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Abstract

Let X be a local dendrite, and f : X → X be a map. Denote by E(X)
the set of endpoints of X. We show that if E(X) is countable, then the

following are equivalent:

(1) f is equicontinuous;

(2)
∞⋂

n=1

f
n(X) = R(f);

(3) f |
∞⋂

n=1

f
n(X) is equicontinuous;

(4) f |
∞⋂

n=1

f
n(X) is a pointwise periodic homeomorphism or is

topologically conjugate to an irrational rotation of S1;

(5) ω(x, f) = Ω(x, f) for all x ∈ X.

This result generalizes [17, Theorem 5.2], [24, Theorem 2] and [11,
Theorem 2.8].
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1. Introduction

Amap is a continuous function between two topological spaces. A topological
dynamical system is a pair (X, f), where X is a compact metric space (d is a
metric on X) and f is a map from X to itself. Let N be the set of positive
integers. Let f0 be the identity map of X . Define, inductively, fn = f ◦ fn−1

for any non-zero positive integer n. For x ∈ X , {fn(x) : n ∈ N} is called the
orbit of x and is denoted by O(x, f). For any x ∈ X , write

ω(x, f) = {y : ∃ nk ∈ N, nk → ∞, lim
k→∞

fnk(x) = y}

called the ω-limit set of x under f , and write

Ω(x, f) = {y : ∃ xk ∈ X and nk ∈ N, nk → ∞, lim
k→∞

xk = x and lim
k→∞

fnk(xk) = y}.

x is a periodic point if fn(x) = x for some non-zero positive integer n. Note
that, if n = 1, then x is a fixed pint. Also, x is called a recurrent point of f
if for any neighborhood U of x and any m ∈ N there exists n > m such that
fn(x) ∈ U . Note that, x is a recurrent point of f if and only if x ∈ ω(x, f).
Let Fix(f), P (f) and R(f) denote the set of fixed points, periodic points and
recurrent points, respectively. We say that the map f is pointwise periodic if
P (f) = X . Also, f is said to be pointwise recurrent if R(f) = X . A subset A
of X is called f -invariant if f(A) is a subset of A. It is called a minimal set of
f if it is non-empty, closed, f -invariant and minimal (in the sense of inclusion)
for these properties. If X is a minimal set, then f is called a minimal map.
f is said to be equicontinuous (with respect to d) if for each ε > 0, there
exists 0 < α < ε such that for any non zero-integer n and any x, y ∈ X with
d(x, y) < α, one has d(fn(x), fn(y)) < ε.

It is interesting to give some characterizations of equicontinuous maps [12,
13, 16, 17, 24]. In [3, Theorem 2.1], by means of the orbit map Of : X →
C(N, X) and the metric df , Akin, Auslander and Berg gave some necessary
and sufficient conditions for a map f of a compact metric space (X, d) to be
equicontinuous. In [6, Proposition 2.2], Blanchard, Host and Maass discussed
the topological complexity, and showed that a surjective map f of a compact
metric space X is equicontinuous if and only if any finite open cover of X under
f has bounded complexity. On one-dimensional spaces, one has some still finer
results. In [12], Cano proved that if f is an equicontinuous map from the
interval I = [0, 1] to itself, then Fix(f) is connected, and furthermore, if Fix(f)
is non-degenerate, then f has no periodic points except fixed points. Bruckner
and Hu (only if) and Boyce (if) proved that a map f : I → I is equicontinuous

if and only if

∞⋂

n=1

fn(I) = Fix(f2); see [9, 10]. This result was also proved by

Blokh in [8]. Valaristos [25] described the characters of equicontinuous circle
maps: a map f of the unit circle S1 to itself is equicontinuous if and only if one
of the following four statements holds:

(1) f is topologically conjugate to a rotation;
(2) Fix(f) contains exactly two points and Fix(f2) = S1;
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(3) Fix(f) contains exactly one point and Fix(f2) =

∞⋂

n=1

fn(S1);

(4) Fix(f) =

∞⋂

n=1

fn(S1).

