) that 

contains the nucleus and common organelles that are necessary to maintain its 

function. The main feature of muscle cells is the large amount of actin-myosin 

fibers, responsible for their contractility, which occupy almost the entire 

myoplasm. As depicted by panel C, the fibers are surrounded with a special 

compartment called the sarcoplasmic reticulum. It forms a complex network 

that has the sole purpose of storing calcium ions and releasing them on demand. 

The cardiomyocyte’s membrane has T-tubules, which are extensions that 

penetrate deep into its myoplasm and stay in close contact with the 

sarcoplasmic reticulum, vastly increasing its surface area18.  

Cells are tightly interconnected in the cardiac tissue, and muscle fibers are 

oriented in a specific direction. As described by Figure 3, panel B, special 

proteic pores called gap junctions create openings between cell myoplasms. 

These junctions provide a very low resistance channel for ion, molecule and 

even protein fluxes. In the cardiac tissue, they are especially abundant in the 

longitudinal direction of the cell.  Ionic variations in one cell can be reflected 

in neighboring cells due to this exceptional interconnectivity21. There are other 

cell types in the cardiac tissue, such as fibroblasts and stem cells, which do not 

possess the same properties as the cardiomyocytes and instead show their role 
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not only as structural, regenerative, cells but also in specific diseases. The 

extracellular matrix surrounding the cells contains the extracellular fluid as 

well as proteins, mainly collagen, which is produced by fibroblasts. There is a 

remarkable ion concentration difference between the interior and exterior of 

the cells. Indeed, sodium ions tend to accumulate outside the membrane at a 

concentration of around 140 mM while remaining at a low 5-8 mM in the 

myoplasm. Contrarily, potassium ions tend to accumulate interior of the cells 

at around 155 mM while concentrations in the external medium stay around 

5.4 mM. 

 

Figure 3. Representation of a cardiomyocyte. A) Representation of the 

cardiac tissue. A row of interconnected cardiomyocytes (working) has been 

highlighted. B) Diagram of a gap junction connecting two cardiomyocytes at 

the intercalated discs. Ions in solution were represented as blue circles. The 

orange arrow indicates ion flow, although it is not restricted to the sense that 

is shown. C) Sarcoplasmic reticulum, not shown in A for the sake of clarity, 

surrounds the actin-myosin fibers and T-tubules in the shape of a network. 

Note that features are not to scale. 

The cardiac tissue contains several types of cardiomyocytes that slightly but 

importantly differ in their response to a stimulus. While at least 9 different 
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zones have been identified in the atrial tissue22, the ventricles’ tissue has been 

classified in four main types: working cells forming the endocardium, 

midmyocardium and epicardium, and specialized conductive cells forming the 

Purkinje system19. Epicardial cells form the outermost layer of the ventricular 

wall while endocardial cells form the internal side. Midmyocardial cells are 

found deep in the subepicardial to myocardial regions of the ventricular free 

wall, as well as in subendocardial layers both in trabeculae, papillary muscles, 

and septum. The differences of such cell types have been documented in a wide 

range of mammalians including humans. However, the limits of those layers 

are still diffuse as the nature and interconnectivity of the cardiac tissue 

normalizes the cell’s electrophysiological characteristics, which are clearly 

defined in vitro but not in vivo23. In fact, there are numerous confusing factors 

when determining the midmyocardial tissue since its location, its thickness and 

its distribution can vary between preparations even from the same cardiac 

region. This is a strong argument supporting the controversy that surrounds the 

role of midmyocardial cells. While their existence is difficult to refute and their 

particular electrophysiology is known, the inability to identify them in intact 

coupled cardiac tissue in a reliable way keeps the community from agreeing 

on their definition24–27. 

Nevertheless, the fact that there are important electrophysiological differences 

throughout the ventricular wall has been widely demonstrated, including 

different response to drugs and their role amplifying the transmural 

electrophysiological heterogeneity of the tissue in pathological conditions24–27. 

2.2.1 Ion channels 

Cardiomyocytes are excitable cells that can respond to stimuli by producing a 

fast depolarization of their membrane. This depolarization represents the 

“signal” that is able to propagate making use of the cardiac tissue’s special 

properties. It occurs when sodium ions from the extracellular medium rush into 

the cell’s myoplasm through special proteins called ion channels. These are 

special transmembrane proteins that are permeable to certain ions, mainly to 

sodium, calcium and potassium. Importantly, there are several channel types 

that not only differ in their specificity towards the ion, but also in their energy 

requirements and operation modes. 

As for energy consumption, ion channels can be passive, where ion flow 

happens in the same sense as a concentration gradient – from high to low 

concentration – or active, where a source of energy, normally ATP, is used to 

catalyze the ion transport across the membrane. 
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Ion channels can be permeable to one or more ions. Some channels can profit 

from the gradient of one ion to provide the required energy to move other ions 

in the opposite direction. This is the case of the sodium-calcium exchanger, 

which is one of the main calcium regulators in the cardiac cells and responsible 

for exchanging three sodium cations from the extracellular medium for one 

calcium cation in the myoplasm28. However, the sodium-calcium exchanger 

can be reverted provided the electrochemical conditions are met. Contrarily, 

the sodium-potassium pump is the perfect example of an energy mediated ion 

exchange. Its function is to exchange one potassium ion from the intracellular 

medium for one sodium ion from the extracellular medium. To enable this 

counter gradient ion flow, it consumes an ATP molecule for every operation29. 

The energy investment is nonetheless worth it since the sodium-potassium 

pump maintains the sodium and potassium gradients that are essential for the 

cardiomyocytes and the main driver of their function.  

The flow of ions through ion channels constitutes a current due to the 

movement of charged particles. The following list describes the ion currents 

and fluxes that mainly contribute to the cardiomyocyte function as a contractile 

cell. 

• Potassium currents 

o IKr: rapid component of the delayed rectifier potassium current, 

IK. 

o IKs: slow component of the delayed rectifier potassium current, 

IK. 

o IK1: inward rectifier potassium current. 

o Itof: fast component of the transient outward potassium current, 

Ito. 

o Itos: slow component of the transient outward potassium current, 

Ito. 

o IKur: ultrarapid delayed rectifier potassium current. 

o IK-ATP: ATP activated potassium current. 

o IK-ach: muscarinic gated potassium current. 

o IKp: plateau potassium current. 

• Sodium currents 

o INaf: fast component of the sodium current, INa. 

o INaL: late component of the sodium current, INa. 

o Ib; background sodium current. 

• Calcium currents 

o ICaL: L-type calcium current 

o ICaT: T-type calcium current 
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• Ion fluxes 

o Jup: calcium uptake from the myoplasm to the sarcoplasmic 

reticulum by the SERCA pump. 

o Jrel: calcium release from the sarcoplasmic reticulum to the 

myoplasm by the RyR channel. 

Table 1. List of the genes that code for ion channels. The first column 

indicates the current that flows through the protein that is coded the gene on 

the second column. Data from Roden and Kuperschmidt30. 

Current name Gene name 

IKr hERG 

IKs KvLQT1/minK 

IKur Kv1.5 

IK1 Kir2.1 

IK-ach Kir3.1/Kir3.4 

IK-ATP Kir6.1/2 

Ito Kv4.3 

INa SCN5A 

ICaL α1C 

ICaT α1H 

 

Throughout this PhD thesis we will be frequently referencing several ion 

channels from their current names. For example, the IKr channel would 

represent the protein through which flow potassium ions whose current is 

called IKr. Proteins, and therefore ion channels, are transcribed and translated 

from genes. Sometimes we could reference an ion channel by its gene name. 

For example, the gene that codes the ion channel responsible for IKr is the 

human ether-à-gogo related gene, or hERG for short. Therefore, some sources 

could refer to it as the hERG channel instead. Another important gene 

throughout this work is the SCN5A gene, which codes for the α-subunit of the 

sodium channel. Table 1 shows a list of the genes that code for some of the 

main currents. 
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To review the structure and function of the ion channels, we will take on the 

example of the sodium channel, since it is a particularly important channel in 

this work. As its name suggests, the sodium channel shows permeability to 

sodium cations in the cardiac tissue. The channel consists of several subunits, 

but only the main α subunit is necessary to its function.  

 

Figure 4. Representation of the unfolded proteic structure of the α-subunit 

of a human sodium channel. A) Unfolded complete structure of the sodium 

channel showing four transmembrane domains connected with linkers 

responsible for the gating properties of the channel. B) Representation of a 

single transmembrane domain showing its six segments. The fourth one 

contains a high concentration of positively charged residues, making it slide 

during voltage changes between the exterior (up) and interior (down) of the 

cardiomyocyte. 

Figure 4, panel A, depicts the extended structure of the α subunit, which 

contains four identical interconnected domains (panel B) that fold together 

creating a central pore through which sodium ions can passively diffuse. Every 

domain consists of six segments (named 1 to 6 in panel B) of which the fourth 

(green) contains many positively charged residues, giving it voltage-sensing 

capabilities. Indeed, these can make the segment slide in (downwards) and out 

(upwards) of the membrane, changing the protein’s conformation in the 

process, which triggers modifications of linker positions leading to important 

alterations in the channel’s conductance31. Gating, or the ability to open or 

close depending on an external stimulus, is indeed a fundamental property of 
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the ion channels. The sodium channel is therefore a voltage-gated ion channel 

whose conductance can be regulated by changes in membrane potential. Of 

note, the α-subunit is accompanied by two auxiliary β subunits (β1 and β2, not 

shown) that importantly modulate the channel’s function, increasing its 

conductance, altering its gating properties, or even altering the membrane’s 

capacitance21,32. However these are not fundamental to the channel’s main 

function, 

2.2.2 The action potential 

 

Figure 5. Time course of the major membrane currents that contribute to 

the time course of the action potential. Top panel illustrates the time course 

of the action potential during one beat. The remaining panels show the 

approximate time course of the major currents that contribute to it. 

Depolarizing currents are negative by convention. The area under the curve of 

every current has been filled for the sake of clarity. Currents are not to scale. 

During a heartbeat, cardiomyocytes contract synchronously owing to a cycle 

of depolarization and repolarization of their membrane, a process known as the 

action potential (AP). By convention, the internal portion of the membrane is 

negatively charged at resting state, which can be assessed by a pair of 
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microelectrodes, one of them being inserted in the cardiomyocyte’s cytoplasm 

and the other one being in the external medium. 

Figure 5 illustrates the time course of an action potential during one heartbeat, 

along with the time courses of the main currents that take part in its formation. 

There are five phases to the action potential, starting with phase 4, where the 

cell is in equilibrium and the membrane potential stays around -80 to -90 mV. 

This is due to the presence IK1, which are partially compensated by the sodium 

background current, and maintained by the potassium and sodium gradients 

generated by INaK.  

Phase 0 is mainly driven by INaf. A small depolarization of the membrane is 

enough to trigger the opening of the sodium channels, enabling sodium ions to 

rush into the cell due to concentration gradient that exists between the 

intracellular and extracellular mediums. This further elevates the membrane 

potential, causing the opening of more sodium channels. Through this positive 

feedback loop, all sodium channels quickly open culminating in an extremely 

fast (around 2 ms) depolarization of the membrane to positive potentials. Then, 

the channels quickly close taking the depolarization to an end. Phase 1 starts 

with a small repolarization due to Ito activation, an outward current which 

partially counters the effects of INaf. While its peak is strong during this phase, 

Ito will inactivate after around 100 ms. Phase 2, also called the plateau phase, 

is by far the longest phase in cardiac ventricular cells, lasting around 200 to 

400 ms. It is characterized by the opening of calcium and sodium channels,  

(ICaL and INaL) and their depolarizing effects are compensated by the 

repolarizing effects of the potassium rectifier currents IKr and IKs
33. 

Consequently, the membrane potential stays quite stable during this phase, a 

feature that is necessary to ensure a proper contraction of the cell. Like other 

muscle cells, ventricular cells need calcium in the sarcoplasmic reticulum to 

be released through the RyR channels. In resting conditions, there is almost no 

calcium in the myoplasm due to the activity of the SERCA pump (Jup), which 

brings it all into the sarcoplasmic reticulum, but, as ICaL activates, a calcium 

induced-calcium release mechanism floods the cell with calcium, multiplying 

its concentration by a thousand times34, which triggers the contraction of 

muscle fibers by exposing the actin-myosin binding site. Finally, phase 3 

consists of a repolarization mainly driven by the potassium rectifier currents 

(IKr and IKs), now supported by the activation of IK1 and the inactivation of ICaL, 

bringing the membrane potential to its initial resting state33 and allowing the 

calcium to be imported to the sarcoplasmic reticulum in preparation for the 

next contraction. 
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An important property that is directly inherited from the sodium channel 

dynamics is refractoriness. An action potential can be triggered by an increase 

in membrane potential due to current injection (stimulus). However, the action 

potential cannot be triggered at any moment. There is an absolute refractory 

time window that begins after the start of an action potential and ends during 

late phase 2 where no new action potential will result from a stimulus. A 

relative refractory period consists of an additional time frame where action 

potentials can be triggered, albeit in response to stimulus of greater amplitude. 

 

Figure 6. Graphical representation of the main biomarkers used to 

characterize the action potential. 

Biomarkers that are typically used to characterize the action potential’s 

morphology include the resting membrane potential (RMP), action potential 

duration (APD), action potential amplitude (APA), upstroke velocity (max 

dV/dt) and triangulation (see Figure 6). The most common measurement of 

APD is the one that is registered at 90% repolarization of the membrane 

voltage (APD90), but this value can be assessed for any percent repolarization. 

In fact, triangulation can be calculating by subtracting the APD50 to the APD90 

values. 

The action potential time course is heavily dependent on pacing frequency (in 

Hertz) and its inverse value, the basic cycle length (BCL) which is the time 

interval in milliseconds between two consecutive stimuli. The former is a 
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measure of the number of stimuli that are applied in one second, while the latter 

indicates the time interval between stimuli. The electrophysiological 

differences between tissue types play an important role both during healthy 

and altered cardiac function.  

 

Figure 7. Action potentials from selected cells of the canine ventricular 

wall. Left panel symbolizes the ventricular wall and dashed lines represent the 

limits of the regions, whose exact position varies considerably between species, 

individuals, and preparations. The right panel was modified from Sicouri and 

Antzelevitch35, and shows superimposed action potentials recorded at several 

BCLs from cells belonging to the indicated regions. 

Figure 7 depicts the main features of representative action potentials from three 

cell types at several pacing rates. The left panel represents a transmural section 

of the ventricle where the main electrophysiological regions are delimited by 

dashed lines. Sample action potentials from epicardial (Epi), midmyocardial 

(M region) and endocardial (Endo) cells have been represented in the right 

panel at several BCLs. Colors remind of the interconnected properties of the 

cardiac tissue and show that the action potentials usually transition gradually 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

47 

 

from one end to the other of the ventricular wall. The action potential duration 

is the first prominent difference that can be observed. Epicardial cells show the 

shortest action potentials, followed by endocardial and midmyocardial cells, 

which show the longest. These arise from changes in current densities as, for 

example, midmyocardial cells show a very small IKs and a larger INaL of almost 

twice that of the epicardial cells24. The presence of a notch following phase 0 

(depolarization), also called spike-and-dome-morphology, which arises from 

the presence of a larger Ito that contributes to the phase 1 repolarization (see 

2.2.124), is characteristic of the midmyocardial and endocardial, but not 

epicardial, cells. The APD rate adaptation shows also differences between cell 

types, consisting of steeper curves in Purkinje and midmyocardial cells 

compared to endocardial and epicardial cells36, as depicted by the greater AP 

differences in midmyocardial cells in Figure 7. 

In healthy conditions, the midmyocardium would largely contribute to the 

cardiac contraction strength37, followed by the endocardium and epicardium, 

while Purkinje cells are specifically in charge of stimulus conduction and 

delivery to strategic locations in the endocardium. As mentioned in 2.2.1, the 

electrophysiological differences of the cells get softened by the 

electrochemical coupling between cells in the cardiac tissue, averaging the 

APD differences23, so much that sometimes it is difficult to identify the cells 

directly on the cardiac tissue as we reviewed in 2.2. 

2.2.3 The electrocardiogram 

In previous section we explored the evolution of the membrane voltage that 

cardiomyocytes experience during the action potential. While small, these 

fluctuations in voltage can add up to create an important voltage difference 

between adjacent regions in the heart. The depolarization wave propagation 

generates a dipole that induces a variable electric field through the human body. 

This dipole can be measured by connecting a pair of electrodes to the skin. 

However, the cardiac vector, whose direction gets determined by the position 

of the negative and positive charges, may not be aligned with the position of 

the electrodes, which is usually the case. Therefore, measured potential 

differences are a projection of the real cardiac vector on the imaginary vector 

formed by the electrodes. Consequently, a need to define standardized 

positions for electrodes appeared. Nine standard positions were defined by 

1938 (I, II, III, V1, V2, V3, V4, V5 and V6). Three unipolar leads (aVR, aVL, 

aVF) were included later adding up to a total of twelve measuring locations 

which form the current electrocardiogram (ECG). 

 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

48 

 

 

Figure 8. Time course of the typical ECG in humans. Illustration of a typical 

lead II electrocardiogram. Note that the time course of the electric field is 

substantially different between derivations. 

Figure 8 shows a typical ECG time course. Briefly, there are up to 5 common 

waves. The first, P, is a small wave corresponding to the depolarization of the 

atria. It is followed by a triple wave complex starting with a small decrement 

(Q wave) that precedes a fast peak that swings up (R wave) and then down to 

another slightly greater depression (S wave) that goes back to the resting value. 

The latter is called the QRS complex and corresponds to the depolarization of 

the ventricles, although it might not always show as a triplet. The left ventricle 

is responsible for a major part of this complex because of its greater size. The 

interval between the P and Q waves gives information about conduction 

through the auriculoventricular node and widening of the QRS complex is 

usually related to ventricles that take longer to depolarize, indicating a 

reduction in conduction speed in the cardiac tissue. A short inactive period 

corresponding to the plateau phase of the action potentials in the tissue is then 

followed by a wide, albeit low, wave matching the repolarization of the 

ventricles (the T wave). Atrial repolarization happens during the QRS complex. 

However, due to the greater amplitude of the signals coming from ventricular 

repolarization, it cannot be observed. The QT segment, or QT interval, is 

defined as the interval between the beginning of the Q wave and the end of the 

T wave and is related to the time it takes for the ventricles to perform an entire 

depolarization-repolarization cycle. The R to R interval can be used to assess 

heart rate. Many cardiovascular diseases can be detected by monitoring the 

ECG of a patient, such as myocardial infarction, hypertension, ischemia, or 

myocardial neuropathy, due to the alterations they provoke on ECG 

parameters38,39.  
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2.3 Cardiac Disease 

Cardiovascular disease remains the most prevalent disease worldwide with 

more than 150 million people suffering from it40, claiming approximately the 

same number of lives as cancer. In US alone, the estimated heart disease cost 

only in 2008 was of 448 billion USD. Due to the mechanical nature of the heart, 

cardiac disease is complex and multifaceted41, as electrophysiological 

alterations can produce cardiac dysfunction without leaving visible 

modifications of the tissue.  

2.3.1 Cardiac structural disease 

Heart disease shows in a variety of causes that can lead to arrhythmia or heart 

failure. Obesity is tightly related to coronary artery disease, which is a 

consequence of atherosclerosis, a condition where vascular lesions get 

progressively thickened when a combination of lipid absorption, cell division 

and leukocyte aggregation tries to repair the damage42,43. These lesions are 

especially dangerous in essential vascular regions such as coronary arteries, 

which irrigate the cardiac tissue itself. Eventually, plaque detachment, 

coronary spasm, or even during a sudden effort requirement, blood flow can 

be severely restricted preventing the ventricular tissue from getting oxygen, 

consequently provoking angina and, in prolonged episodes, myocardial 

infarction44. 

Reactivation of the blood flow can mitigate the damage to the tissue to a certain 

degree, although the characteristics of the affected area can never be recovered. 

The stiffness of the tissue that grows to heal the damage, combined with its 

reduced electrical conduction properties, represents a continuous lag to the 

cardiac function. The ventricle tends to dilate and remodel to compensate for 

the lack of contractile power. Remodeling of the cardiac tissue is caused by 

increased stress with constant cellular death and regeneration, and leads to 

reordering, hypertrophy and elongation of the cardiomyocytes, accumulation 

of inflammatory molecules and increased interstitial fibrosis induction, among 

others. These changes are beneficial for the heart’s function. However, the 

scar’s fibroblasts couple to healthy cardiomyocytes leading to deeper 

alterations of their electrophysiological properties45,46. Therefore, cardiac 

structural disease, consisting of presence of scar tissue and cardiac remodeling, 

represents a perfect substrate for arrhythmia to trigger.  

2.3.2 Long QT syndrome (LQTS) 

LQTS patients show characteristic elongated QT segments of the ECG not 

related to structural cardiac defects. The causes of this elongation lie in 
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electrical abnormalities of the cardiac electrophysiology, which can be caused 

by mutations or external factors such as ion channel blocking drugs. Elongated 

QT segments have been linked to arrhythmia (see 2.4), which is why health 

institutions, researchers, regulators, and pharmaceuticals have shown great 

interest in developing methods for the early detection of drugs capable of 

inducing LQTS, as well as treatments for this condition. Detailed information 

necessary to understand relevant aspects of the LQTS from the drug safety 

perspective can be found in Chapter 2, and from the drug efficacy perspective 

in Chapter 3 of this PhD thesis. 

2.4 Arrhythmia and Torsade-de-pointes 

Arrhythmias are altered heart rates originated in an abnormal electrical 

behavior in the heart. They have been classified in tachyarrhythmias and 

bradyarrhythmias according to heart rate. The former is diagnosed when the 

patient heart reaches more than 100 beats per minute and the latter with less 

than 60 beats per minute. According to the anatomical and electrophysiological 

barrier that exists between atria and ventricles, arrhythmias that develop in the 

atria are classified as supraventricular while the rest are ventricular. 

Tachyarrhythmias can start from the development of electrical activity in an 

abnormal region of the cardiac tissue. If correctly timed, this ectopic activity 

can trigger the conduction of the electric signal in a non-physiological, even 

inverse, path that could confront the normal depolarization wave. This could 

lead, for example, to extra beats, ventricular contractions that are reflected in 

QRS complexes in the ECG that are not preceded by a P wave (which is 

produced by the atrial depolarization), but also to sustained tachyarrhythmias, 

which involve perpetuation of the abnormal depolarization of the heart by 

completely overriding the sinoatrial signal. One of the possible explanations 

behind atrial fibrillation is the existence of rotating depolarizing fronts – rotors 

for short – that can be triggered by ectopic activity, or circulation of the signal 

around fibrotic anatomical structures such as veins, arteries, or scars. Torsade-

de-pointes (TdP) is a particularly dangerous polymorphic ventricular 

tachyarrhythmia characterized by a series of QRS complexes that appear to 

twist around the electrical baseline. Its subjacent mechanism is still not well 

understood but, among its causes, it has strongly been associated to prolonged 

QT segments in the ECG which can lead to early after depolarizations and/or 

delayed after depolarizations39,47–49. These can be induced by some drugs, 

particularly antiarrhythmic drugs, but also by inherited electrical abnormalities 

in the cardiac conduction system caused by gene mutations. The following 

phenomena are known to take part in the initiation of arrhythmias: 
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• EADs, or early after depolarizations, are premature depolarizations 

that occur during the repolarization phase. In normal conditions, 

sodium channels recover from refractoriness not long after the 

potential reaches its resting membrane value. Delayed repolarization 

involves a membrane potential that stays at a higher value during 

abnormally long durations, extending the plateau phase of the AP. 

Under these conditions, sodium channels could reopen as they 

recover towards the end of this phase, triggering new depolarizations. 

Drugs or mutations can induce delays in repolarization by reducing 

the amplitude of repolarizing currents such as IKr
48,50 or increasing 

depolarizing current such as INaL51,52. These sudden depolarizations 

can propagate through the cardiac tissue, a phenomenon that is called 

triggered activity39,47. 

• DADs, or delayed after depolarizations, are abnormal depolarizations 

similar to EADs but are triggered by completely different 

mechanisms. DADs typically result from sudden calcium release 

events from the sarcoplasmic reticulum in conditions of calcium 

overload promoted by increased APD90 or QT39,47 intervals. Since 

DADs occur after a complete repolarization, they can trigger a new 

action potential provided they reach the depolarization threshold, 

which can also propagate through the cardiac tissue. 

• Conduction slowness: drugs that block INaf, the fast component of the 

sodium current, not only reduce the upstroke velocity but also the 

conduction velocity, the speed at which the depolarization wave front 

propagates through the tissue, which can lead to arrhythmia as 

revealed by the CAST trial53. This is particularly dangerous in cardiac 

structural disease (scars), where functional and electrophysiological 

properties of the affected zone differ from the surrounding tissue. 

Scars themselves provide conduction slowness in the interface 

between healthy and fibrotic tissue (the border zone). They also may 

generate channels of slow conduction at their core consisting of 

surviving cardiomyocyte bundles, which creates the perfect substrate 

for arrhythmia54. When the wave front leaves the slow conduction 

area, it may enter a recently repolarized tissue ready for a new 

depolarization. This represents the origin of abnormal propagation, 

which can perpetuate itself by circulating through or around the scar 

again. 
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2.5 Antiarrhythmic therapy 

The goal of dispensing drugs to patients suffering arrhythmias is naturally to 

terminate the arrhythmic activity while preventing the appearance of new 

episodes. Unfortunately, antiarrhythmics are known to be both the solution and 

the cause of arrhythmias. Antiarrhythmic drugs interact with ion channels, 

either enhancing or reducing their permeability (conductance) to ions, which 

in-turn produces changes in the time course of the action potential. This could 

potentially counter the alterations caused by subjacent abnormalities. However, 

it may as well induce electrical abnormalities by prolonging the APD90 and 

thus promoting EAD formation as we reviewed in a previous section. 

Antiarrhythmics have been assigned a class from I to IV according to the 

Vaughan Williams classification55, which is based on the molecular target of 

the drug. The fact that there are numerous drugs that target multiple channels 

constitutes the reason why there have been many attempts at creating other 

classifications, however the most widely used is the abovementioned one. 

Briefly, Vaughan Williams classes include sodium channel blockers in class I 

(with sub-classes a, b and c), beta adrenoreceptor blockers in class II, APD 

prolongers in class III and calcium channel blockers in class IV. 

2.5.1 Class I: sodium channel blockers. 

Sodium channel blockers can affect the fast or the late component of the 

sodium current. Class Ia drugs include compounds that block INaf and therefore 

reduce the upstroke velocity of the action potential’s phase 0, reducing 

conduction velocity in the cardiac tissue. At the same time, they show affinity 

for IKr channels thus reducing repolarization and prolonging the APD, which 

induces a QT segment prolongation. Examples of class Ia drugs include 

disopyramide and quinidine. Class Ib comprises drugs that have a minimal 

effect on phase 0 and instead shorten the APD by means of INaL block, although 

high doses can produce INaf block-like side effects. Mexiletine and lidocaine 

are examples of these compounds. Class Ic contains drugs that show no effect 

on APD and strong effect on phase 0 of the action potential characterized by 

very slow dissociation dynamics, greatly reducing conduction velocity. 

Among the examples of these drugs, flecainide and encainide can be found. 

2.5.2 Class II: β-blockers 

β-stimulation increases ICaL, calcium concentration in the sarcoplasmic 

reticulum, the magnitude of repolarizing potassium currents and the pacemaker 

activity in the cardiac tissue in order to shorten the APD while increasing 

contraction strength and heart rate. β-stimulation is associated to stressful 
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situations. Therefore, blocking β-receptors reduces heart rate, which leads to 

reduced oxygen demand during angina and prevents arrhythmia in some forms 

of the LQTS owing to less calcium overload of the sarcoplasmic reticulum, 

which reduces DAD generation. Some examples of these drugs include nadolol, 

sotalol and the widely used propranolol. Interestingly, the latter shows sodium 

channel block to some extent at high doses39. 

2.5.3 Class III: action potential prolongers. 

Drugs belonging to this group generally display blocking effects on 

repolarizing potassium currents, such as IKr or IKs. The resulting prolongation 

of the APD and the QT segment can be antiarrhythmic by increasing 

refractoriness and therefore stopping the reentry of the wave front.  Examples 

of pure potassium current blockers include dofetilide and ibutilide, while 

multi-channel blockers, such as amiodarone, dronedarone and quinidine, are 

also available. Sotalol has also shown β-blocker effects39. Recently, IKr block 

has been identified in many drugs that are not related to cardiac treatment, such 

as antimicrobial agents, antihistamines, antipsychotics, and others56. Since 

prolongation of the QT is also a surrogate biomarker for Torsade-de-pointes48, 

these drugs are usually classified as dangerous57. 

2.5.4 Class IV: calcium channel blockers. 

The effects of calcium channel blockers mainly rely on slowing heart rate, 

which are key to the nodal tissues. Reentrant arrhythmias that include the 

auriculoventricular node can be stopped using calcium these drugs. Ventricular 

arrhythmias initiated through triggered activity by DADs can be prevented as 

well39. Calcium currents are responsible for maintaining the action potential 

plateau (see Figure 5), therefore their block can contribute to reducing the APD. 

In fact, the apparent safety of some drugs that exert a strong block of potassium 

channels such as Verapamil could be explained by calcium channel block58. 

Other examples of drugs in this category include nifedipine, nitrendipine and 

diltiazem. 

2.6 Modeling the cardiac electrophysiology 

2.6.1 An introduction to cardiac modeling 

Models are powerful tools in science that can provide useful information about 

the system they reproduce. They can be used to study and predict outcomes in 

many fields of knowledge, from weather forecast to airplane design. Models 

have indeed been able to predict the existence of phenomena before being 

experimentally observed, such is the case of the discovery of wave reentry in 
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cardiac tissue, which was first shown computationally59 to later be found 

experimentally60. This is a formidable example of a great understanding of the 

principles that were modeled that proves the ability of computational models 

to provide insight into unknown mechanisms. 

The modeler might approach the creation of a new model from several points 

of view depending on his needs. Statistical models are those that only seek to 

reproduce a phenomenon at a high level without delving into its subjacent 

properties, therefore their behavior is often compared to a black box. They need 

to be trained with datasets and seek to capture the trends of the data. The 

contrary of a top-down approach like the latter is a bottom-up approach, where 

the model seeks to study most basic units of a phenomenon to reproduce more 

macroscopic behaviors derived from them. These models are called 

mechanistic models and are optimized to reproduce certain dynamics with 

precision instead of relying on big datasets. One solution seeks to reduce 

complexity while the other seeks precision. In the end, all models have a 

combination of both approaches since they can be mechanistic at one level and 

black-box at another61. This is the case of most cardiac action potential models, 

where the ion currents combine to generate the action potential time course 

while the description of the current gates itself is statistic. 

Electrophysiological models of the cardiac activity span multiple scales, from 

the ion channel to the whole body, including cell, tissue, and organ descriptions. 

One would think that switching scales would add-up an exponentially 

increasing amount of error from one level to the next. However, the field has 

matured enough that studies at the ion channel level can explain alterations at 

the body level, as demonstrated, for example, by Sadrieh and coworkers62. 

