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Abstract: The bioherbicidal potential of Thymbra capitata (L.) Cav. essential oil (EO) and its main
compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and
seedling growth of Erigeron canadensis L., Sonchus oleraceus (L.) L., and Chenopodium album L. at 0.125
uL/mL, of Setaria verticillata (L.) P.Beauv., Avena fatua L., and Solanum nigrum L. at 0.5 uL/mL, of
Amaranthus retroflexus L. at 1 pL/mL and of Portulaca oleracea L., and Echinochloa crus-galli (L.)
P.Beauv. at 2 pL/mL. Under greenhouse conditions, T. capitata EO was tested towards the emergent
weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both
assays at 4 uL/mL. In addition, T. capitata EO, applied by spraying, was tested against P. oleracea, A.
fatua and E. crus-galli. The species showed different sensibility to the EO, being E. crus-galli the most
resistant. Experiments were performed against A. fatua testing T. capitata EO and carvacrol applied
by spraying or by irrigation. It was verified that the EO was more active at the same doses in
monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects
on Arabidopsis root morphology were also studied.

Keywords: weed control; natural herbicides; essential oils; Thymbra capitata; carvacrol; integrated
weed management; bioherbicides
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1. Introduction

The family Lamiaceae is one of the most widely used source of spices, and includes medicinal
plants endowed with strong antimicrobial and antioxidant properties [1-4]. Extracts from Lamiaceae
have been reported to possess a wide range of biological activities, as well as phytochemical diversity
[5]. There is a long history of controversies surrounding this family [6], resulting in a considerable
number of recent efforts to re-evaluate existing classification by means of molecular phylogenetic
analyses [7-11]. Among the most challenging taxa there is the subtribe Menthinae (Lamiaceae,
Nepetoideae, Mentheae), which includes well known aromatic plants as peppermint, oregano, savory
and thyme (see [12] for a comprehensive review). This led to an enormous number of names [13] with
many synonyms under different generic names and, as a consequence, to a considerable taxonomic
confusion. A genus that was previously considered rather isolated in this group is Thymbra Linnaeus,
comprising four species of Mediterranean subshrubs [14,15]. The recent molecular phylogenetic
analysis of both nuclear ribosomal and plastid markers [12] revealed that this genus had a distinct
lineage, dissociated from both Thymus Linnaeus and Satureja Linnaeus [6].

Thymbra capitata (L.) Cav. is a Mediterranean species typically found in garrigues, dry slopes and
Mediterranean pine forests, which grows between 0 and 600 m above sea level, and is considered a
good ecological indicator of the dry Mediterranean area [16,17]. In Spain, T. capitata and, in general,
Thymus species are commonly known as thyme, and are currently used as culinary herbs, as well as
for ornamental, flavouring and medicinal purposes [18]. The essential oil (EO) from T. capitata is
greatly appreciated and deals with a deep economic importance because of its biological properties.
In the last ten years much research has been carried out on this species, enlightening the EO
composition and its biological activities, such as antimicrobial [19-23], antifungal [24-26], and
antioxidant [21,26,27]. Since EO components are responsible for the different EO biological activities,
the knowledge of the EO’s composition, as well as of the factors related to its variability, is of
outstanding relevance [28].

The composition of T. capitata EO from different origins has been thoroughly studied. T. capitata
EOs from populations growing in Sicily [29,30], Sardinia [31,32], and Albania [33,34], always
contained carvacrol (65.1%-86.3%), and small amounts of thymol, usually below 1% [17]. EOs from
different T. capitata populations from southern Puglia (Italy) were also analysed, detecting three
chemotypes: thymol, carvacrol, and thymol/carvacrol [17]. Environmental factors influencing T.
capitata EO composition were studied, allowing to assess that the carvacrol chemotype was only
present under the hottest and driest conditions. These results demonstrated that not only is the
biosynthetic pathway of phenolic monoterpenes in T. capitata favoured in high-temperature
environments, as reported in other Lamiaceae, but also that carvacrol is present only in markedly
“Mediterranean-like” environments [35]. In Spain, T. capitata EOs from wild and cultivated plants
were studied, and all of them were classified as carvacrol chemotype [36]. Furthermore, T. capitata
EOs from Portugal and from Turkey were found to be carvacrol chemotype [37,38]. The carvacrol
chemotype is dominant in the majority of the studied T. capitata populations, being carvacrol the main
compound in the EO from these populations.

Several studies have been conducted on the allelopathic potential of T. capitata. In Israel, the
suppression of several annuals, such as Plantago psyllium L. and Erucaria hispanica (L.) Druce, was
observed around T. capitata formations. These effects were verified in the laboratory, as the
germination of both species was inhibited by volatiles from T. capitata sprouts, as well as by their
aqueous extracts and EOs. An autoallelopathic effect was also observed [39]. T. capitata EOs have
shown phytotoxic effects on seed germination and seedling growth of various species [40—42]. Sinapis
arvensis L. seeds soaked for 30 min in a solution of T. capitata EO (83.86% carvacrol) at 1.5 pL/mL with
Tween 20 (0.1%), and placed in Petri dishes, did not germinate after 10 days of watering [43]. T.
capitata EO (carvacrol 69.15%) also completely inhibited S. arvensis germination and strongly reduced
that of Phalaris canariensis L. and Lolium rigidum Gaudin at 1 pL/mL in in vitro experiments [44]. Our
previous research demonstrated that T. capitata EO has strong herbicidal activity against Erigeron
bonariensis L., an important weed in many crops around the world which has developed resistance to
many herbicides, including glyphosate [45].



Molecules 2020, 25, 2832 3 of 31

Research on natural products as bioherbicides has greatly increased over the past few years, due
to the shift in agricultural techniques to control weeds towards more sustainable ones, promoting
integrated weed management (IWM) [46]. IWM is the combination of different methods for weed
control: cultural, physical, mechanical, biological, biotechnological and chemical, giving priority to
non-chemical ones whenever possible. The European legislation (Directive 2009/128/EC) supports the
sustainable use of pesticides in the European Union. The overuse of synthetic herbicides caused
negative effects in the environment and non-target organisms [47], and also promoted the
development of herbicide-resistant weeds [48].

Bioherbicides are products of natural origin for weed control [49]. According to EPA (United
States Environmental Protection Agency) biopesticides can be classified in three categories: (1)
biochemical pesticides, which are natural substances that control pests by non-toxic mechanisms; (2)
microbial pesticides, in which a microorganism is the active ingredient; and (3) plant-incorporated
protectants, which are pesticide substances produced by plants from genetic material added to the
plant [50]. The use of bioherbicides as tools for IWM allows many advantages, such as increased
target specificity, rapid degradation, and less restrictive (sometimes non-existent) maximum residue
limits [46,51]. In the context of IWM strategies, a properly managed application of bioherbicides can
decrease the total need for synthetic herbicides [51].

The research carried out on the herbicidal activity of T. capitata has been mainly performed under
in vitro conditions [42,43]. Our group has been investigating the herbicidal activity of T. capitata EO
for over ten years, and this paper reports the results of in vitro and in vivo experiments. Since the
biological activities of T. capitata EO were demonstrated to be due to its major compound, carvacrol
[4,52,53], we have also tested carvacrol through in vitro and in vivo experiments, under greenhouse
conditions. Finally, for a better understanding of the phytotoxic potential of T. capitata EO, we tested
carvacrol on Arabidopsis thaliana (L.) Heynh. A dose-response curve for the germination and growth
of A. thaliana was drawn, and the morphology of carvacrol-treated radicles was investigated.

Our studies demonstrated that T. capitata EO, and its main compound carvacrol, in either in vitro
and in vivo conditions, exhibited great potential against many noxious Mediterranean weeds of
cosmopolite distribution, and could be excellent candidates for bioherbicide formulations, which are
a very important tool in the context of IWM, more respectful towards the environment and the
ecosystems.

2. Results and Discussion

2.1. Thymbra Capitata EOs Composition

All the tested EOs were carvacrol chemotype (Table 1). This chemotype is dominant in most
studies about T. capitata EO and its biological activities [36,42,54,55], although thymol and
thymol/carvacrol chemotypes have been described [17,55,56]. The samples obtained from T. capitata
populations from Sicily (TC1 and TC2) contained as main compounds carvacrol, p-cymene, and f3-
caryophyllene (ranked in decreasing order of abundance) (Table 1). Carvacrol content was higher in
the EO obtained from plants at flowering stage (TC1, 77.02%) than at vegetative stage (TC2, 65.55%).
T. capitata biotypes from Sicily have been characterized and resulted belonging to the carvacrol
chemotype [54]. The main compounds in the samples obtained from T. capitata growing in Spain were
carvacrol, p-cymene and y-terpinene (Table 1). Other studies of T. capitata populations from Spain
also found that all the samples studied, from wild and cultivated populations were carvacrol
chemotype [36]. The high content in carvacrol is associated to markedly “Mediterranean-like”
environments [35].
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Table 1. Chemical composition of Thymbra capitata EOs tested. TC1, T. capitata from Enna (Enna
province, Sicily) collected at flowering stage, TC2, T. capitata from Riesi (Caltanissetta province, Sicily)
collected at vegetative stage. TC3, T. capitata from Carmona (Seville province, Spain) collected at
flowering stage. TC4, EO purchased from Bordas, S.A. (Seville province, Spain).

