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Abstract

For a completely regular Hausdorff topological space X, let C(X,C) be
the ring of complex-valued continuous functions on X, let C∗(X,C) be
its subring of bounded functions, and let Σ(X,C) denote the collection
of all the rings that lie between C∗(X,C) and C(X,C). We show that
there is a natural correlation between the absolutely convex ideals/
prime ideals/maximal ideals/z-ideals/z◦-ideals in the rings P (X,C) in
Σ(X,C) and in their real-valued counterparts P (X,C) ∩ C(X). These
correlations culminate to the fact that the structure space of any such
P (X,C) is βX. For any ideal I in C(X,C), we observe that C∗(X,C)+I
is a member of Σ(X,C), which is further isomorphic to a ring of the
type C(Y,C). Incidentally these are the only C-type intermediate rings
in Σ(X,C) if and only if X is pseudocompact. We show that for any
maximal idealM in C(X,C), C(X,C)/M is an algebraically closed field,
which is furthermore the algebraic closure of C(X)/M∩C(X). We give
a necessary and sufficient condition for the ideal CP(X,C) of C(X,C),
which consists of all those functions whose support lie on an ideal P
of closed sets in X, to be a prime ideal, and we examine a few special
cases thereafter. At the end of the article, we find estimates for a few
standard parameters concerning the zero-divisor graphs of a P (X,C)
in Σ(X,C).
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1. Introduction

In what follows, X stands for a completely regular Hausdorff topological
space and C(X,C) denotes the ring of all complex-valued continuous functions
on X . C∗(X,C) is the subring of C(X,C) containing those functions which
are bounded over X . As usual C(X) designates the ring of all real-valued
continuous functions on X and C∗(X) consists of those functions in C(X)
which are bounded over X . An intermediate ring of real-valued continuous
functions on X is a ring that lies between C∗(X) and C(X). Let Σ(X) be the
aggregate of all such rings. Likewise an intermediate ring of complex-valued
continuous functions on X is a ring lying between C∗(X,C) and C(X,C).
Let Σ(X,C) be the family of all such intermediate rings. It turns out that
each member P (X,C) of Σ(X,C) is absolutely convex in the sense that |f | ≤
|g|, g ∈ P (X,C), f ∈ C(X,C) implies f ∈ P (X,C). It follows that each such
P (X,C) is conjugate-closed in the sense that if whenever f + ig ∈ P (X,C)
where f, g ∈ C(X), then f − ig ∈ P (X,C). It is realised that there is a natural
correlation between the prime ideals/ maximal ideals/ z-ideals/ z◦-ideals in
the rings P (X,C) and the prime ideals/ maximal ideals/ z-ideals/ z◦-ideals
in the ring P (X,C) ∩ C(X). In the second and third sections of this article,
we examine these correlations in some detail. Incidentally an interconnection
between prime ideals in the two rings C(X,C) and C(X) is already observed
in Corollary 1.2[7]. As a follow up of our investigations on the ideals in these
two rings, we establish that the structure spaces of the two rings P (X,C) and
P (X,C)∩C(X) are homeomorphic. The structure space of a commutative ring
R with unity stands for the set of all maximal ideals ofR equipped with the well-
known hull-kernel topology. It was established in [21] and [22], independently
that the structure space of all the intermediate rings of real-valued continuous
functions on X are one and the same viz the Stone-Čech compactification
βX of X . It follows therefore that the structure space of each intermediate
ring of complex-valued continuous functions on X is also βX . This is one of
the main technical results in our article. We like to mention in this context
that a special case of this result telling that the structure space of C(X,C)
is βX is quite well known, see [19]. We call a ring P (X,C) in the family
Σ(X,C) a C-type ring if it is isomorphic to a ring of the form C(Y,C) for
Tychonoff space Y . We establish that if I is any ideal of C(X,C), then the
linear sum C∗(X,C) + I is a C-type ring. This is the complex analogue of
the corresponding result in the intermediate rings of real-valued continuous
functions on X as proved in [16]. We further realise that these are the only
C-type intermediate rings in the family Σ(X,C) when and only when X is
pseudocompact i.e. C(X,C) = C∗(X,C).

It is well-known that ifM is a maximal ideal in C(X), then the residue class
field C(X)/M is real closed in the sense that every positive element in this field
is a square and each odd degree polynomial over this field has a root in the
same field [17, Theorem 13.4]. The complex analogue of this result as we realise
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is that for a maximal idealM in C(X,C), C(X,C)/M is an algebraically closed
field and furthermore this field is the algebraic closure of C(X)/M ∩C(X).

In section 4 of this article, we deal with a few special problems originat-
ing from an ideal P of closed sets in X and a certain class of ideals in the
ring C(X,C). A family P of closed sets in X is called an ideal of closed
sets in X if for any two sets A,B in P , A ∪ B ∈ P and for any closed set
C contained in A,C is also a member of P . We let CP(X,C) be the set
of all those functions f in C(X,C) whose support clX(X \ Z(f)) is a mem-
ber of P ; here Z(f) = {x ∈ X : f(x) = 0} is the zero set of f in X .
We determine a necessary and sufficient condition for CP(X,C) to become
a prime ideal in the ring C(X,C) and examine a few special cases correspond-
ing to some specific choices of the ideal P . The ring C∞(X,C) = {f ∈
C(X,C) : f vanishes at infinity in the sense that for each n ∈ N, {x ∈ X :
|f(x)| ≥ 1

n
} is compact} is an ideal of C∗(X,C) but not necessarily an ideal of

C(X,C). On the assumption that X is locally compact, we determine a neces-
sary and sufficient condition for C∞(X,C) to become an ideal of C(X,C).

The fifth section of this article is devoted to finding out the estimates of
a few standard parameters concerning zero divisor graphs of a few rings of
complex-valued continuous functions on X . Thus for instance we have checked
that if Γ(P (X,C)) is the zero divisor graph of an intermediate ring P (X,C)
belonging to the family Σ(X,C), then each cycle of this graph has length 3,
4 or 6 and each edge is an edge of a cycle with length 3 or 4. These are the
complex analogues of the corresponding results in the zero divisor graph of
C(X) as obtained in [9].

2. Ideals in intermediate rings

Notation: For any subset A(X) of C(X) such that 0 ∈ A(X), we set
[A(X)]c = {f + ig : f, g ∈ A(X)} and call it the extension of A(X). Then
it is easy to see that [A(X)]c ∩ C(X) = A(X) = [A(X)]c ∩ A(X). From now
on, unless otherwise stated, we assume that A(X) is an intermediate ring of
real-valued continuous functions on X , i.e. A(X) is a member of the family
Σ(X). It follows at once that [A(X)]c is an intermediate ring of complex-valued
continuous functions and it is not hard to verify that [A(X)]c is the smallest
intermediate ring in Σ(X,C) which contains A(X) and the constant function i.
Furthermore [A(X)]c is conjugate-closed meaning that if f + ig ∈ [A(X)]c with
f, g ∈ A(X), then f−ig ∈ [A(X)]c. The following result tells that intermediate
rings in the family Σ(X,C) are the extensions of intermediate rings in Σ(X).

