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Abstract

Universal elements are one of the most essential parts in research fields,
investigating if there exist (or not) universal elements in different classes
of objects. For example, classes of spaces and frames have been studied
under the prism of this universality property. In this paper, studying
classes of sheaves of Abelian groups, we construct proper universal el-
ements for these classes, giving a positive answer to the existence of
such elements in these classes.
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1. Introduction and Preliminaries

The notion of “universal object” is considered in many branches of Mathe-
matics. The problem of the existence of such objects is naturally arised when-
ever a new category of objects is appeared. Especially for the branch of Topol-
ogy, the problem of the existence of universal elements in different classes of
topological spaces was considered at the first steps of its development. Now, in
the bibliography there are lots of papers concerning universal objects. Many
of them are indicated in the book [9].

In the paper [7] and in the above mentioned book, a method of construction
of so-called Containing Spaces is developed. This method can be used for the
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construction of universal objects in different categories. Such categories are,
for example, topological spaces (with different dimension invariants)(see [3],
Chapter 3 of [9]), separable metric spaces (see Chapter 9 of [9], [10], [12], [13],
[15]), mappings (see [8], Chapter 6 of [9], [10], [11]), topological groups ([11],
[14], [17]), G-spaces (see Chapter 7 of [9], [10], [11], [17], [18]) and frames (see
[2], [4], [5], [6], [16]).

In the present paper we use this method for construction of universal objects
in the category of sheaves of Abelian groups, which play an important role in
the study of cohomology theories of general topological spaces.

General notation and assumptions. An ordinal is considered as the set
of all smaller ordinals. A cardinal is identified with the least ordinal of this
cardinality. By τ we denote a fixed infinite cardinal. By F we denote the set
of all non-empty finite subsets of τ . The symbol ≡ in a relation means that
one or both sides of the relation are new notations. All spaces are assumed to
be T0-spaces of weight ≤ τ . An equivalent relation on a set X is considered as
a subset of X ×X .

1.1 On the sheaves. We consider the notion of a sheaf according to [1]. A
sheaf of Abelian groups is a triad (A, π,X) satisfying the following conditions:

(i) A and X are topological spaces and π is a map of A onto X .
(ii) π is a local homeomorphism, that is each point a ∈ A has an open

neighbourhood V in A such that the restriction of π on V is a homeomorphism
of V onto an open subset of X ;

(iii) for each point x ∈ X the set Ax ≡ π−1(x), which is called fiber of A in
x, is an Abelian group;

(iv) the group operations are continuous. (This condition means the follow-
ing. Let A ⊠ A be the set of all pairs (a, b) ∈ A × A such that π(a) = π(b).
Then, the mapping ̟A : A⊠A → A for which ̟A(a, b) = a+ b is continuous.
Similarly, the mapping iA : A → A for which iA(a) = −a is continuous.)

Below we give some well-known notions of sheaves and introduce some no-
tations, which will be used in the paper. Let p1 ≡ (A1, π1, X1) and p2 ≡
(A2, π2, X2) be two sheaves. A continuous mapping f of A1 into A2 is called
homomorphism if the restriction of f onto each fiber of A1 is a homomorphism
of this fiber into a fiber of A2. The unique mapping g of X1 into X2 satisfying
the relation g ◦ π1 = π2 ◦ f is called induced by f . The homomorphism f is
called isomorphism (or embedding) of p1 into p2 if f and the induced mapping
g are embeddings. The isomorphism f of p1 into p2 is called proper if for each
x ∈ X1 the restriction of f onto the fiber A1,x of A1 in x maps A1,x onto the
fiber A2,g(x) of A2 in g(x). The sheaves p1 and p2 are called isomorphic if there
exists an isomorphism of p1 onto p2.

Let (A, π,X) be a sheaf and U a non-empty subset ofX . A continuous mapping
s : U → A, for which the maping π ◦ s is the identical mapping of U , is called
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section of A on U . We shall consider sections on the open subsets of X and
the set of all such sections will be denoted by A(sec). The set of all sections
on an open subset U of X will be denoted by A(sec)(U). The set A(sec)(U)
is an Abelian group under the pointwise operations. For two subsets U and V
such that U ⊂ V we denote by rAU,V the mapping of A(sec)(V ) into A(sec)(U)

by setting rAU,V (s) = s|U for each s ∈ A(sec)(V ). The section s|U will be

called restriction of the section s and the mapping rAU,V restriction mapping.

Obviously, rAU,V is a homomorphism of the group A(sec)(V ) into the group

A(sec)(U). Moreover, if U, V,W are subsets of X and U ⊂ V ⊂ W , then
rAU,V ◦ rAV,W = rAU,W .

For each section s : U → A the set dom(s) ≡ U is called the domain of s and
the set ran(s) ≡ s(U) is called the range of s. For each subset B ⊂ A(sec) and
x ∈ X we put

dom(B) = {dom(s) : s ∈ B}, ran(B) = {ran(s) : s ∈ B}

and

dom(B)(x) = {dom(s) : s ∈ B, x ∈ dom(s)}.

Also, for each non-empty subset U ⊂ X , we put

B(U) = {s ∈ B : dom(s) = U}.

We note that for each s ∈ A(sec) the set ran(s) is an open subset of A and
that the set ran(A(sec)) is a base for the open subsets of A.

The set dom(A(sec))(x) is directed by inclusion “⊂ ”. Thus, for each x ∈ X
we have a direct spectrum of Abelian groups

ΣA
x ≡ {A(sec)(U), rAU,V , dom(A(sec))(x)},

where U, V ∈ dom(A(sec))(x) with U ⊂ V and rAU,V is the restriction mapping
of cuts. The mapping

ϑA
x : lim

−→
ΣA

x → Ax,

of the limit group lim
−→

ΣA
x of the spectrum σA

x into Ax, defined by relation

ϑA
x (σ) = s(x), where σ is an arbitrary element of the limit group lim

−→
ΣA

x and

s ∈ σ, is an isomorphism of lim
−→

ΣA
x onto Ax.