Component KIL TC1 TC2 TC3 TC4
Monoterpene Hydrocarbons 10.42 18.35 17.33 22.54
a-Thujene 931 - 0.86 2.10 0.89
a-Pinene 939 0.48 0.65 0.71 0.74
Camphene 954 0.19 0.33 0.09 -
[-Pinene 979 0.08 0.10 0.06 0.29
Myrcene 991 1.06 1.39 2.03 1.95
a-Phellandrene 1006 0.05 0.01 0.27 0.16
0-3-Carene 1010 t t 0.08 -
a-Terpinene 1017 0.64 0.55 1.37 1.61
p-Cymene 1026 6.78 12.07 4.57 8.93
Limonene 1030 0.17 0.38 0.23 0.20
B-Phellandrene 1036 - - 0.24 -
trans-B-Ocimene 1052 - - 0.05 -
v-Terpinene 1060 0.97 2.01 5.45 7.77
Terpinolene 1090 t t 0.08
Oxygenated Monoterpenes 78.94 68.79 79.07 73.98
1,8-Cineole 1033 t - - 0.11
cis-Sabinene hydrate 1079 0.38 0.33 0.19 -
trans-Sabinene hydrate 1095 t t - -
Linalool 1100 0.40 1.26 0.93 0.77
Borneol 1179 t t 0.06 0.16
Terpinen-4-ol 1188 0.82 1.11 0.54 0.37
Cryptone 1202 - 0.04 - -
Thymol 1292 - - 0,22 0.27
Carvacrol 1302 77.02 65.55 77.13 72.30
Carvacrol acetate 1374 0.32 0.50 - -
Sesquiterpene Hydrocarbons 4.74 8.02 2.50 3.14
p-Caryophyllene 1419 4.42 6.99 2.50 3.14
Aromadendrene 1442 - 0.10 - -
a-Humulene 1457 - t - -
allo-Aromadendrene 1459 - 0.04 - -
Bicyclogermacrene 1500 - 0.21 - -
-Bisabolene 1507 0.24 0.68 - -
Y-Cadinene 1516 - t - -
0-Cadinene 1526 0.08 t - -
Oxygenated Sesquiterpenes 1.32 2.34 0.14
Spathulenol 1581 t 0.21 - -
Caryophyllene oxide 1586 1.32 213 - 0.14
Diterpene hydrocarbons - 0.11 - - -
Abietatriene 2072 0.11 - - -
Aromatics - 1.77 - - -
Eugenol 1361 1.77 - - -
Chavibetol acetate 1520 t - - -
Others 0.30 0.38 0.18 -
1-Octen-3-ol 979 0.30 0.32 0.18 -
3-Octanol 997 t t t -
2-Nonanone 2100 t 0.06

TOTAL IDENTIFIED (%) 97.60 97.88 99.08 99.08
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2.1. In Vitro Herbicidal Activity Experiments

2.1.1. Herbicidal Activity of TC1, TC2 and Carvacrol against Portulaca oleracea and Erigeron
canadensis

Both EOs tested, TC1 and TC2, showed similar effects on P. oleracea and E. canadensis seed
germination (Table 2). E. canadensis was more sensitive than P. oleracea to T. capitata EO, as all treated
seeds did not germinate at all assayed concentrations. The application of T. capitata EO inhibited seed
germination of P. oleracea. The lowest concentration tested (0.125 pL/mL) reduced germination by
47.1% (TC1) and by 55.2% (TC2) when compared to the control. There were no significant differences
in the phytotoxic effects caused on P. oleracea seeds between the other tested concentrations, reducing
P. oleracea germination to 0 or values close to 0 (Table 2. Carvacrol inhibited completely seed
germination on both species at all applied doses (Table 2).

Table 2. Phytotoxic effects of Thymbra capitata EOs obtained from plants at blooming (TC1) and
vegetative stage (TC2) and carvacrol, on Portulaca oleracea and Erigeron canadensis seed germination.

Seed Germination (%)

Concentration uL/mL  Portulaca oleracea Conyza canadensis

0 (control) 87.0+t12a 940+t24a

0.125 46.0+14.b 0.0+0.0b

TC1 0.250 70+3.7c 0.0+0.0b
0.5 0.0+0.0c 0.0+0.0b

1 0.0+0.0c 0.0+0.0b

0 (control) 87.0+t12a 940+t24a

0.125 39.0+9.3b 0.0+0.0b

TC2 0.250 0.0+0.0c 0.0+0.0b
0.5 0.0+0.0c 0.0+0.0b

1 40+40c 0.0+0.0b

0 (control) 88.8+55a 95.0+22a

0.125 0.0+0.0b 0.0+0.0b

Carvacrol 0.250 0.0+£0.0b 0.0+0.0b
0.5 0.0+0.0b 0.0+0.0b

1 0.0+0.0b 0.0+0.0b

Values are means + standard error of 5 replicates, 20 seeds each, after 14 days of incubation. Within
each species, for each treatment (TC1, TC2 or carvacrol), different letters in the same column indicate
significant differences among concentrations (p < 0.05) using Fisher’s least significant difference (LSD)
test.

Regarding the phytotoxic effects on seedlings, both EOs reduced significantly the treated
seedling length at all tested concentrations (Figure 1). The seedlings were strongly affected, also at
the lowest dose (0.125 uL/mL), being 71.4% (TC1, Figure 1A) and 72.6% (TC2, Figure 1B) shorter than
the controls. The seedlings treated at the highest dose (1 pL/mL) exhibited a significantly reduced
length as compared to the lowest dose (0.125 uL/mL), and were 95.4% shorter than the controls
(Figure 1B).

In Figure 2, E. canadensis and P. oleracea plates control and treated with the maximum doses of
TC1 (1 pL/mL) at the end of the experiment can be observed. The EO completely blocked the
germination of both species.
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Figure 1. Seedling length (mm) (mean + SE) in Portulaca oleracea control or treated with TC1 (A) and
TC2 (B). Different letters at the end of the growth curves indicate significant differences among doses
(p <0.05) using Fisher’s least significant difference (LSD) test.

Figure 2. Seeds in control plates of (A) Portulaca oleracea, and (B) Erigeron canadensis, and seeds treated
with the maximum doses of TC1 (1 uL/mL) of (C) P. oleracea, and (D) E. canadensis, after 14-days
incubation.

2.1.2. Herbicidal Activity of TC3 against Solanum nigrum, Chenopodium album, Sonchus oleraceus and
Setaria verticillata.

The most sensitive species to TC3 EO were C. album and S. oleraceus, as their germination was
blocked at all the applied doses (Table 3). The germination of S. nigrum and S. verticillata was
completely inhibited after seeds treatment at the two highest concentrations of TC3, 0.5 and 1 uL/mL
(Table 3). The lowest doses of the EO tested (0.125 and 0.25 pL/mL) also showed strong phytotoxic
effects, inhibiting by 73.7% and by 75.8% S. nigrum germination and by 80% and by 86.3% S. verticillata
germination, respectively.
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Table 3. Phytotoxic effects of Thymbra capitata EO (TC3) on Solanum nigrum, Chenopodium album,

Sonchus oleraceus and Setaria verticillata seed germination.

Seed Germination (%)

Concentration Solanum Chenopodium Sonchus Setaria
pL/mL nigrum album oleraceus verticillata
0 (control) 99.00+1.00 a 98.00 £2.00 a 83.00+4.4a 95.00 £1.60 a
0.125 26.00+11.1b 0.00 £0.00 b 0.00 £0.00 b 19.00+7.50 b
0.250 24.00 £19.4 be 0.00£0.00 b 0.00+0.00b 13.00 + 6.00 b
0.5 0.00 £0.00 c 0.00 £0.00 b 0.00 £0.00 b 0.00 £0.00 c
1 0.00 +0.00 c 0.00 +0.00 b 0.00 +0.00 b 0.00 +0.00 c

Values are means + standard error of 5 replicates, 20 seeds each, after 14 days of incubation. Within

each species, different letters in the same column indicate significant differences among

concentrations (p < 0.05) using Fisher’s least significant difference (LSD) test.

In C. album and S. oleraceus, seedling length could not be evaluated, because no seed germinated
after the treatment at the tested EO concentrations (Tables 3 and 4). The same happened at the highest
concentrations (0.5 and 1 pL/mL) in S. nigrum and S. verticillata (Tables 3 and 4). The lowest doses of
TC3 (0.125 and 0.25 pL/mL) significantly reduced the length of the treated seedlings as compared to
the control: for each concentration, by 73.66% and by 94.77% of seedling length reduction was
measured in S. nigrum (Figure 3A), and by 69.54% and by 74,54% in S. verticillata, respectively (Figure

3B).

Table 4. Phytotoxic effects of Thymbra capitata EO (TC3) on Solanum nigrum, Chenopodium album,

Sonchus oleraceus and Setaria verticillata seedling length.

Concentration pL/mL

0 (control)
0.125
0.250

0.5
1

Seedling Length (mm)

Solanum nigrum  Chenopodium album  Sonchus oleraceus  Setaria verticillata
47.07 +1.58 a 2471+1.19a 1723+148a 65.00+2.22 a
12.40+4.16b - - 19.94+6.15b
2.46 £2.46 bc - - 16.23+4.97b

Values are means + standard error of 5 replicates of 20 seeds each after 14 d of incubation. Within each

species, different letters in the same column indicate that means among concentrations are different

(p <0.05) using Fisher’s least significant difference (LSD) test.