Theorem 2.1. Let P (X,C) be an intermediate ring of C(X,C). Then P (X,C)
is absolutely convex.

Proof. Let |f | ≤ |g|, f ∈ C(X,C), g ∈ P (X,C). Then f = f
1+g2 (1 + g2) ∈

P (X,C). Hence P (X,C) is absolutely convex. �

Theorem 2.2. An intermediate ring P (X,C) of C(X,C) is conjugate closed.
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Proof. Let f + ig ∈ P (X,C). We have |f | ≤ |f + ig|, |g| ≤ |f + ig| and
f + ig ∈ P (X,C). Since P (X,C) is absolutely convex, then f, g ∈ P (X,C).
This implies f, ig ∈ P (X,C) as i ∈ P (X,C). Thus f − ig ∈ P (X,C). Hence
P (X,C) is conjugate closed. �

Theorem 2.3. A ring P (X,C) of complex valued continuous functions on X
is a member of Σ(X,C) if and only if there exists a ring A(X) in the family
Σ(X) such that P (X,C) = [A(X)]c.

Proof. Assume that P (X,C) ∈ Σ(X,C) and let A(X) = P (X,C)∩C(X). Then
it is clear that A(X) ∈ Σ(X) and [A(X)]c ⊆ P (X,C).

To prove the reverse containment, let f + ig ∈ P (X,C). Here f, g ∈ C(X).
Since P (X,C) is conjugate closed, f − ig ∈ P (X,C), and hence 2f and 2ig
both belong to P (X,C). Since constant functions are bounded and hence in
P (X,C), both the constant functions 1

2 and 1
2i are in P (X,C). It follows

that both f and g are in P (X,C) ∩ C(X), and hence in A(X). Consequently,
f + ig ∈ [A(X)]c. Thus, P (X,C) ⊆ [A(X)]c. �

The following facts involving convex sets will be useful. A subset S of C(X)
is called absolutely convex if whenever |f | ≤ |g| with g ∈ S and f ∈ C(X), then
f ∈ S.

Theorem 2.4. Let A(X) ∈ Σ(X). Then

(a) A(X) is an absolutely convex subring of C(X) (in the sense that if |f | ≤
|g| with g ∈ A(X) and f ∈ C(X), then f ∈ A(X)) ([16, Proposition
3.3]).

(b) A prime ideal P in A(X) is an absolutely convex subset of A(X) ([13,
Theorem 2.5]).

The following convenient formula for [A(X)]c with A(X) ∈ Σ(X) will often
be helpful to us.

Theorem 2.5. For any A(X) ∈ Σ(X), [A(X)]c = {h ∈ C(X,C) : |h| ∈
A(X)}.

Proof. First assume that h = f + ig ∈ [A(X)]c with f, g ∈ A(X). Then
|h| ≤ |f | + |g|. This implies, in view of Theorem 2.4(a), that h ∈ A(X) and
also |h| ∈ A(X). Conversely, let h = f+ig ∈ C(X,C) with f, g ∈ C(X), be such

that |h| ∈ A(X). This means that (f2 + g2)
1

2 ∈ A(X). Since |f | ≤ (f2 + g2)
1

2 ,
this implies in view of Theorem 2.4(a) that f ∈ A(X). Analogously g ∈ A(X).
Thus h ∈ [A(X)]c. �

Theorem 2.6. If I is an ideal in A(X) ∈ Σ(X), then Ic = {f + ig : f, g ∈ I}
is the smallest ideal in [A(X)]c containing I. Furthermore Ic ∩ A(X) = I =
Ic ∩ C(X).

Proof. It is easy to show that Ic is an ideal in [A(X)]c containing I. Let K
be an ideal of [A(X)]c containing I. To show Ic ⊆ K. Let f + ig ∈ K, where
f, g ∈ I. Since I ⊆ K, then f, g ∈ K. Now K is an ideal of [A(X)]c, f, g ∈ K
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implies f+ ig ∈ K. Therefore Ic ⊆ K. Hence Ic is the smallest ideal of [A(X)]c
containing I.

Proof of the second part is trivial. �

Theorem 2.7. If I and J are ideals in A(X) ∈ Σ(X), then I ⊆ J if and only
if Ic ⊆ Jc. Also I ( J when and only when Ic ( Jc.

Proof. If I ⊆ J , then clearly Ic ⊆ Jc.
Conversely, let Ic ⊆ Jc. Let f ∈ I. Since I ⊂ Ic, we have f ∈ Ic ⊆ Jc. Now

f = f + i0 and Jc = {g + ih : g, h ∈ J}. Therefore f ∈ J . Hence I ⊆ J .
For the second part we consider I ( J and f ∈ J \ I. Then f ∈ Jc \ Ic.

Thus Ic ( Jc.
Conversely, let Ic ( Jc and f + ig ∈ Jc \ Ic. Then either f or g is outside I.

Let f /∈ I. Then f ∈ J \ I. Hence I ( J . This completes the proof. �

We have the following convenient formula for Ic when I is an absolutely
convex ideal of A(X).

Theorem 2.8. If I is an absolutely convex ideal of A(X) (in particular if I is
a prime ideal or a maximal ideal of A(X)), then Ic = {h ∈ [A(X)]c : |h| ∈ I}.

Proof. Let h = f + ig ∈ Ic. Then f, g ∈ I. Since |h| ≤ |f |+ |g|, the absolute
convexity of I implies that |h| ∈ I. Conversely, let h = f+ig ∈ [A(X)]c be such

that |h| ∈ I. Here f, g ∈ A(X). Since |f | ≤ (f2 + g2)
1

2 = |h|, it follows from
the absolute convexity of I that f ∈ I. Analogously g ∈ I. Hence h ∈ Ic. �

The above theorem prompts us to define the notion of an absolutely convex
ideal in P (X,C) ∈ Σ(X,C) as follows:

Definition 2.9. An ideal J in P (X,C) in Σ(X,C) is called absolutely convex
if for g, h in C(X,C) with |g| ≤ |h| and h ∈ J , it follows that g ∈ J .

The first part of the following proposition is immediate, while the second
part follows from Theorem 2.3 and Theorem 2.8.

Theorem 2.10. Let P (X,C) ∈ Σ(X,C).

(i) If J is an absolutely convex ideal of P (X,C), then J ∩C(X) is an ab-
solutely convex ideal of the intermediate ring P (X,C)∩C(X) ∈ Σ(X).

(ii) An ideal I in P (X,C) ∩ C(X) is absolutely convex in this ring if and
only if Ic is an absolutely convex ideal of P (X,C).

(iii) If J is an absolutely convex ideal of P (X,C), then J = [J ∩ C(X)]c.

