Dimensionado a pandeo de soportes de acero secciones abiertas clase 1 y 2 solicitados a flexocompresión con un $M_{y,Ed}$.

Apellidos, nombre	Arianna Guardiola Víllora (aguardio@mes.upv.es)
Departamento	Mecánica del Medio Continuo y Teoría de Estructuras
Centro	Escuela Técnica Superior de Arquitectura de Valencia

1 Resumen de las ideas clave

En este artículo se presentan las expresiones matemáticas que establece el Documento Básico Seguridad Estructural Acero del Código Técnico de la Edificación (DB-SE-A) para comprobar los soportes de acero de secciones abiertas (series IPE, IPN o HEB) clase 1 y 2, con enlaces perfectos, solicitados a flexocompresión con un momento solicitación que produce flexiones alrededor del eje y, lo que comúnmente se representa por $M_{y,Ed}$

2 Introducción

EL DB-SE- A establece en su artículo 6.3.4.2 las comprobaciones de pandeo y pandeo por torsión a realizar en piezas solicitadas a flexocompresión esviada.

Dichas comprobaciones corresponden al caso general, simplificándose bastante cuando se trata de una sección clase 1 ó 2, solicitada a flexocompresión con un momento $M_{V,Ed}$.

La aplicación de dicha normativa a los casos habituales de soportes en edificación dimensionados con perfiles de las series IPE, IPN y HEB es el objeto de este artículo.

3 Objetivos

Cuando el alumno finalice la lectura de este documento será capaz de comprobar a pandeo y pandeo por torsión un soporte de acero de sección abierta clase 1 ó 2 solicitado a flexocompresión con $M_{y,Ed}$, con enlaces perfectos.

4 Comprobaciones

4.1 Expresiones a utilizar

Si se considera que la sección es clase 1 ó 2, y que el momento flector es $M_{y,Ed}$, las expresiones propuestas por EL DB-SE- A en su artículo 6.3.4.2 se reducen a:

$$\frac{N_{Ed}}{\chi_{v} \cdot A \cdot f_{vd}} + k_{y} \cdot \frac{c_{m,y} \cdot M_{y,Ed}}{\chi_{LT} \cdot W_{pl,v} \cdot f_{vd}} \leq 1$$

Ecuación 1. Comprobación a pandeo

$$\frac{N_{Ed}}{\chi_z \cdot A \cdot f_{yd}} + k_{y,LT} \cdot \frac{M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} \le 1$$

Ecuación 2. Comprobación a pandeo por torsión

En dichas ecuaciones N_{Ed} y $M_{y,Ed}$ son las solicitaciones, y A y $W_{pl,y}$ son el área y módulo resistente plástico respectivamente, cuyos valores, dependientes de la geometría de la sección, se obtiene en cualquier prontuario de perfiles metálicos. Para facilitar la aplicación práctica, se han incluido en el anejo 1 los valores correspondientes a los perfiles de la serie IPE, IPN y HEB. Por último f_{yd} es el límite elástico de cálculo (minorado) del acero de la barra a comprobar.

En los epígrafes siguientes se obtiene el valor de los coeficientes χ_{j} , χ_{z} , χ_{LT} , $k_{y,LT}$ y $C_{m,y}$ para los casos habituales en estructuras de edificación

4.2 Cálculo de los coeficientes

- 1. Los coeficientes reductores por pandeo, χ_y y χ_z se obtienen de la curva de pandeo correspondiente, en función de la esbeltez reducida, obtenida a partir de los coeficientes β_y y β_z . los valores de β para los casos habituales de barras con enlaces perfectos que nos podemos encontrar se obtienen en el epígrafe 4.3 de este documento.
- 2. El valor de los coeficientes de momento equivalente $C_{m,y}$ depende de la distribución de momentos flectores. Su valor se obtiene en la *tabla 1*, salvo en aquellos casos en los que la longitud de pandeo es superior a la de la propia barra, siendo entonces el valor de $C_{m,y}$ = 0,9 (corresponde a los casos en que β = 2)