60 -
—i— CONTROL

50 - 0.125 uL/mL

40 -

30

20

Seedling length (mm)

10 ~

0 =
012 3435

0.250 pL/mL

Days

A

1
J
§
!

b

bc
6 7 8 910111213 14

Seedling length (mm)

80

70 -

60 -

50 -

40

30

20

10

0 B

—8—CONTROL

0.125 pL/mL

0.250 pL/mL

]
T |
1 1P
AR
012 3 45 6 7 8 910111213 14
Days

Figure 3. Phytotoxic effects of Thymbra capitata EO (TC3) on Solanum nigrum (A) and Setaria verticillata

(B) seedling length (mm) (mean + SE), measured for 14 days. Different letters at the end of the growth

curves indicate significant differences among doses (p <0.05) using Fisher’s least significant difference

(LSD) test.
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2.1.3. Herbicidal Activity of TC4 against Amaranthus retroflexus, Portulaca oleracea, Avena fatua and
Echinochloa crus-galli.

E. crus-galli and P. oleracea behaved as the most resistant species to TC4 EO, since only the highest
dose (2 pL/mL) prevented their germination (Table 5). Nevertheless, the germination of all species
was lower as the doses of the EO increased (Table 5). The germination of the other tested species was
inhibited completely at doses of 0.5 puL/mL for A. fatua, which was the most sensitive species, and 1
uL/mL for A. retroflexus (Table 5). All treatments showed significant differences when compared to
the control, except for the lower dose applied to A. fatua. (Table 5).

Table 5. Phytotoxic effects of Thymbra capitata EO (TC4) on Amaranthus retroflexus, Portulaca oleracea,
Avena fatua and Echinochloa crus-galli seed germination.

Seed Germination (%)

Concentration Amaranthus Portulaca Avena Echinochloa
pL/mL retroflexus oleracea fatua crus-galli

0 (control) 87.0+20a 76.0+58a 64.0+58a 89.0+3.5a

0.125 62.0+6.8b 26.0+4.8b 56.0+9.3 a -

0.250 180+12¢ 17.0 £ 4.1 bc 140+79b 50.0+5.6Db

0.5 6.0+29d 9.0+29c 0.0+£0.0c 31.0+6.7 ¢

1 0.0+0.0e 20+1.2d 0.0+0.0c 13.0+4.0d
2 - 0.0+0.0d - 0.0+0.0e

Values are means + standard error of 5 replicates with 20 seeds for dicotyledons and 10 replicates for
monocotyledons, with 10 seeds for E. crus-galli and 5 seeds for A. fatua after 14 d of incubation. Within
each species, different letters in the same column indicate that means are different among
concentrations (p < 0.05) using Fisher’s least significant difference (LSD) test.

Figure 4 shows the results of seedling growth over time in the different species. All treated
seedlings presented a significant reduced length as compared to control, except E. crus-galli seedlings
treated at the lowest TC4 dose (0.25 uL/mL, as the 0.125 dose was not tested on this species). The
maximum reduction of seedling length was found for the highest applied dose, being by 96.56% for
A. fatua (with 0.25 pL/mL dose) (Figure 4C), by 90.56% for A. retroflexus (0.5 uL/mL) (Figure 4A), by
89.00% for P. oleracea (1 pL/mL) (Figure 4B) and by 68.70% for E. crus-galli (1 uL/mL) (Figure 4D).
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Figure 4. Phytotoxic effects of Thymbra capitata EO (TC4) on A. retroflexus (A), P. oleracea (B), A. fatua
(C) and E. crus-galli (D) seedling length (mm) (mean + SE), measured for 14 days. Different letters at
the end of the growth curves indicate significant differences among doses (p < 0.05) using Fisher’s
least significant difference (LSD) test.

Finally, in seedlings of A. fatua and E. crus-galli the coleoptile and radicle length were separately
measured (Table 6), with the purpose to determine if any phytotoxic effect could be observed,
specifically addressed to one of these parts. The results showed a similar length reduction on both
radicle and coleoptile for the two species, being E. crus-galli more resistant to TC4 than A. fatua (Table
6). The maximum observed reductions were 95.07% and 98.15% for A. fatua coleoptile and radicle
(0.250 uL/mL dose), and 69.77% and 67.28% for E. crus-galli coleoptile and radicle, respectively (Table
6).

Table 6. Phytotoxic effects of T. capitata EO (TC4) on Amaranthus retroflexus, Portulaca oleracea, Avena
fatua and Echinochloa crus-galli coleoptile and radical length.

Coleoptile and Radicle Length (mm)

Concentration A f utu.u A fi u.tuu E. crus-galli Coleoptile E. crus.-gullz
uL/mL Coleoptile Radicle Length Radicle
Length Length Length
0 (control) 22.52+0.78 a 21.12+1.23a 51.28+1.88 a 38.81+1.12a
0.125 6.84+1.43b 1.55+0.37b - -
0.250 1.11+048 ¢ 0.39+0.11b 26.03+1.59b 18.00+2.28 b
0.5 - - 22.56+1.84b 14.60 +1.66 b
1 - - 15.50 £ 0.65 ¢ 12.70+0.60 b
2 - - - -

Values are means + standard error of ten replicates, with 10 seeds for E. crus-galli and 5 seeds for A. fatua
after 14 days of incubation. Within each species different letters in the same column indicate that means
are different among concentrations (p < 0.05) using Fisher’s least significant difference (LSD) test.
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The performed in vitro experiments allowed concluding that T. capitata EO showed a broad-
spectrum herbicidal activity, being able to control the germination and seedling growth of all tested
weeds. However, each species exhibited different sensitivity to T. capitata EO, from the most sensitive
to the more resistant ranking as follows: E. canadensis, S. oleraceus and C. album were the most
sensitive, as their germination was blocked at all tested concentrations; S. verticillata, A. fatua and S.
nigrum were intermediate, as their germination was completely inhibited at concentrations equal to
or higher than 0.5 uL/mL; A. retroflexus germination was prevented at concentrations 1 and 2 pL/mL;
P. oleracea and E. crus-galli were the most resistant, being their germination completely controlled at
the highest tested dose, 2 uL/mL. The doses of T. capitata EO that did not prevent weed germination
caused an abnormal development of seedlings, along with lower growth rates.

Some experiments investigated the herbicidal activity of T. capitata EO and its main compound
carvacrol, in in vitro conditions, and all corroborated the excellent herbicidal potential of this EO and
its main compound [42,43,57]. The herbicidal potential of T. capitata EO from Tunisia with 69.15%
carvacrol was studied in in vitro assays against S. arvensis, P. canariensis and L. rigidum at
concentrations of 0.25, 0.5, 0.75 and 1 pL/mL. At the highest tested dose, T. capitata EO completely
controlled the germination of S. arvensis, and reduced the germination of P. canariensis and L. rigidum
by 82.1% and by 92%, respectively [43]. In this research, similar concentrations of T. capitata EO were
tested, and also in this case weed species showed a different sensitivity to T. capitata EO, which
supports our results. In addition, the authors verified a loss of vigor of the treated weeds. Similarly,
other EOs rich in carvacrol showed a good herbicidal potential [58,59]; for example, Satureja hortensis
L. EO, with 55.6% carvacrol, inhibited A. retroflexus and C. album germination [58]; Plectranthus
amboinicus (Lour.) Spreng. EO, with 88.6% carvacrol, slowed and inhibited Lactuca sativa L. and
Sorghum bicolor (L.) Moench germination, also causing a decrease in their growth [58,59].

2.2. In Vivo Herbicidal Activity Experiments

2.2.1. Pre-Emergence Assays with TC3 against Sown Target Seeds, and Weeds Contained in the Soil
Seedbank in Pots under Greenhouse Conditions.

Three application methods were compared for TC3 supplying to the soil, using the same
concentrations (1, 2 and 4 uL/mL) to find the most effective system to control weeds maximizing the
EO phytotoxic effects: application of TC3 directly injected to the soil (I1, I2 and I4), application of TC3
emulsified with Tween 20 (T1, T2 and T4), and application of TC3 emulsified with Fitoil (F1, F2 and
F4).

Phytotoxic Activity of TC3 Injected Directly into the Soil

After the direct injection into the soil of the three different concentrations of TC3 applied (1 (I1),
2 (I2) and 4 (I4) pL/mL), no significant difference was observed between the number of weeds
growing in the treated pots, and those counted in the control pots. A comparable number of plants
emerged from the soil in the different treatments throughout the 6-weeks long experiment (Figure 5).
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Figure 5. Effect of TC3, injected into the soil, on the number of weeds grown in treated pots.

Phytotoxic Activity of TC3 Supplied with Water, Using Tween 20 as Emulsifier and Applied by
Irrigation to the Pots

The first week after treatments application, statistically significant differences were observed
between the number of weeds grown in the control pots and those counted in the treated pots, with
a 61% reduction in the number of weeds grown in the pots treated with the highest EO concentration
(4 uL/mL, T4) (Figure 6). Oppositely, no difference was appreciated between the numbers of plants
after the application of the three EO concentrations. For the following weeks, although no statistically
significant difference was detected between the control and the remaining treatments, the number of
weeds grown in the pots treated at the highest concentration (4 uL/mL) was lower than those in the
control pots, being the two values overlapping in the fifth and sixth weeks (Figure 6).
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Figure 6. Effect of TC3, supplied with water, using Tween 20 as emulsifier, on the number of weeds
grown in treated pots.