Consequently, cardiac electrophysiology modeling has proven its usefulness 

in many areas. It has been exceptionally successful in drug development63 

owing to the constantly increasing richness of its heritage64. In fact, the recent 

trend in safety pharmacology has acknowledged the need to create reliable 

models of the cardiac electrophysiology to test drug cardiotoxicity as an 

integral part of the drug development, and efforts are currently being made to 

refine them even more17. A number of projects have already elaborated their 

own biomarkers to try and assess the risk of cardiac arrythmias based on 

different parameters48,58,65–68 with varied yet positive results. Beattie and 

coworkers69 went further and included quantitative structure-activity 

relationship (QSAR) data to the mix, aiming to predicting the effect of a drug 

on an ion channel from its proteic and atomic structure. The ultimate goal of 

these tools is to assess the risk of arrhythmia of new compounds to reduce loss 

during drug development. 
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Cardiac electrophysiology models have shown success in other areas. A recent 

work from Martinez-Mateu and coworkers22 showed using simulations the 

existence of phantom rotors in signal acquisition with atrial basket catheters, 

which could be hampering the determination of ablation procedures. On that 

note, a promising initiative seeks to help physicians to establish the minimal 

number and precise locations of the necessary ablations that can cancel atrial 

arrhythmias. For that matter, Boyle and coworkers70 created personalized 

models of patients’ hearts (through advanced imaging and segmentation) to 

simulate their specific atrial fibrillation. They determined the best locations for 

ablation and performed the interventions which resulted in no patient suffering 

from fibrillation again. This technology, despite being a proof-of-concept, 

shows the potential of cardiac electrophysiology models applied directly to 

human health.  

2.6.2 Ion channel models 

Ion channels compose the basis of all cardiac models. The combination of their 

dynamics leads to the formation of the action potential, the main driver of the 

cardiac contraction. Therefore, they are crucial during cardiac model 

development. In this section, the main mathematical descriptions that enable 

reproduction of ion currents, namely, the Hodgkin-Huxley and Markov chain 

formalisms, will be discussed in detail. 

2.6.2.1 Hodgkin-Huxley formalism 

The results of works from Hodgkin and Huxley in 195271 on the squid’s giant 

axon paved the way for the scientific community and are still being used 

today72. In this section, we will be reviewing the most important conclusions 

of their work, which revolutionized the way of approaching ion channel and 

cell electrophysiology modeling. The Hodgkin-Huxley formalism considers 

the cell membrane and its ion channels as a simplified electronic circuit as 

described in Figure 9. 
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Figure 9. Electrical circuit representing the cellular membrane of a 

cardiomyocyte in the Hodgkin-Huxley formalism. The membrane possesses 

a capacitance (CM). Currents (I) can flow from one side to the other through 

channels represented as a generator (symbolizing the reversal potential) in 

series with a variable resistance (R), whose value depends on the membrane 

voltage (E), which is determined by ion concentrations on both sides of the 

membrane. Subscript indices specify the ion (K, Na, …, i). Figure modified 

from Hodgkin and Huxley (1952)71. 

CM represents the membrane capacitance, Ei represents the reversal potential 

(or the tendency to cross the membrane) of a particular ion “i” (K+, Na+ or 

Ca2+), and E represents the membrane potential. Every ion channel is included 

in the circuit as a variable resistor whose conductance “g” depends on E. 

Deduced from the Ohm’s law, the current that flows through the whole 

membrane can be calculated as the addition of all currents that flow through 

each resistor across the membrane (see Eq. 1). 

 𝑰 = 𝑪𝒎 ·
𝒅𝑽

𝒅𝒕
+ ∑ 𝑮𝒊 · (𝑽𝒎 − 𝑬𝒊) 

Eq. 1 

 

The term 𝐺𝑖  represents the channel’s conductance, which depends on the 

channel’s gating properties. The membrane voltage was rewritten to Vm 

(previously named E) for the sake of clarity. Hodgkin and Huxley proposed a 

model where the channels would contain an appropriate number of 

independent gates, meaning their state does depend on other gates’ states. 
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 𝑚

𝛼
←

𝛽
→ (1 − 𝑚) 

Eq. 2 

The above model represents the two possible states of a gate “m”, either open 

(𝑚)  or closed (1 − 𝑚) . Switching between those states is governed by 

transition rates α (from the closed to the open state) and β (from the open to 

the closed state). Therefore, over time, the increment of the open state 

proportion can be written as 

 
𝑑𝑚

𝑑𝑡
= 𝛼 · (1 − 𝑚)– 𝛽 · 𝑚 

Eq. 3 

where α and β are voltage dependent. This equation can be rewritten as 

 
𝑑𝑚

𝑑𝑡
=

𝑚
∞

–  𝑚

𝜏
 

Eq. 4 

Where  

 
𝑚
∞

=
𝛼

𝛼 + 𝛽
=

1

1 +
𝛽
𝛼

 

Eq. 5 

And  

 𝜏 =
1

𝛼 + 𝛽
 

Eq. 6 

From solving these equations, it can be deduced that, at any time t, 

 𝑚(𝑡) =  𝑚
∞

+  (𝑚0– 𝑚
∞

) · 𝑒−
𝑡
𝜏 

Eq. 7 

In a channel population, the proportion of gates in the m state at time t (𝑚𝑡) 

depends on the initial condition (𝑚0) and tends exponentially to the steady-

state (𝑚∞) at a rate determined by the voltage dependent variable τ. A similar 

approach can be used for inactivation gates. 
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Figure 10. Manual whole-cell patch-clamp layout. The HEK293 cell 

transfected with the ion channel of interest is placed on a glass slide and its 

membrane sucked with a glass pipette to punch a hole in it after reaching giga 

seal conditions. External solution is constantly flowing in the sense of the red 

arrows. An electrode is placed inside the glass pipette for the internal medium 

while another electrode is placed in the extracellular medium. Both can be used 

to apply voltage and measure currents. 

This formulation was used by Hodgkin and Huxley to optimally describe the 

potassium and sodium currents behaviors under controlled membrane 

potentials of a giant squid axon. This method is commonly known as voltage-

clamp. It represents the most powerful technique to study ion channels and 

their dynamics. This is because of the ability to control the membrane potential 

of a cell, which is central to obtaining reliable results. Although there are many 

voltage-clamp versions73, by far the most used configuration is the whole-cell 

patch-clamp74. 

As depicted by Figure 10, cells are carefully placed in a container filled with a 

solution of known ionic composition (external solution) where a 

microelectrode is also submerged. Then, a glass micropipette containing a 

solution that is similar to the cell’s cytoplasm is carefully put in contact with 

the cell’s membrane. Next, negative pressure is applied inside the pipette until 

it forms a very tight junction with the cell’s membrane (a gigaseal). Finally, 

the membrane is slightly sucked into the pipette until it breaks, completing the 

whole-cell patch-clamp configuration. Here, the microelectrodes are in contact 

with two different milieus, the internal and the external solutions, separated by 

the cell’s membrane, which contains the ion channel that is being studied74.  
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To illustrate the procedures that are used and the results that can be obtained 

from whole-cell patch-clamp experiments, we will take on the example of the 

sodium channel. 

Several gating properties have been identified, including activation, fast 

inactivation, and slow inactivation31, key components of the sodium current’s 

fast component. Fast and slow recovery from inactivation have also been 

identified. They play a key role in the refractoriness of the cardiac tissue and 

amplitude of the late sodium current. Other works have revealed the existence 

of two additional operation modes including “bursting” and “late scattered 

openings”75,76, that are essential to the formation of the sodium current’s slow 

component. Here, we will explore the fast activation and the inactivation 

dynamics since they provide a foundation that will facilitate the explanation of 

other more complex dynamics. 

Activation and inactivation can be explained by the Hodgkin and Huxley 

formalism, who described activation as three “m” gates while inactivation was 

accurately described with only one “h” gate. Figure 11 represents the voltage 

dependent functions of 𝑚∞  and ℎ∞ , which are the steady state values of 

activation (panels B and D) and inactivation (panels A and C), respectively. To 

study sodium current dynamics, experimentalists apply a series of voltage 

commands to the cell’s membrane designed to test the time course of the 

elicited current, which changes as a function of not only the applied potential 

but also depending on the duration and sequence of the commands. Activation 

is assessed by applying a series of pulses at test potentials (panel B).  
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Figure 11. Representation of the activation and inactivation dynamics of 

INaf. Elicited current resulting of applying voltage steps to assess inactivation 

(A) and activation (B). Note that the two steps that are presented correspond to 

voltages that yield approximately 100% and 50% of the current. The red arrows 

indicate the point where the current would be measured (and normalized) in 

order to represent the corresponding red dots for the inactivation (C) and 

activation (D) curves. Insets in C and D illustrate the complete stimulation 

protocols that were used to obtain the curves. Panels C and D were adapted 

from Moreno and coworkers77. 

The channel activates quickly (within 2 ms), resulting in a peak sodium current 

provided an adequate voltage step is used. The closer the test potential is to the 

starting point, in this case the resting membrane potential, the lower the peak, 

until eventually no current can be registered. According to the Hodgkin-

Huxley formalism, at resting membrane potential, m gates are closed, and h 

gates are open, therefore no current can flow through the channels. When 

exposed to more positive potentials, m gates quickly open allowing the current 

to activate. Both m and h gates “feel” the change in membrane potential, but h 

gates exhibit a slower closing rate (reflected by a greater τ at such potentials), 

which creates enough time frame for the current to flow before inactivating. 

Maximum peak currents are plotted as a function of pulse potential (panel D) 

to estimate 𝑚∞ with a Boltzmann equation as the following 
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𝐼(𝑉) = 𝐺 · (𝑉𝑚 − 𝐸) ·
1

1 + 𝑒

𝑉1
2⁄ − 𝑉

𝑘

 

Boltzmann Eq. 

𝐼(𝑉) being the maximal current at voltage 𝑉, 𝐺 the maximal conductance of 

the channel, 𝐸 the sodium reverse potential, 𝑉1
2⁄  the half-activation voltage 

and 𝑘 the slope factor. Therefore, 𝑚∞ can be approximated by normalizing 

𝐼(𝑉) and dividing by (𝑉𝑚 − 𝐸). Note that the presence of three m gates in the 

sodium channel implies the observed conductance values are elevated by an 

exponent of 3. Hodgkin and Huxley determined the activation rate, τ, by testing 

which values gave the best fit to their results71. 

Inactivation is assessed by applying a series of pulses to variable test potentials 

for a fixed time that ensures steady state inactivation has been reached (panel 

A). Here, the current quickly activates and then inactivates according to the 

closing dynamics of the h gate (not shown). Then, a short 20 ms pulse to fixed 

high potentials of typically -10 mV is applied before going back to resting 

membrane potentials. The channels that inactivated during the first pulse 

cannot activate again during the second one, thus the current peak is the result 

of the channels that remain closed. The higher the voltage of the test pulse, the 

fewer the channels that are available for activation during the second pulse. 

Peak currents are then plotted as a function of test potentials and normalized 

to their maximum value to provide an approximation of the voltage dependent 

steady state inactivation (panel C), ℎ∞ , while τ can be estimated for the 

activation gate71. 

In this PhD thesis, most of the ion channel models we used follow the Hodgkin-

Huxley formalism. However, we also made use of Markov chain models for 

the sodium current because of their versatility towards reproducing complex 

dynamics. 

2.6.2.2 The Markov chain models 

Markov chain models, Markov models for short, first introduced in 1906 by 

Andrei Markov78, are a useful representations of biophysical dynamics 

including cardiac ion channels. They quantitatively describe a stochastic 

process through a set of discrete states, coupled with rates that determine the 

transition velocities between them. The simplest Markov model contains two 

states (open and closed) and two transition rates (α and β), which is nothing 

but the representation of a gate in the Hodgkin-Huxley formalism73,79,80. States 
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are usually representations of specific conformations of the proteins that build 

the ion channels. According to the Markov property, transitions happen 

depending only on the currently occupied state, which is a feature of biologic 

systems that cannot be accounted for in the Hodgkin-Huxley formalism. 

Like in the Hodgkin-Huxley formalism, Markov chain models of ion channels 

usually represent channel populations, therefore the addition of the occupancy 

probability of all states is 1. The system reaches steady state when the voltage 

is fixed during enough time so that the transition velocities between states 

equalize. The model has normally one or more open states representing the 

channel conformations that allow ions to flow through its pore. Channel 

conductance depends directly on the fraction of the channels that occupy these 

states. 

 

Figure 12. Representation of the Markov model of the SCN5A channel 

responsible for the INa current. Image obtained from Clancy and Rudy81. 

Markov models were required when more accurate representations of ion 

channels were necessary to explain the dynamics that Hodgkin-Huxley 

formulations could not. Study of the sodium channel revealed that its 

inactivation was faster in the open state82,83, which is contrary to the concept 

of independent gates. A more detailed model of the sodium channel dynamics 

was created by Clancy & Rudy81 to account for these new dynamics. In 2.2.1 

we reviewed the structure of the sodium channel and highlighted the presence 

of several domains connected by linkers that modulate the channel’s response 

to voltage changes. For example, each domain possesses a segment that 

functions as a voltage sensor which drives the channel’s activation84. The III-

IV linker appears to participate the fast inactivation of the current85 which can 

be stabilized by the C-terminus86, the final chain of the protein. These 

processes have been considered in the model structure (see Figure 12). 

To represent the cooperativeness of the activation process, three closed states 

(C1, C2 and C3) were included instead of representing each voltage sensor 

separately. The inactivated state IF was added to reproduce fast inactivation 
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dynamics by the III-IV linker. IF was also connected O to reproduce its 

dependence on the open state. Stabilization of the inactivated state was 

modeled by including the IM1 state. Deeper, slow inactivation was taken into 

account by adding the IM2 state. Finally, the two closed inactivated states (IC2 

and IC3) were included to represent the closed state inactivation. This model 

reproduces a fundamental property of the sodium channel, which is its rate 

dependence. While the states IM1 and IM2 remain almost unoccupied at slow 

rates, higher pacing rates shift the channel’s conformations towards inactive 

states due to spending more time at depolarized potentials. Inactive channels 

take longer to recover before another pulse reaches the cell, which can lock 

them in that state thus reducing the total amount of current that gets triggered 

during the depolarization. This has direct effects on other currents’ activations 

which plays an important role in the time course of the action potential and 

therefore in rate adaptation of the APD87, among others. Many subsequent 

works have modified and improved this sodium channel formulation over the 

following years77,88–91. 

2.6.3 Cardiomyocyte action potential models 

Cardiomyocyte modeling was first attempted in 196292. From that moment, the 

scientific community has witnessed an authentic burst in number and variety 

of cardiac electrophysiological models helping understand the multiple 

mechanisms that shape the heart’s function93. They have been developed from 

several species such as dog, guinea pig, rabbit, mouse, rat and, most 

importantly, human94. Some notable examples of the latter include the Ten-

Tusscher95, the Courtemanche-Ramirez-Nattel96 and, more recently, the 

Grandi-Bers97 and O’Hara-Rudy98 models.  

In 2.6.2.1, we introduced the cellular membrane and compared it to an 

electronic circuit with many variable resistors – the channels. We were able to 

do so by using the membrane capacity and the sum of all the currents that flow 

through the membrane. These concepts established the foundation for the 

action potential models. 

Action potential models integrate information from several sources, which 

include electrophysiology models of ion currents studied in cardiomyocytes, 

cardiac tissue and transfected cells, as well as compartmental models based on 

imaging information of the sub-cellular structures. The study of the cell’s 

individual components is sufficient to obtain an action potential model due to 

the multiscale nature of this modeling approach. The inherently modular nature 

of these models allows the reuse of some of its components. Consequently, 
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there are numerous examples of models combining ion currents whose data 

were obtained from different species73.  

Gates’ condition in the Hodgkin-Huxley formalism and state occupancy in the 

Markov chain model formalism depend on membrane potential. The 

complexity of these models makes it impossible to resolve their evolution over 

time analytically, but they can be approximated using differential equations. 

However, the larger the number of gates or states, the larger the number of 

differential equations that have to be solved to describe the behavior of an ion 

current. Markov chain models like the INa and IKs models we reviewed in 

2.6.2.2 are especially complicated for that reason. These mathematical 

problems are best solved numerically using ordinary differential equation 

(ODE) solvers provided in a wide variety of scientific software like Matlab 

(The MathWorks inc.), which we extensively used for the development of this 

PhD thesis. 

These programs work under the principle that using short time steps (dt) in a 

system of differential equations turns it into an uncoupled system99,100. The 

system can then be solved by calculating every differential equation one at a 

time. Every time step, model states are updated by adding the amount resulting 

of their increment over the selected time interval.  Of course, an initial set of 

states, which can be derived from the literature, must also be provided at the 

start of a simulation. An excessively large time step may trigger instabilities, 

whereby some states adopt incorrect values (for example, “not a number” or 

excessively large values) or fluctuate around a central value without ever 

stabilizing. Contrarily, excessively short time steps might delay the 

simulation’s completion. While the latter case is not incorrect, adopting a time 

step leading to satisfactory results in the shortest time possible is advisable. 

Utilization of variable time steps is a very effective way of reducing the 

computational time that a model takes to perform a simulation. The phases of 

the action potential subject to rapid increments, such as phases 1 and 2, should 

be calculated at shorter time steps, but other phases with softer variations in 

membrane potential can be calculated at longer time steps, reducing the total 

number of computations that must be performed to complete the simulation. 

2.6.4 Tissue models 

Naturally, the next step after generating single cardiomyocyte action potential 

models (also called 0D models) is to bind them in several configurations. In 

the cardiac tissue, cells are interconnected through intercalated discs 

containing gap junctions, which behave much like ion channels. The same way 

there is a driving force between the exterior and interior of a cell, a driving 
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force exists between two neighboring cells. Therefore, it is possible to calculate 

the current from one cell to the other by using the same expressions as for 

individual ion channels. Assuming that a cell at position n is surrounded by 

two cells (n-1 and n+1), the existing gap junctions enable two currents, which 

are modulated by the gap junction conductance (𝐺𝐺𝐴𝑃) as follows 

 

 𝐼𝑛,𝑛−1 = 𝐺𝐺𝐴𝑃 · (𝑉𝑛 − 𝑉𝑛−1) 
Eq. 8 

 𝐼𝑛,𝑛+1 = 𝐺𝐺𝐴𝑃 · (𝑉𝑛 − 𝑉𝑛+1) 
Eq. 9 

 

The membrane voltage increment over time of cell n can be calculated with the 

following equation 

 

 

𝑑𝑉𝑚,𝑐𝑒𝑙𝑙 𝑛

𝑑𝑡
=

𝐼𝐼𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚 + 𝐼𝑛,𝑛−1 + 𝐼𝑛,𝑛−1

𝐶𝑚

 
Eq. 10 

 

Where IIon represents the membrane currents and Istim a possible external 

stimulus current. Enabling coupling between cells implies that voltage 

differences between cells can now generate current flow. In fact, there is no 

need to stimulate all cells at the same time for a strand to be depolarized. 

Triggering a depolarization of one cell should trigger enough current in its 

neighbor to depolarize it as well in normal conditions, which is key to 

propagation. The gap junction conductance determines the delay between 

adjacent cell depolarizations. To calculate the conduction velocity, modelers 

identify this delay over a known distance, for example between a cell near the 

beginning and a cell near the end of a 1D strand (which is easier in models with 

homogeneously sized cells)101. 

To simulate a transmural section of the ventricular wall, strand models can be 

assigned layers of different cardiomyocytes. The configuration used by O’Hara 

and coworkers98 used a strand of 165 cylindrical cells with 60 endocardial, 45 

midmyocardial and 60 epicardial cells. Increase in dispersion of repolarization 

is one of the factors that affects arrhythmia generation (see 2.4), which can be 

simulated using these models. 
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Another parameter that can be calculated using a ventricular transmural strand 

is its pseudo-ECG. Works in the literature used a virtual electrode placed 2 cm 

form the epicardial end90,98,102, where the spatially weighted addition of the 

voltage gradient was determined101. 

 

 𝛷 =
𝛼2

4
· ∫(−∇𝑉) · [∇

1

𝑥 − 𝑥′
] 𝑑𝑥 

Eq. 11 

 

Where 𝛷  represents the unipolar potential of the electrode, α is the fiber’s 

radius and 𝑥 − 𝑥′is the distance from the electrode to any cell in the strand103. 

The resulting ECG does present a recognizable QRS complex and a T wave, 

but the P wave is generated by the atrial depolarization and therefore it cannot 

be present. Biomarkers as the pseudo-QT of the strand are useful in QT 

prolongation experiments, for example, under exposure to QT prolonging 

drugs. 

2.6.5 Channel-drug interaction models 

Channel-drug interactions are the core of arrhythmic and antiarrhythmic drugs, 

but they are far from the only mechanism. In this section, we will take on the 

main channel-drug interaction models that we used in this PhD thesis. 

Drugs can bind to a wide variety of molecules including ion channels. A drug 

that enhances the response level of its receptor, in this case an ion channel, is 

called an agonist. The opposite definition of an agonist applies to inverse 

agonists, whose effect reduces the response level of their target. Finally, 

antagonists are drugs that bind to the same location of an agonist but produce 

no effect, thus effectively reducing the response level of the ion channel. 

Antiarrhythmic drugs block ion channels, which means they are inverse 

agonists, as they reduce their activity by binding to their proteic structure and 

changing the stability of their conformations39.  

While binding to the channel does not guarantee an effect, quantifying the 

response of a drug through receptor occupancy makes the basis in the law of 

mass action. A number n of ligands L and a receptor R can bind at a rate k1, 

creating LnR, then dissociate at a rate k2, each depending on the amount of R, 

Ln and the complex LnR, as described by the following diagram39,104: 
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𝑅 + 𝐿𝑛

𝑘2
←

𝑘1
→ 𝐿𝑛𝑅  

 

At steady state, an equilibrium between both binding and unbinding velocities 

is attained. In that case, 

 

 [𝐿𝑛𝑅] · 𝑘2 = [𝑅][𝐿𝑛] · 𝑘1 
Eq. 12 

 

KA is defined as the equilibrium affinity constant: 

 

 𝐾𝐴 =
𝑘1

𝑘2

=
[𝐿𝑛𝑅]

[𝑅][𝐿𝑛]
 

Eq. 13 

Kd is defined as the equilibrium dissociation constant: 

 

 𝐾𝑑 =
𝑘2

𝑘1

=
[𝑅][𝐿𝑛]

[𝐿𝑛𝑅]
 

Eq. 14 

 

If R0 is the total number of receptors, 

 

 𝑅0 = [𝐿𝑛𝑅] + [𝑅] 
Eq. 15 

 

then it can be deduced that, for a number n of binding sites per receptor, 

 

 [𝐿𝑛𝑅] = [𝑅0] ·
[𝐿]𝑛

[𝐿]𝑛 + 𝐾𝐴
𝑛 = [𝑅0] ·

[𝐿]𝑛

[𝐿]𝑛 + 𝐾𝑑

 
Eq. 16 
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Where the concentration of LnR complexes depends on the total amount of 

receptors R0 (provided the number of ligands significantly exceeds the receptor 

concentration), the concentration of free ligands L, and the rates of dissociation 

and association k1 and k2. The number of binding sites (n) is also known as the 

Hill factor and should be considered a measure of molecularity and 

cooperativity. KA describes the affinity of the ligand for the receptor. In the 

context of the agonist drug, previous equations can be reformulated to describe 

its characteristic concentration response curves as follows. 

 

 𝐸 = 𝐸𝑚𝑎𝑥 ·
𝐶𝑛

𝐶𝑛 + 𝐸𝐶50
𝑛  

Eq. 17 

 

This expression shows that the response to a concentration C of the agonist 

depends on the maximal response Emax and the half-maximal effect 

concentrations EC50. The classical dose-response curves that can be described 

with this equation are depicted by Figure 13. 

 

 

Figure 13. Typical response curves as a function of drug A concentrations. 

The dose-response curve shows a hyperbolic saturable dependence on 

concentrations of drug A, where the authors assigned 100% to Emax and an 

arbitrary value to EC50. The shape of the curve turns into a sigmoid when 

represented in a semilogarithmic graph in panel B. Figure from Goodman and 

Gilman39. 

Eq. 17 can also be written as 

 
𝐸 = 𝐸𝑚𝑎𝑥 ·

1

1 + (
𝐸𝐶50

𝐶
)

𝑛 

Eq. 18 
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Antiarrhythmic drugs usually decrease the activity of an ion channel, therefore 

acting as inverse agonists. Their effects can be described with half-maximal 

inhibition concentrations (IC50) instead of EC50 with the following equation. 

 

 
𝐺 = 𝐺𝑚𝑎𝑥 ·

1

1 + (
𝐶

𝐼𝐶50
)

𝐻 

Eq. 19 

 

Where G, the conductance of an ion channel, depends on its maximal 

conductance (Gmax), the concentrations of the drug (c), the half-maximal 

inhibitory concentration (IC50) and H, the Hill coefficient (previously named 

n). This mathematical formula has been widely used to experimentally 

characterize drug effects on ion channel conductances, which has led to a 

widespread use in drug-channel modeling58,65,66,69,90,91,105–108. 

The Hill formalism is not the only description of the channel-drug interaction. 

In fact, as previously explored in 2.6.2.2, Markov chain models describe the 

ion channel dynamics in great detail and can also be extended to reproduce the 

effects of drugs on ion currents. This is done by  including discrete states 

corresponding to drug-bound conformations of the channel41. Markov models 

have been widely used to describe channel-drug interactions77,89–91,106,107,109,110. 
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Chapter 3. Development of an in-

silico TdP biomarker for early 

proarrhythmicity detection 

 

Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., et al. 

(2018). In Silico QT and APD prolongation assay for early screening of drug-

induced proarrhythmic risk. J. Chem. Inf. Model. 58, 867–878. 

doi:10.1021/acs.jcim.7b00440.  

Romero L. and Cano J. contributed equally to the development of this work. 
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3.1 Introduction 

Ever since Torsade-de-Pointes (TdP) generation was found to be related to 

prolongations on the QT interval resulting from IKr block39,48,49, this has been 

the main reason for drug withdrawal from 1990 to 2006111. Antiarrhythmic 

drugs can successfully prevent the incidence of lethal arrhythmias, but they 

can also be their cause. For example, amiodarone has shown great success 

treating atrial fibrillation and ventricular tachycardia prophylaxis112, but it has 

also shown a high proarrhythmic potential113. It was attributed to its important 

off-target block of the key repolarizing IKr current51 and marked QT interval 

prolongation39. There is a rising concern about proarrhythmic effects114 since 

they are not restricted to antiarrhythmic compounds but span many drug types 

including antibiotics, antipsychotics and antihistamines56. This represents 

additional challenges in the drug development cycle. New compounds already 

take on average thirteen years to complete the required research and testing115, 

during which the companies can spend anywhere from 50 to 2000 million 

dollars116. Current guidelines14,15 expanded the required tests by including two 

new assays in order to test for proarrhythmic effects. The first is the hERG/IKr 

block assay, where the drug should not significantly reduce the IKr amplitude. 

Drug developers have commonly referred to an IC50 1 µM as the lowest 

acceptable value. The second is the “thorough QT/QTc study”, where the QT 

segment of healthy subjects under exposure to the new compound should not 

increase more than 5-10 ms compared to control conditions. A positive result 

in these assays could lead to removal of the compound from the development 

pipeline completely. To prevent drugs from being removed later in the 

development process, the industry routinely performs preclinical assays to 

assess APD prolongation or IKr block117,118, thanks to which pharmaceutical 

companies can decide to preventively stop the compound’s development in 

early phases an avoid unnecessary losses102.  

The current guidelines have successfully led to no drug-induced TdP among 

new drugs118. However, while this demonstrates that the assays that were 

proposed are sensitive, they have also shown poor specificity towards 

identifying TdP causing drugs16. First, the hERG channel (responsible for IKr) 

shows to bind to numerous structures. For that reason, its channel-drug 

interactions have been described as “promiscuous”119–122. In fact, up to 70% of 

the new compounds could block IKr
123. Second, some drugs that strongly 

interact with it are paradoxically safe and have never produced Torsade-de-

pointes, such as verapamil48,65 or propafenone65. In fact, these drugs have 

shown block of other ion channels such as ICaL or INa
58,65,66,124, suggesting that 
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other ion currents could modulate or even counteract the effects of IKr block. 

Third, the thorough QT/QTc cannot identify the cases where the prolongation 

arises from interaction with channels other than hERG. Consequently, current 

guidelines have prevented many potentially beneficial drugs from reaching the 

market125,126. 

The Comprehensive in vitro-in vivo Proarrhythmia Assay (CiPA) 

acknowledged these challenges and is currently developing a new paradigm 

for drug testing during development17. Their approach is based on the 

understanding of the fundamental mechanisms that drive the cardiac 

electrophysiology, which are rooted in the study of the ion channels.  They 

proposed a list of “components” designed to evaluate the drug’s effect on 

human cardiac ion channels and stem cell derived cardiomyocytes, together 

with more traditional clinical trials. Importantly, the CiPA project included an 

in-silico component aiming to develop a reference model to assess the 

compounds’ effects on the cardiac electrophysiology using data from the in 

vitro tests, which highlights the importance of in silico modeling in modern 

TdP prediction. The proposed reference drug classification was the one from 

the Arizona Center for Education and Research on Therapeutics (AZCERT) 

website, today known as Crediblemeds (www.crediblemeds.org). 

Several works in the scientific literature created biomarkers to attempt to 

predict drug TdP risk. A work that focused on the drug’s IKr block potency 

found that a 30-fold margin between the effective free therapeutic plasma 

concentration (EFTPC) and IKr IC50 would ensure an adequate degree of 

safety48, which highlights the importance of EFTPC. Mirams and coworkers65 

proposed a biomarker based on a linear discriminant analysis of the steady state 

APD90. They tested several in silico models for risk predictions based on a 5-

ms prolongation of the APD90 threshold for determining dangerous drugs. 

They found that the O’Hara-Rudy model of the human ventricular 

cardiomyocyte98 performed the best, albeit under exposure to 100-fold the 

maximum plasma concentration (Cmax). Kramer and coworkers58 tested 

several models including combinations of logarithmic differences between the 

IKr and other channel’s IC50s. They found that this value showed the best results 

when set between the ICaL and IKr IC50s, which underlined both the need for 

multi-channel block and the important role of ICaL in TdP prevention. A 

previous work from our group127 showed that classification of compounds 

could be improved by including their IKs block together with their IKr block.  

It is also relevant to mention more recent works from other authors that were 

published while the study of the present chapter was being performed. Passini 

and coworkers128 analyzed the occurrence of repolarization abnormalities in 
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populations of human AP models to create a classifier for TdP using a 62-

compound list. They also showed that their classifier could perform similarly, 

or even better than studies in animals. Dutta and coworkers107 found that 

combining the net charge flowing through six membrane ion channels during 

one beat (qNet) could correctly classify a list of 12 compounds in three 

different risk groups (low, intermediate and high). The authors validated the 

classifier with the 16-compound validation list from CiPA in a later work105. 

These results were obtained for concentration ranges from up to 25 times the 

free plasma concentration (called Cmax in their work). Parikh and coworkers 

developed classifiers for TdP risk stratification from direct features129. Abassi 

and colleagues also studied the early assessment of proarrhythmic risk of drugs 

using in vitro data and unicellular simulations. They reproduced the 

characteristics of the effects of drugs in AP duration and QT prolongation and 

TdP published 3D simulations, but with much smaller computational costs. 

3.1.1 Objectives 

To summarize, drug-induced arrhythmia represents a great challenge for 

companies, regulators, and patients. The abovementioned biomarkers were 

developed to answer the need to detect compounds with potential 

proarrhythmic effects and have shown good results. However, many of them 

rely on on-demand simulations with AP models, sometimes requiring several 

iterations or even populations of hundreds or even thousands of models. 

Additionally, the performance of QT intervals measured in tissue strand for the 

prediction of TdP potential has yet to be assessed. Therefore, to address this 

challenge, we ought to create a new easy-to-use biomarker for drug TdP 

potential prediction in early stages of their development. We split this chapter 

in three stages that will guide our work towards the consecution of our main 

goal. First, we ought to pre-compute a large number of simulations covering a 

wide range of three ion-channel block combinations (IKr, IKs and ICaL), both in 

cellular and tissue models, to reduce the technical requirements. Then, we 

ought to create a biomarker that integrates the pre-computed multi-channel 

block results and therapeutic concentrations to predict the TdP potential of an 

extensive list of drugs. Finally, we ought to evaluate the performance of our 

biomarker on our drug dataset. 