	F: 1 G :/	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Factor de momento flector	Eje de flexión	Puntos arriostrados en dirección
C _{m,y}	у-у	Z-Z
$C_{m,z}$	Z-Z	<i>у-у</i>
$C_{m,LT}$	у-у	<i>у-у</i>
Diagrama de momentos	Factor de	momento uniforme equivalente
		$C_{m,i}$ $(i = y, z \circ LT)$
Momentos de extremo		
M _{h(-)}		$-1 \le \psi \le 1$
	M_h	$c_{m,i} = 0.6 + 0.4 \cdot \psi \ge 0.4$
Momento debido a cargas la	aterales coplanar	ias
		$c_{m,i}=0.9$
		$c_{m,i}=0.95$

Momentos debidos a cargas laterales y momentos de extremo

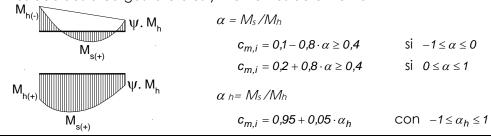


Tabla 1. Coeficientes del momento equivalente

3. El coeficiente de pandeo lateral, χ_{LT} , a partir de la esbeltez lateral reducida, $\overline{\lambda}_{LT}$, en las curvas de pandeo correspondientes.

 $\bar{\lambda}_{LT}$ se calcula tal y como indica la *ecuación 7.* Su valor depende del momento crítico a pandeo lateral calculado según la *ecuación 8.*

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_y \cdot f_y}{M_{cr}}}$$
 Ecuación 7

 $M_{cr} = \sqrt{M_{LT,v}^2 + M_{LT,w}^2}$ Ecuación 8

 $M_{LT,v}$ y $M_{LT,w}$ son las dos componentes del momento crítico a pandeo lateral que representan la resistencia por torsión uniforme y no uniforme de la barra respectivamente, calculadas a partir de las expresiones de las ecuaciones 9 y 10.

$$M_{LT,v} = C_1 \cdot \frac{\pi}{L_c} \cdot \sqrt{G \cdot I_T \cdot E \cdot I_z}$$
; oloque es lo mismo $M_{LT,v} = b_{LT,v} \cdot \frac{C_1}{L_c}$

Ecuación 9. Resistencia por torsión uniforme de la barra

$$M_{LT,w} = C_1 \cdot W_{el,y} \cdot \frac{\pi^2 \cdot E}{L_c^2} \cdot i_{f,z}^2$$
 o lo que es lo mismo $M_{LT,w} = b_{LT,w} \cdot \frac{C_1}{L_c^2}$

Ecuación 10. Resistencia por torsión no uniforme de la barra

Siendo L_{c_i} la distancia entre puntos de arriostramiento transversal,

 $b_{L\bar{l},v}$ y $b_{L\bar{l},w}$ los coeficientes de pandeo lateral. Su valor, que depende de la geometría de la sección, se ha calculado en las tablas del anejo 1 de este documento)

El coeficiente C_1 se obtiene en la *tabla 2*, a partir del diagrama de momentos flectores y de las condiciones de enlace de la barra.

Condiciones de carga y apoyo	Diagrama de momentos flectores	k	C1
q 		1,0 0,5	1,13 0,97
q		1,0 0,5	1,28 0,71
q 		1,0	1,30
P		1,0	2,05

Tabla 2. Coeficientes C1 de pandeo lateral

4. El valor de los coeficientes k_y y $k_{y,L\bar{I}}$ se obtiene a partir de la *ecuación 11* y *12* respectivamente, adoptando para $\bar{\lambda}_y$ el valor calculado en el apartado 4.3.1 siempre que sea menor que la unidad. En caso contrario, se adoptará el valor 1.

$$\begin{aligned} k_{y} &= 1 + (\overline{\lambda}_{y} - 0.2) \cdot \frac{N_{Ed}}{\chi_{y} \cdot A \cdot f_{yd}} \\ k_{y,LT} &= 1 \text{ limenor de } 1 - \frac{0.1 \cdot \overline{\lambda}_{z}}{c_{m,LT} - 0.25} \cdot \frac{N_{Ed}}{\chi_{z} \cdot A \cdot f_{yd}} \quad \text{\'o} \quad 0.6 + \overline{\lambda}_{z} \end{aligned}$$
 Ecuación 12

4.3 Aplicaciones prácticas

En este epígrafe se presentan una serie de casos tipo con barras de sección abierta clase 1 y 2 para los que se determinan los valores a tener en cuenta en el cálculo de los coeficientes correspondientes.