Phytotoxic Activity of TC3 Supplied with Water, Using Fitoil as Emulsifier and Applied by Irrigation
to the Pots

During the 6-weeks trial, the number of weeds grown in the control pots was higher than in the
pots treated with the three concentrations of TC3 emulsified with Fitoil (F1, F2 and F4) (Figure 7),
being these differences statistically significant. The strongest phytotoxic effects were observed the
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first two weeks, with an 83.56% reduction of the number of weeds in pots treated with F4, compared
to the control (Figure 7). In the same weeks, significant differences were also observed between the
number of weeds grown in the pots treated with F1, F2 and F4, but from week 3 until the end of the
experiment, all treated pots presented a similar number of weeds, lower than control, achieving at
the end of the trial a 40% reduction in the number of weeds grown per pot compared to control.

20
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Figure 7. Effect of TC3, supplied with water, using Fitoil as emulsifier, on the number of weeds grown
in treated pots.

From these results, we can conclude that the most effective application method was supplying
the EO emulsified with water, using Fitoil as emulsifier, by irrigation to the pots. In this case, the
phytotoxic activity was maintained for the whole six weeks experiment. Contrastingly, EO supplied
with water and emulsified with Tween 20, only maintained its activity for two weeks, and the injected
EO was not effective at any time. The highest concentrations were the most effective during the first
weeks, in the treatments with EO emulsified with Tween 20 and Fitoil, although in the case of EO
emulsified with Tween 20 no statistically significant differences could be appreciated. In contrast, the
activity of the three applied concentrations was similar after the third week.

In a recent greenhouse study with T. capitata EO injected into a soil obtained from an organically
managed citrus orchard, in which weed seeds were not added to the soil, the concentration of 2
pL/mL lowered the number of emerging plants up to 74.1% compared to the control [60]. However,
in the present work this method did not show such good results. This difference was probably due
to factors such as the different seedbank composition of each soil, since the EO activity depends on
the treated species, or the environmental conditions within the greenhouse. A fluctuation in the
greenhouse relative humidity, possibly due to a failure in the greenhouse cooling system, resulting
in a moisture decrease from the second to the third week, could affect seedling development, mainly
in the control pots as they held the first seeds to emerge, diminishing the differences between treated
and control pots.

Further research is necessary about the formulations and mode of application of T. capitata EO,
as they can deeply affect EO activity, especially in in vivo conditions.

2.2.2. Pre-Emergence Assays with TC4 against the Spontaneous Weeds Contained in the Soil
Seedbank.

In this assay, TC4 was tested at doses of 1, 2 and 4 pL/mL, applied at different volumes (5.5,
2.775 and 1.83 L/m?), in order to find the best combination for achieving the maximum herbicidal EO
effect.
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The strongest herbicidal effects were observed on the third day, being T5 and T6 the most
phytotoxic treatments, as the number of plants was reduced by 80.1% and by 72.6%, respectively,
when compared to the control. In contrast, both treatments showed 24.2% and 37% fewer plants than
the control, respectively, when counting was made after 24 days (Figure 8). These results suggest the
possibility to obtain the same herbicidal effect with a smaller quantity of EO, when applied at certain
doses. This is very important, as it involves significant savings in terms of the amount of EO to apply.
A larger number of tests is necessary, at different doses and volumes, not just under greenhouse
conditions, but also in the field, in order to determine optimal doses and volumes for weed control
that can be economically competitive with the synthetic herbicides that are already on the market.
The results obtained using different TC4 concentrations corroborate the outcomes from other tests
previously carried out by the IAM natural herbicide research group [53,60,61], which also showed
that the differences between treatments decrease throughout the test run, probably due to the low
persistence of the EO.

300
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Number of plants
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Figure 8. Effect of T1 to T6 treatments applied in pre-emergence on the number of plants grown (mean
+ standard error) in the trays where they were applied.

2.2.3. Post-Emergence Assays with TC4 against the Spontaneous Weeds Emerged from The Soil
Seedbank.

The same treatments tested in pre-emergence assays were applied in post-emergence, in the
same trays. Significant differences were observed in the number of plants of the control trays
when compared to all the EO treated trays (Figure 9). Significant differences between treatments
were also found, the most effective being T6, which presented a number of plants 82.4% lower
than the control, followed by T3 and T5, with a decrease of 67.9% and 63.1%, respectively, on the
third day after treatment application (Figure 9). These differences were maintained for 7 days,
being the number of grown plants significantly reduced compared to the control by 91.3% (T6),
by 71.9% (T3), by 68% (T5), by 15.4% (T2) and by 13.9% (T4). Differences between T2 and T4, and
T3 and T5 were not significant (Figure 9).
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Figure 9. Effect of T1 to T6 treatments applied in post-emergence on the number of plants grown
(mean * standard error) in the trays where they were applied.

The obtained results offered another alternative for supplying the EOs, as pre-emergence
application gave better results in in vitro conditions than post-emergence treatments [53]. Under
greenhouse conditions, EOs are more exposed to volatilization than in in vitro tests, and for this
reason, pre-emergence application of the EO could result in higher dispersion without herbicidal
activity than post-emergence application, in which the EO comes in contact with the plant
immediately, producing its phytotoxic effects. Additional tests are necessary, both in greenhouse
and in field conditions, in order to establish doses and protocols regarding the ideal application
times to achieve optimal control of weeds with T. capitata EO. Several studies have obtained
good results in weed control using other EOs, such as clove EO [62], S. hortensis EO [58] or EOs
from Asteraceae species applied in post-emergence [63].

2.2.4. Post-Emergence Assays with TC4 against Target Weeds Portulaca oleracea, Avena fatua and
Echinochloa crus-galli Applied by Spraying.

The most sensitive species to TC4 applied by spraying was P. oleracea, followed by A. fatua and
E. crus-galli, with efficacies of 60, 32 and 0, respectively (Table 7). TC4 was more effective when
applied at higher doses (Table 7).

Table 7. TC4 efficacy per species and per treatment. T4, T8, T12: 4, 8, 12 pL/mL EO; Cw: water control;
Cf: Fitoil control.

Species Efficacy
Portulaca oleracea  60.00 +4.06 a
Avena fatua 32.00+4.06 b
Echinochloa crus-galli  00.00 +4.06 c
Treatments Efficacy
Cw 0.00+5.24 c
Cf 0.00+£524c
T4 33.33+5.24b
T8 53.33+5.24 a
T12 66.66 £5.24 a

Mean values of ten replicates + standard error. Different letters indicate statistical differences among
species or treatments (p < 0.05) using Fisher’s least significant difference (LSD) test.
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In Tables 8-10 are reported the phytotoxic effects of TC4 on the weed species tested. These
tables can be found including the standard error in supplementary materials (Tables S8-510). On
P. oleracea, all the doses tested of TC4 presented the same efficacy (100), producing the highest
damage level (3). All P. oleracea plants treated with TC4 died.

Table 8. Efficacy, effects on several plant traits (aerial part, root and total length, fresh and dry
weight), and damage level of TC4 EO at different application doses on P. oleracea. T4, T8, T12: 4, 8, 12
puL/mL EO; Cw: water control; Cf: Fitoil control.

. Root Total Dry
Treatments Efficacy ]i ;r;}ll I():I:) Length Length W:irge}f:l(g) Weight D:gi?e

(cm) (cm) (8

Cw 0.00b 6.55Db 13.09 a 19.64 b 123 a 0.15a 0.00b

Cf 0.00b 7.39 a 13.87 a 21.26 a 1.30 a 0.17 a 0.00b

T4 100.00 a 0.00 ¢ 0.00 b 0.00 c 0.00 b 0.00b 3.00 a

T8 100.00 a 0.00 ¢ 0.00 b 0.00 ¢ 0.00 b 0.00 b 3.00 a

T12 100.00 a 0.00 ¢ 0.00 b 0.00 ¢ 0.00 b 0.00 b 3.00 a

Mean values of ten replicates. Different letters in the same column indicate statistical differences (p <

0.05) using Fisher’s least significant difference (LSD) test.

Table 9. Efficacy, effects on several plant traits (aerial part, root and total length, fresh and dry
weight), and damage level of TC4 EO at different application doses on A. fatua. T4, T8, T12: 4, 8, 12
puL/mL EO; Cw: water control; Cf: Fitoil control.

Root Total Dry

Treatments Efficacy Aerial Part Length Length F'resh Weight Damage
Length (cm) Weight (g) Level
(cm) (cm) (g)

Cw 0.00 ¢ 20.16 a 14.57 ab 34.74 a 0.58 a 0.07 a 020 c
Cf 0.00 ¢ 21.74 a 16.02 a 37.76 a 0.76 a 0.07 a 0.30 ¢
T4 0.00 c 14.77 b 11.16b 25.93 b 0.44 ab 0.05a 1.80b
T8 60.00 b 3.53 ¢ 3.9 ¢ 7.35¢ 0.09 bc 0.02b 3.50a
T12 100.00 a 0.00 ¢ 0.00d 0.00d 0.00 ¢ 0.00 b 4.00 a

Mean values of ten replicates. Different letters in the same column indicate statistical differences (p <

0.05) using Fisher’s least significant difference (LSD) test.

Table 10. Efficacy, effects on several plant traits (aerial part, root and total length, fresh and dry
weight), and damage level of TC4 EO at different application doses on E. crus-galli. T4, T8, T12: 4, 8,
12 uL/mL EO; Cw: water control; Cf: Fitoil control.