Proof. (iii) It is trivial that [J ∩C(X)]c ⊆ J . To prove the reverse implication
relation let h = f + ig ∈ J , with f, g ∈ C(X). The absolute convexity of J

implies that |h| ∈ J . Consequently |h| ∈ J∩C(X). But since |f | ≤ (f2+g2)
1

2 =
|h|, it follows again due to the absolute convexity of P (X,C) as a subring of
C(X,C) that f ∈ P (X,C). We further use absolute convexity of J in P (X,C)
to assert that f ∈ J . Analogously g ∈ J . Thus h = f + ig ∈ [J ∩ C(X)]c.
Therefore J ⊆ [J ∩ C(X)]c. �
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Remark 2.11. For any P (X,C) ∈ Σ(X,C), the assignment I 7→ Ic provides a
one-to-one correspondence between the absolutely convex ideals of P (X,C) ∩
C(X) and those of P (X,C).

The following theorem gives a one-to-one correspondence between the prime
ideals of P (X,C) and those of P (X,C) ∩ C(X).

Theorem 2.12. Let P (X,C) be member of Σ(X,C). An ideal J of P (X,C) is
prime if and only if there exists a prime ideal Q in P (X,C) ∩ C(X) such that
J = Qc.

Proof. Let J be a prime ideal in P (X,C) and let Q = J ∩ C(X) and A(X) =
P (X,C) ∩ C(X). Then Q is a prime ideal in the ring A(X). It is easy to
see that Qc ⊆ J . To prove the reverse containment, let h = f + ig ∈ J ,
where f, g ∈ P (X,C). Note that P (X,C) = [A(X)]c by Theorem 2.3. Hence
f, g ∈ A(X) and therefore f − ig ∈ P (X,C). As J is an ideal of P (X,C), it
follows that (f + ig)(f − ig) ∈ J i.e, f2 + g2 ∈ J ∩ C(X) = Q. Since Q is a
prime ideal in A(X), we can apply Theorem 2.4(b), yielding f2 ∈ Q and hence
f ∈ Q. Analogously g ∈ Q. Thus h ∈ Qc. Therefore J ⊆ Qc.

To prove the converse of this theorem, let Q be a prime ideal in A(X). It
follows from Theorem 2.8 that Qc = {h ∈ P (X,C) : |h| ∈ Q} and therefore Qc
is a prime ideal in P (X,C). Finally we note that Qc ∩ C(X) = Q. �

Remark 2.13. For any P (X,C) ∈ Σ(X,C), the collection of all prime ideals in
P (X,C) is precisely {Qc : Q is a prime ideal in P (X,C) ∩C(X)}.

Remark 2.14. The collection of all minimal prime ideals in P (X,C) is precisely
{Qc : Q is a minimal prime ideal in P (X, C) ∩ C(X)}. [This follows from
Remark 2.13 and Theorem 2.7].

Theorem 2.15. For any P (X,C) ∈ Σ(X,C), the collection of all maximal
ideals in P (X,C) is {Mc :M is a maximal ideal of P (X,C) ∩C(X)}.

Proof. Let M be a maximal ideal in P (X,C)∩C(X) = A(X). Then by Theo-
rem 2.12, Mc is a prime ideal in P (X,C). Suppose that Mc is not a maximal
ideal in P (X,C), then there exists a prime ideal T in P (X,C) such thatMc ( T .
By remark 2.11, there exists a prime ideal P in A(X) such that J = Pc. So
Mc ( Pc. This implies in view of Theorem 2.5 that M ( P , a contradiction to
the maximality of M in A(X).

Conversely, let J be a maximal ideal of P (X,C). In particular J is a prime
ideal in this ring. By Remark 2.13, J = Qc for some prime ideal Q in A(X).
We claim that Q is a maximal ideal in A(X). Suppose not; then Q ( K for
some proper idealK in A(X). Then by Theorem 2.7, Qc ( Kc andKc a proper
ideal in P (X,C); this contradicts the maximality of J = Qc. �

We next prove analogoues of Remark 2.13 and Theorem 2.15 for two impor-
tant classes of ideals viz z-ideals and z◦-ideals in P (X,C) ∈ Σ(X,C). These
ideals are defined as follows.
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Definition 2.16. Let R be a commutative ring with unity. For each a ∈
R, let Ma (respectively Pa) stand for the intersection of all maximal ideals
(respectively all minimal prime ideals) which contain a. An ideal I in R is
called a z-ideal (respectively z◦-ideal) if for each a ∈ I,Ma ⊆ I (respectively
Pa ⊆ I).

This notion of z-ideals is consistent with the notion of z-ideal in C(X) (see
[17, 4A5]). Since each prime ideal in an intermediate ring A(X) ∈ Σ(X)
is absolutely convex (Theorem 2.4(b)), it follows from Theorem 2.10(ii) and
Remark 2.13 that each prime ideal in P (X,C) ∈ Σ(X,C) is absolutely convex.
In particular each maximal ideal is absolutely convex. Now if I is a z-ideal
in P (X,C) ∈ Σ(X,C) and |f | ≤ |g|, g ∈ I, f ∈ P (X,C), then Mg ⊆ I. Let
M be a maximal ideal in P (X,C) containing g. It follows due to the absolute
convexity of M that f ∈ M . Therefore f ∈ Mg ⊂ I. Thus each z-ideal in
P (X,C) is absolutely convex. Analogously it can be proved that each z◦-ideal
in P (X,C) is absolutely convex.

The following subsidiary result can be proved using routine arguments.

Lemma 2.17. For any family {Iα : α ∈ Λ} of ideals in an intermediate ring
A(X) ∈ Σ(X), (

⋂
α∈Λ Iα)c =

⋂
α∈Λ(Iα)c.

Theorem 2.18. An ideal J in a ring P (X,C) ∈ Σ(X,C) is a z-ideal in
P (X,C) if and only if there exists a z-ideal I in P (X,C) ∩ C(X) such that
J = Ic.

Proof. First assume that J is a z-ideal in P (X,C). Let I = J ∩ C(X). Since
J is absolutely convex, it follows from Theorem 2.10(iii) that J = Ic. We show
that I is a z-ideal in P (X,C) ∩ C(X). Choose f ∈ I. Suppose {Mα : α ∈ Λ}
is the set of all maximal ideals in the ring P (X,C) ∩ C(X) which contain f .
It follows from Theorem 2.15 that {(Mα)c : α ∈ Λ} is the set of all maximal
ideals in P (X,C) containing f . Since f ∈ J and J is a z-ideal in P (X,C), it
follows that

⋂
α∈Λ(Mα)c ⊆ J . This implies in the view of Lemma 2.17 that

(
⋂
α∈ΛMα)c ∩C(X) ⊆ I, and hence f ∈

⋂
α∈ΛMα ⊆ I. Thus it is proved that

I is a z-ideal in P (X,C) ∩ C(X).
Conversely, let I be a z-ideal in the ring P (X,C)∩C(X). We shall prove that

Ic is a z-ideal in P (X,C). We recall from Theorem 2.3 that [P (X,C)∩C(X)]c =
P (X,C). Choose f from Ic. From Theorem 2.8, it follows that (taking care
of the fact that each z-ideal in P (X,C) is absolutely convex) |f | ∈ I. Let
{Nβ : β ∈ Λ∗} be the set of all maximal ideals in P (X,C)∩C(X) which contain
the function |f |. The hypothesis that I is a z-ideal in P (X,C)∩C(X) therefore
implies that