In [21], Sun obtained some necessary and sufficient conditions of equicontinuous
σ-maps. When X is a graph, Mai proved in [17, Theorem 5.2] that the following
properties are equivalent:

(1) f is equicontinuous;

(2) R(f) =

∞⋂

n=1

fn(X);

(3) the restriction of f on

∞⋂

n=1

fn(X) is equicontinuous;

(4) the restriction of f on
∞⋂

n=1

fn(X) is a periodic homeomorphism, or is

topologically conjugate to the irrational rotation of the unit circle S1.

In [11, 22, 23], the authors studied equicontinuous dendrite maps. For a den-
drite X with countable set of endpoints, in [22, Theorem 2.8] it is shown that
f is equicontinuous if and only if Ω(x, fn) = ω(x, fn) for any x ∈ X and each
n ∈ N. For a dendrite X with finite branch points, in [23, Theorem 28] it is
proved that the following statements are equivalent:

(1) f is equicontinuous;
(2) Ω(x, f) = ω(x, f) for any x ∈ X ;

(3) P (f) =

∞⋂

n=1

fn(X), and ω(x, f) is a periodic orbit for every x ∈ X and

the function ωf : x → ω(x, f) (x ∈ X) is continuous;
(4) Ω(x, f) is a periodic orbit for any x ∈ T .

Recently, for general dendrites, in [11, Theorem 4.12] it is shown that the
following statements are equivalent:

(1) f is equicontinuous;
(2) Ω(x, f) = ω(x, f) for any x ∈ X ;

(3) ωf is continuous and P (f) =

∞⋂

n=1

fn(X).

In this paper we will give some equivalent conditions of equicontinuity for local
dendrite maps, whose dynamical behavior is both important and interesting in
the study of Discrete Dynamical Systems and Continuum Theory. Our main
results are the following:

Theorem 1.1. Let X be a compact metric space and f : X → X be a map.
Consider the following statement:

(1) f is equicontinuous;
(2) Ω(x, fn) = ω(x, fn) for all x ∈ X and n ∈ N.
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Then (1) implies (2) and, if

∞⋂

n=1

fn(X) = P (f), then (2) implies (1).

Theorem 1.1 generalizes [22, Theorem 2.8].

Proposition 1.2. Every pointwise recurrent local dendrite map is equicontin-
uous.

The following result generalizes [17, Theorem 5.2], [24, Theorem 2] and [11,
Theorem 2.8].

Theorem 1.3. Let f : X → X be a local dendrite map. If E(X) is countable,
then the following are equivalent:

(1) f is equicontinuous;

(2)

∞⋂

n=1

fn(X) = R(f);

(3) f |
∞⋂

n=1

fn(X) is equicontinuous and surjective;

(4) f |

∞⋂

n=1

fn(X) is either a pointwise periodic homeomorphism or is topo-

logically conjugate to an irrational rotation of S1;
(5) ω(x, f) = Ω(x, f) for all x ∈ X.

Corollary 1.4. Under the assumptions of Theorem 1.3, if ω(x, f) = Ω(x, f)
for all x ∈ X, then ω(x, fn) = Ω(x, fn) for all x ∈ X and every n ∈ N.

Recently, several authors have been interested in studying local dendrite
maps (for example one can see [1, 2, 4]).

2. Preliminaries

A compact connected metric space is called a continuum. A Peano con-
tinuum is a locally connected continuum. An arc is any space homeomorphic
to the interval I = [0, 1]. We mean by a simple closed cure every continuum
homeomorphic to the circle S1.

Recall that a graph is a continuum which can be written as the union of
finitely many arcs any two of which are either disjoint or intersect only in
one or both of their endpoints (i.e., it is a one-dimensional compact connected
polyhedron). A tree is a graph which contains no simple closed curves.