3.2 Materials and methods 

3.2.1 Models 

The O’Hara-Rudy (ORd)98 (see Figure 14) model of the human ventricular 

cardiomyocyte was the state-of-the-art model when this study was conceived. 
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It was calibrated by studying the electrophysiological behavior of samples 

from more than 100 human hearts.  

 

Figure 14. Diagram of the O’Hara-Rudy model of the human ventricular 

cardiomyocyte. Figure from extracted O’Hara and coworkers98. 

 

The ORd model reproduces the action potential (AP) time course of three 

cardiac cell-types (endocardial, midmyocardial and epicardial) by adapting 

several ion current conductances and parameters, thus making it easy to study 

the effects of external agents on three different cardiac cells.  

The ORd 1D model consists of a transmural strand of 165 cells, divided into 

three sections. A first section of 60 endocardial cells represents the inner part 

of the cardiac ventricular wall and is followed by a 45-cell section of 

midmyocardial cells representing the core of the wall. The outer part of the 

wall corresponds to the last 60 cell section of epicardial cells. The ORd 1D 

model can also be used to calculate the pseudo-ECG. To do so, we used a 

virtual electrode 2 cm away from the last epicardial cell. To prevent boundary 

effects, the first and the last fifteen cells were omitted in the gradient 

calculation. 

We stimulated the single cell ORd model delivering a train of square pulses of 

0.5 ms duration and -80 pA/pF directly to the cell membrane. Each one caused 

an increase in membrane potential of approximately 1.5 times the one required 

to start the depolarization phase, triggered entirely by the fast sodium current 
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or INaf. Contrarily, the ORd 1D model required a train of -210 pA/pF, 0.5 ms 

duration, square pulses to the first endocardial cell. This was also 1.5 times the 

diastolic depolarization threshold and safely triggered the depolarization of the 

stimulated cell and propagated through the strand as abovementioned.  

To study drug effects on the human AP and pseudo-ECG, we ought to create a 

precomputed matrix covering a wide variety of drug profiles. Precomputed 

matrices allow for fast and easy-to-use tools by avoiding long simulation times, 

which are done in advance, but need to cover a large portion of the simulation 

space. To do so, we introduced an extensive array of ion channel block 

combinations into the latter models by using the Hill equation or simple pore 

block model with a coefficient of 1. We tested drug effects in three currents 

belonging to three main ion channels, known to have an important role in AP 

repolarization, by applying the resulting fraction of unblocked channels of a 

set of concentrations and IC50s to their maximal conductances. These were the 

fast and slow potassium rectifier currents (IKr and IKs) and the type-L calcium 

current (ICaL). To cover a large range of drug types, we considered a three-

dimensional array of log10 (
𝐷

𝐼𝐶50
) combinations and assigning one dimension 

to each channel. These values show the logarithmic distance between drug 

concentrations (D) and IC50s for that channel. Negative values indicate that the 

IC50 is greater than drug concentrations. Positive values indicate the opposite, 

while a value of zero indicates that both parameters are identical. In the latter 

case, half of the channels are blocked thus reducing the conductance of the 

affected channel by a 50%. 

We limited the IKr and IKs coordinate ranges to values from -3 to 1 (from nearly 

0% to 90% block) while the ICaL axis took values between -3 and 0 (from nearly 

0% to 50% block), both in all three single cellular and strand models.  

For single cellular models, we set the logarithmic resolution of all axis to 0.1. 

This means that a total of 206766 simulations, including controls, were 

necessary to populate all three arrays, one for each cell type. For 1D model 

simulations, coordinate axis resolutions were not uniform. It was due to the 

computationally intensive workload of simulating all the drug block 

combinations, which increases exponentially with finer resolutions. 

Specifically, IKr logarithmic resolution was set to 0.2 except for the ratios 

between −1.2 and −0.2, where it was set to 0.1. IKs and ICaL logarithmic 

resolutions were respectively set to 0.25 and 0.2. Including controls, we 

performed 7072 simulations with the 1D model. 
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3.2.2 Drug dataset 

We gathered a drug set combining the information found in several sources. 

First, we consulted the drug’s proarrhythmic risk in CredibleMeds.org, the 

reference proposed by the CiPA project. Crediblemeds is dedicated to 

monitoring specifically compounds that exhibit risk of developing Torsade-de-

Pointes (TdP), covering all drug structures and therapeutic targets. In the site’s 

words, it “has developed a risk-stratification process – the Adverse Drug Event 

Causality Analysis (ADECA) – that includes monitoring and analysis of 1) 

scientific articles in the published medical literature, 2) information in the 

official drug label, 3) reports submitted to its website and 4) data in the FDA's 

Adverse Event Reporting System (AERS) using Oracle's Empirica Signal 

software”. The risk stratification results in the inclusion of monitored 

compounds in one out of four risk categories as described by Table 2: class 1, 

compounds that show known risk of TdP; class 2, compounds with possible 

risk of TdP; class 3, compounds with conditional risk of TdP; and class 4, drugs 

that should be avoided by patients with congenital LQTS. The latter group 

gathered the drugs not belonging to groups 1-3.  

Table 2. TdP risk classification proposed by the Crediblemeds website 

(www.Crediblemeds.org).  

Risk of TdP Description 

Known risk These drugs prolong the QT interval AND are clearly 

associated with a known risk of TdP, even when taken 

as recommended. 

Possible risk These drugs can cause QT prolongation BUT 

currently lack evidence for a risk of TdP when taken 

as recommended. 

Conditional Risk These drugs are associated with TdP BUT only under 

certain conditions of their use (e.g. excessive dose, in 

patients with conditions such as hypokalemia, or when 

taken with interacting drugs) OR by creating 

conditions that facilitate or induce TdP (e.g. by 

inhibiting metabolism of a QT-prolonging drug or by 

causing an electrolyte disturbance that induces TdP.) 

Drugs to avoid in 

congenital LQTS 

These drugs pose a high risk of TdP for patients with 

CLQTS and include all those in the above three 

categories (KR, PR & CR) PLUS additional drugs that 

do not prolong the QT interval per se but which have 

a Special Risk (SR) because of their other actions. 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

79 

 

For our risk classifier, we binarized these categories into dangerous and safe 

drugs. Classes 1 and 2 were grouped into drugs that can or may prolong the 

QT interval on their own. Classes 3 and 4 were grouped into drugs that are safe. 

These drugs cannot produce TdP on their own or specific conditions must be 

attained to manifest proarrhythmicity. Although in many cases, reports of these 

drugs show a possible relationship with TdP, there is not enough evidence to 

support their causality. Nonetheless, some of the drugs in our list were not 

available in CredibleMeds.org, in which case they were automatically included 

in the fourth category and in our safe drug group. 

We also searched for specific data to simulate their effect on the ORd human 

ventricular cardiomyocyte and strand models. Parameters that we extracted 

include IC50s for IKr, IKs and ICaL currents and therapeutic concentrations. We 

extracted free plasma drug concentrations, [𝐶]𝑓𝑟𝑒𝑒 , from total blood 

concentrations, [𝐶]𝑡𝑜𝑡𝑎𝑙, by means of plasma protein binding fractions, 𝑓𝑏. 

 

 
[𝐶]𝑓𝑟𝑒𝑒 =  [𝐶]𝑡𝑜𝑡𝑎𝑙 ·  (1 − 𝑓𝑏) 

Eq. 20 

 

Free plasma concentrations can diffuse from blood plasma through the 

extracellular medium and interact with ion channels, contrarily to protein 

bound compound. Due to the size of soluble plasma proteins (mainly albumin), 

bound drug molecules get trapped and are not able to interact with ion channels 

in cardiac cell membranes. 

When mass concentrations were available, plasma concentrations were 

calculated using molar mass to extract total blood concentrations. 

 

 [𝐶]𝑡𝑜𝑡𝑎𝑙 =
[𝐶]𝑚𝑎𝑠𝑠

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠
 

Eq. 21 

 

Therapeutic concentrations are usually given as a range in which the drug 

shows an optimal balance between therapeutic and unwanted or side effects. 

We consistently selected the maximum value of the concentration range. 

Alternatively, when therapeutic ranges were not available, we selected peak 

plasma concentrations, either mass or molar concentrations, resulting from the 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

80 

 

highest commonly used dosage form found in clinical trials inside FDA drug 

labels130. 

As for IC50 values, there is a variable amount of data for every compound and 

ion channel. Some well-studied compounds show large amounts of data 

obtained with different techniques, temperatures, and stimulation protocols. 

Tthese values are usually obtained through a whole-cell patch-clamp technique. 

Xenopus Oocytes, also known as frog eggs, have been commonly used to 

assess ion channel dynamics but they have proven to give altered IC50s, thus 

we decided to avoid these systems. Only mammalian cell experiments were 

included in this work, either transfected or not. 

We used all available IC50 data by calculating their median value. In this work, 

and in cases when multiple values of IC50 have been reported for the same 

compounds in the literature, we faced the need of summarize them in a single 

value. The median offers the advantage of being more robust to the presence 

of extreme values and outliers among the alternatives provided by Biostatistics 

for characterizing the central tendency of a set of experimental values.  

IC50 values are often given in the form of pIC50 which can be calculated with 

the following equation: 

 

 𝑝𝐼𝐶50 = −log10(𝐼𝐶50) 
Eq. 22 

 

The databases that we consulted to obtain the required information include 

public databases such as Tox-Portal131, DailyMed130, PubChem132 and 

Drugbank133. When data was not available in these resources, we searched in 

the scientific literature. 

3.2.3 Simulation Protocols 

Unless otherwise specified, we used a standard stimulation frequency of 1Hz 

for all our simulations, as it is widely used in human cardiac cell 

simulation65,66,134–136. Additionally, we performed simulations at 0.5 Hz and 2 

Hz to test the frequency-dependent variability of our results. 

We brought our models to steady state by pacing the single cellular models 

with 1000 pulses. Final states from these simulations were introduced into the 

ORd 1D model as initial conditions and we ran the latter model for 100 pulses 

to bring the strand model to steady state in control. 
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Drug effects were simulated in a similar fashion. This time, single cellular 

models with the initial conditions corresponding to the steady-state in control 

were paced with 1000 additional pulses after including drug-induced ion 

channel block. Final states from these simulations were used to start 1D model 

simulations maintaining drug effects on current conductances. We then 

simulated the ORd cell strand model for 100 beats to reach steady state under 

drug exposure. 

We saved the last pulse of every simulation and analyzed the action potential 

duration at 90% repolarization (APD90) using single cellular models and the 

pseudo-QT duration using the strand model. 

3.2.4 Torsadogenic risk classification with Tx 

We used 10% prolongation of the QT interval as our reference to calculate a 

new TdP risk, which we called Tx. We calculated Tx as the distance between 

EFTPC and the concentrations that produced a 10% prolongation of the QT 

intervals or APD, taking into account the block of all the channels of our 

dataset. 

Receiver Operating Characteristic (ROC) curves are a tool that is commonly 

used in medicine to assess the performance of diagnostic tests137. The four 

possible outcomes of a diagnostic test depend on whether its result matched 

the actual condition of the patient (true cases) or not (false cases) and whether 

it indicated that the patient had the disease (positive result) or not (negative 

result). The amount of each of the outcomes varies depending on the threshold 

that is applied to the classifier. Eventually, there is a value that gives an optimal 

result, maximizing the true cases in both diseased and healthy patients. This 

value can be easily obtained using ROC curves. For that reason, we used them 

to evaluate the performance of Tx. 
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3.3 Results 

3.3.1 APD and QT 

Table 3. Characteristics of the 84-drug dataset. From left to right, the columns indicate the name of the compound (name), 

torsadogenic risk classification (Class), pIC50 values for IKr, IKs, and ICaL (columns 3 to 5), effective free therapeutic plasma 

concentrations (EFTPC), fraction of protein-bound drug (fb), molar concentration (Mol. C), molar mass (Mol. mass), maximum 

concentration in blood achieved during therapeutic treatment (Cmax) and its corresponding units. The color-coded background of the 

first column corresponds to the following Crediblemeds classes: red (Class 1), orange (Class 2), bright green (Class 3) and dark green 

(Class 4). See section 3.6 in this chapter for references of these values. 

Drug pIC50 Concentrations 

Name Class IKr IKs ICaL ETFPC (nM)  𝒇𝒃 Mol. C (nM) 

Mol. Mass 

(g/mol) Cmax Unit 

Ajmaline 1 5.98 - - 1500      

Amiodarone 1 6.38 5.59 6.57 63.5 0.999 63535.20 645.3116 41 μg/mL 

Astemizole 1 8.22 - 5.98 0.3      

Bepridil 1 7.16 5.10 6.08 33      

Chlorpromazine 1 5.81 3.00 4.15 66.4      

Cilostazol 1 4.86 - 4.04 162.4 0.95 3247.98 369.46068 1200 ng/mL 

Cisapride 1 7.68 5.47 4.56 4.9      

Clarithromycin 1 4.06 - - 4011 0.7 13369.82 747.95336 10 μg/mL 

Disopyramide 1 5.00 4.09 4.96 4713 0.6 11782.92 339.47446 4 μg/mL 

Dofetilide 1 7.75 - - 2      
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Drug pIC50 Concentrations 

Name Class IKr IKs ICaL ETFPC (nM)  𝒇𝒃 Mol. C (nM) 

Mol. Mass 

(g/mol) Cmax Unit 

Domperidone 1 6.88 - - 5.79 0.92 72.39 425.911 30.83 ng/mL 

Donepezil 1 6.16 - 4.47 6.56 0.96 164.00    

Dronedarone 1 7.29 5.00 6.75 0.79 0.997 264.03 556.75646 147 ng/mL 

Droperidol 1 7.22 - 5.12 16      

Flecainide 1 5.82 - 4.57 1448 0.4 2413.46 414.342719 1 μg/mL 

Halofantrine 1 6.42 - 5.72 172      

Haloperidol 1 7.44 - 5.77 3.6      

Ibutilide 1 7.75 - 4.20 22 0.4 15.08 384.57644 14.4 ng/mL 

Levofloxacin 1 3.37 - - 30932 0.31 33483.92 361.367503 16.2 μg/mL 

Methadone 1 5.46 - 4.43 507      

Moxifloxacin 1 4.11 3.80 3.40 6228 0.5 11209.89 401.431363 5 mg/L 

Ondansetron 1 6.09 3.00 - 178.6 0.73 662.66 293.36296 194.4 ng/mL 

Procainamide 1 3.57 - 3.41 35058 0.175 42494.36 235.32534 10 μg/mL 

Quinidine 1 5.90 4.36 4.81 2960 0.84 18500    

Sotalol 1 3.29 - - 18358      

Sparfloxacin 1 4.66 - 4.05 1766      

Tedisamil 1 6.66 5.19 - 85      

Terfenadine 1 7.30 5.36 6.51 9      

Terodiline 1 6.71 4.56 4.87 11.23      

Thioridazine 1 6.70 4.99 5.88 979      

Clozapine 2 5.64 - 5.44 70.8 0.97 2359.07 326.82326 771 ng/mL 

Dasatinib 2 4.80 3.60 3.40 20.4      
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Drug pIC50 Concentrations 

Name Class IKr IKs ICaL ETFPC (nM)  𝒇𝒃 Mol. C (nM) 

Mol. Mass 

(g/mol) Cmax Unit 

Lapatinib 2 6.00 3.60 2.70 41.8 0.99 4182.03 581.057543 2.43 μg/mL 

Nilotinib 2 6.90 3.40 3.70 60      

Ofloxacin 2 2.85 - - 8656 0.32 12729.42 361.3675 4.6 μg/mL 

Paliperidone 2 5.90 3.60 3.40 68.9 0.74 264.96 426.483883 113 ng/mL 

Risperidone 2 6.63 5.01 4.14 6.96      

Saquinavir 2 4.77 - 5.72 334 0.98 16695.47 670.8408 11.2 μg/mL 

Sunitinib 2 6.60 4.20 4.10 19 0.925 253.47 398.473783 101 ng/mL 

Tolterodine 2 7.90 4.10 - 0.39 0.963 10.45 325.48764 3.4 ng/mL 

Metronidazole 3 2.87 - 3.75 210336      

Nelfinavir 3 4.90 4.10 - 60.25 0.99 6025.11 663.88806 4 μg/mL 

Paroxetine 3 5.72 - 5.41 12.7 0.94 211.62 329.365403 69.7 ng/mL 

Quetiapine 3 5.42 - 4.98 461.9 0.83 2717.03 383.507 1042 ng/mL 

Ranolazine 3 4.90 2.72 3.51 2311 0.62 6081.35 427.53652 2600 ng/mL 

Solifenacin 3 6.60 4.50 5.20 3.47 0.98 173.53 362.46474 62.9 ng/mL 

Voriconazole 3 3.31 - 3.38 5699 0.58 13569.59 349.31047 4.74 μg/mL 

Alvimopan 4 3.10 4.30 5.30 5.17 0.8 25.86 424.53258 10.98 ng/mL 

Ambrisentan 4 3.30 3.30 2.60 75.3      

Ceftriaxone 4 3.35 - 3.81 13704 0.9 137040.66 554.57992 76 μg/mL 

Darifenacin 4 7.10 4.70 2.80 0.27      

Darunavir 4 3.80 3.50 - 862.5      

Deferasirox 4 2.40 - 3.00 1403      

Desvenlafaxine 4 3.60 - - 3901      
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Drug pIC50 Concentrations 

Name Class IKr IKs ICaL ETFPC (nM)  𝒇𝒃 Mol. C (nM) 

Mol. Mass 

(g/mol) Cmax Unit 

Diazepam 4 4.27 - 4.52 29      

Diltiazem 4 4.88 - 6.12 120.6 0.75 482.49 414.51784 200 ng/mL 

Doxorubicin 4 3.00 5.32 - 4646 0.75 18582.60 543.51926 10.1 μg/mL 

Duloxetine 4 5.42 5.00 5.55 9.22 0.95 184.32 297.415 54.82 ng/mL 

Ebastine 4 6.14 6.10 - 0.14 0.99 13.83 469.6576 6.495 ng/mL 

Eltrombopag 4 6.20 - - 158.9 0.99 15888.21 442.46658 7.03 μg/mL 

Etravirine 4 3.80 2.90 - 3.38      

Everolimus 4 3.30 4.00 - 8.03 0.74 30.89 958.22442 29.6 ng/mL 

Lamivudine 4 2.69 - 4.27 1446 0.36 2259.42 663.88806 1.5 μg/mL 

Lamotrigine 4 3.60 3.80 2.80 19083      

Linezolid 4 2.94 - 3.98 24856 0.35 39721.82 337.346103 13.4 mg/L 

Loratadine 4 5.22 - 4.94 0.4      

Maraviroc 4 4.40 4.20 - 415 0.76 1728.75 513.665546 888 ng/mL 

Mibefradil 4 5.77 4.93 6.29 12      

Mitoxantrone 4 3.27 - 4.65 225      

Nebivolol 4 6.50 4.80 - 1      

Nifedipine 4 3.87 3.44 7.28 32.3 0.95 646.20 346.3346 223.8 ng/mL 

Nisoldipine 4 4.64 4.40 7.10 0.10 0.99 10.30 388.4144 4 ng/mL 

Palonosetron 4 5.70 4.30 3.40 1.04 0.62 2.73 296.40666 0.81 ng/mL 

Pentobarbital 4 2.84 3.72 3.52 5171      

Phenytoin 4 3.83 3.00 4.66 3964 0.95 79280.77 252.26798 20 μg/mL 

Propranolol 4 5.09 3.00 4.71 10.1 0.9 100.64 259.34344 26.1 ng/mL 



Prediction of the effects of drugs on cardiac activity using computer simulations. 

86 

 

Drug pIC50 Concentrations 

Name Class IKr IKs ICaL ETFPC (nM)  𝒇𝒃 Mol. C (nM) 

Mol. Mass 

(g/mol) Cmax Unit 

Raltegravir 4 3.11 4.60 3.61 7000      

Ribavirin 4 3.02 - 3.21 15069 0 15069.33 244.20468 3680 ng/mL 

Sildenafil 4 4.50 3.40 4.00 100      

Silodosin 4 5.10 3.60 3.10 11.2 0.97 372.93 495.53449 184.8 ng/mL 

Sitagliptin 4 3.83 3.10 3.83 589 0.38 950    

S-oxybutynin 4 4.92 4.54 4.79 0.05 0.99 5.04 357.48644 1.8 ng/mL 

Tadalafil 4 4.00 3.80 - 50.1 0.94 834.61 389.40396 325 ng/mL 

Telbivudine 4 0.80 3.60 - 14731 0.033 15233.55 242.22856 3.69 μg/mL 
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We simulated the effects of 84 compounds, whose parameters can be consulted 

in Table 3, on three ion channels responsible for IKr, IKs and ICaL currents, in 

four different models that include endocardial, midmyocardial and epicardial 

isolated cells, as well as a 1D tissue model of 165 cells with three sections 

containing the beforementioned cell types. 

 

 

Figure 15. Simulated time course of the action potential obtained using the 

single cellular models. Endocardial (left column), midmyocardial (middle 

column) and epicardial (right column) action potential time courses. We 

simulated the models in control (top row) and under the exposure to therapeutic 

concentrations of bepridil (33 nM, class 1 drug, middle row) or nifedipine (32.3 

nM, class 4 drug, bottom row). Vertical lines in each panel correspond to a 

10% prolongation of the control APD90 (APD90CNT). 

Figure 15 depicts examples of drug effects on the action potential time course 

obtained using the single cellular models by bepridil and nifedipine, tested at 

their therapeutic concentrations (D) of, respectively, 33 nM and 23.3 nM. 

Bepridil is considered a dangerous compound (class 1 by Crediblemeds) while 

nifedipine belongs to the safe group (class 4). Controls were placed in the first 

row while simulations with drugs were placed in the second and third row. 

Columns were organized into cell types. From left to right, endocardial (Endo), 

midmyocardial (Mid) and epicardial (Epi) action potentials were shown. 

Vertical lines were added to indicate a 10% prolongation of the control APD90 

(APD90CNT). Squares show a comparison between the latter and the actual 
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APD90, filled squares representing greater values and open squares 

representing lower values. Control APD90s were 266.4, 330.3, and 223.8 ms 

for endocardial, midmyocardial and epicardial cells, respectively.In this figure, 

when exposed to 33 nM of bepridil, all single cellular models show marked 

prolongations of the APD90, reaching 331.1 ms, 398.0 ms, and 278.0 ms, 

respectively, which correspond to 24.3%, 20.5%, and 24.2% increases, 

respectively, compared drug-free conditions. Exposure to nifedipine at 32.3 

nM concentration caused the opposite effect by consistently reducing all 

APD90s to 236.6 ms, 315.7 ms, and 216.1 ms, respectively, which corresponds 

to −11.2%, −4.4%, and −3.4% increases relative to drug-free conditions. 

 

 

Figure 16. Time course of the ECG obtained using the transmural strand 

model. We simulated the model in control (top panel) and under exposure to 

therapeutic concentrations of bepridil (33 nM, class 1 drug, middle panel) and 

nifedipine (32.3 nM, class 4 drug, bottom panel). Black vertical lines indicate 

a 10% prolongation of the strand’s control QT (QTCNT). 

In Figure 16, we combined the results of simulations with previous example 

compounds in the virtual transmural cell strand. From the 100 beats, we 

extracted the last one’s pseudo-ECG in control (top), bepridil (middle) and 

nifedipine (bottom) at their therapeutic concentrations. Vertical lines represent 
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the 10% prolongation of the control QT interval, which was also indicated in 

red. Control QT interval was 313 ms. The effects of bepridil largely differed 

from those of nifedipine similarly to what we found in single cell simulations. 

While bepridil markedly prolonged the QT interval to 376 ms, corresponding 

to a 20.1% increase with respect to the control value, nifedipine exerted a 

shortening effect, resulting in a QT interval of 299 ms, corresponding to a 4.5% 

decrement. 

These results can be explained by the compound’s ion channel block profile. 

Our data on bepridil show an IKr pIC50 of 7.16 (approximately 70 nM), an IKs 

pIC50 of 5.10 (7.9 µM) and an ICaL pIC50 of 6.08 (830 nM). At its therapeutic 

concentration of 33 nM, it is able to reduce the IKr conductance a 30% 

approximately while interactions with the other channels remains very unlikely. 

As we explored in 2.4, IKr impairment slows repolarization and thus contributes 

to maintaining the membrane potential during the plateau phase elevated 

longer. This is translated into an increase in the APD90, which is also present 

throughout the 1D strand. Since the T wave also accounts for the repolarization 

of the strand, the later the repolarization, the later the T wave will appear and 

thus the resulting QT interval will be greater. In contrast, nifedipine mainly 

interacts with the ICaL ion channel. With a pIC50 of 7.28 (52 nM), three points 

higher than the other channels pIC50s, and a therapeutic concentration of 32.3 

nM, it should block approximately a 38% of the ICaL channels. Contrary to IKr, 

ICaL plays a relevant role in maintaining the plateau membrane potential, thus 

repolarization is enhanced by reducing the amount of this current, which in 

turn generates shorter APD90s and QT intervals. 

Although at its therapeutic concentrations bepridil shows a preferential block 

of IKr, other compounds may not show the same selectivity and thus their effect 

on APD90 and QT values might increase in complexity, thus increasing the 

difficulty of predicting their proarrhythmicity. To facilitate this task, we 

created 3D matrixes for every model with multiple channel block combinations 

covering a wide range of possible drugs.  

Figure 17 contains 3D representations of some results from the matrices 

obtained with the four models, namely, endocardial (top left), midmyocardial 

(top right) and epicardial (bottom left) isolated cells and transmural strand 

(bottom right). Coordinate axes represent the logarithmic distances between 

the drug’s plasma concentration and the IC50s for IKr (width), IKs (depth) and 

ICaL (height). Matrices are filled with APD90s (single cellular models) or 

pseudo-QT intervals (1D model), although the only values that are represented 

in the figure take the shape of the blue striped surface that marks the values 

corresponding to a 10% prolongation of the control QT or APD90 values. 
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Compounds that fall left to this surface produce greater prolongations while 

compounds that fall right to the surface prolong APDs and/or QT values less 

than a 10% or even shorten them.  

 

 

Figure 17. Three-dimensional representation of the surface (blue striped) 

corresponding to the 10% prolongation of the control endocardial (top 

left), midmyocardial (top right), and epicardial (bottom left) APD90s and 

QT interval (bottom right). Symbols correspond to disopyramide (class 1 

drug, red triangle), bepridil (class 1 drug, red cube), raltegravir (class 4 drug, 

green circle) and phenytoin (class 4 drug, green cube). Coordinate axes 

represent the logarithmic distance between drug concentration and IC50 of each 

channel (log10([D]/IC50)). 

Four examples of drugs are illustrated in the figure, where known 

proarrhythmic drugs disopyramide (red triangle) and bepridil (red cube) at 
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therapeutic concentrations fall in the left side, while safe drugs raltegravir 

(green sphere) and phenytoin (green cube) at therapeutic concentrations are in 

the right side of the cubes. 

Overall, blue surfaces exhibit similar patterns, bending towards the right (to 

more negative IKr pIC50s) when IKs is blocked due to the synergic effects of 

blocking both potassium repolarizing currents, although the importance of 

such phenomenon is more pronounced in the midmyocardial cell model. 

Contrarily, the surfaces bend towards the left (to more positive IKr pIC50s) when 

ICaL conductance is reduced, showing the opposite nature of this current, its 

depolarizing role and the effect of drugs that can block it. 

3.3.2 Proarrhythmicity assessment 

 

 

Figure 18. Classification of the 84-drug dataset according to the hERG 

pIC50 > 6 criterion. A:  hERG pIC50 values grouped by Crediblemends class. 

A black vertical line indicates the threshold separating the two possible 

outcomes of the test, namely, safe compounds (-) that fall left and unsafe (+) 

compounds that fall right. B: confusion matrix summarizing the results of 

panel A. Classes 1 and 2 were considered “TdP+” while classes 3 and 4 were 

considered “TdP–”. 

Figure 18 shows the result of classifying the proarrhythmic effect of the 84-

drug list using a threshold of 6 in the IKr pIC50. Panel A depicts the distribution 

of pIC50 values grouped by CredibleMeds drug class, which we binarized by 

considering classes 1 and 2 (red and orange, respectively) as dangerous and 3 

and 4 as safe (lime and green, respectively). The vertical line marks the 

position of the threshold. According to this criterion, compounds in the left 

side were considered safe while those in the right side were considered unsafe. 

Results from this test can be found in panel B, where the performance of the 

classifier is evaluated with a 2-by-2 confusion matrix in which columns 
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(“TdP+” and “TdP-”) describe the Crediblemeds reference and rows (plus and 

minus signs) indicate the results of the classifier. Whenever the classifier 

matched the reference it was called either true positive (TP) or true negative 

(TP) outcome (top left and bottom right cells in the 2-by-2 table, respectively). 

False positive (FP) and false negative (FN) outcomes correspond to drugs that 

were wrongly classified (top right and bottom left cells in the 2-by-2 table, 

respectively). According to these values, hERG pIC50 of 6 and above yielded 

22 true positives, 5 false positives, 18 false negatives and 39 true negatives. 

True positive rate was calculated as the rate of true positive outcomes over the 

total amount of positive references, while true negative rate was calculated as 

the rate of true negative values over the total amount of negative references. 

Finally, the accuracy (A) was calculated as the number of successes over the 

total amount of compounds (N). 

 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Eq. 23 

 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Eq. 24 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑁
 

Eq. 25 

 

These values indicate how good the performance of a classifier is, and in this 

case, results showed a 55% sensitivity, an 89% specificity and an accuracy of 

73%, with a large amount of false negative outcomes. 

To improve these results while summarizing the effect of therapeutic 

concentrations on selected channels (IKr, IKs and ICaL), we developed a new risk 

classifier that we called Tx and defined it as the ratio of a compound’s 

concentration that produced a 10% prolongation in the APD90 or QT (D10) over 

its effective free therapeutic concentration (EFTPC). 

 

 𝑇𝑥 =
𝐷10

𝐸𝐹𝑇𝑃𝐶
 

Eq. 26 
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We calculated D10 by using our precomputed matrices while EFTPC were 

already available as part of our 84-drug dataset. Starting from the therapeutic 

concentrations, we extracted the compound’s APD90 or pseudo-QT 

prolongation according to its IC50 profile from the matrices. Then, we 

iteratively and automatically tested multiple concentrations until the 10% 

prolongation of the corresponding metric was reached, always selecting the 

closest available in the simulated space. This would lead to concentrations that 

were either smaller or higher than the EFTPC depending on whether the drug 

did prolong APD90 or pseudo-QT values more or less than a 10% at therapeutic 

concentrations. Once both D10 and EFTPC were available, Tx was calculated 

using Eq. 26. 

As the reader may have already imagined, Tx relates the therapeutic 

concentrations with the concentrations that provoke a 10% prolongation of 

either APD90 (in single cell models) or pseudo-QT (in the cell strand model). 

High Tx values indicated that the therapeutic range is much smaller than such 

concentrations, while values of 1 or below are linked to drugs that exert notable 

prolongations at the therapeutic range.  

We assigned a Tx value to every compound in our dataset and we then 

evaluated its performance by means of several receiver operating characteristic 

(ROC) curves. This method evaluates how sensitivity (TPR) and specificity 

(TNR) evolve while applying several Tx thresholds to classify the entire drug 

list. Thresholds are defined as the Tx values below and above which all drugs 

are considered dangerous and safe, respectively. For example, using an 

excessively high threshold would classify almost any drug as dangerous, 

leading to a high number of false detections, which in turn would lead to a very 

low specificity. In contrast, a very small Tx threshold would lead to many 

drugs being incorrectly classified as safe, resulting in a very small sensitivity. 