⋂
β∈Λ∗ Nβ ⊆ I. This further implies in view of Lemma 2.17 that

⋂
β∈Λ∗(Nβ)c ⊆ Ic. Again it follows from Theorem 2.8 that, for any maximal

ideal M in P (X,C) ∩ C(X) and any g ∈ P (X,C), g ∈ Mc if and only if
|g| ∈ M . Thus for any β ∈ Λ∗, |f | ∈ Nβ if and only if f ∈ (Nβ)c. This means
that {(Nβ)c}β∈Λ∗ is the collection of maximal ideals in P (X,C) which contain
f , and we have already observed that f ∈ ∩β∈Λ∗(Nβ)c ⊆ Ic. Consequently Ic
is a z-ideal in P (X,C). �
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If we use the result embodied in Remark 2.14 and take note of the fact that
each minimal prime ideal in P (X,C) is absolutely convex and argue as in the
proof of Theorem 2.18, we get the following proposition:

Theorem 2.19. An ideal J in a ring P (X,C) ∈ Σ(X,C) is a z◦-ideal in
P (X,C) if and only if there exists a z◦-ideal I in P (X,C) ∩ C(X) such that
J = Ic.

An ideal J in P (X,C) ∈ Σ(X,C) is called fixed if
⋂
f∈J Z(f) 6= ∅. The

following proposition is a straightforward consequence of Theorem 2.6.

Theorem 2.20. An ideal J in a ring P (X,C) ∈ Σ(X,C) is a fixed ideal in
P (X,C) if and only if J ∩C(X) is a fixed ideal in P (X,C) ∩ C(X).

We recall that a space X is called an almost P space if every non-empty
Gδ subset of X has non-empty interior. These spaces have been characterized
via z-ideals and z◦-ideals in the ring C(X) in [8]. We would like to mention
that the same class of spaces have witnessed a very recent characterization in
terms of fixed maximal ideals in a given intermediate ring A(X) ∈ Σ(X). We
reproduce below these two results to make the paper self-contained.

Theorem 2.21 ([8]). X is an almost P space if and only if each maximal ideal
in C(X) is a z◦-ideal if and only if each z-ideal in C(X) is a z◦-ideal.

Theorem 2.22 ([12]). Let A(X) ∈ Σ(X) be an intermediate ring of real-valued
continuous functions on X. Then X is an almost P space if and only if each
fixed maximal ideal Mp

A = {g ∈ A(X) : g(p) = 0} of A(X) is a z◦-ideal.

It is further realised in [12] that ifX is an almost P space, then the statement
of Theorem 2.21 cannot be improved by replacing C(X) by an intermediate ring
A(X), different from C(X). Indeed it is shown in [12, Theorem 2.4] that if an
intermediate ring A(X) 6= C(X), then there exists a maximal ideal in A(X)
(which is incidentally also a z-ideal in A(X)), which is not a z◦-ideal in A(X).

We record below the complex analogue of the above results.

Theorem 2.23. X is an almost P space if and only if each maximal ideal of
C(X,C) is a z◦-ideal if and only if each z-ideal in C(X,C) is a z◦-ideal.

Proof. This follows from combining Theorems 2.15, 2.18, 2.19, and 2.21. �

Theorem 2.24. Let P (X,C) ∈ Σ(X,C). Then X is almost P if and only
if each fixed maximal ideal Mp

P = {g ∈ P (X,C) : g(p) = 0} of P (X,C) is a
z◦-ideal.

Proof. This follows from combining Theorems 2.15, 2.20, and 2.22. �

Theorem 2.25. Let X be an almost P space and let P (X,C) be a member of
Σ(X,C) such that P (X,C) ( C(X,C). Then there exists a maximal ideal in
P (X,C), which is not a z◦-ideal in P (X,C).
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Thus, within the class of almost P -spacesX , C(X,C) is characterized amongst
all the intermediate rings P (X,C) of Σ(X,C) by the requirement that z-ideals
and z◦-ideals (equivalently maximal ideals and z◦-ideals) in P (X,C) are one
and the same.

Proof. This follows from combining Theorems 2.15, 2.18, and 2.19 of this
article together with [12, Theorem 2.4]. �

We recall the classical result that X is a P space if and only if C(X) is a
von-Neumann regular ring meaning that each prime ideal in C(X) is maximal.
Incidentally the following fact was rather recently established:

Theorem 2.26 ([3, 20, 12]). If A(X) ∈ Σ(X) is different from C(X), then
A(X) is never a regular ring.

Theorems 2.12, 2.15, and 2.26 yield in a straight forward manner the follow-
ing result:

Theorem 2.27. If P (X,C) ∈ Σ(X,C) is a proper subring of C(X,C), then
P (X,C) is not a von-Neumann regular ring.

It is well-known that if P is a non maximal prime ideal in C(X) and M
is the unique maximal ideal containing P , then the set of all prime ideals in
C(X) that lie between P and M makes a Dedekind complete chain containing
no fewer than 2ℵ1 many members (see [17, Theorem 14.19]). If we use this
standard result and combine with Theorems 2.7, 2.12, and 2.15, we obtain the
complex-version of this fact:

Theorem 2.28. Suppose P is a non maximal prime ideal in the ring C(X,C).
Then there exists a unique maximal ideal M containing P in this ring. Fur-
thermore, the collection of all prime ideals that are situated between P and M
constitutes a Dedekind complete chain containing at least 2α1 many members.

Thus for all practical purposes (say for example when X is not a P space),
C(X,C) is far from being a Noetherian ring. Incidentally we shall decide the
Noetherianness condition of C(X,C) by deducing it from a result in Section 4;
in particular, we show that C(X,C) is Noetherian if and only if X is a finite
set.

3. Structure spaces of intermediate rings

We need to recall a few technicalities associated with the hull-kernel topology
on the set of all maximal ideals M(A) of a commutative ring A with unity. If
we set for any element a of A, M(A)a = {M ∈ M(A) : a ∈ M}, then the
family {M(A)a : a ∈ A} constitutes a base for closed sets of the hull-kernel
topology on M(A). We may write Ma for M(A)a when context is clear. The
set M(A) equipped with this hull-kernel topology is called the structure space
of the ring A.
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For any subset M◦ of M(A), its closure M◦ in this topology is given by:
M◦ = {M ∈ M(A) : M ⊇

⋂
M◦}. For further information on this topology,

see [17, 7M].
Following the terminology of [14], by a (Hausdorff) compactification of a

Tychonoff space X we mean a pair (α, αX), where αX is a compact Hausdorff
space and α : X → αX a topological embedding with α(X) dense in αX . For
simplicity, we often designate such a pair by the notation αX . Two compact-
ifications αX and γX of X are called topologically equivalent if there exists a
homeomorphism ψ : αX → γX with the property ψ ◦ α = γ. A compactifi-
cation αX of X is said to possess the extension property if given a compact
Hausdorff space Y and a continuous map f : X → Y , there exists a continu-
ous map fα : αX → Y with the property fα ◦ α = f . It is well known that
the Stone-Čech compactification βX of X or more formally the pair (e, βX),
where e is the evaluation map on X induced by C∗(X) defined by the formula:

e(x) = (f(x) : f ∈ C∗(X)) such that e : X 7→ RC
∗(X) , enjoys the extension

property. Furthermore this extension property characterizes βX amongst all
the compactifications of X in the sense that whenever a compactification αX
of X has extension property, it is topologically equivalent to βX . For more
information on these topic, see [14, Chapter 1].