4.3.1 SOPORTE BIARTICULADO EN LOS DOS PLANOS CON CARGA UNIFORMEMENTE REPARTIDA

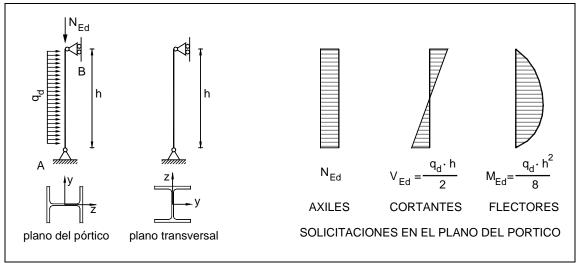


Figura 1. Soporte biarticulado en los dos planos

- Los coeficientes β a considerar son: $\beta_y = 1$; $\beta_z = 1$
- Los coeficientes $C_{m,y} = C_{m,LI} = 0.9$. Estos valores de obtienen de la tabla 1. La fila considerada se muestra en la *figura 2*.

Figura 2. Coeficiente C_m para soportes biarticulados en los dos planos

- $L_{\rm C}$, distancia entre puntos de arriostramiento transversal es, si no se dice los contrario, igual a la altura del soporte.
- El coeficiente C_1 = 1,13 se obtiene en la primera fila de la *tabla 2* para un valor de k=1 ($k=\beta_z$), tal y como indica la *figura 3*.

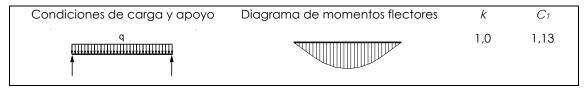


Figura 3. Coeficiente C1 para soportes biarticulados en los dos planos

4.3.2 Soporte empotrado-apoyado en el plano del pórtico y empotrado-apoyado en el plano transversal con carga uniformemente repartida.

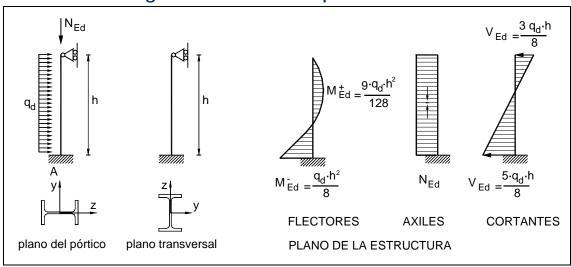


Figura 4. Soporte empotrado-apoyado en los dos planos

- Los coeficientes β a considerar son: $\beta_y = 0.7$; $\beta_z = 0.7$
- Los coeficientes de momento equivalente $C_{m,y} = C_{m,LT} = 0,55$ se obtienen a partir de las expresiones de la tabla 1 para $\alpha < 0$ tal y como indica la figura 5.

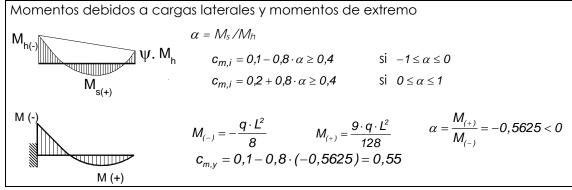


Figura 5. Coeficiente C_m para soportes empotrados-apoyados en ambos planos

- L_C igual a la altura del soporte.
- El coeficiente C_1 se obtiene en la *tabla 2*, considerando la semisuma de los valores correspondientes a una viga biarticulada y una biempotrada *tal y como se muestra en la figura 2*. Por tanto $C_1 = \frac{1,13+1,28}{2} = 1,20$

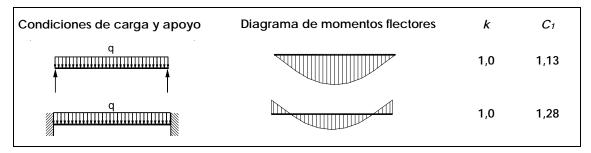


Figura 6. Coeficiente C₁ para barras empotradas-apoyadas

4.3.3 SOPORTE EMPOTRADO LIBRE EN EL PLANO DEL PORTICO Y EMPOTRADO APOYADO EN EL PLANO TRANSVERSAL CON CARGA UNIFORMEMENTE REPARTIDA