Eventually, a combination of both scenarios exists where a particular threshold 

attains a compromise between sensitivity and specificity at the cost of leaving 

misclassified compounds both in dangerous and safe groups. The area under 

the curve (AUC) of ROC adds up to the parameters that assess the performance 

of a classifier. AUCs can have values from 0 to 1. A value of 0.5 indicates that 

the classifier is unable to distinguish between tested groups, and values of 0.9 

and above are characteristic of good classifiers. 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

94 

 

 

Figure 19. ROC curves illustrating the performance of the Tx-APD assays. 

Optimal cutoff points where sensitivity and specificity are maximal are 

indicated with color-coded arrows. Tx-APD cutoffs were 8, 8 and 6.4 for the 

isolated endocardial (green), midmyocardial (black) and epicardial (blue) 

models, respectively. A diagonal dotted line indicates the line of equality or 

random chance. Areas under the curve (AUC) were also included. 

Figure 19 shows ROC curves corresponding to single cellular model matrices. 

We evaluated the performance of Tx for endocardial (green line), 

midmyocardial (black line) and epicardial (blue line) models. As usual, the 

sensitivity was represented as a function of “1 – specificity”. Colored arrows 

indicate the corresponding optimal values where sensitivity and specificity are 

maximal. The dotted line indicates 0.5 AUC. All single cell models showed 

very similar performance, with very little differences in classified compounds. 

Optimal thresholds were 8, 8, and 6.4 for endocardial, midmyocardial and 

epicardial Tx values, respectively, and yielded similar AUCs of 0.91, 0.9 and 

0.9 thus getting in the “good classifier” range. Overall, all models were in 

accordance with each other. 

Figure 20 contains the results of applying the abovementioned thresholds to 

the 84-drug list. Panel A shows Tx values for all compounds grouped by 

Crediblemeds class. Here, results from single cellular models are represented 

as filled triangles, squares or circles for endocardial, midmyocardial or 

epicardial cells, respectively. Vertical lines depict the position of the optimal 

thresholds. Compounds in the left side of the lines were considered dangerous 

while compounds in the right side were considered safe. Panel B shows the 
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confusion matrices resulting from applying the classification criteria. Tx 

obtained with all models exerted a similar performance with 85% sensitivity, 

86% or 89% specificity and accuracies from 86% to 87%. This means that 71 

to 72 compounds out of the 84 were correctly classified, leaving 11 to 12 

misclassified compounds equally distributed between false positives and false 

negatives. 

 

 

Figure 20. Classification of the 84-drug dataset according to the Tx-APD 

thresholds derived from the ROC curves in Figure 19. A: representation of 

the single endocardial (filled triangles), midmyocardial (filled squares) and 

epicardial (filled circles) Tx-APD values grouped by Crediblemends class. 

Black vertical lines indicate the thresholds separating the two possible 

outcomes of the test, namely, safe compounds (-) that fall left and unsafe (+) 

compounds that fall right. B: confusion matrices summarizing the results of 

panel A. Classes 1 and 2 were considered “TdP+” while classes 3 and 4 were 

considered “TdP–”. 

Next, we ought to test whether simulation frequency could alter the results of 

Tx classification. Instead of performing all the simulations to generate the 

whole matrices again, we calculated the Tx for every compound, by directly 

simulating every iteration to get the resulting APD90 at two additional pacing 
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frequencies. We stabilized the model at 0.5 Hz and 2 Hz with a stimulus train 

of 1000 beats as in the 1 Hz simulation protocol. From this point, we simulated 

100 beats after applying drug-induced ion channel block at the indicated pacing 

rate. 

 

 

Figure 21. ROC curves depicting the performance of the Tx-APDEndo 

classifier at 0.5 Hz (yellow), 1 Hz (blue) and 2 Hz (red) pacing frequencies. 

The effects of the pacing frequency on the ROC curves in the isolated 

endocardial cell model were explored. The optimal cutoff points were identical 

at all pacing rates, as well as TPR and TNR. They were 8, 0.85 and 0.89, 

respectively.  

Figure 21 depicts the Tx ROC curves obtained with the isolated endocardial 

model at three different pacing frequencies, namely, 0.5 Hz (yellow), 1 Hz 

(blue) and 2 Hz (red). 

It shows that there are little differences in their shape, which translate into the 

optimal threshold of 8 across all tested frequencies. Results show the same 

sensitivity of 85% as well as 89% specificity. Thus, we concluded pacing rate 

did not significantly modify the outcomes. 

We also evaluated the performance of Tx values obtained using the transmural 

strand model via pseudo-QT prolongation. Similar to the Tx obtained with 

single cellular models, a 10% prolongation of the pseudo-QT was used as the 

reference value to calculate Tx.  

Figure 22 describes the classification of the 84-drug list obtained with Tx 

calculated from pseudo-QT values. Panel A illustrates the ROC curve used to 
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select the optimal cut-off threshold, which resulted in a Tx of 9.2 and an AUC 

of a 90%, in agreement with the Tx obtained with cellular models. Panel B 

represents all compounds Tx values grouped by Crediblemeds.org class, the 

vertical line highlighting the selected threshold. Finally, panel C shows the 

resulting confusion matrix, where the test performance lead to an 85% 

sensitivity, an 89% specificity and an 87% accuracy, parameters that are indeed 

identical to performance of the Tx corresponding to the isolated endocardial 

model. 

 

 

Figure 22. Results of classifying the 84-drug dataset according to the Tx-

QT classifier. A: ROC curve describing the performance of the Tx-QT assay 

at several thresholds. The optimal cutoff point 9.2 was indicated with a black 

arrow. A diagonal dotted line indicates the line of equality or random chance. 

The area under the curve (AUC) was also indicated. B: Tx of the dataset. The 

vertical line corresponds to the optimal threshold calculated in panel A. C: 

confusion matrix indicating the performance of the classifier. 

Figures 23 to 25 contain bar plots representing the values assigned to every 

compound for several of the classifiers we have tested, namely, hERG pIC50 

of 6 and above (Figure 23), Tx values obtained with the isolated endocardial 

model (Figure 24) and with the strand pseudo-QT model (Figure 25). In each 

plot, we grouped compounds by Crediblemeds.org class and then sorted the 

compounds by pIC50 or Tx value. The horizontal dotted line in the Figure 23 

represents the standard classification parameter, where values above the line 

were considered dangerous and values below were considered safe.  
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Horizontal dotted lines in Figures 24 and 25 represent the optimal Tx 

thresholds derived from previously constructed ROC curves. Contrarily to the 

hERG pIC50, here Tx values above the line were considered safe, while values 

below were considered dangerous. These plots facilitate the identification of 

the false positive and false negative outcomes.  

Tx obtained whether with single cellular or 1D strand models, misclassified 11 

compounds compared to 23 from the standard hERG pIC50. In fact, those 

compounds were the same when using all models and consisted of class 1 

cilostazol, donepezil, and dronedarone, and class 2 compounds dasatinib, 

ofloxacin, and saquinavir, which were incorrectly considered safe, and of class 

3 compounds metronidazole, quetiapine, and ranolazine, and class 4 

compounds eltrombopag and lamotrigine, which were incorrectly considered 

dangerous. Additionally, we assessed the predictive power of the Tx classifier 

by means of a leave-one-out (LOO) cross-validation procedure. To do so, a 

number of drug-sets equal to the total amount of drugs was created by 

removing one of them in each set. We constructed ROC curves for each of the 

sets and found the optimal cut-off Tx values to finally try and classify the left-

out drug (not shown). Results revealed, respectively for QT, endocardial, 

midmyocardial and epicardial models, values (mean ± SD) for Tx thresholds 

of 7.91 ± 0.32, 6.33 ± 0.18, 6.31 ± 0.00, and 9.10 ± 0.19, sensitivities of 0.85 

± 0.01, 0.83 ± 0.01, 0.85 ± 0.01, and 0.85 ± 0.01, specificities of 0.89 ± 0.01, 

0.89 ± 0.01, 0.89 ± 0.01, and 0.89 ± 0.01, and finally AUCs of 0.91, 0.90, 0.90 

and 0.90.  

During the LOO cross-validation, the misclassified drugs did not differ from 

those found previously, with the exception of clozapine, which was sometimes 

misclassified due to the fact that it is very close to the frontier between safe 

and unsafe criteria, so that little variations in the optimal threshold could either 

leave it outside or inside the unsafe group. This happened for every Tx except 

for the one obtained with the isolated epicardial model. The overall 

misclassification rate was 14%.  

We next built 3D Tx matrices. Figure 26 represents the Tx values of four 

selected drugs and optimal threshold appears as a blue striped smoothened 

surface. Axes, disposition and format are similar to , although now Tx values 

are represented instead of pseudo-QT or APD90 intervals. Again, we plotted 

the positions in space of known proarrhythmic compounds disopyramide (red 

triangle) and bepridil (red cube) as well as safe drugs raltegravir (green sphere) 

and phenytoin (green cube). Safe conditions were met when the compounds 

fell to the right side of the blue striped surface (Tx is greater than the optimal 

threshold), while unsafe compounds fell to the left side of the blue striped 
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surface (Tx is smaller than the optimal threshold). Here, the synergy between 

blocking IKr and IKs currents could easily be appreciated due to the way that the 

surface curves to lower log10(D/IC50 IKr) values when log10(D/IC50 IKs) values 

are high. In contrast, the protective effect of ICaL led to the surface curving to 

higher coordinates for IKr and IKs when log10(D/IC50 ICaL) is high. 

 

Figure 26. Three-dimensional representation of the surface corresponding 

to the optimal cutoff values for Tx-APDEndo (top left), Tx-APDMid (top 

right), and Tx-APDEpi (bottom left) APD90 and Tx-QT (bottom right). 

Symbols correspond to disopyramide (class 1 drug, red triangle), bepridil 

(class 1 drug, red cube), raltegravir (class 4 drug, green circle) and phenytoin 

(class 4 drug, green cube). Coordinate axes represent the logarithmic distance 

between drug concentration and IC50 of each channel (log10([D]/IC50)). 
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3.4 Discussion 

3.4.1 Findings 

In this section, we studied the effect of a wide range of drug-induced 

transmembrane ion channel block properties using a wild-type, state-of-the-art, 

cardiomyocyte and multiple cell strand human model, while also training a 

new parameter (Tx) meant to provide an easy-to-use tool for drug developers 

and regulators, capable of giving an early estimation of the proarrhythmic 

potential of experimental compounds. For that, we created four matrices that 

can be used as a convenient and quick way to get Tx results without the need 

of modeling experienced staff. We considered important factors such as 

multiple ion channel block and therapeutic concentrations. An 84-drug set was 

used to train Tx by constructing ROC curves using every model and selecting 

the optimal thresholds. Then, we compared its results to the actual hERG test. 

Tx improved upon the latter by reducing misclassified drugs by almost a 50% 

(from 23 to 11 misclassifications) while also showing an AUC of 0.91 with the 

Tx values obtained with the endocardial cellular model. When using hERG 

alone, our findings reveal a 55% sensitivity, 89% specificity and 73% accuracy 

of the pIC50 > 6 for hERG block in our 84-drug list, which are in agreement 

with previous works that have shown low performance
58,138

. 

As we already introduced earlier in this chapter, in a previous paper127 our 

group showed that TdP risk prediction could be improved by including the 

slow potassium rectifier current to the block simulation using a guinea pig 

action potential model. Mirams and coworkers65 obtained information about 

three channels (IKr, ICaL and INa) and therapeutic concentrations of certain drugs 

and simulated their effects using  a human ventricular action potential model. 

They improved the predictions made by Redfern et al. 2003. Their work was 

leading by including new concepts (multi-channel block and therapeutic 

concentrations) in the paradigm of proarrhythmicity prediction. In fact, 

Redfern et al. showed that a safety factor of 30 (calculated as the IKr IC50 over 

the plasma free therapeutic concentrations) could improve arrhythmic risk 

prediction in a 52-drug list resulting in 87.5% sensitivity, 68% specificity and 

77.4% accuracy). Similarly, a factor of 45 was proposed by Gintant in 2016, 

although envisioned towards usability during thorough QT studies. In 

comparison, our factors were smaller (approximately 6 to 10) but showed a 

similar performance. In 2014, Mirams and coworkers66 studied the 

performance of several mathematical models for the TdP assessment using a 

31-drug set. They unveiled that the O’Hara-Rudy model of the human 

cardiomyocytes98 had the best performance with sensitivity, specificity and 
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accuracy values of 71%, 100% and 88% when taking into account a wide 

variety of concentrations (including 100-fold the EFTPC). A recent paper by 

Lancaster and Sobie136 showed a that better scores can be obtained (95.9% 

sensitivity, 81.1% specificity and 89.5% accuracy) in an 86-case list composed 

of 68 different compounds, some of which were introduced twice by using 

different data references. In their work, they found that proarrhythmic risk is 

linked to intracellular calcium transient concentrations as well as action 

potential parameters. Passini and coworkers128 based their classifier in the 

occurrence of repolarization abnormalities (EADs) using a population of 

models with conductance distributions similar to the human population. They 

obtained 96% accuracy and 92% specificity in a 49-compound reference list. 

However, the goal was to discriminate high risk and no risk drugs (TdP classes 

1 and 4 in our work), showing slightly different results (89% accuracy and 92% 

specificity) when considering all risk categories (62 compounds). Dutta and 

coworkers107 demonstrated that qNet could correctly classify a 12-compound 

list distributed in three risk groups. 

In summary, we extended previous studies by using a larger dataset while 

taking into account already well-known factors such as multi-channel block 

and therapeutic concentrations. Tx showed improved results over the standard 

method involving solely the hERG pIC50. Its classification results (accuracy of 

87%) were similar to each other (endocardial, midmyocardial, epicardial, 

transmural strand) and also to previous methods by Kramer and coworkers58 

(90.9%), Lancaster and Sobie136 (89.5%), Passini and coworkers128 (89%) and 

Mirams and coworkers66 (88%), albeit with a larger dataset (84 compounds 

compared to 55, 68, 62 and 34, respectively). 

We selected the state-of-the-art model of the human ventricular action 

potential at the time of this work to perform our simulations to specifically test 

drug’s proarrhythmicity in humans. Several in silico cellular models have 

already been used to study drug proarrhythmicity since human cells are very 

difficult to obtain for modeling purposes. Commonly used animal cellular 

models for arrhythmicity evaluation include action potential models from dogs, 

rabbits and guinea pigs127. QT studies could be found in rabbit models69. In 

fact, a paper from Beattie and coworkers69 found that simulating drug effects 

the rabbit left ventricular wedge to obtain prolongation of the QT yielded a 

78% accuracy when predicting the experimental results. Nonetheless, some 

important differences between cellular models have been revealed, including 

lack of some currents, such as the guinea pig’s absence of rectifier transient 

outward potassium current (Ito) and larger slow component of the potassium 
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rectifier current (IKs)
139

, or the rabbit’s larger late component of the sodium 

current (INaL) and smaller IKs with increased basic TdP risk140. 

Our results in proarrhythmicity prediction with the O’Hara-Rudy model98 

indicate that the most important factor is IKr blockade, dominating the position 

of the 10% prolongation surface in our 3D matrixes. IKs blockade influenced 

APD90 and QT prolongations with notably less importance than IKr blockade, 

which is consistent with its small amplitude in humans140 and with other 

simulation studies66,98, but its synergistic effect with IKr blockade can be 

decisive as  the 10% prolongation can be reached much easily by blocking IKr 

when IKs is reduced or absent. Contrarily, ICaL blockade showed a more marked 

APD90 reduction effect, although still weaker than IKr block. This suggests that 

effects of pharmacological compounds on IKs are not as relevant as ICaL or IKr 

effects. This is in agreement with a Kamer and coworkers’ study58, where 

inclusion of ICaL blocking potency did in fact improve the TdP prediction 

performance dramatically when compared to the hERG assay alone (96.9% 

sensitivity, 82.6% specificity and 90.9% accuracy). 

Our work feeds from the advances achieved by the aforementioned works. We 

were able to build a prediction tool for companies and regulators to test their 

compounds in early stages of development without the necessity of qualified 

staff, since all simulations have already been performed and saved for a wide 

array of combinations. Compounds for which an estimate of the therapeutic 

concentrations is available can we directly tested, otherwise, the user can 

obtain an estimate of a maximum safe concentration for the compound by 

using our matrices according to its IC50 values for IKr, IKs and ICaL. Tx notably 

reduced the number of misclassified compounds compared to the hERG test 

but there are still compounds that could not be correctly identified and stayed 

as false positives or false negatives. This comes to show that there are some 

limitations to this study that must be addressed. 

3.4.2 Limitations 

The human body is a complex system in constant balance. Most of the drugs 

we introduce enter the bloodstream after being ingested and are absorbed 

through the gut. While this is a phenomenon that we could take into account 

by obtaining peak plasma concentrations and protein bound fractions, there are 

other mechanisms that play important roles in determining how much of the 

drug actually reaches the ion channels in the heart and also how much of its 

effect is actually due to a drug-channel interaction. For example, donepezil is 

known to downregulate hERG channel trafficking, which contributes to further 

decreasing the IKr conductance by reducing the number of channel proteins that 
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reach the cell membrane141. Channels can also be blocked in many ways. For 

example, Flecainide enters the channel from the cytoplasm side of the 

membrane, binds low into the pore and gets trapped in it, contrary to other 

drugs with more direct binding dynamics142. Other targets can exist with 

similar effects to channel blockade in TdP generation. For example, Cilostazol 

inhibits the PED3 (phosphodiesterase 3), which has been related to increase in 

intracellular cyclic AMP, calcium unbalance and early after depolarizations143. 

Drugs also transform due to metabolism. While this mechanism is typically 

responsible for a reduction in compound potency, sometimes metabolites with 

similar or decreased blocking potency towards the same target can appear. 

Dronedarone’s N-butyl-metabolite has one third of the parent’s potency which 

can also contribute to TdP generation144. A particular combination of 

metabolites for ranolazine was theorized to be the cause of an apparent hERG 

IC50 of 35 µM instead of the more commonly found 12 µM from the literature 

in a paper by Moreno and coworkers90. Additionally, distribution of the 

compounds throughout the human body can sometimes be complex, meaning 

that some tissues can be prone to accumulating greater concentrations of the 

drug than others, such is the case of saquinavir145. All these phenomena can 

interfere with the correct simulation of drug effects. Despite their existence, 

information about these is scarce and certainly unavailable for some of the 

compounds that we included in our list. Other misclassified drugs show 

important effects on ion channels that were not considered in this work, such 

as lamotrigine, ranolazine and quetiapine, which show interactions with the 

sodium channel. Finally, it is worth noting that eltrombopag showed high 

variability of its IC50 and its classification was uncertain as there is a lack of 

strong evidence for placing it in any QT risk category57. 

We selected a large dataset to calibrate Tx because it offers a more realistic 

scenario where prediction errors can appear. Nonetheless, scarcity of data was 

patent among many of the compounds we tested and IC50 values for IKs or ICaL 

were sometimes not available. In these cases, we assumed that interaction with 

those channels was negligible as in previous studies65,66. We also gathered data 

from various sources whose methods are often very heterogeneous. Protocols 

can deeply affect the resulting IC50s as can be seen by the variability of the 

reference data, but major sources of error were screened by selecting 

mammalian cell lines, consistently discarding data from frog eggs (Xenopus 

Oocytes). Our approximation to this problem was to consider data as a 

distribution of values, from which we picked the median (central value) as a 

way of summarizing all data in one single IC50. By doing so, we ought to avoid 

extreme values, which are prone to greatly modify the value of the average. 
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Sodium channel block and, in particular, block of the late component of its 

slow component (INaL) has recently been found to greatly affect the action 

potential duration and shape. In this work, we have not considered INaL block, 

which might have contributed to misclassification of several compounds such 

as ranolazine (see Chapter 4). 

To simulate drug-channel interactions, we used the standard simple pore block 

model through the Hill equation, which also includes a Hill coefficient that 

governs the slope of the sigmoidal dose-response curve. In our work we 

simplified the model by assuming all coefficients as 1, based on the studies 

that suggested that using hill coefficients could give little benefit15,16,31.  

Binding kinetics were not taken into account although they have been found to 

play an important role in differentiating safe from unsafe drugs146. Complete 

drug-channel interaction state models are available only for a few well-studied 

compounds and often require complex testing and simulation. 

Our TdP risk classification reference comes from Crediblemeds, which relies 

on clinical data to give a 1 to 4 class to each of the compounds that it includes. 

Nevertheless, as proven by Wisńiowska and Polak147, a number of compounds 

have already been classified by several methods with varied results, which 

raises the need of a common classification protocol. Amiodarone, 

clarithromycin, clozapine, domperidone, donepezil, lapatinib, moxifloxacin, or 

ranolazine are among the compounds that show inconsistencies in their 

classifications by different methodologies. 

In our work, we decided to binarize the classes to safe or unsafe compounds. 

Recently, the paradigm has shifted towards classifiers that are able to quantify 

more or less the TdP potential of drugs, being able to at least show three classes, 

namely, low, intermediate and high risk148. We did not account for TdP risk 

levels, but the nature of Tx does not make it impossible to show better risk 

stratification in a possible future iteration. 

3.4.3 Implementation 

There were several requirements to implement the approach to modeling we 

covered in this chapter. First, general knowledge about 

pharmacokinetics/pharmacodynamics were necessary to calculate EFTPC 

values when they were not provided directly. These could be derived from 

other parameters such as dosage, Cmax, molar mass and protein-bound fraction. 

Second, programming skills were necessary to write and automatize the 

required code, as well as to retrieve the results and analyze the large amount 

of data. The initial implementation investments consisted of bibliographic 
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research and code writing and preparation. 

Pharmacokinetics/pharmacodynamics data are usually obtained during clinical 

testing to refine the range of therapeutic concentrations, which makes it more 

readily available for research. Code writing and preparation during the initial 

phases is time-consuming, but some parts can be re-used due to the repetitive 

nature of the simulations. Our objective was to generate matrices covering a 

wide range of drug effects on three ion channels. The simulations that we 

performed to obtain the matrices were the limiting factor during their 

generation and took most of the initial implementation time. To speed up the 

process, we parallelized the required simulations in a cluster with several 

computing cores. Nevertheless, when simulations are complete, testing new 

compounds on the model becomes very fast, as the user does not need to wait 

for the simulations to be over. 

As for the reusability and expandability of the code, this is highly modular 

approach that allows for easy and fast modification of some components. For 

example, simulations can be performed for four channels instead of three by 

including an additional parameter indicating drug block for an additional 

channel. Likewise, more parameters can be extracted from the already 

available simulations by further analyzing the action potential time courses, 

such as APD50, maximum upstroke velocity or specific ion current time courses, 

among others. The cellular action potential model can also be swapped for 

another version. However, the simulations must be performed again with the 

corresponding time cost. 

All in all, we conclude that the approach that we implemented in this chapter 

is a modular, easy-to-implement and effective way to study the TdP risk of a 

wide range of drugs. The initial implementation proved time-consuming, 

although the upgradability and re-usability of the code makes for a very useful 

tool with numerous possibilities. As standardized high throughput systems 

such as Qpatch66, PatchXpress108, IonWorks/FLIPR69 improve their 

functionality, we could expect more data with higher quality on channel IC50s, 

which support the use of approaches like this one. 

3.5 Conclusions 

In this chapter, we have studied a wide range of drug effects using the state-of-

the-art human action potential cell and tissue models. Large arrays of APD and 

pseudo-QT prolongations, combined with an 84-drug set including 

information about therapeutic concentrations and IC50 values for three ion 

channels (IKr, IKs and ICaL), were the means to calibrate a new in silico TdP risk 
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classifier (Tx) with improved performance over the hERG test, albeit 

maintaining a reduced complexity. hERG block has unquestionably a high 

influence on QT prolongation but was accompanied with therapeutic 

concentrations and two additional channel IC50s to build upon previous works. 

We confirmed that these parameters are very important in TdP risk 

classification. In silico models will play an important role in drug safety, as 

stated by the CiPA initiative17, and we also contributed creating a more 

accurate tool for this purpose. We found that, since all four tested models gave 

very similar results, Tx obtained with the human endocardial isolated cellular 

model enables TdP risk prediction with good results. Although therapeutic 

concentrations are not available in early stages of the drug research, a 

maximum safe concentration could be obtained by analyzing the IC50s of a test 

compound for IKr, IKs and ICaL, giving an estimate of the concentrations that do 

not unreasonably prolong the APD or QT. 

3.6 References of the drug dataset 

Table 4. Drug data references. Name (1st column) and references for the IC50 

values for IKr, IKs and ICaL (2nd to 5th column). A dash in the IC50 boxes means 

that no value was found in public databases neither in the scientific literature. 

The color-coded background of first column corresponds to Crediblemeds’ 

torsadogenic classification: red (Class 1), orange (Class 2), bright green (Class 

3) and dark green (Class 4). References are PubMed IDs (PMIDs). Drug labels, 

where the EFTPC values were obtained, can be visited through provided links. 

Name Ref. IKr Ref. IKs Ref. ICaL Ref. ETFPC 

Ajmaline 21300721 - - 21300721 

Amiodarone 

25127758, 15272206, 21489024, 

15936217, 21158687, 11238279, 

23812503, 19673885, 10991917, 

Okada 2015, 22303293, 15541373, 

15950494, 18006430, 18587422, 

20493497 

11238279, 

15817093, 

15817093, 

15817093 

21300721 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=b0eb6c22

-7553-4e3f-a06d-20a186ced99a 

Astemizole 

25127758, 15272206, 15936217, 

15172012, 21158687, 

23812503, 19673885, Okada 2015, 

23137660, 18701618, 22303293, 

8001268, 21675869, 15740727, 

12388285, 15950494, 10376921 

- 
23812503, 

26601174 
23812503 

Bepridil 

9765513, 14975710, 15936217, 

19616638, 15172012, 21158687, 

15385083, 23812503, 19673885, 

Okada 2015, 22303293, 15950494, 

16843688, 26616666. 

9765513, 

10588929 

14975710, 

2420970, 

21300721, 

19367686 

21300721 

Chlorpromazine 

21158687, 16051556, 

23812503, 23137660, 

Tie 2000/Tie 2002 

15071359, 

14530219 
23812503 21300721 

Cilostazol 23812503 23812503 23812503 

http://www.accessdata.fda.gov/dru

gsatfda_docs/label/2015/020863s0

23lbl.pdf 
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Name Ref. IKr Ref. IKs Ref. ICaL Ref. ETFPC 

Cisapride 

14975928, 25127758, 23201772, 

9223557, 15272206, 10407390, 

15574182, 23103500, 9445174, 

11961040, 23651875, 23934164, 

14975710, 15306208, 15936217, 

19616638, 15172012, 21158687, 

15385083, 23812503, Lacerda 

2001, 15967876, 15076220, 

18034998, 20172036, 9374794, 

Okada 2015, 12729675, 18701618, 

22303293, 11714889, 9395068, 

17531263, 21675869, 15740727, 

17928736, 10510456, 12388285, 

15950494, 18587422, 16843688, 

Yamazaki 2014 

1520765X 
15067213, 

14975710 
21300721 

Clarithromycin 
12065733, 10219239, 17531263, 

14674677 
- - 

https://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=8a56f36f-

4e45-43f6-842b-5c2d319aaaec 

Disopyramide 

[19], 21989164, 23137660, 

16842817, 15272206, 11162661, 

15950494 

[19] [19] 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=11a68e26

-d2e4-48f6-ba0f-9bdd5778f25a 

Dofetilide 

22391528, 1501123, 21224008, 

9501201, 15574182, 23103500, 

21489024, Frederiksen 2001, 

20071423, 15936217, 15172012, 

22074238, 21158687, 8417848, 

14711935, 23812503, 14525949, 

Lacerda 2001, 22609836, 

17042915, 18493243, 19673885, 

20172036, 25087753, Okada 2015, 

12729675, 18701618, 22303293, 

9395068, 9694935, 21675869, 

8649354, 11927665, 7882490, 

26616666, 4722980 

21224008 21224008 21300721 

Domperidone 
15640612, 11034933, 19673885, 

15950494 
- - 21883386 

Donepezil 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=11ac01f4

-d26e-47b2-9660-d514ab097fdb 

Dronedarone 15541373, 21777565 12548079 12548079 

https://pubchem.ncbi.nlm.nih.gov/

compound/208898#section=Absor

ption-Distribution-and-Excretion 

Droperidol 23812503 - 23812503 23812503 

Flecainide 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=7259578

3-e6a0-6b7a-f428-9ca03d707794 

Halofantrine 23812503 - 23812503 23812503 

Haloperidol 

19673885, 15076220, 23137660, 

12729675, 22303293, 18587422, 

16843688, 25127758, 10407390, 

11961040, 23651875, 20862641, 

Frederiksen 2001, 15936217, 

19616638, 21158687, 16278312, 

15385083, 

23812503 

- 21300721 21300721 

Ibutilide 23812503 - 23812503 

https://pubchem.ncbi.nlm.nih.gov/

compound/60753#section=Absorpt

ion-Distribution-and-Excretion 

Levofloxacin 16474415, 20662825, 11125032 - - 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=8962eb50

-3366-1eec-44f9-170e686d2d66 

Methadone 23812503 - 23812503 23812503 

Moxifloxacin 

16474415, 16158069, Thomsen 

2006, 19673885, 22289150, 

17054943, 16474415, 11040340, 

21224008, 11125032, 14512100, 

15076220, 18587422. 

25087753 

23812503, 

25087753, 

Okada 2015 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=71b02da1

-3175-1db8-192a-c0a8a6cd98a5 

Ondansetron 11046096 11046096 - 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=2edc0788

-dc38-4d21-ba8e-71f159e2d3b1 

Procainamide 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=17e47845

-daad-434c-a784-6d3875b0d704 
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Name Ref. IKr Ref. IKs Ref. ICaL Ref. ETFPC 

Quinidine 

15936217, 21362439, 16842817, 

11561091, 18701618, 18587422, 

15385083, 21996251, 17042915, 

17042915, 17042915, 17042915, 

Wang, 21224008, 21996251, 

17604185, 15172012, 21158687, 

15385083, 15385083, 15385083, 

12086981, 15950494, 11927665, 

19617705, 19617705, 10648647, 

15821840, 15821840, 15821840, 

12695533, 12695533, 15189761, 

10028924 

11561091 

21300721, 

21224008, 

12180412 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=11d1436

2-8f69-4c30-b487-5d05f6462bd7 

Sotalol 

19673885, 18701618, 18587422, 

15385083, 22074238, 23137660, 

Wang, 21224008, 17604185, 

15172012, 15385083, 15385083, 

15385083, 16757186, 15821840, 

15821840 

21224008 21224008 

Danda Hilal-Dandan, Laurence L. 

Brunton, Goodman & Gilman's 

Manual of Pharmacology and 

Therapeutics 2nd Edition, 

McGrawHill. P. 513. 

Sparfloxacin 23812503 - 23812503 23812503 

Tedisamil 21300721 15579009 - 21300721 

Terfenadine 

25127758, 9690857, 21224008, 

10407390, 10604956, 15574182, 

16782359, 11961040, 14975710, 

20071423, 15936217, 15172012, 

Helson 2012, 21158687, 

16278312, 15385083, 23812503, 

Lacerda 2001, 17042915, 

22300168, 19673885, 15076220, 

Okada 2015, 23137660, 12729675, 

18701618, 22303293, 9395068, 

8001268, 21675869, 15740727, 

12388285, 15950494, 18587422, 

16843688 

1520765X 

14975710, 

21300721, 

21224008, 

9242181 

23812503 

Terodiline 19673885, 21158687, 17110801 10454521 10454521 7830238 

Thioridazine 

15936217, 19673885, Tie 

2000/Tie 2002, 16051556, 

12176106, 15385083, 23137660, 

17056009, 16278312, 21224008, 

11961040, 21158687, 15950494. 