Aerial Part Root Total Fresh Dry Damage
Treatments Efficacy Length Length Weight Weight
Length (cm) Level
(cm) (cm) (g) (g)

Cw 0.00 2719 a 20.17 a 47.37 a 143 a 0.15a 0.00d
Cf 0.00 26.80 a 20.07 a 46.88 a 142 a 0.15ab 0.10d
T4 0.00 25.15 ab 19.97 a 4512 a 1.12a 0.12 abc 0.60 c
T8 0.00 23.46Db 18.14 a 42.60 a 1.08 a 0.12 bc 1.00b
T12 0.00 18.39 ¢ 14.39 b 32.78 b 0.95b 0.10 ¢ 1.90 a

Mean values of ten replicates. Different letters in the same column indicate statistical differences (p <
0.05) using Fisher’s least significant difference (LSD) test.

The lowest dose of TC4 applied (4 uL/mL) was not effective to control A. fatua plants (efficacy 0)
but it caused a damage level near 2, and reduced significantly the length of aerial parts and roots
(Table 9). The phytotoxic effects were more severe as higher doses were applied. Only the maximum
dose controlled all plants (efficacy 100), however, the medium dose induced a high damage level,
significantly reducing all the measured biometric variables (Table 9). Is important to consider not
only the efficacy but also the damage level because damaged plants, in field conditions would be less
competitive with crops for nutrients and natural resources.
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TC4 at the tested doses did not control E. crus-galli plants (0 efficacy, Table 10). The highest
applied dose, reduced significantly all the biometric variables and caused a damage level of 1.90,
which is a medium damage, not severe (Table 10).

An herbicide is effective when it reaches its site of action. To achieve this, the herbicide must
cross the cuticle, which is an extracellular lipid layer with a 0.5-15 pum thickness, generally
composed of cutin and embedded waxes, with epicuticular waxes on the outer surface. While
cutin components leave spaces that can be crossed, the cuticular waxes represent the main barrier
to the diffusion of lipophilic compounds because of their physical structure [64]. The different
sensitivity of the studied species to T. capitata EO when supplied by spraying could be explained
by the structural differences in their leaf cuticle as concerns waxes and cutin content, since these
components are responsible for the absorption properties of each species [65]. The leaf stage has
a preeminent role in diffusion mechanism, because as plants grow up there is an increase in the
deposition of different chemical cuticular compounds, ultimately hampering the herbicide
absorption [66].

The cuticle of P. oleracea was studied and it showed an undulated surface with peaks and
valleys, with stomata located in depressions. When observed by means of transmission electron
microscopy (TEM), the cuticle transections showed a rather thin continuous cuticle, 0.2 to 0.5 pm
thick. Epicuticular waxes were not observed with scanning electron microscopy (SEM) or TEM
[64]. This could probably explain the easier absorption of T. capitata EO in P. oleracea than in A.
fatua or E. crus-galli. In laboratory observations, the leaf surface and epicuticular wax content of
E. crus-galli leaves were examined. Stomata and trichomes were present on adaxial and abaxial
leaf surfaces, being stomata and trichomes more abundant on the abaxial than on the adaxial leaf
surface. The mean value of the wax content per leaf area unit was 35.9 ug/cm? [67]. Epicuticular
wax deposition was measured in A. fatua leaves being 34 pg/cm2. More than 90% of the
epicuticular wax was constituted by the primary alcohol 1-hexacosanol [67].

The surfactant used to optimize herbicidal activity is very important as well [68]. Further
studies should be carried out to find out which surfactants could enhance the herbicidal activity
of T. capitata EO when applied by spraying.

In Table 11 are reported efficacy results of this assay and of our previous works about
herbicidal activity of T. capitata on target weed species to compare the efficacy when applying
TC4 EO by irrigation or by spraying. Comparing the results of both supplying methods, can be
observed that in monocotyledons (A. fatua and E crus-galli), the same applied EO doses are more
effective when supplied by irrigation than by spraying. On the contrary, on dicotyledons (P.
oleracea and E. bonariensis) the same doses were more effective when applied by spraying. In some
species (A. fatua) the highest dose was equally effective, but at lower doses the differences in
effectivity between the two application systems could be clearly appreciated.

Table 11. Efficacy of TC4 on target weed species A. fatua, E. crus-galli, E. bonariensis and P. oleracea
applied by irrigation or spraying. (CW—water control, CF—Fitoil control, TC4—TC4 at 4 pL/mL,
TC8—TC4 at 8 uL/mL and TC12—TC4 at 12 uL/mL).

Avena fatua
Treatment Irrigation Spraying

Cw 0.00£0.00 c 0.00£0.00 c

CF 0.00£0.00 c 0.00£0.00 c

TC4 80.00+13.33 b 0.00+0.00 c
TC8 90.00 £9.99 ab 60.00 +7.83 b
TC12 100.00 +0.00 a 100.00 +0.00 a

Echinochloa crus-galli

Treatment Irrigation Spraying
Cw 0.00 +0.00 c 0.00 £0.00

CF 0.00 £0.00 ¢ 0.00 £0.00
TC4 10.00+9.99 c 0.00 £0.00
TC8 50.00 £ 16.66 b 0.00 £ 0.00
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TC12 100.00 +0.00 a 0.00 £ 0.00
Portulaca oleracea
Treatment Irrigation Spraying
CwW 0.00£0.00 c 0.00 £0.00 b
CF 0.00 £0.00 c 0.00 £0.00 b
TC4 0.00+0.00 c 100.00 £ 0.00 a
TC8 40.00 £16.32b 100.00 £ 0.00 a
TC12 90.00 +9.99 a 100.00 + 0.00 a
Erigeron bonariensis
Treatment Irrigation Spraying
CW 0.00+0.00 b 0.00 +0.00 c
CF 0.00+0.00b 0.00 £0.00 ¢
TC2 10.00 +10.00 b 100.00 +0.00 a
TC4 70.00 +15.30 a 80.00+13.30b
TC8 90.00 +10.00 a 100.00 +0.00 a

Mean values + standard errors of ten replicates. For each species, different letters in the same column
indicate statistically significant differences between treatments (p < 0.05) using Fisher’s least
significant difference (LSD) test.

The higher efficacy of watering-administered TC4 EO on monocots than on dicots could be
related to the number and structure of xylem elements in these species. As known,
monocotyledonous species often exhibit stems with scattered vascular bundles, and no pith and
cortex are delineated [69]. Although the functional consequences of these distinct organization
are not well understood at either the organ or the whole-organism level [70], the higher number
of xylem elements in monocot species could be influencing the EO phytotoxic effects by
increasing its translocation from the roots to the aerial parts.

On the other side, the higher efficacy of sprayed TC4 EO on dicots than on monocots could
be related, as previously mentioned, to differences in the cuticle of these species, which could
modify EO penetration into the leaves. Although some studies have not found significant
correlation between cuticle thickness and penetration of compounds [71,72], others [73] have
reported the major importance that ultrastructural cuticle features can have on the solubility of
herbicides, which can partly explain the variability of cuticular permeability among species
[74,75]. The differences in cuticle ultrastructure among dicot and monocot species could therefore
explain the stronger phytotoxic effects observed on dicot species P. oleracea and E. bonariensis
when are sprayed with TC4 EO.

When considering the herbicidal activity of EOs, many aspects must be taken into
consideration, not only concerning the active doses, but also the way in which EOs are formulated
and applied, because both factors can influence the EO activities. Another key point is the
optimum phenological stage for EO application to weeds and crops, with the goal to cause
maximum damage on weeds and no damage in crops. The different efficacy of TC4 EO sprayed
on monocots and dicots, could be exploited for weed management in monocot crops, by spraying
dicots, taking into account the safe stage of development for the crop not to be damaged.

A better understanding of the mechanism of action of T. capitata EO, however, would be
necessary to optimize its formulations and administration methods, in order to maximize its
herbicidal effects.

2.2.5. Post-Emergence Assays with TC4 and Carvacrol against Avena fatua, Applied by Irrigation
and Spraying.

In this assay, TC4 and its main compound carvacrol were tested by irrigation and spraying on
A. fatua, a sensitive species to T. capitata EO, to compare their phytotoxic effects. The most effective
treatment to control A. fatua was TC4 at 8 uL/mL applied by irrigation, as it killed all the plants (100
efficacy) (Table 12). Both, the EO and carvacrol were more effective applied by irrigation than by
spraying (Table 12). When applied by irrigation, at the low dose tested (4 pL/mL) TC4 EO was
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significantly less effective than carvacrol, which did not show significant differences between doses
(Table 12). At the highest dose tested (8 pL/mL) there were no significant differences on efficacy
between carvacrol and TC4 EO, although the EO achieved 100 efficacy and carvacrol 90. When
applied by spraying, no significant differences were found in efficacy between carvacrol and TC4 EO,
at both doses tested. In this case, the EO showed highest efficacy values than the singular compound,
although the differences were not significant (Table 12); however, the EO showed greater phytotoxic
effects in the biometric variables measured than carvacrol (Table 12). It could be hypothesized that
any compound present in the EO helped carvacrol to penetrate better through the leaves. It has been
demonstrated that synergistic interactions between major and minor compounds present in the EOs
can influence several characteristics of EOs, such as hypo- or hydrophilic interaction, increasing the
solubility of compounds and cuticular penetration [76]. More studies are necessary to understand
better the differences discovered in efficacy between the supplying methods and between the EO and
carvacrol. These findings must be taken in to consideration for achieving the maximum herbicidal
activity of EO and carvacrol.