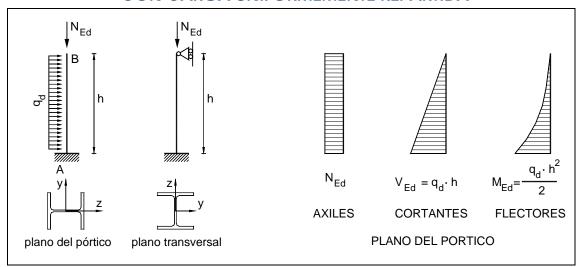


Figura 7. Soporte Empotrado-libre con carga uniformemente repartida

- Los coeficientes β son: $\beta_V = 2$, $\beta_Z = 0.7$
- Los coeficientes de momento equivalente $C_{m,y} = C_{m,LT} = 0,9$ al ser la longitud de pandeo superior a la de la barra ya que $L_{ky} = 2 \cdot h$
- L_c distancia entre puntos de arriostramiento transversal es, si no se dice los contrario, igual a la altura del soporte.
- El coeficiente $C_1=1,30$ se obtiene en la *tabla 2* a partir del diagrama de flectores y del coeficiente k que es igual a β_z .

Se toma el valor correspondiente a k = 1 (quedando del lado de la seguridad ya que el verdadero valor de k = 0,7). Ver figura 8.

Figura 8. Coeficiente C1 barra empotrada-libre

4.3.4 SOPORTE EMPOTRADO LIBRE EN EL PLANO DEL PORTICO Y EMPOTRADO APOYADO EN EL PLANO TRANSVERSAL CON CARGA PUNTUAL

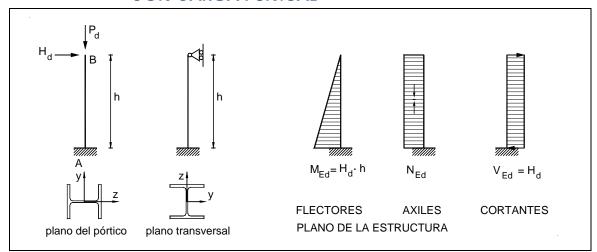


Figura 9. Soporte empotrado libre con carga puntual

- Los coeficientes β son: $\beta_y = 2$; $\beta_z = 0.7$
- Los coeficientes de momento equivalente $C_{m,y} = C_{m,LI} = 0,9$ al ser la longitud de pandeo superior a la de la barra ya que $L_{ky} = 2 \cdot h$
- L_c distancia entre puntos de arriostramiento transversal es, si no se dice los contrario, igual a la altura del soporte.
- El coeficiente $C_1 = 2,05$ se obtiene en la *tabla 2* a partir del diagrama de flectores y del coeficiente k que es igual a β_z .

Se toma el valor correspondiente a k=1 (quedando del lado de la seguridad ya que el verdadero valor de k=0,7) tal y como se muestra en la figura 10.

Condiciones de carga y apoyo	Diagrama de momentos flectores	k	C ₁
P		1,0	2,05

Figura 10. Coeficiente C₁

4.3.5 SOPORTE QUE RECIBE CARGA Y LA COMPARTE CON OTROS SOPORTES (COMPATIBILIDAD DE DEFORMACIONES)

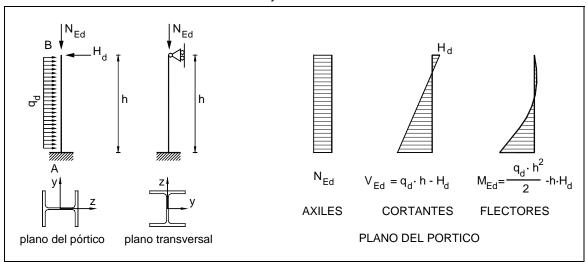


Figura 11. Soporte empotrado libre que comparte carga (compatibilidad de def.)

- Los coeficientes β son: $\beta_V = 2$; $\beta_Z = 0$, 7
- Los coeficientes de momento equivalente $C_{m,y} = C_{m,LT} = 0,9$ al ser la longitud de pandeo superior a la de la barra ya que $L_{ky} = 2 \cdot h$
- L_c distancia entre puntos de arriostramiento transversal es, si no se dice los contrario, igual a la altura del soporte.

El coeficiente $C_1 = 1,30$ se obtiene en la *tabla 2* a partir del diagrama de flectores y del coeficiente k igual a β_z .

Se considera que el diagrama de flectores es prácticamente igual al de la figura 12, y se toma el valor correspondiente a k = 1 (quedando del lado de la seguridad ya que el verdadero valor de k = 0,7) ver figura 12.