A dendrite is a Peano continuum which contains no simple closed curves.
Not that every dendrite is uniquely arcwise connected continuum, that is any
two distinct points in a dendrite D can be joined by a unique arc [x, y]. We
define by (x, y) = [x, y] \ {x, y}. For more properties of dendrites (see [19,
Chapter X]). Let D be a dendrite and x ∈ D, x is called anendpoint of D if
D \ {x} is connected. The set of all endpoints of D is denoted by E(D). We
say that x is a cut point of D if x ∈ D \ E(D) [19, Theorem 10.7, p. 168].
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By a local dendrite, we mean a continuum every point of which has a dendrite
neighborhood. Each local dendrite is a Peano continuum which has a finite
number of circles [15]. Since every subcontinuum of a dendrite is a dendrite
[15, º51, VI, Theorem 4], a subcontinuum of a local dendrite is a local dendrite.
The simple examples of local dendrites are graphs and dendrites. Let X be
a local dendrite. A point e ∈ X is called an endpoint of X if it admits a
neighborhood U in X such that U is an arc and U \ {e} is connected. The set
of endpoints of X is denoted by E(X). A point x ∈ X is called a branch point
of X if there exists a closed neighborhoodD of x which is a dendrite such that x
is a branch point of D (i.e. D \{x} has more than two connected components).
We denoted by B(X) the set of branch points of X . By [15, Theorem 6,304
and Theorem 7, 302], B(X) is at most countable. A local dendrite map is a
map from a local dendrite into itself.

Lemma 2.1 ([1]). Let X be a local dendrite and Y be a sub-local dendrite
of X distinct of X such that any arc J of X joining two distinct points of Y
is included in Y . Then for any connected component C of X \ Y , C ∩ Y is
degenerate (i.e. reduced to a point).

If S1, S2, . . ., Sr are the circles in a local dendrite X , then Γ(X) is the
intersection of all subgraphs in X containing the union of S′

is. Therefore, Γ(X)
is the smallest graph containing all circles of the local dendrite X . Define

X \Γ(X) =
⋃

i∈A

Ci where Ci are the connected components of X \Γ(X). Since

B(X) is at most countable, the set A is at most countable. By Lemma 2.1, for
any i ∈ A, Ci ∩ Γ(X) is reduced to a point zi. Let Ak be a subset of A such

that, for each i ∈ Ak, Ci ∩ Γ(X) = {zk}. Put C
k =

⊔

i∈Ak

Ci.

Since Γ(X) contains all circles of X , by [1] and [4, Lemma 2.4], we obtain
the following lemma.

Lemma 2.2. Under the notation above, the (Ck)k are pairwise disjoint sub-
dendrites of X.

Lemma 2.3. If X is a local dendrite with E(X) is countable then every sub-
local dendrite of X has a countable set of endpoints.

Proof. Let Y be a sub-local dendrite of X . If E(Y ) is uncountable, then there
exists a connected component C of Y \ Γ(Y ) such that C is a dendrite with
uncountable set of endpoints. Since Y ∩Γ(X) = Γ(Y ), Y \Γ(Y ) = Y \Γ(X) ⊂
X \ Γ(X). Therefore, there exists a connected component L of X \ Γ(X) such
that C ⊂ L. Now we define a one-to-one function f : E(C) → E(L) by: let
e ∈ E(C). If e ∈ E(L), then f(e) = e. If e /∈ E(L), let Ce be a connected
component of L \C such that Ce ∩C = {e}. We take f(e) ∈ E(Ce) \ {e}. It is
easy to see that f is a one-to-one function. Thus the cardinality of E(C) is less
than or equal to the cardinality of E(L). Consequently, E(L) is uncountable
which implies that E(X) is uncountable, a contradiction. �
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Lemma 2.4 ([2, Lemma 4.3]). Let (X,d) be a local dendrite. Thus, for every
ε > 0, there exists δ = δ(ε) > 0 such that, for any x and y in X with d(x, y) < δ,
the diameter diam([x, y]) < ε.

3. Proof of Theorem 1.1

To prove Theorem 1.1 we will use the following two results. The first one is
proved in [11, Lemma 3.5].

Lemma 3.1. Let X be a compact metric space and f : X → X be an equicon-
tinuous map. Then ω(x, fn) = Ω(x, fn) for all x ∈ X and for all n ∈ N.

Part (2) of the following result is shown in [17, Proposition 2.4], so we prove
only part (1).