Table 12. Efficacy, effects on several plant traits (aerial part, root and total length, fresh and dry
weight), and damage level of TC4 EO (TC) and carvacrol (CV), applied at 4 and 8 uL/mL, by irrigation
(CVR4, CVRS; TCR4, TCR8) and spraying (CVP4, CVP8; TCP4, TCP8) on Avena fatua (WCR: irrigated
water control; WCP: sprayed water control).

Treatments Applied by Irrigation

Treatment Efficacy Aerial Part Root Length Fresh Dry Weight Damage
Length (cm) (cm) Weight (g) (g) Level
WCR 0.00 c 16.42 a 16.10 a 0.60 a 0.15a 1.00 c
CVR4 80.00 a 194 c 0.89 c 0.00 be 0.00 be 2.40 ab
CVRS8 90.00 a 0.99 ¢ 113 ¢ 0.02 bc 0.00 ¢ 2.70 ab
TCR4 30.00b 7.63b 4.87b 0.09b 0.03b 2.00b
TCR8 100.00 a 0.00 c 0.00 c 0.00 c 0.00 c 3.00a
Treatments Applied by Spraying
Treatment Efficacy Aerial Part Root Length F.resh Dry Weight Damage
Length (cm) (cm) Weight (g) (g) Level
WCP 0.00b 17.56 a 16.07 a 021a 0.10 ab 1.00 be
CvP4 10.00 b 14.76 ab 8.08 b 017 a 0.13a 0.30c
CVP8 20.00 ab 12.20 ab 8.50 b 0.20a 0.10 ab 1.40b
TCP4 30.00 ab 9.45 bc 6.27b 0.18 a 0.05 ab 1.50b
TCP8 50.00 a 5.03 ¢ 498 b 0.04 b 0.02b 2.60 a

Mean values of ten replicates. For each mode of application, different letters in the same column
indicate statistically significant differences (p < 0.05) using Fisher’s least significant difference (LSD)
test.

In supplementary materials can be found Table 12 including standard error (Table 512).

2.2.6. Phytotoxic Activity of Carvacrol in Arabidopsis thaliana.

Carvacrol treatment did not significantly affect A. thaliana germination. However, the root
growth and shoot development of carvacrol-treated A. thaliana seedlings was strongly affected
by this compound (Figure 10). Roots were shorter and thinner after carvacrol treatment, with a
particularly strong inhibition between 200 and 400 uM (Figure 10A). Carvacrol-treated roots
were characterized by a zig-zag development, and at higher concentrations (400 uM), roots
growing in different directions could be observed (Figure 10A). Moreover, shoot development
was already inhibited at low concentrations and development of true leaves was not observed
in carvacrol-treated seedlings. The range of tested concentrations (0-1200 uM) included the
LCIC (Low Complete Inhibiton Concentration, the concentration at which the inhibition of
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growth is complete) as can be seen in Figure 10B, where 1200 uM-treated seeds showed no
growth of roots or shoots.
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Figure 10. A) Scanned images of Arabidopsis thaliana seedlings treated with 0, 200, 300 and 400 pM
carvacrol B) Dose-response curve of radicle length of Arabidopsis thaliana seedlings after 14 d of
carvacrol treatment (0, 100, 200, 400, 800, 1200 uM). Points marked with asterisks are significantly
different from the control (p < 0.05).

Magnifier analyses of carvacrol-treated roots (Figure 11) revealed a clear torsion in radicles of A.
thaliana treated with carvacrol, already at low concentrations (100 and 200 uM). While control roots
showed symmetric cell rows growing straight according to gravitropism (Figure 11A), carvacrol-
treated roots showed disorganized rows of cells (Figure 11B), that started to grow without a pattern
when carvacrol concentrations were higher (Figure 11C), even losing the gravitropic perception at
the tested stronger concentrations (Figure 11D). This torsion can be detected as a zig-zag growth of
the root (Figure 11C) but also as a spiral growth of primary and secondary roots (Figure 11B,C). As
already known [77-79], torsion effects are related to the loss of gravitropism that is usually associated
with alterations in the organization of the microtubules, resulting in the inhibition of root elongation
[80].

A

- "

Figure 11. Apical region and transition zone of A. thaliana roots after 14 days of growth in agar with
0 (A), 100 (B), 200 (C), and 400 (D) pM carvacrol. Images were taken with a magnifier (Nikon SMZ
1500, Melville, NY, USA).

Moreover, carvacrol reduced the number and length of the root hairs at the transition zone
between hypocotyl and epicotyl (Figure 11), but increased the presence of ectopic roots close to the
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root tip, which have been previously related to auxin unbalance and altered microtubule disposition
[77,81,82].

3. Materials and Methods
3.1. Thymbra Capitata EOs and Carvacrol Used for the Experiments

3.1.1. Thymbra capitata EOs Obtained by Hydrodistillation from Collected Plant Material (TC1, TC2
and TC3)

Thymbra capitata EO 1 (TC1)— Aerial parts from Thymbra capitata (L.) Cav. were collected in June
2006, at full bloom, from Enna (Enna province, Sicily, Italy)

T. capitata EO 2 (TC2)— Aerial parts from T. capitata were collected in January 2010, at vegetative
stage near Riesi (Caltanissetta province, Sicily, Italy).

T. capitata EO 3 (TC3)— Aerial parts from T. capitata were collected from the surroundings of
Carmona (Seville province, Spain) in July 2012.

Voucher specimens of all collected samples were deposited in the herbarium of the Universitat
Politecnica de Valencia (VALA 9486, 9487 and 9488). T. capitata EOs from plants collected in Italy (TC1
and TC2) were obtained by steam distillation (hydrodistillation) using an Albrigi Luigi EO extractor
of 20 L (Albrigi Luigi SRL, Verona, Italy). The bottom of the extractor was filled with tap water, that
did not exceed the level established by a grate previously settled at the bottom. Then, the fresh plant
material was introduced in the distiller and a top grill was placed above it. Once the extractor was
closed hermetically, it was heated by means of a flame generated by butane gas, producing steam,
which transported the volatile components liberated from the raw material. The vapor was condensed
as they passed through the cooler, collecting the EO in a burette. This process was maintained for at
least 3 h, finishing when no additional EO was extracted for 30 min. The average yield expressed in
v/w (volume of EO obtained in milliliters, per grams of distilled plant) of T. capitata was 2.49% at
bloom stage and 0.10% at vegetative stage.

TC3 was obtained by hydrodistillation using a Clevenger-type apparatus. The fresh plant
material was introduced in round-bottom flasks of 2 and 4 L and distilled water was added (1000 mL
in the 2 L flask or 2000 mL in the 4 L flask). Heat was applied to the round-bottom flasks by heating
mantles in order to generate water vapor, carrying the volatile compounds of the drug. Then, it was
cooled in the condenser and passed to the graduated collector tube, where the EO was separated from
the water. This process was carried out for at least 3 h, until no additional EO was extracted for 30
min. TC4 yield was 3%. All the obtained EOs were stored at 4 °C, until they were analyzed or tested.

3.1.2. Thymbra capitata EO and Carvacrol Purchased (TC4)

T. capitata EO 4 (TC4) was purchased from Bordas S.A. (Seville, Spain).
Carvacrol was purchased from Sigma-Aldrich (St Louis, MO, USA).

3.1.3. EOs Composition. GC and GC-MS Analyses.

The EOs constituents were quantified by gas chromatography using a Clarus 500GC Perkin—
Elmer apparatus equipped with a flame ionization detector (FID), and a capillary column ZB-5 (30 m
x 0.25 mm i.d. x 0.25 um film thickness). The injection volume was 1 pL. The GC oven temperature
was set at 60 °C for 5 min, with 3 °C increases per min to 180 °C, then 20 °C increases per min to 280
°C, which was maintained for 10 min. Helium was the carrier gas (1.2 mL/min). Injector and detector
temperatures were set at 250 °C. The percentage composition of the EO was computed from GC peak
areas without correction factors by means of the software Total Chrom 6.2 (Perkin-Elmer Inc.,
Wellesley, PA, USA).

For the identification of the compounds, gas chromatography coupled to mass spectrometry
(GC-MS) was performed using a Clarus 500 GC-MS from Perkin-Elmer Inc. apparatus equipped
with the same capillary column, carrier, and operating conditions as described for GC analysis. The
ionization source temperature was set at 200 °C and an electron impact mode of 70 eV was employed.
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MS spectra were obtained by means of total ion scan (TIC) mode (mass range m/z 45-500 uma). The
total ion chromatograms and mass spectra were processed with Turbomass 5.4 software (Perkin-
Elmer Inc., Waltham, MA, USA). Retention indexes were determined by injection of C8-C32 n-
alkanes standard under the same conditions. The EO components were identified by comparison of
their mass spectra with those of the computer library NIST MS Search 2.0 and available data in the
literature [83].

3.2. In Vitro Phytotoxic Assays

3.2.1. Weed Seeds

The weeds selected for the experiments are important weeds in Mediterranean crops, with a
cosmopolite distribution, many of which have developed herbicide-resistant biotypes [84].

Experiment 1 (2009)

Portulaca oleracea L. mature plants were collected from Vall d’Alba fields (Castellon province,
Spain) in July 2007. Erigeron canadensis L. mature plants were collected from Bagheria fields (Palermo
province, Sicily, Italy) in October 2009. The weeds were dried for 15 days at room temperature,
afterwards the seeds were extracted. Uniform mature healthy seeds were selected and stored at room
temperature until germination tests were performed.