The structure space M(A(X)) of an arbitrary intermediate ring A(X) ∈
Σ(X) has been proved to be homeomorphic to βX , independently by the au-
thors in [21] and [22]. Nevertheless we offer yet another independent technique
to establish a modified version of the same fact by using the above terminology
of [14].

Theorem 3.1. Let ηA : X → M(A(X)) be the map defined by ηA(x) =
Mx
A = {g ∈ A(X) : g(x) = 0} (a fixed maximal ideal in A(X)). Then the

pair (ηA,M(A(X))) is a (Hausdorff) compactification of X, which further sat-
isfies the extension property. Hence the pair (ηA,M(A(X))) is topologically
equivalent to the Stone-Čech compactification βX of X.

Proof. Since X is Tychonoff, ηA is one-to-one. Also clM(A(X))ηA(X) = {M ∈
M(A(X)) : M ⊇

⋂
x∈XM

x
A} = {M ∈ M(A(X)) : M ⊇ {0}} = M(A(X)).

It follows from a result proved in Theorem 3.3 and Theorem 3.4 [23] that
M(A(X)) is a compact Hausdorff space and ηA is an embedding. Thus
(ηA,M(A(X))) is a compactification of X . To prove that this compactifi-
cation of X possesses the extension property we take a compact Hausdorff
space Y and a continuous map f : X → Y . It suffices to define a continuous
map fβA : M(A(X)) → Y with the property that fβA ◦ ηA = f . Let M be
any member of M(A(X)) i.e. M is a maximal ideal of the ring A(X). Define

M̂ = {g ∈ C(Y ) : g ◦ f ∈ M}. Note that if g ∈ C(Y ) then g ◦ f ∈ C(X).
Further note that since Y is compact and g ∈ C(Y ), g is bounded i.e. g(Y )
is a bounded subset of R. It follows that (g ◦ f)(X) is a bounded subset of R
and hence g ◦ f ∈ C∗(X). Consequently g ◦ f ∈ A(X). Thus the definition of

M̂ is without any ambiguity. It is easy to see that M̂ is an ideal of C(Y ). It
follows, since M is a maximal ideal and therefore a prime ideal of A(X), that
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M̂ is a prime ideal of C(Y ). Since C(Y ) is a Gelfand ring, M̂ can be extended
to a unique maximal ideal N in C(Y ). Since Y is compact, N is fixed (see [17,
Theorem 4.11]). Thus we can write: N = Ny = {g ∈ C(Y ) : g(y) = 0} for
some y ∈ Y . We observe that y ∈

⋂
g∈M̂ Z(g). Indeed

⋂
g∈M̂ Z(g) = {y} for if

y1, y2 ∈
⋂
g∈M̂ Z(g), for y1 6= y2, then M̂ ⊆ Ny1 and M̂ ⊆ Ny2 which is impos-

sible as Ny1 6= Ny2 and C(Y ) is a Gelfand ring. We then set fβA(M) = y. Note
that {fβA(M)} =

⋂
g∈M̂ Z(g). Thus fβA : M(A(X)) → Y is a well defined

map. Now choose x ∈ X and then g ∈ M̂x
A; then g ◦ f ∈ Mx

A, which implies

that (g ◦ f)(x) = 0. Consequently f(x) ∈ Z(g) for each g ∈ M̂x
A. On the other

hand {fβA(Mx
A)} =

⋂
g∈M̂x

A

Z(g). This implies that fβA(Mx
A) = f(x); in other

words (fβA ◦ ηA)(x) = f(x) and this relation is true for each x ∈ X . Hence
fβA ◦ ηA = f .

Now towards the proof of the continuity of the map fβA , choose M ∈
M(A(X)) and a neighbourhood W of fβA(M) in the space Y . In a Ty-
chonoff space every neighbourhood of a point x contains a zero set neigh-
bourhood of x, which contains, a co-zero set neighbourhood of x. So there
exist some g1, g2 ∈ C(Y ), such that fβA(M) ∈ Y \ Z(g1) ⊆ Z(g2) ⊆ W . It
follows that g1g2 = 0 as Z(g1) ∪ Z(g2) = Y which means that Z(g1g2) = Y .
Furthermore fβA(M) /∈ Z(g1). Since {fβA(M)} =

⋂
g∈M̂ Z(g), as observed

earlier, we then have g1 /∈ M̂ . This means that g1 ◦ f /∈ M . In other
words M ∈ M(A(X)) \ Mg1◦f , which is an open neighbourhood of M in
M(A(X)). We shall check that fβA(M(A(X)) \ Mg1◦f ) ⊆ W and that set-
tles the continuity of fβA at M . Towards that end, choose a maximal ideal
N ∈ M(A(X)) \Mg1◦f . This means that N /∈ Mg1◦f , i.e. g1 ◦ f /∈ N . Thus

g1 /∈ N̂ . But as g1g2 = 0 and N̂ is prime ideal in C(Y ), it must be that g2 ∈ N̂ .
Since {fβA(N)} =

⋂
g∈N̂ Z(g), it follows that f

βA(N) ∈ Z(g2) ⊆W . �

To achieve the complex analogue of the above mentioned theorem, we need
to prove the following proposition, which is by itself a result of independent
interest.

Theorem 3.2. Let A(X) ∈ Σ(X). Then the map ψA : M([A(X)]c) →
M(A(X)) mapping M → M ∩ A(X) is a homeomorphism from the structure
space of [A(X)]c onto the structure space of A(X).

Proof. That the above map ψA is a bijection between the structure spaces of
[A(X)]c and A(X) follows from Theorems 2.3, 2.6, 2.7, and 2.15. Recall (same
notation as before) that M([A(X)]c)f is the set of maximal ideals in the ring
[A(X)]c containing the function f ∈ [A(X)]c. A typical basic closed set in
the structure space M([A(X)]c) is given by M([A(X)]c)h where h ∈ [A(X)]c.
Note that M([A(X)]c)h = {J ∈ M([A(X)]c) : h ∈ J}. So for h ∈ [A(X)]c,
J ∈ M([A(X)]c)h if and only if h ∈ J , and this is true in view of Theorem 2.8
and the absolute convexity of maximal ideals (see Theorem 2.4(b) of the present
article) if and only if |h| ∈ J ∩ A(X), and this holds when and only when
J ∩ A(X) ∈ M(A(X))|h|, which is a basic closed set in the structure space
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M(A(X)) of the ring A(X). Thus

(3.1) ψA[M([A(X)]c)h] = M(A(X))|h|

Therefore ψA carries a basic closed set in the domain space onto a basic closed
set in the range space. Now for a maximal ideal N in A(X) and a func-
tion g ∈ A(X), g belongs to N if and only if |g| ∈ N , because of the ab-
solutely convexity of a maximal ideal in an intermediate ring. Consequently
M(A(X))g = M(A(X))|g| for any g ∈ A(X). Hence from relation (3.1), we

get: ψA[M([A(X)]c)g] = M(A(X))g which implies that ψ−1
A [M(A(X))g] =

M([A(X)]c)g. Thus ψ−1
A carries a basic closed set in the structure space

M(A(X)) onto a basic closed in the structure space M([A(X)]c). Altogether
ψA becomes a homeomorphism. �

For any x ∈ X and A(X) ∈ Σ(X), set Mx
A[C] = {h ∈ [A(X)]c : h(x) = 0}.