10027867, 

21224008 

21300721, 

21224008 
21300721 

Clozapine 

11961040, Frederiksen 2001, 

19616638, 21158687, 

23812503, 

Tie 2002 

- 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=d5c8a456

-6f3c-4963-b321-4ed746f690e4 

Dasatinib 25087753 25087753 25087753 25087753 

Lapatinib 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=63319b0

1-cad6-4d0a-c39b-938fa951a808 

Nilotinib 25087753 25087753 25087753 20807552 

Ofloxacin 11125032 - - 

https://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=1d19a6db

-6da5-e7de-f929-2d18bdfa2cf5 

Paliperidone 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=9089db7

6-aa50-417d-bf62-3674df161e9a 

Risperidone 

19673885, 12775973, 12176106, 

14975710, 21224008, 11961040, 

21158687, 15950494. 

1520765X 

14975710, 

23812503, 

21300721 

15496222 

Saquinavir 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=c00d1607

-ac36-457b-a34b-75ad74f9cf0a 

Sunitinib 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=43a4d7f8

-48ae-4a63-9108-2fa8e3ea9d9c 

Tolterodine 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=2cad3579

-d197-4019-ae94-460525b6a8d9 

Metronidazole 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=a9987047

-9c99-45a5-829b-ae8b189cbfd4 

Nelfinavir 25087753 25087753 25087753 

https://pubchem.ncbi.nlm.nih.gov/

compound/64142#section=Pharma

cology-and-Biochemistry 
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Name Ref. IKr Ref. IKs Ref. ICaL Ref. ETFPC 

Paroxetine 23812503 - 23812503 

http://www.accessdata.fda.gov/dru

gsatfda_docs/label/2014/020031s0

71,020710s035lbl.pdf 

Quetiapine 12176106, 21158687 - 21300721 16390352 

Ranolazine 
15302796, 23010360, Okada 2015, 

18520952, 15950494, 19592609 
15277312 15277312 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=8d442b8c

-97a8-40a9-8603-f9cd0542cedc  

Solifenacin 25087753 25087753 25087753 

http://www.accessdata.fda.gov/dru

gsatfda_docs/label/2013/021518s0

16lbl.pdf 

Voriconazole 23812503 - 23812503 

http://www.accessdata.fda.gov/dru

gsatfda_docs/label/2015/021266s0

38,021267s047,021630s028lbl.pdf 

Alvimopan 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=77a67dc6

-35d3-48ff-9d18-292d4d442f70 

Ambrisentan 25087753 25087753 25087753 20807552 

Ceftriaxone 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=2dd1be9e

-74cc-48e8-bf02-f34a78d80fda 

Darifenacin 25087753 25087753 25087753 20807552 

Darunavir 25087753 25087753 25087753 20807552 

Deferasirox 25087753 25087753 25087753 20807552 

Desvenlafaxine 25087753 25087753 25087753 25087753 

Diazepam 23812503 - 23812503 23812503 

Diltiazem 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=d6a81f9f-

3a51-4e86-aeb3-8352186b3528 

Doxorubicin 19703166 19703166 - 

https://pubchem.ncbi.nlm.nih.gov/

compound/31703#section=Absorpt

ion-Distribution-and-Excretion 

Duloxetine 23812503 25087753 23812503 17380590 

Ebastine 9103502, 19673885 9103502 - 15752381 

Eltrombopag 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=616224ff

-a925-4b38-9ca2-00fbf669380f 

Etravirine 25087753 25087753 25087753 20807552 

Everolimus 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=e082a024

-7850-400b-a5c2-2a140612562a 

Lamivudine 23812503 - 23812503 

https://pubchem.ncbi.nlm.nih.gov/

compound/60825#section=Absorpt

ion-Distribution-and-Excretion 

Lamotrigine 25087753 25087753 25087753 20807552 

Linezolid 23812503 - 23812503 

http://www.accessdata.fda.gov/dru

gsatfda_docs/label/2015/021130s0

30,021131s029,021132s034lbl.pdf 

Loratadine 23812503 - 23812503 23812503 

Maraviroc 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=a94a9a2b

-337b-4c13-8622-fc392194dc21 

Mibefradil 23812503 9765513 23812503 23812503 

Mitoxantrone 23812503 - 23812503 23812503 

Nebivolol 25087753 25087753 25087753 20807552 

Nifedipine 
22074238, 23812503, 19673885, 

19673885, 10924918 
10924918 

10900233, 

10900233, 

9098694, 

17173968, 

9846638, 

19367686 

2288835 

Nisoldipine 14530219 14530219 
14530219, 

9846638 
2054280 

Palonosetron 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=bd06f321

-bb42-4748-92f3-d59626b540e0 

Pentobarbital 23812503 11862331 23812503 23812503 

Phenytoin 23812503 21224008 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=78b38e7b

-1460-4adc-b738-320ffa6259c2 

Propranolol 
21224008, 19616638, 16314852, 

23137660, 16150441, 16843688. 
21224008 

21224008, 

21300721 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=2d9d966

0-ef3a-4abf-c291-db8d844ff658 

http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8d442b8c-97a8-40a9-8603-f9cd0542cedc
http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8d442b8c-97a8-40a9-8603-f9cd0542cedc
http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8d442b8c-97a8-40a9-8603-f9cd0542cedc
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Name Ref. IKr Ref. IKs Ref. ICaL Ref. ETFPC 

Raltegravir 23812503 25087753 23812503 23812503 

Ribavirin 23812503 - 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=35f99f76

-f2ef-4a81-91ff-285419664be3 

Sildenafil 25087753 25087753 25087753 20807552 

Silodosin 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=a21163d6

-e1b9-4490-bce3-751e0823797c 

Sitagliptin 23812503 25087753 23812503 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=f85a48d0

-0407-4c50-b0fa-7673a160bf01 

S-oxybutynin 10991917 10672870 10672870 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=c5950dba

-d92b-46a0-993f-af9f9ddb52bf 

Tadalafil 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=ebddb745

-81f9-4b25-8739-b2886032ed26 

Telbivudine 25087753 25087753 25087753 

http://dailymed.nlm.nih.gov/daily

med/drugInfo.cfm?setid=0664309

d-1342-4a63-ba5f-4b899cdf3bec 
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4.1 Introduction 

In previous chapter, we used modeling and simulation to assess drug safety. 

For that purpose, we created a new biomarker for high throughput early 

identification of possible proarrhythmic drugs relying on a large volume of 

high throughput data to train a classifier. The industry already performs ion 

channel block assays routinely and several high throughput solutions for 

automatic patch-clamp have already hit the market. This means that IC50 data 

are readily available for many compounds. However, using only one set of IC50 

data could sometimes be insufficient towards correctly characterizing a drug’s 

interaction with a channel. In a work from our group149, we demonstrated that 

IC50s were highly dependent on the drug’s binding dynamics. 

Conditions that arise from ion channel dysfunctions are called 

channelopathies150. When these affect cardiomyocytes’ channels, they alter 

their electrophysiological behavior and thus pose patients at high risk of 

arrhythmia and sudden death. Mutations of the genes that code such channels 

are a common cause of channelopathies, but their effects highly depend on 

their location in the protein9,151–153.  

Consequently, considering that both drugs and mutations have their particular 

ways of modifying a channel’s electrophysiology, it is natural to conclude that 

drugs that are not beneficial in some patients might be recommended in 

others154. However, to shed light into this, first we must study the 

electrophysiological properties of both the drug and the channelopathy in detail. 

As we already introduced in 2.6.2.2, Markov models of the ion channels are a 

useful tool to reproduce ion channel dynamics in great detail. There are many 

examples of their implementation90,91,106,155–157, including drug-channel 

interactions, but their complexity means they are available only in a few well-

studied cases.  

Herein, in this chapter, we ought to model precise channel-drug interactions 

by using Markov models. We ought to reproduce a channelopathy and test 

several treatments with drugs showing similar antiarrhythmic properties. By 

doing so, we ought to highlight the potential of this approach to assess drug 

efficacy using modeling and simulation of the cardiac electrophysiology. 

4.1.1 Long-QT syndrome and SCN5A V411M mutation 

As we introduced in 2.3.2, the long QT syndrome (LQTS) is characterized by 

an exceptionally large elongation of the QT segment of the ECG, which is 
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caused by electrophysiological abnormalities in the cardiac tissue. These 

abnormalities increase the chance of syncope and lethal arrhythmias like 

Torsade-de-pointes158–160, possibly triggered by EADs161 (see 2.4, where we 

reviewed the subjacent mechanisms). If left untreated, the mortality rate of this 

condition is around 71%5. A patient that showed deafness and QT prolongation 

and who suddenly died from arrhythmia in 1967 lies among the first cases that 

have been reported162.  One of the first attempts to treat the condition was the 

unilateral ganglionectomy163, an approach that was intricate and invasive, and 

that was certainly not exempt of unwanted consequences. Fifty years later, we 

have now greatly expanded our knowledge about this condition up to the 

atomic level.  

Patients suffering from LQTS can show elongated QT segments corrected by 

heart rate (QTc), meaning their value is greater than 470 ms or 480 ms in men 

and women, respectively. The use of QT as a diagnose tool for LQTS is 

nevertheless insufficient due to the wide variety of QT segment values in the 

healthy population164. A study that explored 18 maternity hospitals and almost 

45 thousand white infants revealed an overall prevalence of approximately 

0.4‰ (1:2534)2. The authors screened infants for seven of the twelve genes 

known - at that time - to induce LQTS. New mutation sites and new genes have 

been identified since then. By 2017, fifteen LQTS classes have been 

discovered (LQTS type 1 to 15) depending on the gene that was affected9 (See 

Table 5 for more details). These increase to seventeen provided we include the 

two syndromes described by Jervell and Lange-Nielsen5, but they both affect 

genes that are already considered in the fifteen-subtype classification. This 

extensive classification of the LQTS shows how a simple parameter can be 

altered by many factors that will determine which treatment to recommend and 

which to avoid, as opposed to an all-purpose QT-shortening drug. 

Seventy percent of the cases arises from a loss-of-function of one of the 

potassium rectifier channels (LQTS types 1 and 2), while 5%-10% are due to 

a gain-of-function of the sodium channel (LQTS type 3), the other ones 

contributing less than a 1% of the cases each5,165.Therefore, SCN5A mutations 

are the third most important cause of LQTS. The incidence of lethal events is 

higher in this group compared  to the other major LQTS types158. Furthermore, 

while those events happen in response to stress in LQTS types 1 and 2, during 

episodes of elevated heart rate, the LQTS type 3 shows increased incidence at 

rest152, which is related to greater sodium current at low pacing frequencies. 
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Table 5. Subtypes of LQTS. Names (first column), name of the gene 

containing the mutations (second column) and affected current (third column). 

Reproduced from Bohnen and coworkers9. 

LQTS type Gene Effects 

LQTS type 1 LCNQ1 Decreased IKs 

LQTS type 2 KCNH2 Decreased IKr 

LQTS type 3 SCN5A Increased INa 

LQTS type 4 ANK2 Multiple modifications 

LQTS type 5 KCNE1 Decreased IKs 

LQTS type 6 KCNE2 Decreased IKr 

LQTS type 7 KCNJ2 Decreased IK1 

LQTS type 8 CACNA1C Increased ICa 

LQTS type 9 CAV3 Increased INa 

LQTS type 10 SCN4B Increased INa 

LQTS type 11 AKAP9 Decreased IKs 

LQTS type 12 SNTA1 Increased INa 

LQTS type 13 KCNJ5 Decreased IKAch 

LQTS type 14 CALM1 Multiple modifications 

LQTS type 15 CALM2 Multiple modifications 

 

Despite more than 400 mutations of the SCN5A gene have been identified so 

far, only a fraction of them leads to one of several possible main outcomes. 

These consist of mainly Brugada Syndrome166, Long QT Syndrome167, cardiac 

conduction disease168 or sick sinus syndrome169, and other diseases that are not 

related to cardiac conduction defects. While Brugada Syndrome is caused by 

a loss-of-function of INa, LQTS type 3 is caused by a gain-of-function153 of INa. 

Several mechanisms have been identified that lead to an increased INa activity 

and that are related to modifications of the channel’s dynamics.  
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For example, the S216L mutation produces a left shift of the activation 

dynamics, leading to earlier activation which turns to an increased peak 

amplitude of INa. The R568H mutation produces a right shift of the 

inactivation dynamics, hampering inactivation which makes the channel 

remain active for longer, and the A993T mutation slows inactivation, both 

leading to the same result170. Faster recovery from inactivation can also lead to 

LQTS type 3, as is the case of mutations E1784 K171 or P2006A172. The 

∆KPQ90 mutation shows a combination of faster recovery from inactivation 

and non-inactivating current. Therefore, there are many mechanisms that can 

produce seemingly the same phenotype but radically differ in their effect on 

INa dynamics. 

The V411M mutation of the SCN5A gene, in its heterozygous form, causes an 

LQTS type 3 with elongated QT segments and episodes of atrioventricular 

block. It has recently been described in three case-reports173–175. Untreated 

patients reportedly have a high risk of developing severe arrhythmia and 

Torsade-de-pointes, putting their life at risk174,175. Treatment of one of the 

patients with lidocaine did not produce the expected reduction in QTc, 

similarly to mexiletine which also showed gastrointestinal intolerance, 

therefore requiring installation of a double chamber pacemaker173.  

To the best of our knowledge, there is still no Markov model available in the 

literature for the V411M mutation of INa and its mechanism has yet to be 

confirmed. Since electrophysiological characterization of the mutated channel 

has been already performed in detail173, it represents a suitable target to model. 

4.1.2 The late component of the sodium current (INaL) 

The late sodium current has been called by many names, including “persistent”, 

“non-inactivating”, “sustained” or “window” sodium current, but these 

concepts must not be confused176. Maltsev and coworkers75,176 explain in their 

works that the  “window current” results from the crossover of the activation 

and inactivation curves, where a portion of the channels remain available for 

activation during the repolarization, and that it cannot account for the whole 

INaL. They studied the sodium channel kinetics in single channel mode and 

discovered that the sodium channel has several gating modes that prevail over 

different membrane potentials and time scales. The authors found that the late 

sodium current was determined by opening bursts that lasted a few 

milliseconds combined with random single openings, although the 

contribution of the latter was more important. They conveniently called them 

“bursting” mode and “late scattered” mode, respectively. The former is 

produced when sodium channels fail to inactivate during phase 0 of the action 
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potential, while the latter arises from voltage-dependent sudden openings that 

make for the ultra-slow inactivating dynamics of INaL in patch-clamp 

experiments. Therefore, INaL exists due to a combination of a sub-population 

of bursting channels, ultra-slow inactivation dynamics, and the “window” 

current, which is formed by a small reactivation of INaf during repolarization. 

INaL plays an essential role in determining the restitution of the APD in cardiac 

cells in normal conditions, which is fundamental for heart rate adaptation177. 

Specific cardiac conditions have been related to altered INaL dynamics172,176. A 

review by Moreno & Clancy found that during hypoxia, for example as a 

consequence of heart failure or myocardial infarction, INaL increases by two to 

four-fold51. This was shown to be a cause of EADs51. Trenor and coworkers 

analyzed the role of INaL using computer simulations and revealed that 

cardiomyocyte remodeling induces EADs through increased sodium 

accumulation and greater APD reverse rate dependence178, along with calcium 

overload172,179. Since INaL appears to have different magnitudes depending on 

the cell type, it can produce a severely increased heterogeneity of the cardiac 

tissue’s electrical properties when altered, leading to an arrhythmogenic 

substrate172. Therefore, INaL is a fundamental current in both healthy and altered 

cardiac tissue.  

Late INa is a small current and poses technical problems when trying to measure 

it. The use of INaL enhancers such as anemone toxin (ATX-II) is a common 

practice to increase its amplitude above measurable thresholds. Traditionally, 

a pulse from negative potentials around -90 mV to around 0 mV would be 

applied for 200 to 350 milliseconds to completely inactivate the transient INaf. 

The remaining non-inactivating current at the end of this pulse would be 

measured as INaL
180–183. However, another approach has recently been used to 

characterize it. The authors of works using self-AP clamp techniques claimed 

they are better at capturing the current’s dynamics and role in 

arrhythmogenesis184–186. Briefly, cardiomyocytes are paced, and their action 

potential time course is recorded and saved to later be applied as a voltage 

command under exposure to INa blocker tetrodotoxin (TTX), which enables 

calculation of the time course of INaL by comparison of the membrane current 

with and without the drug. This protocol considers the non-equilibrium 

processes that happen during an action potential such as the “window” current, 

which cannot be assessed with a simple voltage step, especially during 

repolarization. Furthermore, the experiments were conducted on ventricular 

myocytes, which naturally include all the necessary currents, proteins and 

enzymes that cooperate to produce the normal action potential time course, as 

opposed to cells transfected with the sodium channel. Therefore AP-clamp 
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techniques offer more information about the real time course of the current 

compared to traditional step pulse techniques. 

Moreno and coworkers modeled the ΔKPQ mutation90 using a Markov model 

of INa
89. As the authors suggested in a more recent work77, their INa model can 

be used as a template to create and optimize mutation and drug models. To test 

the effectiveness of ranolazine on the ΔKPQ phenotype, they substituted the 

INa formulations of both the ORd98 and the Grandi-Bers97 with Soltis-

Saucerman187 human ventricular action potential models by their own INa 

formulation. Then, they computed the action potential time courses in wild-

type, mutation and under exposure to therapeutic concentrations of ranolazine.  

Figure 27 shows a comparison between INaL time courses from several in-silico 

and in-vitro sources (highlighted in red). Panel A shows the INaL time course 

resulting from including Moreno and coworkers’ Markov model of INa in the 

ORd model (A) and the Grandi-Bers with Soltis-Saucerman model (B)90. The 

time course shows a current surge of a few milliseconds which corresponds to 

INaf. This current cannot be correctly represented in this figure due to the vast 

differences in duration and magnitude compared to INaL. Then, the current 

decreases to values close to zero and remains in that state during approximately 

50 ms. To this state follows a gradual reactivation of the current that culminates 

in a peak, which corresponds to INaL’s activation and maximum value, 

respectively. Finally, the current drops quickly marking the end of INaL. In 

panel C, we highlighted the BCL 1000 ms INaL time course obtained using the 

ORd model of the human endocardial action potential model98 among other 

time courses obtained at different BCLs. In panel D, we highlighted INaL among 

the registered currents in guinea pig cardiomyocytes by Horvath and 

coworkers184 using self-AP clamp experiments. Panel E shows the results of 

similar experiments by Hegyi and coworkers185. Contrary to panels A and B, 

INaL time courses in panels C to E show a smaller slope after the INaf upstroke 

that progressively leads to a maximum value (peak INaL). Then, the current 

quickly diminishes matching the end of the action potential (not shown). The 

time course of INaL in panels A and B shows a current whose effect is focalized 

on the later portion of the repolarization. However, panels C to E show currents 

whose amplitude difference between the plateau and repolarization phases is 

small. Hence, we ought to integrate new self-AP clamp data into the Moreno 

and coworkers’ model of INa to improve INaL’s time course, increasing its 

contribution to the plateau phase and reducing the differences between peak 

and plateau current amplitudes.  
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Figure 27. Comparison of in vivo and in vitro INaL time courses during the 

action potential. The relevant time courses were highlighted in red. Panels A 

and B:  INaL time courses of the Moreno and coworkers90 Markov INa model in 

the O’Hara-Rudy model (A) and the Grandi-Bers with Soltis-Saucerman 

model (B). Panel C: time course of the O’Hara-Rudy model’s Hodgkin-Huxley 

formulation of INaL. Panels D and E: INaL time course obtained through self-AP 

clamp in guinea pig cardiomyocytes from Horvath and coworkers184 and Hegyi 

and coworkers185, respectively. Figures were modified from their original 

papers90,98,184,185. 

4.1.3 LQTS type 3 therapy 

Treatment of the LQTS type 3 with β-blockers was initially not recommended, 

but a significant albeit incomplete reduction in cardiac events was found188, 

especially for nadolol189. Despite there is evidence that LQTS type 3 patients 

could be harmed while treated with β-blockers190, these remain the first line 

treatment for LQTS patients7,191,192. Given this syndrome is characterized by 

an increase in INa, it is natural to think that drugs that specifically block the 

sodium channel can be useful in treating the condition (see 2.5.1). Among them, 

ranolazine, flecainide, lidocaine and mexiletine are examples that have already 

been used clinically in LQTS treatment173,193–196. As we have already explored 

in 4.1.2, the sodium current shows two components (INaf and INaL) resulting 

from different modes of the same channel75 which can be specifically targeted 

by sodium channel blockers (see 2.5.1) that have a preferential binding to 

certain conformations of the channel197. This makes sodium channel blockers 
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suitable since they apparently target the same channel but show different 

effects. The effects of the abovementioned INa blockers will be reviewed below. 

Mexiletine’s effects on LQTS type 3 have been tested in 34 patients193. 

Thirteen of them showed symptoms derived from their prolongation of the QTc 

before receiving the drug. During treatment with mexiletine, almost all of them 

(33) showed a reduction in QTc and 10 out of 13 were symptom-free. This 

supports the fact that INa block induced by mexiletine can prove useful in LQTS 

by reducing QTc prolongations. Nonetheless, the cohort population was not 

uniform, combining infants and adults and several mutation loci, avoiding 

further conclusions due to a lack of detail about the mechanisms that enhance 

INa in each patient. In a case-report, mexiletine was administered in a patient 

carrying the heterozygous V411M mutation173. According to the authors, 

mexiletine was unable to attenuate their patient’s QTc prolongation. 

Researchers used lidocaine in 25 patients and gathered data about their ECG 

parameters in an attempt to unmask possible LQTS type 3. The 9 patients who 

possessed the malignant mutation E1784K showed a greater reduction of the 

QTc than their wild type variants. However, the small population calls for 

further research to confirm its usefulness196. In another work, a patient with the 

I1768V mutation, which increases INaL, was administered lidocaine and 

resulted in a successful reduction in QTc198. This indicates that lidocaine could 

be helpful in treating this mutation’s phenotype, but they were unable to 

determine the subjacent mechanism was due to a lack of electrophysiological 

characterization. Similar to mexiletine, lidocaine did not prove beneficial in 

the treatment of a patient carrying the heterozygous V411M173. 

Ranolazine was tested in a long-term clinical evaluation in 8 patients carrying 

the D1790G mutation increasing INaL and thus prolonging the QT interval194. 

It resulted in a significant decrease in QTc without causing Brugada 

syndrome194. Ranolazine is a relatively new antiarrhythmic (class IB) useful in 

treating angina130. Although it is still being tested, its usefulness in treating 

patients carrying the SCN5A D1790G mutation suggests it could be useful in 

other LQTS type 3 patients. However, it has yet to be tested in patients with 

the V411M mutation. 

Flecainide has proven its effectiveness in treating cardioversion and 

maintaining sinus rhythm in atrial fibrillation199 since its commercialization in 

1982, due to its selective block of the sodium channel. Flecainide’s effects 

were tested in 30 patients carrying the D1790G mutation. It successfully 

reduced the QTc value in all patients, leaving only 13% above clinically 

dangerous values, but none of them had cardiac events during the treatment. 
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The authors conclude that flecainide is a relatively safe treatment for this 

mutation200. Electrophysiological characterization was available for 

flecainide201 (as well as for ranolazine194) in naïve and in mutation conditions, 

but the mutation had already been subject of mathematical modeling202. 

However, these results suggest that flecainide treatments could prove 

beneficial in other LQTS type 3 patients. 

While Horne and coworkers173 did not use flecainide on their patient, they 

hypothesized it could prove beneficial. Carrasco and coworkers later reported 

that treatment of a patient carrying the de novo heterozygous V411M mutation 

with a combination of flecainide and β-blockers (propranolol) resulted in a 

complete disappearance of the LQTS phenotype with no further cardiac 

events175. Blich and coworkers174, learning from these findings, reported the 

same results in a very similar patient with the de novo mutation. Therefore, 

there is evidence that flecainide can safely treat the V411M phenotype, 

although the exact mechanism has yet to be found. 

Other INa blockers such as GS967, F15845 and eleclazine have not yet been 

tested clinically in LQTS patients, although their effectiveness is currently 

being tested in vitro203–206. This leaves flecainide and ranolazine as excellent 

candidates to model and test in the presence of the V411M mutation phenotype. 

4.1.4 Objectives 

To summarize, the V411M mutation of the SCN5A gene belongs to an 

important group of gain-of-function mutations that can cause arrhythmia and 

death through increased INa during repolarization. We ought to create a new 

model for the mutation to test the effectiveness of an alternative treatment with 

ranolazine using computational simulations.  

To achieve our goals, we split this chapter in three specific stages with specific 

objectives. First, we ought to create a model of the SCN5A V411M mutation 

reproducing experimental and clinical data. Second, we ought to update 

flecainide and ranolazine models to account for new discoveries. Finally, we 

ought to evaluate the effects of both drugs on the mutation dynamics and 

provide insights on their mechanisms of action. This could explain the 

beneficial effects of flecainide174,175 while giving an answer to whether 

ranolazine could be used as an alternative treatment. 
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4.2 Materials and Methods 

4.2.1 Clinical characterization 

Four patients carrying the SCN5A V411M mutation from two channelopathies 

specialist clinics gave consent to enroll in a study of their condition. The local 

ethics committee analyzed and approved the study protocol. All patients 

underwent ECG measurements under exposure to β-blocker treatments with 

propranolol or nadolol and also in naïve conditions (no treatment). Their mean 

QTc intervals, corrected with the Bazzet formula, were obtained manually 

from resting twelve lead ECGs. Raw QT values were calculated using the 

tangent method207 in at least three consecutive complexes from lead II. Two 

consecutive or three nonconsecutive complexes were used to gain accuracy 

provided the quality of the ECG or the presence of pronounced sinus 

arrhythmia made it reasonable, never looking for the longest or shortest QT 

intervals. In order to estimate the prolongation that was attributable to the 

mutation for each patient we used an online tool (www.QTcalculator.org). The 

inputs of this tool are the gender, the age and the QT interval and the outputs 

are the probabilities of the occurrence of that QT interval or a smaller value in 

control subjects and in LQTS patients. Taking a conservative approach, we 

selected the QTc value that covered 90% of the values in wild type (control 

subjects) and made it our wild type control. We utilized this reference value to 

estimate the prolongation that was attributable to the mutation for each patient.  

4.2.2 Models 

4.2.2.1 INa model 

The Markov formulation of the wild type sodium channel created by Moreno 

and coworkers90 was used as a basis to model the dynamics of flecainide89, as 

well as ranolazine both in control and mutated channels. Figure 28 describes 

the structure of the model. The wild type model (black characters) consists of 

twelve states including one open (O), three closed (C), four inactive (I) and 

four bursting (B). The latter consist of three bursting closed (BC) states one 

bursting open (BO) state. Transition velocities between states are indicated on 

the side of arrows that show the possible transitions. Drugs can bind to specific 

states of the channel including the closed states, but only the neutral fraction 

of the drug can bind to the inactive states while the charged fraction can bind 

to the bursting states. The drug bound models (charged drug in red characters 

and neutral drug in blue characters) show their own modified versions of the 

wild type or mutated transition rates. The mutated version of the model can be 

used by adapting the transition velocities. 

http://www.qtcalculator.org/
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This model is appropriate to create a new mutation model while also providing 

the framework to update both drugs. Therefore, our work started from the 

unmodified formulations of the Moreno and coworkers’ sodium current in wild 

type89 and under exposure to ranolazine90 and flecainide, which was later 

updated to include bursting mode states91. All models were constrained by 

microscopic reversibility208. 

4.2.2.2 Action potential models 

We integrated our particular formulations of the sodium current into the 

Grandi-Bers with Soltis-Saucerman electrophysiological model of the 

epicardial action potential, which was modified by Moreno and coworkers to 

simulate the effects of the ∆KPQ mutation. The authors created the Grandi-

Bers with Soltis-Saucerman model by using the “Soltis-Saucerman model as a 

template to replace each ionic currents with the Grandi-Bers model except for 

the L-type calcium channels” and adjusting ICaL and IKr conductances90 (see the 

reference for more detail). We took this approach because it already constitutes 

the necessary framework that fit our simulation objectives. This epicardial 

model was used as a starting point to create two additional cellular models, 

endocardial and midmyocardial, which we would use later to create the tissue 

strand model. To do so, we applied scalar factors to several currents, matching 

the reported differences in conductance98 (See Table 6). 

The sodium current model was inserted twice to account both for wild type and 

mutated variants. The heterozygous configuration was simulated by including 

50% of the former and 50% of the latter during simulations. 

In Chapter 3, the Tx biomarker showed very similar results for endocardial and 

tissue strand models. The reason was that the prolongations that we registered 

in both models under exposure to the same drug set were very similar. Bearing 

this in mind and in order to reduce the computational demand of an already 

intensive workload, we used the endocardial APD90 prolongation as a surrogate 

value of the QT interval prolongation. Later, the QT prolongation was 

measured using a one-dimensional tissue model and compared with the 

reference. 

The numerical method used to update the membrane potential was forward 

Euler. State occupancy probabilities in the sodium channel Markovian model 

were calculated by an implicit Trapezoidal numerical method. Unless specified, 

the models were paced at a 1 Hz rate, which is widely used in human 

cardiomyocyte simulation (as we did in Chapter 3) in the absence of β-

adrenergic stimulation. These conditions would be equivalent to the exposure 

to a β-blocker drug. 
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A stimulus of 9.5 pA/pF and 5 ms duration of inward current was applied to 

trigger the depolarization.  

Table 6. Scalar factors that were applied to current conductances to create 

midmyocardial and epicardial cell models. First column: conductance name. 

Second column: midmyocardial to endocardial relationship. Third column: 

epicardial to endocardial relationship. 

Conductance Midmyocardial Epicardial 

GKr 0.75 1.1 

GKs 1.4 1 

GCaL 1.80 1.10 

GNaK 0.70 0.90 

Gto 3 3 

GK1 1.3 1.2 

GNCX 1.4 1.1 

GNaL 0.9 0.6 

 

4.2.2.3 Tissue strand model 

We used a version of the tissue strand model provided by Moreno and 

coworkers90. We modified the model to include the same features as the model 

we used in Chapter 3, namely, we included three layers of 60, 45 and 60 

endocardial, midmyocardial and epicardial cells98 instead of the linear increase 

of GKr from endocardial to epicardial cells proposed by these authors. We 

placed virtual electrode 2 cm away from the epicardial end of the fiber to 

measure the ECG with the reaction-diffusion equation introduced in 2.6.4. 

The integration method was Forward Euler with a fixed time step of 0.005 

milliseconds due to the asynchronous activation of the 165 cells. 

The strand model was paced in the absence of β-adrenergic stimulation, as the 

cellular models, at 1 Hz. A stimulus of 400 pA/pF and 0.5 ms duration of 

inward current was applied to the first endocardial cell to trigger its 

depolarization. 

4.2.3 Optimization of the INa models 

4.2.3.1 Optimization strategies 

The complexity of mathematical models carrying a large number of unknown 

parameters, and specifically Markov models of ionic currents, makes nearly 
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impossible to manually find a combination that gives satisfactory results for 

all the channel dynamics. Therefore, automated search algorithms make of a 

very useful solution to this problem209. However, there are many strategies 

available in the literature to approach the parameter estimation problem, such 

as principal axis fitting210, simulated annealing211, maximum-likelihood 

estimation212, particle swarm optimization213,214 and genetic algorithms215–217. 