Experiment 2 (2012)

Setaria verticillata (L.) P. Beauv. mature plants were collected from fields in the surroundings of
Universitat Politecnica de Valéncia (Valencia province, Spain) in November 2011. The other weeds
used in this experiment, were all collected in October 2012. Mature plants of Solanum nigrum L. were
collected from Villena fields (Alicante province, Spain); Chenopodium album L. and Sonchus oleraceus
(L.) L. mature plants were collected from Santo Domingo de la Calzada fields (Logrofio province,
Spain).

Experiment 3 (2018)

Seeds of P. oleracea, Amaranthus retroflexus L. and Avena fatua L. were purchased from Herbiseed
(Reading, United Kingdom) in 2017, and seeds of Echinochloa crus-galli (L.) P. Beauv. were collected
from rice fields in Sollana (Valencia province, Spain) in September 2017.

3.2.2. Herbicidal Activity Assays in Petri Dishes

Experiment 1 (2009) —Effects of TC1, TC2 and Carvacrol on Erigeron canadensis and Portulaca oleracea

Sets of 20 seeds each, with five replicates per treatment, were placed in Petri dishes (9 cm
diameter) between two layers of filter paper (50 g/m?) wetted with 4 mL of distilled water. TC1, TC2
and carvacrol, were added at volumes of 0, 0.5, 1, 2 and 4 uL to obtain concentrations 0 (control),
0.125, 0.25, 0.5 and 1 pL/mL. Petri dishes were sealed with Parafilm. According to previous assays, E.
canadensis and P. oleracea seeds were incubated in a WTB incubator (Binder GmbH, Tuttlingen,
Germany) at a constant temperature of 25.0 + 0.1 °C, with a photoperiod of 12 h light and 12 h
darkness. To evaluate the phytotoxic activity of the EOs and carvacrol, germination and seedling
length were recorded after 3, 5, 7, 10 and 14 days. Images of the Petri dishes were registered and then
processed by UTHSCSA Image Tool 3.0 (University of Texas Health Science Center, San Antonio, TX,
USA) software.

Experiment 2 (2012) — Effects of TC3 on Solanum nigrum, Chenopodium album, Sonchus oleraceaus and
Setaria verticillata

Petri dishes were prepared following the same methodology described above for Experiment 1,
and incubated in an APG-GROW germination chamber (Climax, Barcelona, Spain) at 30.0 + 0.1 °C for
16 h of light, and 20.0 £ 0.1 °C for 8 h of darkness. TC3 was tested at the same concentrations that TC1,
TC2 and carvacrol (0.125, 0.25, 0.5 and 1 pL/mL). To assess the herbicidal activity of TC3 EO images
from the Petri dishes were registered and processed as indicated above for Experiment 1.
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Experiment 3 (2018) —Effects of TC4 on Amaranthus retroflexus, Portulaca oleracea, Avena fatua and
Echinochloa crus-galli

Petri dishes were prepared as described for Experiments 1 and 2. The filter paper used for this
experiment was 73 g/m?2 The number of seeds placed in each Petri dish and the number of replications
depended on the weed tested, because of their differences in seed size and requirements for an
optimal germination (verified in previous assays). For A. retroflexus and P. oleracea 20 seeds were
placed on each Petri dish, and 5 replications were performed. For E. crus-galli and A. fatua 10 and 5
seeds were used respectively in each Petri dish, and with both weeds, 10 replications were performed.

Petri dishes were incubated in an EGCHS series plant growth chamber (Equitec, Madrid, Spain).
According to previous assays, the germination conditions were the same for the summer weeds P.
oleracea, A. retroflexus and E. crus-galli: 30 + 0.1 °C, 16 h in light and 20 + 0.1 °C, 8 h in dark, while for
A. fatua, which is a winter-spring weed, the germination conditions were set at 23.0 £ 0.1 °C, 8 h in
light and 18.0 + 0.1 °C, 16 h in dark. TC4 was tested at the same concentrations used in Experiments
1 and 2 in all weeds (0.125, 0.25, 0.5 and 1 pL/mL), and also at 2 uL/mL on P. oleracea and E. crus-galli,
as in previous assays had exhibited more resistance to EOs than other tested weeds. To evaluate the
phytotoxic activity of TC4 EO on weed germination and seedling length, data were recorded after 3,
5,7, 10 and 14 days, by registering digital images of all Petri dishes that were later processed using
Digimizer v.4.6.1 (MedCalc Software, Ostend, Belgium, 2005-2016) software.

3.3. In Vivo Herbicidal Activity Assays.

3.3.1. Greenhouse Conditions during the Experiments

The greenhouse used in all experiments was number 8 located in Universitat Politécnica de
Valéncia (UPV) (Valencia, Spain). Table 13 and Figure 12 report the temperature and relative
humidity measured in the greenhouse during the experiments. These data were acquired by a HOBO
U23 Pro v2 External Temperature Data Logger (Onset Computer Corporation, Bourne, MA, USA).

Table 13. Temperature and relative humidity conditions (Mean, Maximum (Max.) and Minimum
(Min.)) in the greenhouse during the experiments.

Trial Starting-End Temperature (°C) Relative Humidity (%)
2 Date Mean  Max. Min. Mean Max. Min.
TC3 injected into the 27/02/2013-
22. 4. 15. 49.4 2. 14.4
s0il/TC3+Tween20/TC3+ Fitoil 10/04/2013 3 349 >8 ? 928
TC4 in pre- and post-emergence
applied to weeds from soil 27/7/2015- 29.1 33.9 18.7 - - -
27/8/2015
seedbank
T(;4 .and. carvacrol (4, 8 uL/mL) 01/05/2017—- 2.1 35 201 66.9 85.6 45.8
irrigation, spray on A. fatua 24/05/2017
TC4 (4,8,12 uL/mL) spray on P. 10/08/2018-
25.4 36.3 18.6 59.3 81.1 29.8
oleracea 30/08/2018
TC4 (4,8,12 uL/mL) spray on A. 02/05/2018-
24.8 35.4 19.1 51.7 82.1 21.6
fatua 31/05/2018
TC4 (4,8,12 uL/mL) spray on E. 26/09/2018-
24.1 . 18. . . 25.
crus galli 05/10/2018 363 58 260 88.5 >3

Relative humidity data of experiment 2 are not reported because the data logger did not register them.
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Figure 12. Greenhouse conditions during the experiment testing TC3 EO application directly injected

into the soil or supplied with water, emulsified with Tween 20 or Fitoil.

3.3.2. Experiment 1—Pre-emergence Assays with TC3 against Sown Target Seeds and Weeds
Contained in the Soil Seedbank in Pots under Greenhouse Conditions (2013)

1.

With the objective to find the best way to apply T. capitata EO to the soil to control weeds in
pre-emergence, in this trial, three different application methods of TC3 EO to the soil were
tested, and three concentrations were used (1, 2 and 4 pL/mL) with each method:TC3
application directly injected into the soil (I1, I2 and 14)

Application of TC3 by irrigation, supplied with water, using Tween 20 (Sigma-Aldrich,
Darmstadt, Germany) as emulsifier (T1, T2 and T4).

Application of TC3 by irrigation, supplied with water, using Fitoil (Xeda Italia s.r.l., Forli,
Italy) as emulsifier.

For each treatment, pots of 2L capacity were used, filled with 3 cm of perlite at the bottom, and

6 cm of
located

soil added on top. The soil was collected from a citrus orchard non treated with herbicides
in Puzol (Valencia province, Spain; 39°37'24.8" N, 0°17'25.6" W). Five repetitions were

prepared for each treatment and 5 for the controls (one control for each mode of application). Ten
seeds of P. oleracea, A. hybridus, E. canadensis, S. verticillata, S. nigrum, S. oleraceus and C. album were
sown in each pot, covered with a small layer of soil, and then irrigated with 200 mL of water. The
three concentrations of TC3 were applied the following day, using the three methods described as

follows:
1.
2.

Injected directly into the soil, in the centre of the pot, using a pipette.

Watering each pot with the corresponding dose of TC3 for each concentration emulsified
with 100 uL of Fitoil (following the recommendations of the manufacturer: 100 mL/hL) in 100
mL of water.

Watering each pot with the corresponding dose of TC3 for each concentration emulsified
with 9.1 puL of Tween 20 (to obtain a concentration of 100 mg/L) [85] in 100 mL of water.

Once a week, the pots were irrigated to maintain the soil moisture level at the field capacity, and
the weeds grown in each pot were counted and identified. When weeds were at the blooming stage
they were extracted, and their fresh and dry weight were registered.

3.3.3. Experiments 2 and 3 —DPre- and Post-Emergence Assays with TC4 against the Spontaneous
Weeds Contained in the Soil Seedbank (2015).

Pre-Emergence Trial
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For each treatment, 3 trays of 34 x 23 x 7 cm were prepared, filling them with 1 cm of perlite at
the bottom and adding a 5 cm layer of soil at the top. The soil was collected from an experimental
loquat plot owned by the Cooperative of Callosa d” En Sarria (Alicante province, Spain), which was
not treated with any herbicide during the campaign, but had been previously treated with
glyphosate.

Before soil extraction, an inspection of the experimental plot was carried out, to inventory the
main present weed species, which were Amaranthus blitoides S. Watson (the most abundant, with 40-
45% coverage), Amaranthus albus L. (30% coverage), Erigeron bonariensis L. and Euphorbia prostrata
Aiton (10%-15% coverage each). Other detected species, but only as isolated individuals, were
Chenopodium album L., Parietaria judaica L., Solanum nigrum L., Convolvulus althaeoides L., Convolvulus
arvensis L., Echinochloa colona (L.) Link, Sonchus oleraceus (L.) L. and Malva neglecta Wallr.