It is easy to check by using standard arguments, such as those employed to
prove the textbook theorem [17, Theorem 4.1], that Mx

A[C] is a fixed maximal

in [A(X)]c and Mx
A[C] ∩ A(X) = Mx

A = {g ∈ A(X) : g(x) = 0}. Let ζA :

X 7→ M([A(X)]c) be the map defined by: ζA(x) = Mx
A[C]. Then we have the

following results.

Theorem 3.3. (ζA,M([A(X)]c)) is a Hausdorff compactification of X. Fur-
thermore (ψA ◦ ζA)(x) = ηA(x) for all x in X. Hence (ζA,M([A(X)]c)) is
topologically equivalent to the Hausdorff compactification (ηA,M(A(X))) as
considered in Theorem 3.1. Consequently (ζA,M([A(X)]c)) turns out to be
topologically equivalent to the Stone-Čech compactification βX of X.

Proof. Since M(A(X)) is Hausdorff [23], it follows from Theorem 3.2 that
M([A(X)]c) is a Hausdorff space. Now by following closely the arguments
made at the very beginning of the proof of Theorem 3.1, one can easily see
that (ζA,M([A(X)]c)) is a Hausdorff compactification of X . The second part
of the theorem is already realised in Theorem 3.2. The third part of the present
theorem also follows from Theorem 3.2. �

Definition 3.4. An intermediate ring A(X) ∈ Σ(X) is called C-type in [16],
if it is isomorphic to C(Y ) for some Tychonoff space Y .

In [16], the authors have shown that if I is an ideal of the ring C(X), then the
linear sum C∗(X)+I is a C-type ring and of courseC∗(X)+I ∈ Σ(X). Recently
the authors in [1] have realised that these are the only C-type intermediate rings
of real-valued continuous functions on X if and only if X is pseudocompact.
We now show that the complex analogues of all these results are also true. We
reproduce the following result established in [15], which will be needed for this
purpose.

Theorem 3.5. A ring A(X) ∈ Σ(X) is C-type if and only if A(X) is iso-
morphic to the ring C(υAX), where υAX = {p ∈ βX : f∗(p) ∈ R for each
f ∈ A(X)} and f∗ : βX 7→ R ∪ {∞} is the Stone extension of the function f .
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We extend the notion of C-type ring to rings of complex-valued continuous
functions: a ring P (X,C) ∈ Σ(X,C) is a C-type ring if it is isomorphic to a
ring C(Y,C) for some Tychonoff space Y .

Theorem 3.6. Suppose A(X) ∈ Σ(X) is a C-type intermediate ring of real-
valued continuous functions on X. Then [A(X)]c is a C-type intermediate ring
of complex-valued continuous functions on X.

Proof. Since A(X) is a C-type intermediate ring by Theorem 3.5, there exists

an isomorphism ψ : A(X) 7→ C(υAX). Let ψ̂ : [A(X)]c 7→ C(υAX,C) be

defined as follows: ψ̂(f + ig) = ψ(f)+ iψ(g), where f, g ∈ A(X). It is not hard

to check that ψ̂ is an isomorphism from [A(X)]c onto C(υAX,C). �

Theorem 3.7. Let I be a z-ideal in C(X,C). Then C∗(X,C) + I is a C-type
intermediate ring of complex-valued continuous functions on X. Furthermore
these are the only C-type rings lying between C∗(X,C) and C(X,C) if and only
if X is pseudocompact.

Proof. As mentioned above, it is proved in [16] that for any ideal J in C(X),
C∗(X) + J is a C-type intermediate ring of real-valued continuous functions
on X . In light of this and Theorem 3.6, it is sufficient to prove for the first
part of this theorem that C∗(X,C) + I = [C∗(X) + I ∩ C(X)]c. Towards
proving that, let f, g ∈ C∗(X) + I ∩ C(X). We can write g = g1 + g2 where
g1 ∈ C∗(X) and g2 ∈ I ∩ C(X). It follows that ig1 ∈ C∗(X,C) and ig2 ∈ I
and this implies that i(g1 + g2) ∈ C∗(X,C) + I. Thus f + ig ∈ C∗(X) + I.
Hence [C∗(X) + I ∩ C(X)]c ⊆ C∗(X,C) + I. To prove the reverse inclusion
relation, let h1 + h2 ∈ C∗(X,C) + I, where h1 ∈ C∗(X,C) and h2 ∈ I. We
can write h1 = f1 + ig1, h2 = f2 + ig2, where f1, f2, g1, g2 ∈ C(X). Since
h1 ∈ C∗(X,C), it follows that f1, g1 ∈ C∗(X). Thus |f2| ≤ |h2| and h2 ∈ I.
This implies, because of the absolute convexity of the z-ideal I in C(X,C), that
f2 ∈ I. Analogously g2 ∈ I. It is now clear that f1 + f2 ∈ C∗(X) + I ∩ C(X)
and g1 + g2 ∈ C∗(X) + I ∩ C(X). Thus h1 + h2 = (f1 + f2) + i(g1 + g2) ∈
[C∗(X) + I ∩ C(X)]c. Hence C

∗(X,C) + I ⊆ [C∗(X) + I ∩ C(X)]c.
To prove the second part of the theorem, we first observe that if X is

pseudocompact, then there is practically nothing to prove. Assume therefore
that X is not pseudocompact. Hence by [1], there exists an A(X) ∈ Σ(X)
such that A(X) is a C-type ring but A(X) 6= C∗(X) + J for any ideal J in
C(X). It follows from Theorem 3.6 that [A(X)]c is a C-type intermediate
ring of complex-valued continuous functions belonging to the family Σ(X,C).
We assert that there does not exist any z-ideal I in C(X,C) with the rela-
tion: C∗(X,C) + I = [A(X)]C and that finishes the present theorem. Sup-
pose towards a contradiction, there exists a z-ideal I in C(X,C) such that
C∗(X,C) + I = [A(X)]C . Now from the proof of the first part of this theorem,
we have already settled that C∗(X,C)+I = [C∗(X)+I∩C(X)]C . Consequently
[C∗(X) + I ∩C(X)]C = [A(X)]C which yields [C∗(X) + I ∩C(X)]C ∩C(X) =
[A(X)]C ∩ C(X), and hence C∗(X) + I ∩ C(X) = A(X), a contradiction. �
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We shall conclude this section after incorporating a purely algebraic result
pertaining to the residue class field of C(X,C) modulo a maximal ideal in the
same field.