Lemma 3.2. Let X be a compact metric space and f : X → X be a map.
Then the following assertions hold:

(1) If ω(x, f) = Ω(x, f) for all x ∈ X, then

∞⋂

n=1

fn(X) = R(f);

(2) If f is equicontinuous, then

∞⋂

n=1

fn(X) = R(f).

Proof. Since X is compact and f(R(f)) = R(f),
⋂

n∈N

fn(X) ⊇ R(f). Con-

versely, given x ∈
⋂

n∈N

fn(X), there is a sequence xk ∈ X and x0 ∈ X

with xk → x0 and nk → +∞ such that fnk(xk) = x for all k ∈ N. Hence
x ∈ Ω(x0, f) = ω(x0, f). Since x ∈ ω(x0, f), there exists a sequence (pk)k ∈ N,
pk → ∞ such that fpk(x0) → x. By choosing a subsequence, we can suppose
that pk+1 − pk > k for all k ∈ N. Then fpk+1−pk(fpk(x0)) = fpk+1(x0) → x.
Therefore, x ∈ Ω(x, f) = ω(x, f) which implies that x ∈ R(f). Consequently,
∞⋂

n=0

fn(X) = R(f). �

Remark that, in the above Lemma, if we suppose that f is an onto map, we
infer that f is pointwise recurrent that is, R(f) = X .

Proof of Theorem 1.1. By Lemma 3.1 we have (1) ⇒ (2).

To show that (2) ⇒ (1), assume that

∞⋂

n=1

fn(X) = P (f) and that (2) holds.

Note that, in [22, Lemma 2.4] it is proved that (2) ⇒ (1) if X is a dendrite. We
will extend this result for every compact metric space X . Since X is compact
then

Ω(x, fn) = ω(x, fn) ⊂

∞⋂

n=1

fn(X) = P (f)

for all x ∈ X and every n ∈ N. If f is not equicontinuous, then there exist
x ∈ X , a sequence (xn)n in X with xn → x and a sequence (pn)n in N,
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pn → ∞ such that fpn(xn) → a ∈ X and fpn(x) → b ∈ X with a 6= b. Then
a ∈ Ω(x, f) ⊂ P (f) and b ∈ ω(x, f) ⊂ P (f). Since a and b are in P (f),
there exists k ∈ N such that a, b ∈ Fix(fk). We can assume, without loss of
generality, that modulus k, pn is congruent with r (pn = kqn + r), for every
n ∈ N. Note that f r(xn) → f r(x), kqn → ∞ and fkqn(f r(xn)) → a. Thus a ∈
Ω(f r(x), fk) = ω(f r(x), fk). Consequently, there is a sequence sn → ∞ (by
choosing a subsequence, we can suppose sn−qn > n) such that (fk)sn(f r(x)) →
a. Since r = pn − kqn, fksn(fpn−kqn(x)) = fksn−kqn(fpn(x)) → a. Since
fpn(x) → b, a ∈ Ω(b, fk) = ω(b, fk) = {b}. Therefore, a = b which leads to a
contradiction. Then f is equicontinuous. �

The following examples show that the condition

∞⋂

n=1

fn(X) = P (f) of The-

orem 1.1 is essential. Example 3.3 is inspired from [14, page 92].

Example 3.3. There exist a compact metric space X and a homeomorphism

fX → X such that

∞⋂

n=1

fn(X) 6= P (f), Ω((x, y), fn) = ω(x, fn) for all x ∈ X

and n ∈ N, and f is not equicontinuous.
Let yn ∈ R \ Q be a sequence which converges to y∞ ∈ R \ Q, S1 = R/Z

be a unit circle, and X = S1 × {yn : n ∈ N ∪ {∞}}. Then X is a compact
metric space with the metric d induced from one of the Euclidean space R2.
Let f : X → X by f(x, y) = (x + y, y). Note that, f is a homeomorphism.

Thus

∞⋂

n=1

fn(X) = X . Since {yn : n ∈ N∪{∞}} ⊂ R\Q, P (f) = ∅. Therefore,

∞⋂

n=1

fn(X) 6= P (f).