Once the trays were prepared, they were irrigated with water up to 2/3 of the soil field capacity
(previously calculated) and then the treatments were applied, to complete the remaining 1/3 of the
soil field capacity, by irrigation, supplied with water, using Fitoil as emulsifier, at the dose
recommended by the manufacturer (100 mL/hL). TC4 was tested at 1, 2 and 4 uL/mL, applied at
different volumes (5.5, 2.775 and 1.83 L/m?), in order to find the best combination for achieving the
maximum EO herbicidal effect. The applied treatments were: T1: control (irrigated with water), T2: 1
pL/mL at 5.5 L/m?, T3: 2 uL/mL at 5.5 L/m?, T4:2 uL/mL at 2.775 L/m?, T5: 4 uL/mL at 2.775 L/m? and
T6: 4 uL/mL at 1.83 L/m?2. This combination of treatments was focused to find out the most effective
solution between the application of a higher volume of the EO solution—capable to better moisten
the soil and reach more weed seeds—and the application of a lower volume of EO solution with a
higher concentration—the EO being more effective against the weed seeds.

The trial was evaluated twice a week (every 3 and 4 days) by recording images of the trays, in
which the emerged plants were counted and the average height of the seedlings was measured. The
images were then processed using UTHSCSA Image Tool 3.0. software.

Post Emergence Trial

The pre-emergence test trays were used to perform this experiment, 24 days after the first
treatment. Before the realization of the trial, the number of existing plants, their coverage area and
height average were measured in each tray. The same treatments as described above were applied
by spraying with a manual 1.5 L Hozelock brand sprayer. Previously, the trays had been irrigated at
2/3 of their field capacity.

The trial was evaluated by direct observation of the EO phytotoxic effects on the treated
seedlings and recording images of the trays, 3 and 7 days after treatments application throughout the
test, living plants were counted and their coverage area was measured. Recorded images were
processed by UTHSCSA Image Tool 3.0 software.

3.3.4. Experiment 4 —Post-Emergence Assays with TC4 and Carvacrol against Avena fatua, Applied
by Irrigation and Spraying. (2017).

A. fatua seeds described for in vitro experiment 3 were used for this trial. Their germination
capability was previously verified in a germination-growth chamber from Equitec (Madrid, Spain)
set at the conditions described for the in vitro bioassay. After one week, the emerged seedlings were
individually transplanted in polypropylene square pots (8 x 8 x 7 cm) previously filled with a 2 cm
drainage layer of perlite in the bottom (7 g) and 5 cm of soil (220 g) collected from the same citrus
orchard described for experiment 1. Transplanted seedlings were transferred to the greenhouse.
When the plants reached the phenological stage of 2-3 true leaves, corresponding to stage 12-13 of
BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie) scale, treatments
were applied: 80 mL of water were added to each pot, to bring the soil to 4/5 of its water holding
capacity (WHC), and left overnight. The day after, 100% of soil WHC was reached by adding 20 mL
of the corresponding treatment. TC4 and carvacrol were supplied with water, emulsified with Fitoil
(as described for previous experiments) at 4 and 8 uL/mL by spraying and watering. For spraying,
the same sprayer described in experiment 3 was used. Ten plants were used for each treatment; each
plant was treated with 20 mL of the corresponding solution.
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The first evaluation was carried out 24 h after treatments application, then evaluations were
done periodically (each 3 days), by registering images of the pots. At the end of the experiment, the
entire plant from each pot was reclaimed by dipping in water the root apparatus to remove any soil
residues and images of all plants were registered. Later, all registered images were processed using
the software Digimizer v.4.6.1 (MedCalc Software, Ostend, Belgium, 2005-2016), to determine
efficacy, damage level and plants length (aerial parts and roots). Efficacy, defined as the capacity to
kill the plants, was rated for each plant by attributing the value 0 if the plant was alive and the value
100 if the plant was dead. Damage level ranged from 0 (no damage) to 4 (death of the plant) (Figure
13). Total length of the whole plants, and of aerial parts and roots, as well as fresh and dry weight,
were also recorded.

Figure 13. Damage level scale of Avena fatua. 0 Undamaged plant, 1 Plant with slight damage, 2 Plant
with severe damage, 3 Critically damaged plant, 4 Dead plant.

3.3.5. Experiment 5—Post-Emergence Assays with TC4 against Target Weeds Portulaca oleracea,
Avena fatua and Echinochloa crus-galli Applied by Spraying (2018).

The same seeds described for the in vitro bioassays (experiment 3) were used in this trial. Their
germination capability was verified in a germination-growth chamber from Equitec (Madrid, Spain)
set in the same conditions described for the in vitro tests. After one week, the emerged seedlings were
individually transplanted in polypropylene square pots, prepared as described in experiment 4.
When the plants reached the phenological stage of 2-3 true leaves (stage 12-13 BBCH scale) for the
monocotyledons A. fatua and E. crus-galli, and 3-4 true leaves (stage 13-14 BBCH scale) for the
dicotyledon P. oleracea, treatments were applied by spraying as described in experiment 4. Three
doses of TC4 EO were tested: 4 uL/mL, 8 uL/mL and 12 pL/mL. In addition, two controls were
prepared: the first one sprayed with water (Cw) and the second sprayed with water + Fitoil at 0.5
puL/mL concentration (Cf). Ten repetition per each treatment were performed. In this experiment, the
dose of Fitoil used was lower than in previous ones because a slightly stimulatory effect of Fitoil was
detected in some weed species when applied by spraying (data not shown).

The evaluation of this trials was carried out as described for experiment 3. Figures 14 and 15
report the damage level scale for E. crus-galli and P. oleracea, respectively. For P. oleracea, the damage
level scale ranged from 0 (no damage) to 3 (dead plant). For A. fatua the same damage level scale used
for experiment 3 was adopted.
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Figure 14. Damage level scale of Echinochloa crus-galli. 0 Undamaged plant, 1 Plant with slight
damage, 2 Plant with severe damage, 3 Critically damaged plant, 4 Dead plant.

Figure 15. Damage level scale of Portulaca oleracea. 0 Undamaged plant, 1 Plant with slight damage, 2
Plant with severe damage, 3 Dead plant.

3.4. Dose—Response Carvacrol Curve in Arabidopsis thaliana (L.)

Seeds of Arabidopsis thaliana (L.) Heynh Columbia ecotype (Col-0) were sterilized with ethanol
(50%) and NaOCl (0.5%) for 3 min each, then washed in sterilized distilled water and stored in agar
(0.1%) at 4 °C for 72 h. After this time, seeds were sown in square Petri dishes (100 x 15 mm) with
agar medium (0.8% w/v) enriched with micro and macronutrients (0.44% Murashige-Skoog, Sigma-
Aldrich, MO, USA) and supplemented with 1% sucrose [86]. Twenty-four seeds were sown in each
plate under sterile conditions, and plates were kept in vertical in growth chambers at 22 + 2 °C, with
a photoperiod of 8 h light/16 h darkness, and a relative humidity of 55% for 14 days. In order to
determine the phytotoxic range of carvacrol, a dose-response curve was performed for the
germination and growth of A. thaliana. Agar solutions were prepared with a wide range of
concentrations (0, 50, 100, 200, 400, 800 and 1200 uM) of carvacrol (Sigma-Aldrich, St Louis, MO,
USA) using 0.1% EtOH (v:v) as solvent. Five replicates per treatment and concentration were
prepared and placed in a growth chamber under controlled conditions. The germinated seeds were
counted and their root length was measured 14 days after sowing (DAS).

Moreover, the morphology of carvacrol-treated radicles of A. thaliana was studied at 7 and 14 DAS
by scanning and magnifier (Nikon SMZ 1500). Different parameters were analyzed, as the structure and
root thickness, the growth direction and the morphology and abundance of root hairs, in addition to
other alterations that could be related to the mode of action of carvacrol, at the cellular level.

3.5. Statistical Analyses

Data were submitted to analysis of variance (ANOVA) using Statgraphics® Centurion XVII
(StatPoint Technologies Inc.,, Warrenton, VA, USA) software. Percentage values were arcsin
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transformed. The means were compared using Fisher’s least significant difference (LSD) test (p <
0.05).

A multifactorial analysis of variance (ANOVA) including species and treatments as effects was
performed on efficacy data (in vivo experiment 5), followed by Fisher’s multiple comparison test
(LSD intervals, Least Significant Difference, at p < 0.05) for the separation of the means.

4. Conclusions

Thymbra capitata EO exhibited strong herbicidal effectiveness in all described assays, showing a
wide spectrum of activity: besides controlling the germination and growth of several important
Mediterranean weeds, it also proved effective in preventing seed germination when applied to the
soil in pre-emergence, demonstrating to be a suitable tool for sustainable weed management. Some
aspects were revealed, as its activity depended on the species against it was applied, the doses, the
formulation, the way of application, and the phenological stage of the treated plants. All these factors
must be taken into account when planning to use this EO inside an IWM strategy. It could be used to
control weeds in fruit crops as a broad spectrum herbicide, and, more selectively, to control weeds in
mono or dicotyledonous crops, by managing the correct stage of application for weeds and crops and
the proper mode of application, as it was observed that it was more effective when applied by
irrigation in monocotyledonous species and by spraying in dicotyledonous.

Supplementary Materials: The following are available online: Table S8-512.
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