For each a = (a1, a2, . . . , an) ∈ Cn if P1a,P2a, . . . ,Pna are the zeroes of
the polynomial Pa(λ) = λn + a1λ

n−1 + · · · + an, ordered so that |P1a| ≤
|P2a| ≤ · · · ≤ |Pna|, then by following closely the arguments of [17, 13.3(a)],
the following result can be obtained.

Theorem 3.8. For each k, the function Pk : Cn 7→ C, described above, is
continuous.

By employing the main argument of [17, Theorem 13.4], we obtain the fol-
lowing proposition as a consequence of Theorem 3.8.

Theorem 3.9. For any maximal ideal N in C(X,C), the residue class field
C(X,C)/N is algebraically closed.

We recall from Theorem 2.15 that the assignment M 7→ Mc establishes
a one-to-one correspondence between maximal ideals in C(X) and those in
C(X,C). Let φ : C(X)/M 7→ C(X,C)/Mc be the induced assignment between
the corresponding residue class fields, explicitly φ(f +M) = f +Mc for each
f ∈ C(X). It is easy to check that φ is a ring homomorphism and is one-to-one
because if f +Mc = g +Mc with f, g ∈ C(X), then f − g ∈ Mc ∩ C(X) = M
and hence f +M = g+M . Furthermore, if we choose an element f + ig+Mc

from C(X,C)/Mc, with f, g ∈ C(X), then one can verify easily that it is a root
of the polynomial λ2− 2(f +Mc)λ+(f2+ g2+Mc) over the field φ(C(X)/M).
Identifying C(X)/M with φ(C(X)/M), and taking note of Theorem 3.9 we get
the following result.

Theorem 3.10. For any maximal ideal M in C(X), the residue class field
C(X,C)/Mc is the algebraic closure of C(X)/M .

4. Ideals of the form CP(X,C) and CP
∞(X,C)

Let P be an ideal of closed sets in X . We set CP (X,C) = {f ∈ C(X,C) :
clX(X \ Z(f)) ∈ P} and CP

∞(X,C) = {f ∈ C(X,C) : for each ǫ > 0 in
R, {x ∈ X : |f(x)| ≥ ǫ} ∈ P}. These are the complex analogues of the rings,
CP(X) = {f ∈ C(X) : clX(X\Z(f)) ∈ P} and CP

∞(X) = {f ∈ C(X) : for each
ǫ > 0, {x ∈ X : |f(x)| ≥ ǫ} ∈ P} already introduced in [4] and investigated
subsequently in [5], [12]. As in the real case, it is easy to check that CP(X,C)
is a z-ideal in C(X,C) with CP

∞(X,C) just a subring of C(X,C). Plainly we
have: CP (X,C) ∩ C(X) = CP(X) and CP

∞(X,C) ∩ C(X) = CP
∞(X).

The following results need only routine verifications.

Theorem 4.1. For any ideal P of closed sets in X, [CP(X)]c = {f+ ig : f, g ∈
CP(X)} = CP(X,C) and [CP

∞(X)]c = CP
∞(X,C).

Theorem 4.2.

a) If I is an ideal of the ring CP(X), then Ic = {f + ig : f, g ∈ I} is an
ideal of CP (X,C) and Ic ∩ CP (X) = I.
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b) If I is an ideal of the ring CP
∞(X), then Ic is an ideal of CP

∞(X,C) and
Ic ∩ C

P
∞(X) = I.

We record below the following consequence of the above theorem.

Theorem 4.3. If I1 ( I2 ( ... is a strictly ascending sequence of ideals in
CP(X)(respectively CP

∞(X)), then I1c ( I2c ( · · · becomes a strictly ascending
sequence of ideals in CP(X,C)(respectively C

P
∞(X,C)).

The analogous results for a strictly descending sequence of ideals in both
the rings CP (X) and CP

∞(X) are also valid.

Definition 4.4. A space X is called locally P if each point of X has an open
neighbourhood W such that clXW ∈ P .

Observe that if P is the ideal of all compact sets in X , then X is locally P
if and only if X is locally compact.

Towards finding a condition for which CP (X,C) and CP
∞(X,C) are Noe-

therian ring/Artinian rings, we reproduce a special version of a fact proved in
[6]:

Theorem 4.5 (from [6, Theorem 1.1]). Let P be an ideal of closed sets in X
and suppose X is locally P. Then the following statements are equivalent:

1) CP (X) is a Noetherian ring.
2) CP (X) is an Artinian ring.
3) CP

∞(X) is a Noetherian ring.
4) CP

∞(X) is an Artinian ring.
5) X is finite set.

We also note the following standard result of Algebra.

Theorem 4.6. Let {R1, R2, ..., Rn} be a finite family of commutative rings
with identity. The ideals of the direct product R1 × R2 × · · · × Rn are exactly
of the form I1 × I2 × · · · × In, where for k = 1, 2, . . . , n, Ik is an ideal of Rk.

Now if X is a finite set, with say n elements, then as it is Tychonoff, it is
discrete space. Furthermore if X is locally P , then clearly P is the power set
of X . Consequently CP(X,C) = CP

∞(X,C) = C(X,C) = Cn, which is equal
to the direct product of C with itself ‘n’ times. Since C is a field, it has just
2 ideals, hence by Theorem 4.6 there are exactly 2n many ideals in the ring
Cn. Hence CP(X,C) and CP

∞(X,C) are both Noetherian rings and Artinian
rings. On the other hand if X is an infinite space and is locally P space then
it follows from the Theorem 4.3 and Theorem 4.5 that neither of the two rings
CP(X,C) and CP

∞(X,C) is either Noetherian or Artinian. This leads to the
following proposition as the complex analogue of Theorem 4.5.

Theorem 4.7. Let P be an ideal of closed sets in X and suppose X is locally
P. Then the following statements are equivalent:

1) CP (X,C) is a Noetherian ring.
2) CP (X,C) is an Artinian ring.
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3) CP
∞(X,C) is a Noetherian ring.

4) CP
∞(X,C) is an Artinian ring.

5) X is finite set.

A special case of this theorem, choosing P to be the ideal of all closed sets
in X reads: C(X,C) is a Noetherian ring if and only if X is finite set.

The following gives a necessary and sufficient condition for the ideal CP (X,C)
in C(X,C) to be prime.

Theorem 4.8. Let P be an ideal of closed sets in X and suppose X is locally
P. Then the following statements are equivalent:

(1) CP (X,C) is a prime ideal in C(X,C).
(2) CP (X) is a prime ideal in C(X).
(3) X /∈ P and for any two disjoint co-zero sets in X, one has its closure

lying in P.