Automatic optimizations consist of algorithms that search to minimize a value 

determined by a cost function while progressively modifying the parameters 

that they are given. Naturally, the search space has the same number of 

dimensions as the number of parameters to be adjusted, thus increasing the 

complexity of the problem exponentially per additional parameter. A common 

challenge to these algorithms is that they often find a local, rather than global, 

minima of the cost function. To circumvent this problem, particle swarm 

optimizations and genetic algorithms rely on running several identical 

optimizations in parallel and considering the cost function spatial evolution, 

therefore taking a wider approach to the problem. However, this comes also 

with a high computational demand that can rend complex problems impossible 

to solve in an affordable time. Moreno and coworkers implemented the Nelder 

& Mead218 direct search method, and used it to optimize their SCN5A wild 

type, drug and ∆KPQ mutation models77,89,90. This method does not need any 

information on the cost function derivative219 while still benefiting from new 

technologies such as parallelization of the cost function capabilities77, which 

speeds its computation considerably. The computational cost of this method is 

also lower than the other beforementioned strategies because a single 

parameter set can be optimized without the need of multiple points in the 

parameter space. Therefore, we chose Moreno and coworkers’ methods to 

perform the required parameter optimizations. 

We implemented the necessary code for optimization in Matlab (version 2014b, 

The Mathworks inc.), including main optimization functions, patch clamp 

functions, sodium currents and action potential simulation main files. The 

action potential models were programmed in C++. 

4.2.3.2 Optimization protocols 

In this Chapter we ought to create a model of the SCN5A V411M mutation 

using Markov chain models, as well as to test the effects of two treatments. To 

do so, we started from existing Markov INa models and progressively modified 

their parameters to optimize their electrophysiological response to several tests, 

including in silico patch-clamp and action potential simulations, to bring their 

results close to in vitro experimental data as well as clinical data from our 

patients.  
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First, we optimized the WT INa model to reproduce experimentally measured 

electrophysiological dynamics, namely, INaf steady state availability, activation, 

recovery from inactivation, recovery from use-dependent block, half-

maximum activation Tau, Mean Opening Time (MOT) and INaL current-

voltage relationship. The model was also constrained to reproduce 

experimentally measured endocardial APD90 data at BCLs of 300, 400, 500, 

1000, 1500 and 2000 ms. INaL time course during endocardial simulations was 

also optimized to reproduce experimental data. 

Then, we created a model for the SCN5A V411M mutation by reproducing the 

experimentally measured WT-to-mutant changes in several 

electrophysiological dynamics, namely, activation, inactivation, mean 

activation time constants and current-voltage relationship. These experimental 

data were taken from the scientific literature. Patient data were used to fit the 

APD90 prolongation produced by the heterozygous mutated phenotype during 

in silico AP simulations, which were further verified using the transmural 

strand model to assess QT prolongation. 

To test the effects of flecainide and ranolazine on the heterozygous mutation 

phenotype, we first ought to optimize previously published models of these 

drugs as follows.  

We optimized the flecainide model to reproduce experimentally measured 

electrophysiological dynamics, namely, INaf steady state availability, recovery 

from use-dependent block, and use-dependent block at three pacing rates of 

0.2 Hz, 1 Hz and 3 Hz, as well as INaL IC50. The flecainide-induced endocardial 

APD90 prolongation in WT was assessed during AP simulations, with the aim 

of matching the clinically observed QT prolongations using it as a surrogate 

value. 

We optimized ranolazine model to reproduce experimentally measured 

electrophysiological dynamics, namely, steady state availability, tonic block, 

use dependent block, recovery from use-dependent block and frequency 

dependent use-dependent block. 

Finally, we performed sensitivity analyses of the parameters of our models to 

reveal the ones that were key for the effects of the V411M mutation and the 

drugs on the action potential time courses. To do so, we evaluated the impact 

of each parameter of the V411M mutation individually on the INaL increment 

compared to the complete optimized model. In the case of ranolazine and 

flecainide models, we evaluated the effects of increasing each of their 

parameters individually by 10-fold on the APD90 reduction induced by the 

baseline drugs.  
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Full details on the optimization methods were included in the appendix of this 

document. 

4.3 Results 

4.3.1 QTc intervals of the patients  

In Figure 29, we assembled example traces of the lead II ECGs that were used 

to measure QTc values for each of the four patients. Of note, the patients were 

undergoing β-blocker treatment according to the guidelines7. The action 

potential and tissue strand models were paced at 1 Hz, which is consistent to 

removing β-stimulation, as the formulation of this feature was not utilized in 

our models. 

Table 7 shows the QT interval values calculated from the ECGs along with 

their corresponding reference wild type values. The average prolongation of 

the QTc resulted in a 19.9%, with maximum and minimum values of 28.1% 

and 8.5%, respectively, both belonging to patient four. 

Table 7. Detailed QTc measurements. Two samples were taken from each 

patient under the specified β-blocker treatment.  

Patient  Gender  

Age 

(years) β-blocker 

QTc 

(ms) 

QTc leaving 

90% of control 

QTc below (ms) 

QTc 

Increment 

(%) 

1 Male 

7 

months nadolol 542 434 24.9 

       516 434 18.9 

2 Female 29 nadolol 503 437 15.1 

        498 437 14.0 

3 Female 11 nadolol 555 434 27.9 

        528 434 21.7 

4 Female 2 propranolol 471 434 8.5 

        556 434 28.1 

          Average (%) 19.9 
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Figure 29. Patients characteristics, ECG traces (lead II) and QTc results. 

Percentiles of control and LQTS patients to which the QTc values belong are 

preceded by a “P”. 

4.3.2 Overview of the optimization program 

Figure 30 shows the general flow of the optimizations. Initial parameters are 

provided to the main function as a vector, along with a vector of seeds for 

reproducibility. The main function creates a series of jobs in a server requesting 

as many cores per job as tests are in the optimization protocols, then assigning 

the optimization launcher function to them. Each job randomizes the parameter 

vector using the seed that has was assigned to it and launches the optimization 

by calling the fminsrchbnd function, providing it with the corresponding test 

batch function. Fminsrchbnd calls the latter to evaluate the performance of the 

current parameter vector, defined by the addition of its performance scores in 

various tests.  

These include patch-clamp protocols and AP simulations in isolated cardiac 

cellular models including the INa formulation. To improve speed, the tests were 

computed in parallel using Matlab’s parallel toolbox, assigning a test to each 

requested core. Every time the test batch function is called, it returns a score 

representing the performance of the parameter vector, which is then evaluated 
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by fminsrchbnd and compared with previous steps in order to modify the 

parameters towards a combination that could yield better results. When the 

termination parameters are met, fminsrchbnd stops the optimization and 

returns a parameter vector containing the parameters that yielded the best 

results in the parameter history. Otherwise, the optimization continues. 

Every test batch function was manually crafted containing the protocols to be 

reproduced (see Appendix). The function that was in charge of patch clamp 

tests had the protocols built-in, consisting of a series of voltages and times 

matching the ones from their respective experimental protocols. The function 

that launched the AP models was coded in Matlab to manage all necessary 

commands and files needed to launch a C++ executable containing the AP 

model. However, both the patch-clamp results and AP time courses were 

analyzed inside the test batch function following the indications of the 

reference works, after the required protocols had concluded. 

 

Figure 30. General flow chart of the optimizations. The blue zone indicates 

the components that were computed in parallel for the sake of speed. 
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4.3.3 Wild type INa model 

The wild type INa model was optimized following a two-phase scheme 

designed to overcome the local minimum derived from previously optimized 

dynamics, which corresponded to the original Moreno et al. model89. It was 

obtained by introducing first whatever data was new to the model undoubtedly 

worsening the results in other tests. Then, this would be addressed by re-

enabling the original tests. 

Indeed, phase one was restricted to the endocardial APD90 restitution curve, 

INaL time course and current-voltage relationship, all tests bringing new data to 

the model. We fitted the maximum upstroke velocity to 250 V/s98. Once 

simulations belonging to this phase were completed, the resulting parameters 

were used again as initial conditions in a second optimization, phase two, 

where all tests were enabled to refit the original current dynamics.  

 

Figure 31. Wild type INa model optimization results. Steady state 

availability (A), steady state activation (B), recovery from inactivation (C), 

recovery from use-dependent block (D), INaL current-voltage relationship (E) 

and APD90 restitution curve (F). Lines are simulations and squares are target 
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experimental data (A-F). The time course of the last action potential obtained 

with the endocardial model elicited by a train of 40 pulses (H) and the 

corresponding INaL time course (G). They were obtained with both post (black 

lines) and pre-optimization (yellow lines) models. In panel G, INaf was cut in 

favor of a better representation of INaL. 

Figure 31 depicts the results of the wild type INa optimization tests for the 

combination of parameters described in Table 8. In this figure, we compare the 

best selected optimization results (black lines) to the experimental data (open 

squares). We also illustrate the action potential time course (panel H) of the 

last of 40 beats at 1 Hz pacing rate before (yellow line) and after optimization 

(black line) and the corresponding INaL time courses (panel F). These panels 

show that the optimized current exhibits a smaller maximum INaL around 250 

ms after peak INa compared to the previous formulation, corresponding to the 

repolarization phase of the action potential, but a slightly greater current during 

the plateau phase. 

Table 8. Parameters of the wild type INa model. The first and third columns 

indicate the parameter index as described in Table A.1 (see Appendix), and the 

second and fourth columns describe their corresponding values. 

Parameter Value Parameter Value 

p1 6.59·10-2 p9 1.48·101 

p2 2.76·10-1 p10 3.54 

p3 6.98·10-2 p11 3.81·101 

p4 3.04 p12 2.30·10-2 

p5 1.18 p13 3.02·10-2 

p6 8.06·10-6 p14 1.70·10-7 

p7 8.43 p15 5.66·10-4 

p8 6.45   

 

This reduced the APD90 of the new model but increased the contribution of the 

current to phase 2 of the AP. INaL dome was reduced to 0.291 pA/pF, the valley-

to-dome current proportion was 48% and the half time proportion was 59.3%. 

These results are in agreement with the reference experimental data (0.34 

pA/pF107, 59%184 and 63%184, respectively). With such INa characteristics, the 

endocardial model resulted in APD90s of 194.2, 209, 223.1, 268.6, 290.9 and 
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303.9 ms for BCLs of 300, 400, 500, 1000, 1500 and 2000 ms, respectively. 

As can be deduced from the graphics, the results of the tests were satisfactory 

and in agreement with the reference data, but steady state activation (panel E) 

was slightly left shifted (10 mV), although the differences are in-line with the 

experimental data variability (see Figure 32 for a comparison with other 

experimental sources). Maximum upstroke velocity of the action potential 

simulations at BCL 1000 ms resulted in 289.9 V/s (not shown). The late to fast 

INa proportion was 0.08% (not shown).  

4.3.4 Mutation model 

The wild type optimization with the new INaL experimental data created the 

base model we later modified to reproduce the SCN5A V411M mutated INa. 

Here, we ought to incorporate the experimentally observed wild type to 

mutation changes in dynamics, specifically, shifts and slope alterations in 

activation, inactivation and current-voltage curves and time constants in 

addition to the prolongation of the QTc clinically observed. Contrarily to the 

wild type model, there is no need for several phases since the model was not 

previously fitted to these dynamics. The V411M optimization was performed 

in one phase including all tests for a total of 10 seeds. 

 

Figure 32. Comparison of the optimized wild type INa model activation 

curve (black line) to several experimental sources from the literature (symbols. 

References in the legend). 

Figure 33 shows the results obtained with the selected model of the V411M 

mutated INa channel dynamics, whose parameters are described in Table 9.  The 

simulations with the endocardial action potential model, which was set to 

heterozygous mode, show that the mutation (panel F, red trace)  prolonged the 

APD90, which  was 311.5 ms, a 16% prolongation compared to wild type (panel 

A, black trace). It was caused by an increase in INaL, whose maximal value 
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raised from 0.29 pA/pF (panel E, black trace) to 0.75 pA/pF (panel E, red trace) 

during the repolarization. In panels A to D, we compared the simulation results 

(black lines) to reference data (open squares) reproducing the experimental 

changes attributable to the V411M mutation, as well as the wild type model 

results (black lines). The steady state activation curve (panel B) showed an 8.1 

mV left shifted V1/2 compared to wild type, while the steady state inactivation 

curve (panel C) showed a smaller (6.1 mV) left shift of the V1/2. Both values 

were successful fits to the experimental data. The inactivation tau (panel D) 

diminished by halving its value overall, which is most apparent at negative 

potentials. Current-voltage relationship curves (panel A) showed an increase 

of the channel’s conductance over the -55 mV to -5 mV range doubling and 

even tripling the wild type values for -40 mV and -35 mV, voltages that are 

common during phase 3 of the action potential, which explains the increment 

in INaL shown in its time course. Taking into account the abovementioned 

results, we considered that the fit was satisfactory for combining with drug 

models. 

 

Figure 33. V411M mutated INa optimization results. The V411M mutated 

INa model was optimized using data from Horne and coworkers173 by 

reproducing the alterations that the mutation produced to the wild type 

INa dynamics and the clinically observed QTc prolongation using the 

APD90 of the endocardial model as a surrogate. The tests consisted of 

current-voltage relationship (A), steady state activation (B) and inactivation 

(C), time constant of inactivation (D) and APD90 prolongation (F). The INaL 

time course (E) was added to illustrate the impact of the mutation on the current, 
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which explains the increase on the APD90 compared to WT. Simulation results 

(red lines) were compared to target data (open squares) and wild type (black 

lines). 

4.3.5 Flecainide model 

We used the Hill formula to both increase IK1 by a 51%220 and reduce IKr by a 

27.7%221 at 1.5 µM free therapeutic plasma concentrations during simulations 

with the endocardial cell.  

Flecainide’s optimizations were divided in three phases sequentially 

performed. First, the neutral fraction of the drug (less than 1% at physiological 

pH) was optimized to dose-dependent use-dependent block and recovery from 

use-dependent block, following Moreno and coworker’s methods. Then, 

neutral drug parameters not allowed to evolve before the second phase, where 

charged and neutral drug were optimized to steady state availability, recovery 

from use-dependent block and INaf IC50 use-dependence at 0.2 Hz, 1 Hz and 3 

Hz108. Phase three added two more tests including INaL IC50 and APD90 

prolongation in endocardial cells (set to maintain the APD90). Affinities for the 

channel of the charged drug, but not diffusion, were allowed to change in 

phases 2 and 3 to account for the new INaf and INaL IC50s.  

Table 9. Parameters of the V411M mutation INa model. The first and third 

columns indicate the parameter index as described in Table A.1, and the second 

and fourth columns describe their corresponding values. 

Parameter Value Parameter Value 

p1 4.71·10-2 p9 1.67·101 

p2 2.52·10-1 p10 7.01 

p3 5.65·10-2 p11 3.16·101 

p4 2.99 p12 2.08·10-2 

p5 2.59·10-1 p13 5.51·10-2 

p6 1.42·10-5 p14 1.70·10-7 

p7 9.48 p15 5.66·10-4 

8 6.96   

 

Figure 34 shows the results of the best flecainide optimization, whose 

parameters are described in Table 10. Reference experimental data (panels A-

E: open squares) were compared to simulation results (panel A: filled circles; 
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panels B-E, lines). Dose-dependent use-dependent block (panel A) and 

recovery from use-dependent block (panel B) of neutral flecainide showed 

very similar results to the original work89, an so did charged flecainide tests, 

including steady state availability (panel C) and recovery from use-dependent 

block (panel D) of both charged and neutral flecainide. In panel D, we 

illustrated wild type results in grey symbols as a reference. INaf use-dependent 

block is represented in panel E, showing suitable fits to the experimental data. 

Panel F shows both the drug-free wild type endocardial action potential time 

course (black line) and under exposure to 1.5 µM flecainide, which produces 

a 1.2% increase of the endocardial APD90 compared to wild type. Finally, the 

model scored an INaL IC50 of 1.65 µM following Matsukawa and coworkers’ 

patch clamp protocols222. 

 

Figure 34. Flecainide optimization results. In phase one, neutral flecainide 

model was optimized first to dose-dependent use-dependent block (A) and 

recovery from use-dependent block (B). In phase two, steady state availability 

(C), recovery from use-dependent block under exposure to 10 µM flecainide 

(D, black, drug-free conditions were included in grey) and use-dependent 

block of INaf (E) at 0.2 Hz, 1 Hz and 3 Hz (light grey, dark grey and black, 

respectively) were added and both neutral and charged flecainide were 

optimized. Finally, in phase three, APD90 prolongation (F) and INaL IC50 (not 

shown) were included in the test pool. Filled circles (A) and lines (B-F) are 

simulations. Squares are target experimental data (A-E). 
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Table 10. Parameters of the flecainide model. The first and third columns 

indicate the parameter index as described in Table A.4 (see Appendix), and the 

second and fourth columns describe their corresponding values. 

Parameter Value Parameter Value 

p1 9.72·10-5 p9 1.54·10-1 

p2 2.85·10-8 p10 2.49 

p3 1.29·10-3 p11 4.03·101 

p4 2.93·103 p12 7.07 

p5 8.23·10-9 p13 1.12·10-3 

p6 23.43·10-7 p14 4.30·10-3 

p7 3.24 p15 2.15·101 

p8 3.27·10-1 p16 8.07·10-1 

 

Table 11. Parameters of the ranolazine model. The first and third columns 

indicate the parameter index as described in Table A.6 (see Appendix), and the 

second and fourth columns describe their corresponding values. 

Parameter Value Parameter Value 

p1 9.08·10-5 p9 1.54·10-1 

p2 2.93·10-8 p10 2.49 

p3 1.23·10-3 p11 4.03·101 

p4 2.92·103 p12 7.07 

p5 8.48·10-9 p13 1.12·10-3 

p6 2.91·10-7 p14 4.30·10-3 

p7 3.00 p15 25.9 

p8 3.46·10-2 p16 8.03·10-1 
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Figure 35. Ranolazine optimization results. All tests were run in parallel in 

one phase: steady state availability of 10 µM ranolazine (A), tonic block of INaf 

(black squares and lines) and INaL (grey squares and lines) (B), use-dependent 

block (C), recovery from use-dependent block of 10 µM ranolazine (D) and 

frequency-dependence of recovery from use-dependent block of 100 µM 

ranolazine (E). Lines are simulations and squares are target reference 

experimental data. 
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4.3.6 Ranolazine model 

Ranolazine has shown affinity to sodium as well as for potassium channels. 

Moreno and coworkers90 used a model of ranolazine to assess its effects on 

SCN5A ∆KPQ LQTS type 3. This mutation greatly increases – by five-fold – 

the proportion of sodium channels in bursting mode, to which the drug shows 

great affinity. Following the authors methods, we optimized ranolazine to 

steady state availability, use-dependent block, recovery from use-dependent 

block, frequency-dependence of recovery from use-dependent block and tonic 

block of fast and late sodium currents. 

Figure 35 shows the results of the best ranolazine model (lines), whose 

parameters are described in Table 11. Parameters of the ranolazine model. The 

first and third columns indicate the parameter index as described in , and the 

second and fourth columns describe their corresponding values., compared to 

reference experimental data (open squares). In panel A, we evaluated the 

steady state availability of the channel under exposure to 10 µM ranolazine. 

Panel B shows the concentration dependence of tonic block of INaf (black lines) 

and INaL (grey lines), IC50s being 153.4 µM and 5.46 µM, respectively. In this 

panel, open squares represent digitized results from Moreno and coworkers90 

but, due to the scarcity of data regarding these curves, we decided to use the 

original fitted model to reduce variability. The results are consistent with 

experimental data from several laboratories. Indeed, Antzelevitch and 

coworkers223 obtained IC50s of 296 µM and 6 µM, respectively, in canine 

ventricular cells.  Crumb and coworkers124 studied ranolazine’s effects in 6 ion 

channels in transfected HEK cells and obtained 7.66 µM for INaL with no 

mention for INaf because it was outside the tested concentrations (upper 

boundary was of 69 µM). Panel C shows the steady state use-dependence of 

the channel under exposure to increasing ranolazine concentrations. Panel D 

illustrates the time course of recovery from inactivation resulting from the 

same protocol from panel C at 10 µM ranolazine concentrations. Finally, in 

panel E we show the frequency dependence of block under exposure to 100 

µM ranolazine at 1, 2, 5 and 10 Hz pacing frequencies. The results from these 

tests were all very similar to the original work from Moreno and coworkers90 

and thus were considered them satisfactory. 

4.3.7 Differences in flecainide and ranolazine mechanisms of action 

Combination of the models was done to assess the effects of flecainide and 

ranolazine on the V411M mutation. For that matter, we ought to simulate the 

effects of therapeutic concentrations of both drugs on the isolated cell and 

tissue strand models. The epicardial and midmyocardial models were manually 

adjusted (see Table 6 for details on the final conductances) to fit their 
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respective steady state APD90 restitution curves, which were represented in 

Figure 36 (lines) compared to reference experimental data98 (open squares + 

SD bars). The models were brought to steady state as described in methods, by 

running 300-second simulations at the indicated pacing rates and saving their 

last action potential for further analysis. The action potentials corresponding 

to the steady state wild type and heterozygous V411M models, both with or 

without exposure to flecainide or ranolazine, were examined and represented 

in Figure 37 to Figure 39. Their corresponding APD90s were introduced in 

Table 12. 
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Figure 36. APD90 restitution curves of the isolated endocardial (top panel), 

midmyocardial (middle panel) and epicardial (bottom panel) cellular 

models in wild type. Simulation results (lines) compared to reference 

experimental data from O’Hara and coworkers98 (open squares), represented 

as mean and SD.  
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Figure 37. Effects of flecainide (green) and ranolazine (blue) on the 

heterozygous V411M mutation (red) in epicardial cells. Top panel: Action 

potential time courses. Middle panel: zoom of the INaf time courses. Bottom 

panel: INaL time courses. The WT action potential was included for comparison 

(black). 
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Figure 38. Effects of flecainide (green) and ranolazine (blue) on the 

heterozygous V411M mutation (red) in midmyocardial cells. Top panel: 

Action potential time courses. Middle panel: zoom of the INaf time courses. 

Bottom panel: INaL time courses. The WT action potential was included for 

comparison (black). 
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Figure 39. Effects of flecainide (green) and ranolazine (blue) on the 

heterozygous V411M mutation (red) in endocardial cells. Top panel: 

Action potential time courses. Middle panel: detail on peak INaf time courses. 

Bottom panel: INaL time courses. The WT action potential was included for 

comparison (black). 
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Table 12. Steady state action potential durations of isolated wild type and 

V411M mutated cells in the absence and under exposure to therapeutic 

concentrations of flecainide or ranolazine. The first column indicates the 

simulation conditions while the second, third and fourth detail the APD90s of 

isolated endocardial, midmyocardial and epicardial cells, respectively. 

 APD90 (ms) 

Model Endocardial Midmyocardial Epicardial 

Wild type 268.6 318.9 232.5 

V411Mº 311.5 (+16.0%) 362.7 (+13.7%) 258.5 (+11.2%) 

V411M + 

Flecainide* 
284.5 (-8.7%) 326.9 (-9.8%) 250.4 (-3.1%) 

V411M + 

Ranolazine** 
298.0 (-4.3%) 350.3 (-3.4%) 262.3 (+1.5%) 

º: Percent change relative to wild type. 
*: 1.5 µM. Percent change relative to V411M. 
**: 10 µM. Percent change relative to V411M. 

The heterozygous V411M mutation showed similar effects on the APD90s of 

all ventricular cell types. The increase in INaL amplitude caused a delay in the 

late repolarization phase, but its magnitude depended on the cell type. In fact, 

the effects of the mutation were most apparent in endocardial cells with a 

16.0% increase, while in midmyocardial and epicardial cells the effects were 

less intense yet very noticeable, with increases of 13.7% and 11.2%, 

respectively. Maximum INaL currents were very similar in all cases, reaching 

values of 0.75 pA/pF, 0.7 pA/pF and 0.71 pA/pF in endocardial, 

midmyocardial and epicardial cells, respectively. 

Exposure to 1.5 µM flecainide partially countered the APD90 elongation 

produced by the mutation. It reduced the APD90 of endocardial cells by a 8.7% 

by targeting the mutation-induced INaL peak, a mechanism that was also present 

both in midmyocardial (9.8% reduction) and epicardial (3.1% reduction) cells. 

Exposure to 10 µM ranolazine also reduced the APD90 prolongation caused by 

the mutation in endocardial cells (APD90 was shortened by a 4.3%), 

midmyocardial cells (-3.4%) and, but produced a slight prolongation of the 

APD90 in epicardial cells (1.5%). Contrary to flecainide, ranolazine reduced 

INaL throughout the entire time course instead of targeting the specific increase 
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in late repolarization phase INaL due to the mutation. Peak INaL of simulated 

endocardial cells was 0.75 pA/pF in the presence of the heterozygous mutation. 

It was reduced to 0.32 pA/pF by flecainide but only to 0.52 pA/pF by 

ranolazine. By contrast, the plateau currents, measured at 100 ms after the 

pulse, was 0.16 pA/pF without treatment and became 0.080 pA/pF under 

exposure to flecainide and 0.018 pA/pF under exposure to ranolazine. 

Interestingly, the APD90 reductions caused by both drugs were similar in 

endocardial cells, suggesting that the total amount of charge that was blocked 

by either of them was also similar. However, it was not sufficient to 

compensate the prolongation caused by the mutation in both midmyocardial 

and epicardial cells.  

Finally, both flecainide and ranolazine reduced peak INaf in endocardial 

mutated cells from 251.6 pA/pF to 172.6 pA/pF and 204.8 pA/pF, respectively, 

flecainide showing greater effects, a feature that is consisted with the greater 

affinity of flecainide for INaf. This trend was maintained throughout all cell 

types. In midmyocardial cells, peak INaf was reduced from 234.3 pA/pF to 

146.3 pA/pF under exposure to flecainide and to 188.6 pA/pF under exposure 

to ranolazine. In epicardial cells, these values decreased from 248.3 pA/pF to 

176.1 pA/pF and 207.1 pA/pF, respectively.  

Next, we examined the impact of the drugs on the V411M mutation phenotype 

in endocardial cells at different BCLs (600, 1000, 1500 and 2000 ms) to study 

the differences that could arise during tachycardia or bradycardia. Figure 40 

shows how low and high heart rates affect several biomarkers, namely, APD90 

(A), qNaL (B), peak INaL (C) and peak INaf (D). The V411M mutation (red) 

increased peak INaL and qNaL evenly at all BCLs, which resulted in the 

observed prolongation of the APD90s. Both drugs also slightly reduced peak 

INaf as we previously showed for BCL 1000 ms simulations. Flecainide and 

ranolazine similarly shrunk qNaL to levels close to WT at all BCLs (B). This 

effect was specially enhanced at shorter BCLs, where qNaLs reached values 

smaller than WT. Flecainide was more effective at reducing qNaL than 

ranolazine, a trend that was maintained at all BCLs. Flecainide also reduced 

the mutation-induced peak INaL to values close to WT, being more acute at 

shorter BCLs. Ranolazine was notably less effective in this case. As a side 

effect, both drugs impaired peak INaf at all BCLs, but flecainide’s impact on 

this value was considerably greater, which is related to its lower INaf IC50. 

Therefore, since ranolazine reduced qNaL to values similar to flecainide, we 

confirmed that flecainide had a greater and more specific impact on peak INaL, 

supporting the fact that both drugs have a different mechanism of action. Our 
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results also suggest that ranolazine could be beneficial in treating the V411M 

mutation owing to a significant decrease in total INaL during repolarization. 

 

Figure 40. Simulated effects of 10 µM ranolazine (blue) and 1.5 µM 

flecainide (green) on the restitution dynamics of the APD90 (A), qNaL (B) 

and peak INaL (C) in isolated endocardial heterozygous SCN5A V411M 

mutated (red) cells. Drug-free WT (black) results were also included for 

comparison. qNaL, the total amount of electronic charge carried by INaL, was 

calculated as the area under the curve of INaL. 

Steady states from the abovementioned model configurations were used to 

assess the effects of flecainide and ranolazine on the mutation in a tissue strand. 

We used them as initial conditions and performed 40-second simulations at 1 

Hz pacing rate, saving the last action potential of cells in positions 16, 80 and 

150 for further analysis. These were selected as representative cells of their 

layer bearing in mind that 15 cells from both ends of the strand were not 

counted for ECG calculation purposes. These positions are the ones that leave 
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the most distance between other cells therefore reducing the effects of cellular 

coupling from other layers in the characteristics of their action potential. 

 

 

Figure 41. Effects of flecainide and ranolazine in the presence of the 

heterozygous V411M mutation in endocardial cells the simulated 

transmural strand. Panels A, B and C: Endocardial, midmyocardial and 

epicardial action potentials in selected positions of the strand. Panel D: 

diagram of the model and ECGs corresponding to the action potentials of other 

panels. 
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 APD90 (ms) 

Model Endocardial 

Mid-

myocardial Epicardial QT 

Wild type 328.8 310.7 279.6 336.8 

V411Mº 
377.1 
(+14.7%) 

350.7 
(+12.9%) 

314.5 
(+12.5%) 

384.8 
(+14.3%) 

V411M + 

Flecainide* 

 350.2  

(-7.1%) 

330.3  

(-5.8%) 

303.5  

(-3.5%) 

357.1  

(-7.2%) 

V411M + 

Ranolazine** 

363.9  

(-3.5%) 

343.8  

(-2.0%) 

315.7  

(+0.4%) 

372.4  

(-3.2%) 

º: Percent change relative to wild type. 
*: 1.5 µM. Percent change relative to V411M. 
**: 10 µM. Percent change relative to V411M. 

Figure 41 shows the time course of the action potentials and the ECGs of the 

last of the 40 beats. The resulting APD90s of representative endocardial, 

midmyocardial and epicardial cells were 379.6 ms, 310.7ms and 279.6ms, 

respectively, with a QT segment of 336.8ms. The presence of the heterozygous 

mutation increased the APD90s to 377.1ms, 350.7ms and 314.5ms, 

respectively, corresponding to 14.7%, 12.9%, and 12.5% prolongations. It 

resulted in a QT segment of 384.8ms, equivalent to a 14.3% prolongation, 

close to the target clinical value. 

The exposure to therapeutic 1.5 µM concentrations of flecainide reduced the 

APD90 of all selected cells in the strand. The new endocardial, midmyocardial 

and epicardial APD90s were  350.2 ms (7.1% decrease),  330.3 ms (5.8% 

decrease) and 303.5 ms (3.5% decrease), respectively, and the new QT 

segment value was  357.1 ms, corresponding to a 7.1% decrease compared to 

the V411M result. Interestingly, the effects of ranolazine on the transmural 

fiber selected cells were different compared to our previous results in isolated 

cell conditions, showing very similar to the effects of flecainide. Under 

exposure to therapeutic 10 µM ranolazine concentrations, the APD90s were 

363.9ms (3.5% decrease), 343.8ms (2.0% decrease) and 315.7ms (0.4% 

increase), with a QT segment value of 372.4ms (3.2% decrease).  
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Finally, the effects of INaf block were reflected on the QRS complex duration. 

Under exposure to both drugs, the duration of this feature increased from 18 

ms in wild type to 20 ms with ranolazine, but to 22 ms with flecainide, as a 

consequence of the higher inhibition of the fast sodium current. 

We performed sensitivity analyses of the model’s parameters to shed light into 

the underlying mechanisms of the V411M mutation, ranolazine and flecainide. 