Condiciones de carga y apoyo	Diagrama de momentos flectores	k	C ₁
q 		1,0	1,30

Figura 12. Coeficiente C₁

5 Conclusión

A lo largo de este artículo se han particularizado las comprobaciones generales de pandeo y pandeo por torsión de las piezas se sección abierta clase 1 y 2 solicitadas a flexocompresión con un $M_{y,Ed}$ para cinco casos tipo de soportes en edificación con enlaces perfectos (casos habituales)

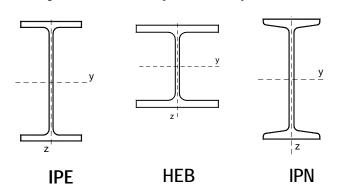
Como actividad complementaria se propone al alumno realizar las comprobaciones de pandeo y de pandeo por flexotorsión de un IPE 200 de 4 metros de longitud sobre el que actúa una carga uniforme de 2 kN/m y una carga puntual de 1 kN en cabeza de soporte, considerando los diferentes tipos de enlace analizados en los epígrafes 4.3.1, 4.3.2, 4.3.3 y 4.3.4, con el objeto de concluir cual es la mejor situación posible para dicho soporte.

6 Bibliografía

6.1 Libros:

- [1] MINISTERIO de la VIVIENDA: "Documento Básico Seguridad Estructural, Acero", Código Técnico de Edificación. Disponible en: http://www.codigotecnico.org
- [2] Monfort Lleonart, J.: "Estructuras Metálicas en Edificación adaptado al CTE" Editorial Universidad Politécnica de Valencia ISBN 84-8363-021-4
- [3] Ejemplos prácticos resueltos en "Problemas de estructuras metálicas adaptados al Código Técnico" capítulo 4. Autores: Monfort Lleonart, J. Pardo Ros, J.L., Guardiola Víllora, A. Ed. Universidad Politécnica de Valencia. ISBN 978-84-8363-322-9

6.2 Tablas y figuras


El contenido de la tabla 1. Coeficientes de momento equivalente corresponde con el de la tabla 6.10 del Documento Básico Seguridad Estructural Acero (primera referencia bibliográfica)

El contenido de la tabla 2. Coeficientes C₁ para pandeo lateral se ha tomado de la tabla 4.4 del libro "Estructuras Metálicas en Edificación adaptado al CTE" (segunda referencia bibliográfica). Los valores de las dos primeras filas se han tomado del Eurocódigo 3 (UNE-EN 1993-1-1:2008) y los de las dos últimas de "Structural Analysis and Design" R.L. Ketter, G.C. Lee, S.P. Prawel; Edit McGraw-Hill Book Company, 1979 –pag 455

El contenido de las tablas 3,4 y 5, de coeficientes $b_{L\bar{L},V}$ y $b_{L\bar{L},W}$ para los perfiles de la serie IPE, IPN, y HEB ha sido calculado por Guardiola Villora, A. con las expresiones indicadas.

Todos los dibujos incluidos en este documento han sido realizados por Guardiola Víllora, A.

Anejo 1. TABLAS para los perfiles de la serie IPE, IPN, y HEB

$$\begin{aligned} b_{LT,v} &= \pi \cdot \sqrt{G \cdot I_t \cdot E \cdot I_z} \\ b_{LT,w} &= W_{el,y} \cdot \pi^2 \cdot E \cdot {i_{f,z}}^2 \end{aligned}$$

 $i_{f,z}$ radio de giro respecto a z del ala comprimida + $^{1}/_{3}$ del alma adyacente