Let (x, y) ∈ X and n ∈ N. Since fn(x, y) = (x + ny, y), on S1, x 7→ x + ny
is an irrational rotation. Then ω((x, y), fn) = S1 × {y} and Ω((x, y), fn) =
S1 × {y}. Consequently, Ω((x, y), fn) = ω(x, fn) for all x ∈ X and n ∈ N.

f is not equicontinuous; indeed, fix a small ε > 0 (e.g. ε = 1
4 ) and arbitrary

δ > 0. Choose a pair p = (x, y); q = (x, y∞) with 0 < |y − y∞| < ε and
d(q, p) < δ. Fix an integer N > 1 such that k|y− y∞| < ε < N |y− y∞| < 1 for
any integer k < N . Then d(fN (p), fN (q)) > N |y − y∞| > ε. Consequently, f
is not equicontinuous.

Remark that the action of f is distal; indeed, let (x, y) 6= (x′, y′) be two
points of X . If limfki(x, y) = limfki(x′, y′), then lim(x + kiy, y) = lim(x′ +
kiy

′, y′) which implies that y = y′ and x = x′ which is impossible.

Example 3.4. There exist a compact metric space X and a non surjective

map f : X → X such that

∞⋂

n=1

fn(X) 6= P (f), Ω((x, y), fn) = ω(x, fn) for all

x ∈ X and n ∈ N, and f is not equicontinuous.
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As in the Example 3.3, we put X = S1 × {yn : n ∈ N ∪ {∞}}. Let f :
X → X by f(x, y) = (x + y, y∞). Note that, f is a non surjective map and
∞⋂

n=1

fn(X) = S1 × {y∞}. Since {yn : n ∈ N ∪ {∞}} ⊂ R \ Q, P (f) = ∅.

Therefore,

∞⋂

n=1

fn(X) 6= P (f).

Let (x, y) ∈ X and n ∈ N. Since fn(x, y) = (x+ny, y∞), on S1, x 7→ x+ny
is an irrational rotation. Then ω((x, y), fn) = S1 × {y∞} and Ω((x, y), fn) =
S1 × {y∞}. Consequently, Ω((x, y), fn) = ω(x, fn) for all x ∈ X and n ∈ N.

As in the Example 3.3, f is not equicontinuous.

4. Proofs of Proposition 1.2 and Theorem 1.3

Lemma 4.1. Let X be a compact metric space and f : X → X be a map.
Consider the following statements:

(1) R(f) = X;
(2) f is an equicontinuous homeomorphism.

Then (2) implies (1) and if X is a dendrite, then (1) implies (2).

Proof. By [18, Lemma 2.4], a homeomorphism of a compact metric space is
equicontinuous if and only if it is distal and locally almost periodic. The last
condition implies that R(f) = X . Hence (2) implies (1).

(1) ⇒ (2) From [7, Theorem 1.18] we have f is a homeomorphism and
X \E(X) ⊂ P (f) hence, by the equivalence between clauses (1) and (8) of [20,
Theorem 3.8], f is equicontinuous. �

According to [4, Lemma 2.8], we get the following lemma.

Lemma 4.2. Let f : X → X be a local dendrite map. If R(f) = X, then
f(Γ(X)) = Γ(X).

Note that, by [1, Proposition 3.6], if f is a monotone onto local dendrite
map, then f(Γ(X)) = Γ(X).

Now we introduce some notations used in the proof of Lemma 4.3. A spaceX
is said to be almost totally disconnected if the set of its degenerate components,
considered as a subset of X , is dense in X . A compact metric space X is called
a cantoroid if it is almost totally disconnected and has no isolated point. A
generalized brain is a cantoroid whose nondegenerate components form a null
family, they are local dendrites and only finitely many of them contain circles.

Lemma 4.3. Let f : X → X be a local dendrite map. If X 6= S1 then f is not
minimal.

Proof. If X 6= S1, by [16, Theorem 3.2] and [19, Theorems 10.31], the result
holds whenever X is either a graph or a dendrite. If X is neither a dendrite
nor a graph, then X contains at least an attached dendrite. According to [5,
Theorem C], a minimal set on local dendrites is either a finite set or a finite
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union of disjoint circles or a generalized brain. Since a generalized brain is not
connected, a local dendrite can not be a minimal set. This ends the proof of
Lemma 4.3. �

According to [17, Proposition 2.5], we get the following lemma.