Proof. The equivalence of (1) and (2) follows from Theorem 2.12 and Theo-
rem 4.1. Towards the equivalence (2) and (3), assume that CP (X) is a prime
ideal in C(X). If X ∈ P , then for each f ∈ C(X), clX(X \Z(f)) ∈ P meaning
that f ∈ CP(X) and hence CP(X) = C(X), a contradiction to the assumption
that CP(X) is a prime ideal and in particular a proper ideal of C(X). Thus
X /∈ P . Now consider two disjoint co-zero sets X \ Z(f) and X \ Z(g) in X ,
with f, g ∈ C(X). It follows that Z(f) ∪ Z(g) = X , i.e. fg = 0. Since CP(X)
is prime, this implies that f ∈ CP(X) or g ∈ CP(X), i.e. clX(X \ Z(f)) ∈ P
or clX(X \ Z(g)) ∈ P .

Conversely let the statement (3) be true. Since a z-ideal I in C(X) is prime
if and only if for each f, g ∈ C(X), fg = 0 implies f ∈ I or g ∈ I (see [17,
Theorem 2.9]) and since CP (X) is a z-ideal in C(X), it is sufficient to show
that for each f, g ∈ C(X), if fg = 0 then f ∈ CP(X) or g ∈ CP(X). Indeed
fg = 0 implies that X \Z(f) and X \Z(g) are disjoint co-zero sets in X . Hence
by supposition (3), either clX(X \Z(f))P or clX(X \Z(g)) ∈ P meaning that
f ∈ CP(X) or g ∈ CP (X). �

A special case of Theorem 4.8, with P equal to the ideal of all compact sets
in X , is proved in [10]. We examine a second special case of Theorem 4.8.

A subset Y of X is called a bounded subset of X if each f ∈ C(X) is bounded
on Y . Let β denote the family of all closed bounded subsets of X . Then β
is an ideal of closed sets in X . It is plain that a pseudocompact subset of X
is bounded but a bounded subset of X may not be pseudocompact. Here is a
counterexample: the open interval (0, 1) in R is a bounded subset of R without
being a pseudocompact subset of R. However for a certain class of subsets
of X , the two notions of boundedness and pseudocompactness coincide. The
following well-known proposition substantiates this fact:

Theorem 4.9 (Mandelkar [18]). A support of X, i.e. a subset of X of the form
clX(X \ Z(f)) for some f ∈ C(X), is a bounded subset of X if and only if it
is a pseudocompact subset of X.
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It is clear that the conclusion of Theorem 4.9 remains unchanged if we replace
C(X) by C(X,C).

Let Cψ(X) = {f ∈ C(X) : f has pseudocompact support} and recall that
Cβ(X) = {f ∈ C(X) : f has bounded support}. We would like to mention
here that the closed pseudocompact subsets of a pseudocompact spaceX might
not constitute an ideal of closed sets in X . Indeed a closed subset of a pseu-
docompact space may not be pseucdocompact. The celebrated example of a
Tychonoff plank in [17, 8.20]: [0, ω1] × [0, ω] \ {(ω1, ω)}, where ω1 is the 1st
uncountable ordinal and ω is the first infinite ordinal, demonstrates this fact.
Nevertheless Cψ(X) is an ideal of the ring C(X). Indeed it follows directly
from Theorem 4.9 that Cψ(X) = Cβ(X).

A Tychonoff space X is called locally pseudocompact if each point on X
has an open neighbourhood with its closure pseudocompact. On the other
hand, X is called locally bounded (or locally β) if each point in X has an open
neighbourhood with its closure bounded. Since each open neighbourhooad
of a point x in a Tychonoff space X contains a co-zero set neighbourhood
of x, it follows from Theorem 4.9 that X is locally bounded if and only if
X is locally pseudocompact. This combined with Theorem 2.12 leads to the
following special case of Theorem 4.8.

Theorem 4.10. Let X be locally pseudocompact. Then the following state-
ments are equivalent:

(1) Cψ(X) is a prime ideal of C(X).
(2) Cψ(X,C) = {f ∈ C(X,C) : f has pseudocompact support} is a prime

ideal of C(X,C).
(3) X is not pseudocompact and for any two disjoint co-zero sets in X, the

closure of one of them is pseudocompact.

Since for f ∈ C(X,C), f ∈ C∞(X,C) if and only if |f | ∈ C∞(X), it follows
that C∞(X,C) is an ideal of C(X,C) if and only if C∞(X) is an ideal of C(X).
In general however C∞(X) need not be an ideal of C(X). If X is assumed to
be locally compact, then it is proved in [2] and [11] that C∞(X) is an ideal
of C(X) when and only when X is pseudocompact. Therefore the following
theorem holds.

Theorem 4.11. Let X be locally compact. Then the following three statements
are equivalent:

1) C∞(X,C) is an ideal of C(X,C).
2) C∞(X) is an ideal of C(X).
3) X is pseudocompact.

5. Zero divisor graphs of rings in the family Σ(X,C)

We fix any intermediate ring P (X,C) in the family Σ(X,C). Suppose G =
G(P (X,C)) designates the graph whose vertices are zero divisors of P (X,C)
and there is an edge between vertices f and g if and only if fg = 0. For any two
vertices f, g in G, let d(f, g) be the length of the shortest path between f and
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g and DiamG = sup{d(f, g) : f, g ∈ G}. Suppose GrG designates the length
of the shortest cycle in G, often called the girth of G. It is easy to check that
a vertex f in G is a divisor of zero in P (X,C) if and only if IntXZ(f) 6= ∅.
This parallels the statement that a vertex f in the zero-divisor graph ΓC(X) of
C(X) considered in [9] is a divisor of zero in C(X) if and only if IntXZ(f) 6= ∅.
We would like to point out in this connection that a close scrutiny into the proof
of various results in [9] reveal that several facts related to the nature of the
vertices and the length of the cycles related to ΓC(X) have been established in
[9] by employing skillfully the last mentioned simple characterization of divisors
of zero in C(X). It is expected that the anlogous facts pertaining to the various
parameters of the graph G(P (X,C)) = G should also hold. We therefore just
record the following results related to the graph G, without any proof.

Theorem 5.1. Let f, g be vertices of the graph G. Then d(f, g) = 1 if and
only if Z(f) ∪ Z(g) = X; d(f, g) = 2 if and only if Z(f) ∪ Z(g) ( X and
IntXZ(f) ∩ IntXZ(g) 6= φ; d(f, g) = 3 if and only if Z(f) ∪ Z(g) ( X and
IntXZ(f)∩IntXZ(g) = ∅. Consequently on assuming that X contains at least
3 points, DiamG and GrG are both equal to 3 (compare with [9, Corollary 1.3]).

Theorem 5.2. Each cycle in G has length 3, 4 or 6. Furthermore every edge
of G is an edge of a cycle with length 3 or 4 (compare with [9, Corollary 2.3]).

Theorem 5.3. Suppose X contains at least 2 points. Then

a) Each vertex of G is a 4 cycle vertex.
b) G is a triangulated graph meaning that each vertex of G is a vertex of

a triangle if and only if X is devoid of any isolated point.
c) G is a hypertriangulated graph in the sense that each edge of G is edge

of a triangle if and only if X is a connected middle P space (compare
with the analogous facts in [9, Proposition 2.1]).
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