We represented the results of these analyses in Figure 42 in the form of bar 

plots. The analysis of the V411M model’s parameters (A) suggested that the 

most important rates towards developing the qNaL and peak INaL increment 

(dark grey and light grey, respectively) were the decrease of β13, followed by 

an increase of α3. The former is modulated by p5, whose decrease produces  

an impairment in deactivation (transition from the open state to the closed 

states, as depicted by Figure 43 and Figure 44). The parameters p6 and p7, 

whose combined modifications induce an enhancement of recovery from 

inactivation (transition from the inactivated states to the closed states, as 

depicted by Figure 43 and Figure 44) also exert an influence on qNaL and peak 

INaL, although to a lesser extent. These changes are consistent with an increase 

in sodium channel availability during repolarization, whereby the channels 

would not only activate faster but also recover from inactivation sooner during 

the action potential. The fact that the transition rates that determine the 

proportion of channels in bursting mode (µ1 and µ2) was fixed also supports 

this hypothesis. Therefore, our simulations suggest that the V411M mutation-

induced increase in peak INaL is due to an increase in the window current.  

The sensitivity analysis of flecainide (Figure 42, B, and Figure 43) revealed 

that the most important transition rates for its attenuation of the mutation-

induced increase in APD90 are β4n and α4n (neutral flecainide trapping), as 

well as the ones derived from its affinity for the bursting states. There was also 

a smaller yet noticeable dependence on β3+ and α3+ (charged flecainide 

recovery from inactivation). The first rates, β4n and α4n, are modulated by the 

parameters p13 and p14 and control the trapping mechanics of neutral 

flecainide. Interestingly, neutral flecainide’s trapping into the sodium channel 

had the greatest impact on APD90 prolongation attenuation. The dependence 

on the drug’s affinity for the bursting states (modulated by p16) suggests that 

flecainide is able to reduce the overall INaL by blocking the channels that cannot 

inactivate as well. Finally, flecainide’s dependence on parameters modulating 

recovery from inactivation dynamics (p5 and p6) was small.  
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Figure 42. Sensitivity analysis of V411M INa (A), flecainide (B) and 

ranolazine (C) model parameters using the isolated endocardial cellular 

model. A: Peak INaL and qNaL increments normalized to the values obtained 

with the optimized model of the V411M mutation when only considering one 

parameter of the V411M model at a time. Parameters p1 to p13 are defined in 

Table 9. B: APD90 reduction relative to the one produced by the flecainide 

model in the presence of the V411M mutation when multiplying by 10 one of 

the optimized flecainide parameters at a time. For example, multiplying p13 

by 10 further reduced the APD90 of the mutated cell by an additional 70.5% 

compared to the reduction exerted by flecainide. Parameters p1 to p16 are 

defined in Table 10. C: Ranolazine sensitivity analysis was performed in a 

similar way as flecainide’s. For example, multiplying p2 by 10 prevented 

ranolazine from shortening the APD90 (around -100% effect). Parameters p1 

to p12 are defined in Table 11.  
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Ranolazine’s attenuation of APD90 prolongation was determined by a 

combination of several mechanisms (Figure 42, B, and Figure 44), and highly 

depended on transition rates β3+ and α3+ (recovery from inactivation of the 

channels bound to charged ranolazine, parameters p5 and p6) as well as βx+ 

and αx+ (recovery from slow inactivation of the channels bound to charged 

ranolazine, parameters p1 and p2). While we did not optimize charged 

ranolazine’s affinities for the normal and bursting modes (controlled by 

parameters p11 and p12), the sensitivity analysis showed that these were very 

important to the drug’s effect on the APD90. Contrarily to flecainide, ranolazine 

depended in a similar way to all the beforementioned transition rates. There 

was a high reliance on the affinity to bursting states, which is consistent with 

previous results on the ΔKPQ mutation. Importantly, since ranolazine did not 

show trapping dynamics, the drug-induced APD90 prolongation attenuation 

was determined by a decrease in recovery from fast and slow inactivation, 

which is contrary to the modifications introduced by the mutation. These 

results confirm that both drugs act through different mechanisms of action on 

the mutation-induced APD90 prolongation and suggest that ranolazine could in 

fact be beneficial to patients carrying the V411M mutation. 

 

Figure 45. Simulated effects of 10 µM ranolazine (blue) and 1.5 µM 

flecainide (green) on EAD generation in slow paced (BCL = 3000 ms) 

isolated midmyocardial heterozygous SCN5A V411M mutated (red) cells. 

Drug-free wild type (black) is also included for comparison. 

To determine whether ranolazine could be used as an alternate treatment to 

flecainide, we studied the effects of therapeutic concentrations of the drug in 

bradycardic conditions, which are known to favor arrhythmia triggers such as 

EADs, especially in LQTS type 3. For that matter, we paced a mutated 

midmyocardial cell at a BCL of 3000 ms to steady state. Figure 45 depicts the 
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action potential time course (A) and INaL time course (B) of the mutated cell 

(red), which developed EADs (black arrows). The WT action potential and INaL 

time courses (black lines) were added for comparison. The exposure of the 

mutated cell to 10 µM ranolazine (blue) normalized the action potential 

morphology, prevented EAD development and reduced the APD90 of the cell 

to values closer to WT. Exposure to 1.5 µM produced a similar effect and 

prevented EAD development. However, ranolazine reduced the plateau 

potential more than flecainide due to its effect on whole INaL, while flecainide’s 

impact was focused on the mutation-induced INaL peak. This finding is 

consistent with previous simulations in endocardial cells. These results suggest 

that EAD generation could be avoided by both drugs due to a similar reduction 

in qNaL, and that ranolazine could be used as an alternate treatment to 

flecainide in patients carrying the SCN5A V411M mutation. 

4.4 Discussion 

4.4.1 Main outcomes 

In this chapter, we explored a specific approach to personalized medicine 

consisting of developing custom ionic models for the cardiac sodium current. 

These included a wild type model, a mutation model and two drug models to 

test the effects of two treatments for the mutation. To achieve our goals, we 

created custom software that we used to update and optimize the wild type 

model with new data about INaL. Next, we created a new model for the SCN5A 

V411M mutation reproducing the tests from Horne and coworkers173 as well 

as clinically observed prolongations of the QTc. The model of the mutation 

produced an increase in INaL peak due to reactivation caused by an increased 

window current, consistent with the authors’ findings. We then updated and 

optimized a flecainide model with more recent INaL data and optimized a 

ranolazine model. Finally, we tested the effects of treatments with the drugs on 

the V411M model and found that both are capable to reduce the mutation-

induced prolongation with similar results over a wide range of pacing rates, 

albeit via a different subjacent mechanism. In fact, flecainide targeted the 

increase in INaL peak during the repolarization phase while ranolazine reduced 

INaL during the entire time course. Nonetheless, both drugs could prevent 

arrhythmia triggers such as EADs in bradycardic conditions possibly owing to 

their similar reduction in qNaL. 

4.4.2 Ranolazine, flecainide and LQT3 

Ranolazine has shown effectiveness reversing the effects of several LQTS type 

3 inducing mutations caused by an increase in INaL
194,224,225. Moreno and 
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coworkers90 hypothesized that ranolazine could be effective as a treatment of 

the SCN5A ∆KPQ mutation phenotype, a complex condition that includes 

LQTS type 3 but also conduction disease and Brugada syndrome226. Their 

results showed that ranolazine could prevent EAD generation by considerably 

reducing INaL in both isolated cardiomyocytes and tissue models. They reported 

more than a 50% reduction of the APD90 of mutated cells with therapeutic 

concentrations of ranolazine. By contrast, our results show a 4.3% reduction 

of the APD90 in the endocardial myocyte model with the heterozygous SCN5A 

V411M mutated channel. However, the ∆KPQ mutation is characterized by a 

five-fold increase in the proportion of channels in bursting mode, which greatly 

increases the overall INaL. On the one hand, ranolazine showed high affinity for 

the bursting states of the channel, which makes it even more effective in 

treating conditions that alter their proportion such as ∆KPQ. On the other hand, 

the APD90s were measured during EAD episodes, which greatly increase their 

value. The abovementioned phenomena could explain the discrepancies 

between our work and Moreno and coworkers’. Therefore, ranolazine could be 

beneficial in V411M patients but its effects may not be as pronounced as in the 

∆KPQ mutation. 

In this work we updated the INaL blocking power of Flecainide due to 

discrepancies between the Moreno and coworkers’ model89 results and new 

experimental data (see below). This drug has a long history of nearly 30 years 

in the market199. Since the implantation of the ICH guidelines14,15, it underwent 

trials to assess its proarrhythmicity. In fact, FDA drug labels130 include a 

special mention to QT prolongations, and it appears to produce a small 

prolongation of the QTc values of an 8% in healthy patients. However, 60% to 

90% of that prolongation is caused by an increase in the QRS complex duration 

(QRS widening), consistent with its INaf blocking properties199 and contrarily 

to other QTc prolonging drugs such as dofetilide which does so by blocking 

IKr and delaying repolarization,. Flecainide’s free therapeutic plasma 

concentrations are in the 0.4 to 2.5 µM227, similar to the INaf and IKr IC50 

range199. Reductions of IKr amplitude are associated with important 

prolongation of the APD90 and QT intervals as we previously explored in 2.4. 

Block of potassium channels by flecainide has been studied in the literature. 

Belardinelli and coworkers182 studied the effects of flecainide in rabbit 

preparations at physiological temperature (36ºC) and obtained an IC50 of 1.5 

µM. Ducroq and coworkers228 performed a similar study but their model was 

HEK293 cells transfected with human hERG channels, yielding an IKr IC50 of 

0.74 µM at room temperature (22ºC). Melgari and coworkers227 obtained an 

IC50 of around 1.5 µM (CI: 1.27–1.74 µM) also in HEK cells at physiological 

temperature, the same conditions as Paul and coworkers221 used in their work, 
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who obtained a value of 3.94 µM. IKr conductance reductions are therefore to 

be expected at therapeutic concentrations. However, flecainide does not delay 

repolarization in rabbit even shortening the APD in Purkinje fibers146,228–231. 

Additionally, Caballero and coworkers220 found that flecainide enhanced IK1 

which reduces the APD. Block of INaL does also produce a similar APD 

shortening effect and, combined with an IK1 increase, could represent a 

mechanism that compensates the effects of IKr block experimentally, but there 

is a considerable variability in the INaL IC50s, ranging from 44 µM181, to 19 

µM124 to 3.4 µM182. Recent works using a new protocol designed to mimic the 

action potential repolarization (phase 3 of the AP) found increasingly lower 

INaL IC50 values such as 1.9 µM232. Matsukawa and coworkers used the newest 

protocols for INaf and INaL IC50 assessment recommended by the CiPA project 

and found that the latter was 1.7 µM222.  

In combination with β-blocker treatment, flecainide was very effective in 

treating the heterozygous V411M mutation phenotype. In two case-reports, the 

drug was able to completely compensate the QT segment prolongation174,175 

while in one it was not administered 173.  Our simulations show that flecainide 

slightly prolonged the APD90 of the endocardial cell in wild type conditions 

(1.2%) and incompletely counteracted the APD90 prolongation produced by the 

presence of the heterozygous mutation. Flecainide effects seem to be slightly 

more positive in the clinical practice. As our INaL IC50 resembles experimental 

observations, this could be explained by in vitro-in vivo differences due to the 

mutant channel being transfected to HEK cells, lacking the interactions with 

native currents and signaling pathways. To account for this, we introduced the 

required prolongation of the APD90 in the mutation optimizations as a 

surrogate of the QT prolongation, which we simulated in the tissue strand 

model. Another possible reason could be that we had overestimated the IKr 

blocking effect of flecainide due to in vitro-in vivo differences in terms either 

of drug exposure or the values of the ionic current conductances in the action 

potential model, whose experimental measurement is subject to a high 

variability. Indeed, a smaller contribution of IKr to the action potential time 

course would result in a smaller impact on the repolarization reserve of the cell 

and a subsequent shorter APD90 prolongation, thus helping close the gap 

between clinical observations and the simulations with flecainide in the 

presence of the mutation. 

To test this hypothesis, we simulated the effects of flecainide and ranolazine 

on the isolated mutated endocardial cell taking only into account the impact on 

INa. We suppressed the concentration-dependent modifications of IKr and IK1 

conductances and paced the cells to steady-state.  
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Figure 46 shows that both drugs would counter the APD90 prolongation 

induced by the V411M mutation in endocardial and midmyocardial cells, while 

bringing the APD90 to values very close to WT in epicardial cells. Therefore, 

IKr block could be responsible for the small prolongations that can be observed 

during treatment with both flecainide and ranolazine. 

Finally, we optimized our models to reproduce experimental APD90 restitution 

curves with success (see Figure 36) by applying the reported intercellular 

differences in channel conductances. As a natural consequence, isolated 

midmyocardial cells show the longest APD90, followed by endocardial and 

epicardial cells. The same cells show different APD90s in the transmural wedge 

model, where the endocardial cells show the longest APD90 followed by 

midmyocardial and epicardial cells. The intercellular electrical coupling of the 

cardiac tissue reduces the dispersion of repolarization233 giving this 

characteristic APD90 distribution in models like the one we used in this 

chapter89,90.  

4.4.3 Personalized medicine 

In this chapter, we took a more specific approach to drug effect prediction. 

Here, we explained the steps involved in developing models and testing them. 

For that matter, we used already existing models and improved them by 

including new data. In the INa wild type model, we included tests to specifically 

optimize INaL dynamics considering how crucial the current is to the APD 

restitution for the three cardiac cells. As for flecainide, we also included new 

INaL tests to ensure the drug was correctly reproducing its block dynamics. By 

contrast, ranolazine’s model already took into account all the necessary 

dynamics that were consistent with the literature and therefore we optimized 

the model to the new wild type formulation. Finally, we created a new model 

for the V411M mutation using specific patch-clamp data obtained in 

transfected cells with the mutant channel. We explored specific channel-drug 

interactions that determine the effects of flecainide and ranolazine, two 

antiarrhythmic drugs that show affinity for the INaL
51,177. Ranolazine and 

flecainide show a similar block potency for INaL, showing IC50s of 6 µM223 and 

1.7 µM222, respectively, compared to their therapeutic concentrations of around 

10 µM90 and 1.5 µM234. However, our results show that their mechanism of 

action is different, revealing that flecainide is more specific towards the 

V411M mutation induced late repolarization INaL peak, which represents an 

advantage compared to ranolazine. This could explain its success treating the 

condition173–175. All in all, our results represent an effort towards the 

development of personalized medicine for patients carrying the V411M 

mutation.
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4.4.4 Implementation 

There were numerous requirements to take into account in the optimizations 

that we performed in this chapter. They include general knowledge about 

optimization protocols, which is useful to prevent the most common issues, 

such as avoiding local minima, preference to one test due to uneven error 

distribution, in addition to their complexity due to the number of parameters 

that have to be fit at once77,235. Knowledge about Markov models is also needed 

in order to avoid overparametrization of the model, which could confuse the 

optimization function, or underparametrization, which prevents the model 

from reaching an optimal fit to the references. Additionally, knowledge 

concerning manual and automatic patch-clamps is convenient to reproduce 

experimental protocols in in-silico models. Understanding of drugs and ion 

channels is also helpful towards understanding the microscopic interactions 

that happens during administration of a drug, which can be completed with 

pharmacokinetic and pharmacodynamics knowledge. Last but not least, good 

programming skills are also helpful towards developing fast and efficient code. 

Therefore, familiarization with numerous fields of knowledge is a requirement 

to implement these optimizations. 

As for the initial implementation costs, apart from the time that a non-initiated 

has to spend to integrate the required knowledge, we would like to highlight 

the great amount of manual work that requires the individual reproduction of 

each patch-clamp protocol.  From our experience during the elaboration of this 

work, this is a relatively high time-consuming task that requires the 

implementer to search through every experimental work for the necessary 

parameters, which will be then manually inserted into the code (there are of 

course several programming strategies to reduce the manual work to a 

minimum, which we have implemented). The amount of data that is required 

is also considerable, since to obtain good results the modeler must constrain 

the model with sufficient tests so that all the dynamics are covered. 

Additionally, voltage protocols have to be designed around each channel-drug 

combination to correctly assess their particularities. Therefore, implementation 

of this kind of personalized approaches is initially time and resource 

consuming. 

Concerning the reusability of the code, every model is designed to reproduce 

the dynamics of a particular channel-drug interaction. Multi-channel block has 

proven useful explaining why some drugs are safe despite blocking IKr with 

high affinity58,236. Assessment of the effects of multi-channel blocker drugs 

would require model implementations for every channel that is relevant to the 

effects of the drug. Regarding Markov models, they could potentially be used 
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as a starting point for another mutation and another drug. Therefore, while 

reusability of these models is more limited, the framework that needs to be 

created for the optimization of one model can lay the groundwork for future 

optimizations. 

All the above considered, we conclude personalized approaches such as the 

one we implemented in this chapter are useful in shedding light into particular 

phenomenon such as the dynamics of a dysfunctional ion channel or the 

differences between similar drugs that exert different effects.  

As standardized high throughput patch-clamp devices such as Qpatch66, 

PatchXpress108, IonWorks/FLIPR69 improve their functionality, the initial cost 

of the channel-drug interaction electrophysiological assessment could 

diminish considerably. Likewise, as new technologies make their way to the 

consumer, such as the access to graphics processing units (GPUs), 

computationally efficient code can be written to improve the calculation speed 

of Markov models, which has already been done in neuronal models237,238. 

4.4.5 Limitations 

In this work, there are limitations that must be acknowledged. Markov models 

are known to be versatile and reproduce a wide variety of ion channel dynamics 

from several sources41. However, this fact does not forcedly mean that the 

subjacent mechanism is the actual explanation for the physical phenomenon it 

describes. There are nonetheless countless examples of models that were able 

to predict physical phenomena before they were able to be measured. Our 

model offers a possible mechanism to why flecainide has shown good results 

in V411M patients, as well as evidence supporting the potential benefits of 

using ranolazine. Future experimental and clinical confirmation of our findings 

would be beneficial.  

Concerning the technical side of this work, we prioritized the computational 

cost reduction in detriment of wider reaching protocols for optimization. In 

fact, to compensate for using high computationally demanding Markov models, 

we used the implementation of the Nelder-Mead simplex implementation from 

Moreno and coworkers as in other studies77,89–91 because of its ease to 

implement, speed, parallelization capability, and overall reduced 

computational requirements. This algorithm has shown a high likelihood of 

falling into local minima instead of global minima and a need for high number 

of iterations77. However, our optimizations were not intended to dramatically 

modify the dynamics of the whole sodium channel formulation. We aimed to 

improve the model by expanding some of its dynamics instead. To do so, we 

tried to overcome the local minimum by randomizing the initial parameter sets 
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with a 10% variability. Therefore, we could reduce the number of maximal 

iterations to 300 where the parameter increments were already low, reducing 

the computational cost.  

Some optimizations were expanded with additional simulations using the 

endocardial cell action potential model, which we paced for 40 seconds at 1Hz. 

While it could be acknowledged that the model has not reached steady-state, 

we used this value to reduce computational cost and to provide a close enough 

approximation to the steady-state results. We confirmed this by comparing 

longer 300-beat simulations to the ones we performed during the optimizations 

in Figure 47. The former (continuous lines) were very close to the latter 

(dashed lines), being almost identical for the WT (black) and V411M models 

(red), and showing little differences in V411M under exposure to flecainide 

(green) and ranolazine (blue). Furthermore, we simulated the models to steady-

state after the optimizations to elaborate the results we used to draw our 

conclusions. 

 

Figure 47. Comparison of the simulated action potential time courses for 

isolated endocardial cells after a train of 40 pulses (continuous lines) and 

at the steady-state (300 pulses, dashed lines). Wild type (black lines) and 

V411M mutated (red lines) cells in control and under exposure to therapeutic 

concentrations of flecainide (green lines) and ranolazine (blue lines). The very 

small differences between the simulated action potential time courses obtained 

with 40 and 300 pulses corroborate the validity of applying 40 stimuli to the 

isolated endocardial models in order to reduce the computational cost during 

the optimization procedure of the wild type, flecainide and mutation INa models. 

In our work we used QTc values from patients undergoing β-blocker treatment, 

which are consistent with our simulations due to the lack of β-stimulation in 

our models. By contrast, reference control QTc values were taken from the 

general population. 
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Horne and coworkers173 assessed the effects of the V411M mutation on the late 

repolarization phase with a ramp protocol similar the most recently 

recommended protocol for assessing drug block of INaL
222,239. Our first attempts 

at reproducing this protocol were successful but the resulting increase in INaL 

was insufficient to reproduce the clinical APD90 and QT prolongations while 

hampering the fit of other protocols. A possible solution would consist of 

fitting the wild type model to the wild type curves that were provided by Horne 

and coworkers. Nonetheless, this would have needed a more dramatic 

modification of the model since some of them showed important differences 

with the original fit reference data89. Another reason for this discrepancy could 

arise from the fact that the channel was isolated and thus were lacking 

interaction with other currents and proteins, specifically from their β-subunit, 

which are known to modulate the response of channels240.  

Horvath and coworkers recently published a new work expanding their 

findings on INaL dynamics using the self-AP clamp technique186. They found 

that canine and human INaL had similar time courses, a characteristic decreasing 

amplitude over the duration of the action potential, as opposed to guinea pig, 

which showed an increasing current that was maximal during the late 

repolarization phase and ended quickly afterwards. Although in this chapter 

we fitted our current to the guinea pig time course, we aimed at reducing the 

late repolarization peak and increasing the contribution of the current during 

the whole action potential, similar to the state-of-the-art cardiomyocyte 

model107. Therefore, the current wild type model represents an improvement 

over the model before optimization. 

Recent work on the effects of mexiletine, a sodium channel blocker like 

flecainide and ranolazine, has shown that the block impact of the drug on the 

action potential could depend on the mutation241. In fact, important 

modifications of the peptide chain that forms the channel can alter its affinity 

for some drugs due to alterations on the binding site242. In this chapter, the WT 

and V411M models use the same affinities for the drugs. To improve this 

aspect of the models, new experimental data would be needed. 

Finally, it should be noted that the various INa models that we generated are 

dependent on both the action potential model and the particular dataset that we 

used to optimize them. We used the Grandi-Bers with Soltis-Saucerman model 

of the action potential, which had already been used to test the effects of 

ranolazine on the ΔKPQ mutation90. Our WT model was optimized to 

reproduce the human APD90 restitution curve. Other models might show 

different APD90 values due to differences in current conductances, and 

therefore the INa model would require to be optimized to reproduce the 
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experimental data again. Likewise, the parameters of our models are dependent 

on the dataset we used to optimize them. Using other datasets might result in 

quantitatively different outcomes, although they should remain qualitatively 

similar. 

All in all, we think that the main conclusions that can be drawn from our results 

are not invalidated by these shortcomings. 

4.5 Conclusions 

In this chapter, we delved into a personalized medicine approach by assessing 

the effects of two drugs on a LQTS type 3 causing mutation. To do so, we 

improved a wild type sodium current model with better INaL dynamics and used 

it to create a custom model for the V411M mutation. Then, we improved a 

flecainide model and optimized a ranolazine model and tested their effects on 

the mutation in three isolated cardiomyocyte action potential models and a 

transmural strand ECG model. Both drugs were similarly effective at 

countering the mutation induced prolongation of the APD90 and QT segment 

prolongations, but their mechanism was different. While ranolazine reduced 

INaL over the complete time course of the current, flecainide was more specific 

of the late phase 3 repolarization peak that had been induced by the mutation. 

Additionally, both drugs were able to substantially reduce the APD90 of 

mutated cells paced at slow rates, preventing arrhythmia triggers such as EADs. 

This suggests that, while the mechanism of action for flecainide’s and 

ranolazine’s effectiveness was different, the former could be an alternative in 

these patients, especially when suffering from cardiac structural disease, where 

conduction slowness could represent a risk of arrhythmia.  

In this chapter, we provided great detail and understanding of the mechanisms 

that determine the effects of the V411M mutation, as well as the effectiveness 

of two antiarrhythmic drugs that, despite targeting the same channel, have 

different mechanisms. We dove into a highly time-consuming approach to 

create personalized models for specific channelopathies in order to shed light 

on their subjacent mechanism. This approach could help to select a better 

treatment based on specific channel-drug owing to the reusability of the 

optimization tools that we used. 
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Chapter 5. General Conclusions 
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The main objective of this PhD thesis consisted of using electrophysiological 

models of the human ion channels and action potential to predict the effects of 

drugs on cardiac electrophysiology. We identified two scenarios with 

important challenges that would benefit from using such models and 

simulations. Therefore, we divided this PhD thesis in two chapters enclosing 

distinct modeling approaches, namely, the study of drug safety and efficacy. 

For the former, we sought to generate an easy-to-use tool for prediction of the 

arrhythmogenic potential in drug development. For the latter, we sought to 

provide an alternate treatment with ranolazine to patients carrying the SCN5A 

V411M mutation. Our results show the usefulness of modeling and simulation 

to tackle the challenges that arise from different areas by providing adapted 

solutions. Our main findings are summarized below. 

Development of an easy-to-use tool based on cardiac electrophysiological 

models to detect potentially arrhythmogenic drugs in the early stages of 

drug development. 

The first modeling approach sought to generate a biomarker (Tx) to improve 

the arrhythmogenicity prediction for newly developed drugs by creating a 

model based on a large number of compounds with known risk.  

We pre-computed four matrices covering a wide range of ion channel block 

profiles. These matrices successfully removed the need for further simulations 

with the action potential and pseudo-QT models, effectively reducing the 

complexity of use. 

This modeling approach made use of an extensive list of 84 drugs with known 

risk and translated their effects on human action potential models by applying 

reductions to three major currents that affect repolarization (IKr, IKs, ICaL). 

Therefore, the tool was created upon a large number of drugs. 

This approach was successful in detecting proarrhythmic drugs with a 90% 

AUC and an 87% accuracy and could be used to classify new compounds or 

to search for safe concentration ranges. The results of the isolated endocardial 

cellular and the transmural cardiac strand models provide the best performance 

while also showing very similar results.  

Providing evidence for an alternative treatment to flecainide for long QT 

syndrome SCN5A V411M patients when its use is not indicated. 

The second modeling approach was applied to a specific LQTS type 3 inducing 

mutation (V411M) of the SCN5A gene that had yet to be modeled. It sought 

provide evidence that supports the potential benefits of an alternate treatment 
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with ranolazine. This modeling approach was characterized by being focused 

on the dynamics of the drug-channel interactions using Markov models, which 

contrasts with our first IC50 based approach.  

We conclude that this mutation increases INaL by reducing deactivation and 

consequently increasing the window current. The model was built and 

optimized by reproducing clinical and experimental data. Therefore, we 

successfully created a Markov model of the V411M mutation. 

We optimized the models of flecainide and ranolazine by closely reproducing 

clinical and experimental data, which we expanded in flecainide’s case to keep 

up with new discoveries. Therefore, we successfully simulated the effects of 

both flecainide and ranolazine on cardiac electrophysiology. 

The effects of flecainide were focused on the specific INaL peak produced by 

the V411M mutation. Ranolazine reduced the whole INaL time course. Both 

drugs brought the qNaL values close to wild-type, which supports the 

therapeutic potential of ranolazine. Therefore, we successfully provided an 

explanation for the beneficial effects of flecainide and showed that ranolazine 

could be used as an alternate treatment. 

All in all, this PhD thesis contributes to the improvement of current 

pharmacological treatments by using multiscale mathematical models of the 

electrical activity of the heart to assess the cardiotoxicity of drugs and the 

efficacy of antiarrhythmic drugs. This work exemplifies that modelling and 

simulation of drug action in virtual patients is a promising, efficient, cost-

effective, and ground-breaking methodology that can reveal fundamental 

biological principles and mechanisms which can improve the design and 

development of drugs. 
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Chapter 6. Future work 
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The main objective of this PhD thesis is to predict the effects of drugs on 

cardiac electrophysiology using computational modeling and simulation. We 

were successful in creating a biomarker for drug risk assessment and 

optimizing four Markov models of the sodium current. The framework that we 

created to do so is not stiff and several modules can be swapped for more recent 

models.  

For example, the model used to simulate the action potential time courses and 

measure APD90s could be changed to create new matrices. Likewise, the 

channels that we considered could be expanded to cover the late sodium current 

block, which could potentially improve the performance of the Tx biomarker 

due to its importance in repolarization. 

As for the Markov models, we used an approach that could be used to optimize 

multiple mutations. Using the appropriate error functions would lead to 

parameter combinations describing the dynamics of other LQTS types, 

including both gain-if-function and loss-of-function mutations. Likewise, this 

could be applied to optimizations of drugs interacting with the sodium channel, 

but also with other channels by setting another Markov model corresponding, 

for example, to the hERG channel. 

All in all, future work could include: 

- To make use of the latest human action potential model, which is 

currently being used by CiPA, to test the performance of the Tx 

biomarker. 

- To expand the Tx biomarker by taking into account INaL and other 

parameters other than the APD90 and pseudo-QT. 

- To model mexiletine and test it on the V411M mutation. 

- To generate models of other mutations of the human sodium channel 

and simulate the effects of sodium blockers to make a contribution to 

the patients’ treatments. 
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Chapter 7. Contributions 
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This thesis was developed in close collaboration with other institutions from a 

multidisciplinary point of view, which is common in every research field. As 

a consequence, we have spread the results of this work in high level 

conferences and scientific reviews of national and international scope. 

7.1 Journal Papers 

7.1.1 Main contributions 

• Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, 

M., et al. (2018). In Silico QT and APD prolongation assay for early 

screening of drug-induced proarrhythmic risk. J. Chem. Inf. Model. 

58, 867–878. doi:10.1021/acs.jcim.7b00440 (Co-first_author) 

• Cano J., Zorio E., Mazzanti A., Arnau M.A., Trenor B., Priori S G., 

Saiz J. Romero L. Ranolazine as an alternative therapy to flecainide 

for SCN5A V411M Long QT Syndrome type 3 patients. Front. 

Pharmacol. (accepted)  doi:10.3389/fphar.2020.580481 

7.1.2 Related contributions 

• Gomis-Tena, J., Brown, B. M., Cano, J., Trenor, B., Yang, P. C., Saiz, 

J., et al. (2020). When Does the IC50 Accurately Assess the Blocking 

Potency of a Drug? J. Chem. Inf. Model. 

doi:10.1021/acs.jcim.9b01085. 

• Llopis, J., Cano, J., Gomis-Tena, J., Romero, L., Sanz, F., Pastor, M., 

et al. (2019). In silico assay for preclinical assessment of drug 

proarrhythmicity. J. Pharmacol. Toxicol. Methods 99, 106595. 

doi:10.1016/j.vascn.2019.05.106. 

7.2 Conference papers and communications 

7.2.1 Main contributions 

• Cano J., Saiz, J.,  Romero L., Gomis-Tena J., Amberg A., Anger L., 

Ballet V., Guillon J.M., Pastor M. Sanz F., Development of an In-

silico Action Potential Model of the Rabbit Purkinje Cell for 

Assessment of Cardiac Safety Liabilities. Annual SPS meeting. 

September 2017. Berlin, Germany. 

• Romero L., Cano J., Gomis-Tena J., Trenor B., Sanz F., Pastor M., 

Saiz J. In-silico QT Assay for Preclinical Assessment of Drug-

Induced Proarrhythmicity. Annual SPS meeting. September 2017. 

Berlin, Germany. 

• Cano J., Romero L., Gomis-Tena J., Sanz F., Pastor M., Saiz J., 

Mejora en la predicción del riesgo de cardiotoxicidad inducida por 
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fármacos mediante un nuevo biomarcador. CASEIB. November 2016. 

Valencia, Spain. 

• Cano J., Arnau M.A., Zorio E., Saiz J., Romero L., Modeling the 

Effect of Two Sodium Channel Blockers on the LQTS3 Heterozygous 

V411M Mutation of the SCN5A Sodium Channel. Annual Japanese 

SPS meeting. March 2020. Tokyo, Japan. 