Lemma 4.4. Let f : X → X be a local dendrite map and let p ∈ N. Then f
is equicontinuous if and only if fp is equicontinuous.

According to [4, Theorem 2.1], we have the following result.

Theorem 4.5. Let f : X → X be a local dendrite map. Then f is pointwise
recurrent if and only if f is a homeomorphism such that one of the following
statements holds:

(1) If f is not minimal, then every non endpoint has a finite orbit;
(2) If f is minimal, then X = S1 and f is topologically conjugate to an

irrational rotation.

Proof of Proposition 1.2. Assume that R(f) = X . By [17, Corollary 5.1]
and Lemma 4.1, the result holds whenever X is either a graph or a dendrite.
Assume that X is neither a dendrite nor a graph. Assume that X is neither a
dendrite nor a graph.

If f is minimal, then, by Theorem 4.5 f is topologically conjugate to an
irrational rotation. It is well known that every rotation is an isometric, conse-
quently, it is equicontinuous. Thus, by [17, Lemma 3.1] f is equicontinuous.

If f is not minimal, then, by Theorem 4.5, f is a homeomorphism and every
non endpoint has finite orbit. By Lemma 4.2, Γ(X) is invariant. Then, by
[17, Corollary 5.1], f |Γ(X) is equicontinuous. We further have X \ Γ(X) is the

union of pairwise disjoint dendrites (Ck) such that Ck ∩ Γ(X) = {zk} and
as fn0(zk) = zk hence by [1, Lemma 3.8] one has fn0(Ck) = Ck and since
R(f) = R(fn0) = X , fn0 : Ck → Ck is pointwise recurrent. Thus, by Lemma
4.1 and Lemma 4.4, f |Ck is equicontinuous for each k which implies f |X\Γ(X)

is equicontinuous ((Ck) are pairwise disjoint dendrites). Consequently, f is
equicontinuous on X . �

According to [4, Corollary 2.2] we obtain the following result.

Proposition 4.6. Let X be a local dendrite and f : X → X be a local dendrite
map. Assume that E(X) is countable. Then f is pointwise recurrent if and
only if one the following statements holds:

(1) f is a pointwise periodic homeomorphism;
(2) X = S1 and f is topologically conjugate to an irrational rotation.
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Proof of Theorem 1.3. Since X is compact and connected, for every n ∈ N,

fn(X) is also compact and connected. Let M(f) =

∞⋂

n=1

fn(X). It follows from

X ⊃ f(X) ⊃ f2(X) ⊃ · · · that M(f) is a nonempty sub-local dendrite of X .
By [11, Lemma 3.1], f(M(f)) = M(f).

Since M(f) is an f -invariant sub-local dendrite, by Proposition 4.6, (2) is
equivalent to (4).

If R(f) = M(f), then f |M(f) : M(f) → M(f) is pointwise recurrent. Con-
sequently, by Proposition 1.2, f |M(f) is equicontinuous. Therefore, (2) ⇒ (3).

By Lemma 3.2, (1) implies (2).

(3) ⇒ (1). If U = M(f) ∩ X \M(f), then U ⊂ E(M(f)). By Lemma 2.3,
E(M(f)) is countable. Since U is compact, it is a finite set. Obviously, for
every k ∈ N, there exists pk ∈ N such that fpk(X) ⊂ M(f) ∪B(U, 2−k). Since
f |M(f) is equicontinuous, by [17, Theorem 5.1], f is equicontinuous.

By Lemma 3.1, (1) ⇒ (5).
By Lemma 3.2, (5) ⇒ (2). �

The following example shows that E(X) is countable cannot be removed
from the hypothesis of Theorem 1.3.

Example 4.7. By [11, Example 5.4], there exist a dendriteX with uncountable
set of endpoints and a homeomorphism f : X → X such that f satisfies (1)
and does not satisfies (4).

By applying Theorem 1.3 and Lemma 3.1, we obtain Corollary 1.4.
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