PERFILES IPE

PERFIL	İy	İz	Α	$W_{pl,y} x 10^3$	<i>blī,v</i>	DLT, W
	mm	mm	mm²	mm^3	x 10 ⁶ N · mm ²	x 10 ⁹ N · mm ³
IPE 80	32,4	10,5	764	23,2	9 994	5 387
IPE 100	40,7	12,4	1030	39,4	17 897	12 918
IPE 120	49,0	14,5	1320	60,8	28 445	27 076
IPE 140	57,4	16,5	1640	88,4	42 974	51 333
IPE 160	65,8	18,4	2010	124	64 248	90 366
IPE 180	74,2	20,5	2390	166	90 121	149 134
IPE 200	82,6	22,4	2850	220	128 995	239 386
IPE 220	91,1	24,8	3340	286	176 678	377 941
IPE 240	99,7	26,9	3910	366	247 810	580 441
IPE 270	112	30,2	4590	484	<i>335 251</i>	968 287
IPE 300	125	33,5	5380	628	451 683	1 538 012
IPE 330	137	35,5	6260	804	610 245	2 224 702
IPE 360	150	37,9	7270	1020	<i>807 215</i>	3 195 858
IPE 400	165	39,5	8450	1310	1 063 933	4 507 677
IPE 450	185	41,2	9880	1700	1 373 321	6 351 658
IPE 500	204	43,1	11600	2200	1 791 060	8 911 695
IPE 550	223	44,5	13400	2780	2 349 973	12 191 912
IPE 600	243	46,6	15600	3520	3 068 100	16 745 269

PERFILES HEB

PERFIL	İy	İz	Α	W _{pl,y} x 10 ³	<i>b</i> _{LT,V}	DLT, W
	mm	mm	mm²	mm^3	x 10° N · mm²	x 10 ⁹ N · mm ³
HEB 100	41,6	25,3	2600	104	161 820	133 977
HEB 120	50,4	30,6	3400	165	282 038	309 451
HEB 140	59,3	35,8	4300	246	455 800	629 557
HEB 160	67,8	40,5	5430	354	703 917	1 175 263
HEB 180	76,6	45,7	6530	482	1 030 381	2 034 281
HEB 200	85,4	50,7	7810	642	1 459 021	3 368 809
HEB 220	94,3	55,9	9100	828	2 006 006	5 256 214
HEB 240	103	60,8	10600	1050	2 690 552	7 987 997
HEB 260	112	65,8	11800	1280	3 346 049	11 546 101
HEB 280	121	70,9	13100	1530	4 114 247	16 002 996

HEB 300	130	75,8	14900	1870	5 252 783	22 340 523
HEB 320	138	75,7	16100	2140	6 114 297	25 537 001
HEB 340	146	75,3	17100	2400	6 724 907	28 366 054
HEB 360	155	74,9	18100	2680	7 366 101	31 280 713
HEB 400	171	74,0	19800	3240	8 452 049	36 689 657
HEB 450	191	73,3	21800	3980	9 910 143	44 650 086
HEB 500	212	72,7	23900	4820	11 498 132	53 129 450
HEB 550	232	71,7	25400	5600	12 416 428	60 283 477
HEB 600	252	70,8	27000	6420	13 321 397	67 699 530

PERFILES IPN

PERFIL	İy	İz	Α	W _{pl,y} x 10 ³	<i>b</i> _{LT,V}	$b_{LT,w}$
	mm	mm	mm ²	mm^3	x 10 ⁶ N · mm ²	x 10 ⁹ N · mm³
IPN 80	32,0	9,1	757	22,8	9 917	4 371
IPN 100	40,1	10,7	1060	39,8	18 769	10 723
IPN 120	48,1	12,3	1420	63,6	32 464	22 860
IPN 140	56,1	14,0	1820	95,4	52 476	44 000
IPN 160	64,0	15,5	2280	136	80 632	<i>77 698</i>
IPN 180	72,0	17,1	2790	187	118 567	130 820
IPN 200	80,0	18,7	3340	<i>250</i>	169 344	208 858
IPN 220	88,0	20,2	3950	324	233 807	320 913
IPN 240	95,9	22,0	4610	412	316 504	477 092
IPN 260	104	23,2	5330	514	417 784	672 790
IPN 280	111	24,5	6100	632	540 463	906 055
IPN 300	119	25,6	6900	762	680 716	1 201 890
IPN 320	127	26,7	7770	914	853 595	1 567 640
IPN 340	135	28,0	8670	1080	1 050 350	2 008 217
IPN 360	142	29,0	9700	1280	1 299 664	2 580 946
IPN 380	150	30,2	10700	1480	1 566 931	<i>3 217 390</i>
IPN 400	157	31,3	11800	1710	1 887 802	4 031 416
IPN 450	177	34,3	14700	2400	2 892 153	6 697 540
IPN 500	196	37,2	17900	3240	4 323 655	10 637 001
IPN 550	216	40,2	21200	4240	1 902 869	16 528 062
IPN 600	234	43,0	25400	5600	2 619 174	23 894 674