• Cano J., Romero L., Gomis-Tena J., Trenor B., Sanz F., Pastor., M., 

Saiz J., Tx, a New Biomarker for In-Silico Early Assessment of Drug-

Induced Proarrhythmic Risk. Virtual Physiological Human meeting. 

September 2018. Zaragoza, Spain. 

• Cano J., Arnau M., Zorio E., Saiz J., Romero L., Simulation of the 

Effects of Flecainide and Ranolazine Under LQTS Type 3 Produced 

by the Heterozygous SCN5A V411M Mutant. Annual SPS meeting. 

September 2019. Barcelona, Spain. 

7.2.2 Related contributions 

• Maturana A., Clancy C., Cano J., Romero L., Modelado y simulación 

del efecto del moxifloxacino en la componente rápida de la corriente 

diferida rectificadora de potasio. CASEIB. November 2016. Valencia, 

Spain. 

• Romero L., Cano J., Gomis-Tena J., Trenor B., Sanz F., Pastor M., 

Saiz J., In silico QT and APD prolongation assay for early screening 

of druginduced proarrhythmic risk. Gordon Research Conference. 

February 2017. Ventura, USA. 

• Llopis J., Cano J., Gomis-Tena J., Romero L., Sanz F., Pastor M., 

Trenor B., Saiz J., In-Silico Classifier for Early Screening of Drug-

Induced Torsadogenic Risk. Annual SPS meeting. September 2019. 

Barcelona, Spain. 

• Llopis J., Cano J., Gomis-Tena J., Romero L., Trenor B., Saiz J., 

Estudio in-silico de la cardiotoxicidad inducida por fármacos en 

células ventriculares sanas y con insuficiencia cardíaca. CASEIB. 

November 2018. Ciudad Real, Spain. 

7.3 Research projects 

This PhD thesis was developed within the following projects: 

• Ministerio de Economía y Competitividad and Fondo Europeo de 

Desarrollo Regional (FEDER) DPI2015-69125-R (MINECO/FEDER, 

UE): “Simulación computacional para la predicción personalizada de 

los efectos de los fármacos sobre la actividad cardiaca”. 

• Dirección General de Política Científica de la Generalitat Valenciana 

(PROMETEU2016/088): “Modelos computacionales personalizados 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

181 

 

• multiescala para la optimización del diagnóstico y tratamiento de 

arritmias cardiacas (personalised digital heart)”. 

• Vicerrectorado de Investigación, Innovación y Transferencia de la 

Universitat Politècnica de València with Ayuda a Primeros Proyectos 

de Investigación (PAID-06-18), and by Memorial Nacho Barberá. 

• Instituto de Salud Carlos III (La Fe Biobank PT17/0015/0043). 

7.4 Cardiac Safety prediction tool 

Chapter 3 of this PhD contributed to the development under a license 

agreement (2019) of a tool capable of assessing the TdP risk of drugs during 

their development stages called “QT/TdP Risk Screen”. 

The online tool can be accessed through the INSILICOTRIALS website (direct 

link to the QT/TdP tool):  

• https://qttdp.insilicocardio.com/ 

  

https://qttdp.insilicocardio.com/
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Appendix. Optimization 

procedure 
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This section contains detailed information about the protocols that we used to 

optimize WT, flecainide and ranolazine models as well as to create the SCN5A 

V411M mutation model.  

A. 1. General considerations  

Optimizations were performed with Moreno and coworkers’ implementation 

of the Nelder-Mead simplex, a function called “fminsrchbnd”. The 

implementation of this algorithm was provided by the authors. Its inputs 

include a set of scalar parameters to be optimized, their corresponding upper 

and lower boundaries and a custom cost function, which returns the result of a 

series of tests that evaluate the goodness of the fit of our model to the reference 

as a scalar value.  

Cost functions were iteratively evaluated while modifying the parameters until 

termination conditions were met, namely, the maximum number of iterations 

(300) or the error score increment being less than 0.01. The latter was rarely 

the case because of computational limitations.  

Parameters to be optimized were introduced in specific locations in the Markov 

sodium current formulation as in Moreno and coworkers89,90 (see Table A.1) 

which enabled automatic modification of the current dynamics. During the 

optimizations, parameters were restricted to positive values. 

Cost functions evaluated several current dynamics whose score was calculated 

as the sum of squared differences between simulations and references. Some 

tests gave results in very different units, which we solved by including custom 

scalar factors multiplying their error scores to bring them in-line with other 

tests. We also normalized every test error score by dividing its value by the 

number of data points. The global error score of a cost function was calculated 

as the sum of the error scores of all tests. We gathered the error calculations 

and weights of each test in tables A.2, A.3, A.5 and A.6.  

The initial parameters were set to Moreno and coworkers’ results, which 

already closely fit several of the current’s dynamics. Naturally, this created a 

local minimum that was difficult to overcome by the optimization. Therefore, 

we launched several optimizations with randomly modified parameters (10% 

variability), along with other strategies specific to the model, such as 

progressively introducing specific tests in different phases of the optimizations. 

This created enough differences so that the optimizations could exit the local 

minimum. The outcomes were controlled by using a specific seed to each 

randomization ensuring reproducibility. 
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The endocardial cell action potential model was stimulated during 40-second 

simulations at the indicated pacing rates in several cost functions as part of the 

optimizations. Models were paced during 300 seconds at the indicated pacing 

rates to steady state before starting the optimizations. The final states from 

these simulations were used as initial states for the endocardial simulations 

performed during the optimizations. 

A. 2. Patch clamp protocols 

To reproduce reference patch clamp data from the literature, we created custom 

code to simulate the same conditions as the experiments, namely, pH, 

temperature, intra and extracellular sodium concentrations and voltage 

command protocols. As the intra and extracellular mediums are subject to little 

change during the length of an experiment, the abovementioned variables were 

not allowed to evolve. 

We integrated the sodium current formulation over the described time and 

voltage conditions by using Matlab’s (The Mathworks.inc, version 2014b) 

integrated ODE solver for stiff models (function “ode45s”). Current time 

courses were analyzed as described in the references to generate the required 

curves. Reference experimental data points were digitized from the original 

sources using a custom software. The protocols that were used in each cost 

function are described below. 

Temperature dependence in transition rates was calculated using a scaling 

factor derived from a Q10 of 3: 

 

 
𝑇𝑓 =

1

𝑄10

37−𝑇
10

 

Eq. A.1 

 

 

Where T represents the temperature (in Celsius). 

Patch clamp simulations were usually performed at room temperature (always 

according to the reference experimental protocol), while action potential 

simulations were always carried out at 37ºC. 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

187 

 

A. 3. Optimization of the wild-type (WT) INa 

We used the Moreno and coworkers’ INa model as a starting point and 

improved the wild type INaL formulation by optimizing its time course using 

new self AP-clamp data184, further constraining the model to reproduce a flatter 

time course with increased contribution to the plateau and APD90 of the 

cardiomyocytes. 

Table A.1 contains the equations describing the transition rates of the INa wild 

type model. Numbers in bold indicate the positions of the fifteen parameters 

that were inserted for optimization following the scheme of Moreno and 

coworkers89,90.  

Table A.1. Equations describing the transition rates of the WT and 

V411M sodium current models. Positions of the parameters (p1, p2, …, p15) 

to be estimated and optimized were numerated and highlighted in bold. Tf is a 

temperature factor that was calculated from a Q10 of 3. 

Transition rates 

𝛼11 =  𝑇𝑓 ·
8.5539

(𝒑𝟏)·𝑒
−

𝑣
17.0+(𝒑𝟐)·𝑒

−
𝑣

150

  

𝛼12 =  𝑇𝑓 ·
8.5539

(𝒑𝟏)·𝑒
−

𝑣
15.0+(𝒑𝟐)·𝑒

−
𝑣

150

   

𝛼13 =  𝑇𝑓 ·
8.5539

(𝒑𝟏)·𝑒
−

𝑣
12.0+(𝒑𝟐)·𝑒

−
𝑣

150

  

𝛽11 =  𝑇𝑓 ·  (𝒑𝟑) · 𝑒−
𝑣

20.3  

𝛽12 =  𝑇𝑓 ·  (𝒑𝟒) · 𝑒−
𝑣−5

20.3  

𝛽13 =  𝑇𝑓 ·  (𝒑𝟓) · 𝑒−
𝑣−10

20.3   

𝛼3   =  𝑇𝑓 ·  (𝒑𝟔) · 𝑒
−

𝑣

𝒑𝟕  

𝛽3   =  𝑇𝑓 ·  (𝒑𝟖) · 𝑒
𝑣

𝒑𝟗  

𝛼2   =  𝑇𝑓 · (𝒑𝟏𝟎) · 𝑒
𝑣

𝒑𝟏𝟏  

𝛽2   =
𝛼13· 𝛼2·𝛼3

 𝛽13· 𝛽3
   

𝛽𝑥   =  (𝒑𝟏𝟐) · 𝛼3  

𝛼𝑥   =  (𝒑𝟏𝟑) · 𝛼2  

µ1   =  (𝒑𝟏𝟒) · 1.70 · 10−7  

µ2   =  (𝒑𝟏𝟓) · 5.66 · 10−4  

 

The optimization of the wild type INa contained the following tests from 

Moreno and coworkers89: steady state availability, activation, recovery from 



Prediction of the effects of drugs on cardiac activity using computer 

simulations. 

188 

 

inactivation, recovery from use-dependent block and time to half activation. 

We included three new tests with endocardial simulations designed to fit the 

APD90 restitution curve, to optimize the INaL current-voltage relationship and 

the INaL time course according to the self AP clamp recordings form Horvath 

and coworkers184,186 and Hegyi and coworkers185. The model was also 

constrained by the maximum upstroke velocity and the channel Mean Opening 

Time (MOT). Finally, the amount of charge flowing through the membrane 

during INaf (qNaf) was controlled to prevent the model from not depolarizing. 

We brought the original Moreno and coworkers’ model to steady state at 

several BCLs (300, 400, 500, 1000, 1500 and 2000 ms) before starting the 

optimization. 

In every iteration, we first stabilized the INa Markov model by applying a single 

pulse from -100 mV to -10 mV during 200 ms, followed by a 5-s, -100 mV, 

resting membrane potential phase. We used the final states from the latter as a 

starting point for every test involving patch-clamp protocols.  

The protocols used to fit the current are described in the bullet point list below: 

• Steady state availability: a single 25 ms pulse to -10 mV from a 5-

second variable potential test pulse from -120 mV to -40 mV (5 mV 

intervals) was applied. Peak currents elicited by the second pulse were 

extracted, normalized to the value at -120 mV and plotted against the 

pulse voltage.  

• Activation: a 25 ms test pulse to variable potentials from -80 mV to 

20 mV from a resting potential of -100mV was applied. Then, the 

resulting channel conductance from the elicited peak currents was 

calculated, normalized to maximum conductance, and plotted against 

pulse potential. Conductance values for test potentials above the 

potential of maximum conductance were set to 1, as in Moreno and 

coworkers89.  

• Recovery from inactivation: it was evaluated with a standard double-

pulse protocol from -100mV to -10mV. The second pulse was delayed 

with increasingly higher time intervals ranging from 0.1ms to 6s. 

Peak currents elicited by the second pulse were extracted and 

normalized to peak currents elicited during the first pulse. Then, they 

were represented against time intervals.  

• Recovery from use-dependent block: First, a train of 300, 25-ms 

pulses, from -100 mV to -10 mV, at a pacing rate of 25Hz was 

simulated. Potential was set back to -100mV before a last pulse to -

10 mV was applied after a variable delay ranging from 0.5 ms to 9 s. 
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Maximum current peaks elicited during the second pulse were 

extracted and normalized to their maximum value. Values were 

represented against time intervals. 

• Tau 50% activation: Tau50 was measured as the time the current took 

to reach 50% of the maximum peak current at the beginning of each 

pulse of the activation protocol. 

• APD90 restitution curve: 40-second simulations with the modified 

endocardial model at 300, 400, 500, 1000, 1500 and 2000 ms BCLs 

were performed. Every simulation was carried out in parallel and the 

last beat was saved for further analysis. We obtained the APD90 of 

saved beats by calculating the interval from the instant of maximum 

upstroke velocity to the time of 90% repolarization. The data were 

plotted against BCL and the results were compared to the O’Hara-

Rudy model’s reference98. 

• INaL time course: a train of 40 stimuli at 1 Hz was applied to the 

modified isolated endocardial model and the last beat was saved for 

further analysis. Three parameters from the INaL time course were 

extracted as seen in Figure A.1. Firstly, the “dome” was defined as 

the maximum late sodium current (registered after the fast sodium 

current had inactivated). Secondly, the “valley” was defined as the 

minimum current between peak INaf and the dome. Finally, the half-

time taken by the current to reach the dome from the valley was 

defined as t_1⁄2. Both valley and t_1⁄2 values were normalized to the 

current and time of the dome, respectively. Reference dome current 

was set to to 0.34 pA/pF107, reference dome-to-valley value to 0.59 

and reference t_1⁄2 value to 0.63184. 

• Maximum upstroke velocity was extracted from simulations at 1Hz 

as the maximum derivative of the action potential time course during 

phase 0 (depolarization). The target value was set to 250 V/s98. 

• MOT was calculated as in Moreno and coworkers89, which was 

included in the code the authors made available. 
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Figure A.1. Parameters (red) evaluated during the optimization of INaL’s 

time course. Valley was determined by selecting the lowest current after INa 

peak and normalized to the dome, the value of maximum INaL. The valley to 

dome half time was measured as the time that took the current to rise to half of 

the dome current, normalized to the time between valley and dome. 

The late to fast proportion was controlled as the maximum INaL over peak INaf 

by means of the protocols used by from Clancy and coworkers243, but this test 

was only used to assess whether the simulations were yielding consistent 

results in prior tests, therefore not being included in the total error score. The 

reference value was 0.1% as in Moreno and coworkers90. 

Table A.2 contains detailed information about the calculation of the error 

scores of each test in the cost function as well as the weights that were applied 

during the optimization of the WT model. 

Table A.2. INa WT model optimization error calculations and weights in 

the cost function. The words containing “data” and “reference” indicate 

vectors containing the results of our tests and the experimental reference values, 

respectively. N is the number of samples. APD refers to a vector containing 

the APD90s of simulations at BCLs 300, 400, 500, 1000, 1500 and 2000 ms. 

Mean open time was adjusted to 0.5 at V=-30 mV. 

Wild type optimization   

Test name Error calculation Weight 

Steady state 

availability 

(100·sum(data-reference))^2/N 2 

Activation (100·sum(data-reference))^2/N 2 

Recovery from 

inactivation 

(100·sum(data-reference))^2/N 1 
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Recovery from use-

dependent block 

(100·sum(data-reference))^2/N 0.04 

Mean opening time abs(2 - α2+β13+αx) 1 

Tau 50% activation (100·sum(data-reference))^2/N 1 

INaL time course at 

BCL 1000 ms 

100·((dome-reference_dome)^2+(valley-

reference_valley)^2+(time_50-

reference_time50)) 

5 

APD90 tests (at BCL 

300, 400, 500, 1000, 

1500 and 2000 ms) 

sum(APD_data-APD_reference)^2 BCL 500 ms: 

2.5 

Others: 1 

Max dVdt sum(dVdt_data-dVdt_reference)^2 1 

INaL current-voltage 

relationship 

(100·sum(data-reference))^2/N 1 

 

Table A.3. INa V411M mutation model optimization error calculations and 

weights in the cost function. The words containing “data” and “reference” 

indicate vectors containing the results of our and the reference target values, 

respectively. N is the number of samples. 

V411M mutation 

optimization   

Test name Error calculation Weight 

Activation ((Vh_data-Vh_reference)^2+ 

(slope_data-slope_reference)^2)/2 

1 

Activation time 

constant (tau) 

sum(Tau_data-tau_reference)^2/N Positions 4 to 

8: 5 

Others: 1 

Inactivation ((Vh_data-Vh_reference)^2+(slope_data-

slope_reference)^2)/2 

10 

current-voltage 

relationship 

(100·sum(data-reference))^2/N Positions 6 to 

9 from both 

ends: 2 

RestOthers: 1 
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Prolongation in 

endocardial cell (%) 

(Prolongation_data-

Prolongation_reference)^2 

2.5 

qNaf (to prevent no 

depolarization) 

10^6·(WT_qNaf-V411M_qNaf)^2 2 

A. 4. Optimization of the SCN5A V411M 

mutation 

We ought to create a model of the V411M mutation by reproducing the 

available clinical and experimental data173–175. The same parameter locations 

were used to optimize the transition rates of the mutated V411M INa model (see 

Table A.1). 

Optimization of the SCN5A V411M mutation model included protocols testing 

the activation, inactivation, inactivation time constants, current-voltage 

relationship, and prolongation of the APD90. Before the optimization, we paced 

the wild type endocardial action potential model to steady state.  

One iteration of the cost function was run before starting the optimization in 

order to create a starting set of curves corresponding to the wild type model. 

Target values were generated by applying the relative wild-type-to-mutation 

changes in current dynamics observed by Horne and coworkers173.  

The protocols that we used to fit the mutated current are described in the bullet 

point list below: 

• Activation: a 200-ms pulse to a variable potential from -80 mV to 30 

mV was applied and the resulting maximum conductances were 

extracted from the elicited peak currents and normalized to their 

maximum value. The data were represented against the pulse 

potential and fitted to the following Boltzmann equation: 

 

 

𝐺

𝐺max

=
1

1 + 𝑒
𝑉ℎ−𝑉

𝑠

 

Eq. A.2 

 

Where Vh is the half-maximal voltage and s is the slope of the curve. 

During the optimizations, Vh and s alterations from the wild type 

model were calculated to assess this test’s error score. 
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• Inactivation: a variable voltage pre-pulse of 300 ms from -160 mV to 

0 mV from a resting potential of -110 mV, followed by a 20-ms pulse 

to -20 mV, was simulated. Then, peak currents elicited during the 

second pulse were extracted, normalized to their maximum value and 

plotted against the pre-pulse potential. Finally, the curve was fitted to 

a Boltzmann equation (see activation protocols) and Vh and slope 

alterations were extracted. 

• Mean inactivation time constants: time courses of the inactivation 

current from the activation protocols were isolated (starting from 

maximum peak current to the end of the pulse) and fitted to a single 

exponential decay. 

• Current-voltage relationship: a variable voltage 250-ms pulse from -

80 mV to 40 mV from a resting potential of -110 mV was applied. 

Elicited peak currents were extracted, normalized to their maximum 

value and plotted against the pulse potential.  

• APD90 Prolongation: 40-beat simulations with the heterozygous 

SCN5A V411M isolated endocardial model (50% wild type and 50% 

mutated currents) were run and the last beat was saved for further 

analysis. Prolongation of the APD90 was measured relative to the wild 

type model. Target prolongation was set to a 16% as a surrogate of 

the QT prolongation.  

Table A.3 contains detailed information about the calculation of the error 

scores of each test in the cost function as well as the weights that were applied 

during the optimization of the SCN5A V411M model. 

A. 5. Optimization of Flecainide 

We ought to give insight into the mechanisms that drive flecainide’s 

effectiveness as reported clinically174,175. The Moreno and coworkers’ Markov 

formulation of flecainide revealed an INaL IC50 of around 90 µM, inconsistent 

with the new findings222,232. Therefore, we ought to refit flecainide’s INaL 

blocking dynamics to better reproduce the latest data available concerning its 

blocking power. 

Table A.4 contains the transition rate names and equations describing the 

dynamics of neutral and charged fractions of flecainide, as well as equations 

containing drug affinities to specific states. In this table, transition rates 

belonging to the charged fraction were marked with a plus sign while those 

belonging to the neutral fraction were marked with an “n”. Affinities marked 

with “on” describe the binding of the drug while “off” affinities describe the 
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unbinding of the drug. Affinities for the inactive, neutral, closed or bursting 

states were marked with “i”, “n”, “c” or “b”, respectively.  Open state affinities 

have no special naming convention. 

Optimization of flecainide model consisted of the following tests: Steady-state 

availability, recovery from use-dependent block, INaf concentration and use-

dependent block curves at 0.2, 1 and 3 Hz108, INaL IC50
222, and APD90 

prolongation130. The isolated endocardial cellular model was paced to steady 

state in drug-free conditions previously to the optimization. 

Caballero and coworkers220 found that flecainide enhanced the inward rectifier 

current (IK1) with a maximum increase of +53.9% and an EC50 of 0.8 µM at -

50 mV. Therefore, according to the Hill formalism, we estimated that 1.5 µM 

therapeutic Flecainide130 should increase its conductance by a 51%. Since the 

current is mostly active at these potentials, we modeled this effect as a scalar 

factor multiplying GK1. Flecainide also blocked the rapid potassium delayed 

rectifier current (IKr) with an IC50 of 3.91 µM221 reducing its conductance to a 

72.3% at 1.5 µM.  

Table A.4. Equations describing the transition rates and affinities of the 

flecainide model. Positions of the parameters (p1, p2, ..., p16) to be 

optimized were numerated and highlighted in bold. 

Transition rates equations 

α11+ and α11n 𝛼11  

α12+ and α12n 𝛼12   

β11+ and β11n 𝛽11    

β12+ and β12n 𝛽12  

αx+ (𝒑𝟏) · 𝛼𝑥  

βx+ (𝒑𝟐) · 𝛽𝑥  

α13+ (𝒑𝟑) · 𝛼13  

α2+ (𝒑𝟒) · 𝛼2  

β3+ (𝒑𝟓) · 𝛽3  

α3+ (𝒑𝟔) · 𝛼3  

α4+ (𝒑𝟕) · 𝛼2  

β4+ (𝒑𝟖) · 𝛼3   

αxn (𝒑𝟗) · 𝛼𝑥  

α13n (𝒑𝟏𝟎) · 𝛼13   

α2n (𝒑𝟏𝟏) · 𝛼2  

β3n (𝒑𝟏𝟐) · 𝛽3  
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α4n (𝒑𝟏𝟑) · 𝛼2  

β4n (𝒑𝟏𝟒) · 𝛼3  

k_on = kc_on  𝑑𝑟𝑢𝑔𝑐ℎ𝑎𝑟𝑔𝑒𝑑 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛   

k_off = kc_off (𝒑𝟏𝟓) · 10−6 · 𝑒
−0.7∗𝑉∗𝐹

𝑅∗𝑇 ∗ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛   

kb_on = kcb_on  𝑘_𝑜𝑛  

kb_off = kcb_off  (𝒑𝟏𝟔) · 10−6 · 𝑒
−0.7∗𝑉∗𝐹

𝑅∗𝑇 ∗ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kn_on  𝑑𝑟𝑢𝑔_𝑛𝑒𝑢𝑡𝑟𝑎𝑙 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kn_off 400 · 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kni_on  𝑘𝑛_𝑜𝑛  

kni_off  5.4 · 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

knc_on 𝑘𝑛_𝑜𝑛   

knc_off 800 ∗ 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

diffusion 5500 𝑀−1 · 𝑚𝑠−1  

 

The protocols that we used to fit flecainide’s model are described in the bullet 

point list below: 

• Steady state availability: the same protocol as in the wild-type model 

was used to obtain the corresponding curve at 10 µM Flecainide.  

• Recovery from use-dependent block: First, a train of 100 pulses at 25 

Hz from -100mV to -10mV was simulated. Then, a second identical 

pulse was applied after a variable interval from 0.5 to 9s at -100mV. 

Flecainide concentration was set to 10 µM. Peak currents elicited 

from the delayed pulse were extracted, normalized to the first pulse’s 

elicited current and plotted against time intervals. 

• INaf block curves: The standard protocol consisted of a 30-ms pulse 

from -100 mV to -20 mV. It was applied 40 times at a rate of 0.2Hz 

or 60 times at a rate of 1 and 3 Hz. The maximum peak current elicited 

by the last pulse was extracted for increasing flecainide 

concentrations and normalized to drug-free conditions.  

• INaL IC50: From a -120mV pulse of 200 ms duration, we applied a 40-

ms pulse to -15 mV followed by a second 200-ms pulse to 40 mV. 

INaL was measured as the maximum INa current elicited during a 100-

ms ramp from 40 mV to -95 mV (-1.35 V/s) that followed the 

beforementioned pulses. The protocol was repeated at increasingly 

higher drug concentrations until 50% block of the control current 

(drug-free) was reached. The corresponding concentration was 

retrieved as the INaL IC50.  
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• APD90 Prolongation: simulations with the isolated cellullar model 

were performed to test the effects of flecainide every iteration. A train 

of 40 beats at 1 Hz at 1.5 µM therapeutic flecainide was applied. 

APD90 from the last beat was normalized to drug free conditions to 

obtain drug-induced prolongation. Target prolongation was adjusted 

to be as low as possible according to flecainde’s clinical and 

experimental results130,229. 

• Because flecainide has a pKa of 9.389, this drug is 99% charged under 

physiological conditions. Before optimizing the complete drug model 

– in a first phase – we optimized only neutral flecainide for dose-

dependent use-dependent block (see below) at 10 Hz and recovery 

from use-dependent block for time intervals ranging from 0.5s to 7s. 

Then, neutral drug parameters were held constant while the remaining 

parameters were optimized using all protocols in two additional 

phases. The second phase included the complete drug versions of the 

abovementioned protocols as well as steady state availability, 

recovery from use-dependent block and the INaf IC50 use dependence. 

Finally, the third phase added INaL IC50 and APD90 prolongation to the 

test batch. 

• Dose-dependent use-dependent block for neutral flecainide: We 

simulated a train of 300, 25-ms, pulses at 10Hz from -100mV to -

10mV. We normalized the current elicited by the last pulse under 

increasing neutral flecainide concentrations and normalized the value 

to the first pulse. We plotted the results against drug concentration. 

Table A.5 contains detailed information about the calculation of the error 

scores of each test in the cost function as well as the weights in the optimization 

of the flecainide model. 

Table A.5. Flecainide model optimization error calculations and weights 

of the cost function. The words containing “data” and “reference” indicate 

vectors containing the results of our tests and the reference experimental values, 

respectively. The INaL IC50 test was not shown. N is the number of samples.   

Flecainide optimization   

Test name Error calculation Weight 

Steady state availability (100·sum(data-reference))^2/N 2 

Dose-dependent use-

dependent block 

(100·sum(data-reference))^2/N 1 
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Recovery from use-

dependent block 

(100·sum(data-reference))^2/N 1 

Frequency-dependent 

INaf block at 0.2 Hz 

(100·sum(IC50_data-

IC50_reference))^2/N 

1 

Frequency-dependent 

INaf block at 1 Hz 

(100·sum(IC50_data-

IC50_reference))^2/N 

1 

Frequency-dependent 

INaf block at 3 Hz 

(100·sum(IC50_data-

IC50_reference))^2/N 

1 

Prolongation in 

endocardial cell (%) 

10·(Prolongation)^2 1 

INaL IC50 1000·(INaL_IC50-

INaL_IC50_reference)^2 

1 

A. 6. Optimization of Ranolazine 

Transition velocities and affinities that describe ranolazines’ binding, 

unbinding and current dynamics were determined as described in Table A.6. 

Optimization of ranolazine considered the following test protocols: steady-

state availability, tonic block of peak and late sodium current, use-dependent 

block, recovery from use-dependent block and frequency-dependent use-

dependent block. Diffusion and affinities for the normal and bursting states 

were set as in the original model and they were not modified. 

The protocols that we used to fit ranolazine’s model are described in the bullet 

point list below: 

• Steady state availability: a 100 ms pulse to -10 mV from a variable 

conditioning potential from -120 mV to -40 mV was applied and the 

resulting peak current under exposure to 10 µM ranolazine was 

extracted. Values were normalized to drug-free conditions and plotted 

against conditioning pulse potential.  

• Tonic block: A single 500-ms pulse to -10 mV from a resting potential 

of -100 mV was applied to evaluate the effect of increasing ranolazine 

concentrations. INaf was calculated using the elicited peak current, 

while INaL was measured using the remaining current at the end of the 

pulse. Both values were normalized to drug-free conditions and 

plotted against drug concentrations to obtain the corresponding IC50s. 
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• Use-dependent block: 300 25 ms pulses to -10 mV from a resting 

potential of -100 mV at a rate of 5 Hz and under exposure to 

increasing ranolazine concentrations were applied. The peak current 

elicited by the last pulse was extracted, normalized to drug-free 

conditions and plotted against drug concentrations.  

• Recovery from use-dependent block: This protocol is similar to 

flecainide’s recovery from use-dependent block protocol. Intervals 

ranged from 0.1 s to 10 s and ranolazine concentration was set to 10 

µM. 

Frequency-dependent use-dependent block: A train of 300 square 25-ms pulses 

from -100 mV to -10 mV was applied at 1 Hz, 2 Hz, 5 Hz and 10 Hz rates 

under exposure to 100 µM ranolazine. Peak sodium currents elicited by the last 

pulse were extracted and normalized to drug-free conditions. Then, they were 

plotted against pacing rate. Table A.7 contains detailed information about the 

calculation of the error scores of each test in the cost function as well as the 

weights that were applied during the optimization of the ranolazine model. 

Table A.6. Equations describing the transition rates and affinities of the 

ranolazine model. Positions of the parameters (p1, p2, ..., p12) to be optimized 

were numerated and highlighted in bold. 

Transition rates equations 

α11+ and α11n 𝛼11  

α12+ and α12n 𝛼12   

β11+ and β11n 𝛽11    

β12+ and β12n 𝛽12  

αx+ (𝒑𝟏) · 𝛼𝑥  

βx+ (𝒑𝟐) · 𝛽𝑥  

α13+ (𝒑𝟑) · 𝛼13  

α2+ (𝒑𝟒) · 𝛼2  

β3+ (𝒑𝟓) · 𝛽3  

α3+ (𝒑𝟔) · 𝛼3  

αxn (𝒑𝟕) · 𝛼𝑥  

α13n (𝒑𝟖) · 𝛼13   

α2n (𝒑𝟗) · 𝛼2  

β3n (𝒑𝟏𝟎) · 𝛽3  

k_on = kc_on  𝑑𝑟𝑢𝑔𝑐ℎ𝑎𝑟𝑔𝑒𝑑 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛   

k_off = kc_off (𝒑𝟏𝟏) · 10−6 · 𝑒
−0.7∗𝑉∗𝐹

𝑅∗𝑇 ∗ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛   
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kb_on = kcb_on  𝑘_𝑜𝑛  

kb_off = kcb_off  (𝒑𝟏𝟐) · 10−6 · 𝑒
−0.7∗𝑉∗𝐹

𝑅∗𝑇 ∗ 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kn_on  𝑑𝑟𝑢𝑔_𝑛𝑒𝑢𝑡𝑟𝑎𝑙 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kn_off 400 · 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

kni_on  𝑘𝑛_𝑜𝑛  

kni_off  5.4 · 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

knc_on 𝑘𝑛_𝑜𝑛   

knc_off 800 ∗ 10−6 · 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

diffusion 5500 𝑀−1 · 𝑚𝑠−1  

 

Table A.7. Ranolazine model optimization error calculations and weights 

in the cost function. The words containing “data” and “reference” indicate 

vectors containing the results of our and the reference experimental values, 

respectively. N is the number of samples. 

Ranolazine optimization   

Test name Error calculation Weight 

Steady state availability (100·sum(data-reference))^2/N

  

1 

Tonic block of INaf (100·sum(data-reference))^2/N 1 

Tonic block of INaL (100·sum(data-reference))^2/N 1 

Recovery from use-dependent 

block  

(100·sum(data-reference))^2/N 1 

Frequency-dependent use-

dependent block 

(100·sum(data-reference))^2/N 1 
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