1.2 On the Containing Spaces. In this section we briefly explain the con-
struction of the Containing Spaces (see [7], [9]). The spaces of the universal
sheaves in the main result of the paper (see below Theorem 1.3.1) will be
Containing Spaces. A Containing Space is constructed for a given indexed col-
lection S of spaces and it is uniquely determined by a base B for S (in [7] and
[9] the base B is called mark and it is denoted by M):

B ≡ {{UX
δ : δ ∈ τ} : X ∈ S},
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where {UX
δ : δ ∈ τ} is an indexed base for the open subsets of X ∈ S, and by

a family R of equivalence relations on S:

R ≡ {∼t: t ∈ F}.

It is required that R satisfies the following conditions:
(a) for each t ∈ F the number of equivalence classes of ∼t is finite;
(b) for each t1 ⊂ t2 ∈ F , ∼t2 ⊂∼t1 ;
(c) for each X,Y ∈ S the condition X ∼t Y for some t ∈ F , implies that

the algebra of subsets of X , generated by the set {UX
δ : δ ∈ t}, and the

algebra of subsets of Y , generated by the set {UY
δ : δ ∈ t}, are isomorphic

and the correspondence UX
δ → UY

δ , δ ∈ t, generates an isomorphism of these
algebras. Such a family is called B-admissible. Also, for each t ∈ F we denote
by C(∼t) the set of equivalence classes of ∼t and put C(R) = ∪{C(∼t) : t ∈
F}. The corresponding Containing Space is denoted by T ≡ T(B,R) and its
construction is done as follows.

Let ∼B

R be the equivalence relation on a set of all pairs (x,X), where x ∈ X ∈ S,
defined as follows: two such pairs (x,X) and (y, Y ) are ∼B

R -equivalent if and
only if: (a) X ∼t Y for each t ∈ F and (b) for each δ ∈ τ , x ∈ UX

δ if and only
if y ∈ UY

δ . Then, T is the set of all equivalence classes of ∼B

R and the set

BT ≡ {UT
δ (H) : δ ∈ τ,H ∈ C(R)},

where UT
δ (H) is the set consisting of all points a ∈ T such that there exists

an element (x,X) ∈ a for which X ∈ H and x ∈ UX
δ , is a base for a topology

on T, called standard base (see Corollary 2.8 of [7]). We note that if for some
κ ⊂ τ and for each X ∈ S the set {UX

δ : δ ∈ κ} is a base for the open subsets
of X , then the set

{UT
δ (H) : δ ∈ κ,H ∈ C(R)}

is also a base for the open subsets of the space T (see Corollary 2.8 of [7]).

The mapping iXT : X → T, defining by the relation iXT (x) = a ∈ T, where
x ∈ X ∈ S and a is the point of T containing the pair (x,X), is an embedding
of X into T, which is called natural (see Proposition 2.10 of [7]).

In the paper, we shall use also the following notions. Let

B1 ≡ {{UX
1,δ : δ ∈ τ} : X ∈ S} and B2 ≡ {{UX

2,δ : δ ∈ τ} : X ∈ S},

where {UX
1,δ : δ ∈ τ} and {UX

2,δ : δ ∈ τ} are indexed sets of subsets of X ∈ S

(in particular, they may be indexed bases of X) and B2 is a base for S. The
base B2 is an extension of B1 if there exists an one-to-one mapping ϑ : τ → τ ,
called extension mapping, such that UX

1,δ = UY
2,ϑ(δ), δ ∈ τ . We shall also say

that for a given X ∈ S, {UX
2,δ : δ ∈ τ} is an extension of {UX

1,δ : δ ∈ τ} with the
extension mapping ϑ. Let

R1 ≡ {∼t
1: t ∈ F}, and R2 ≡ {∼t

2: t ∈ F}
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be two families of equivalence relations on S. We say that R2 is a final refine-
ment of R1 if for each t ∈ F there exists t′ ∈ F such that ∼t′

2 ⊂∼t
1.

A class S of spaces is called saturated if for each indexed collection S of elements
of S, there exists a base B0 for S such that for each extension B of B0, there
exists a B-admissible family RB of equivalence relations on S with the property
that for each admissible family R of equivalence relations on S being a final
refinement of RB, the containing space T(B,R) belongs to S (see Section 3 of
[7] and Chapter 2 of [9]). The base B0 is called initial base for S (corresponding
to the class S) and RB initial family of equivalence relations on S corresponding
to B (and the class S). Below, we give some examples of saturated classes of
spaces of weight ≤ τ .

(1) the class of all T0-spaces (see Propositions 2.9 of [7]);
(2) the class of all regular spaces (see Propositions 3.5 of [7]);
(3) the class of all completely regular spaces (see Propositions 3.8 of [7]);
(4) the class of all spaces of small inductive dimension ind ≤ n ∈ N;
(5) the class of all countable-dimensional spaces;
(6) the class of all strongly contable-dimensional spaces;
(7) the class of all locally finite-dimensional spaces;
(8) the intersection of any two saturated classes of spaces.

(For the above example (4) see Corrolary 3.1.6 of [9], for (5), (6) and (7) see
Proposition 4.4.4 of [9] and for example (8) see Proposition 3.3 of [7]).

1.3 The results. Let S be a class of sheaves. A sheaf p̄ is called proper
universal in the class S if p̄ ∈ S and for each p ∈ S there exist a proper
isomorphism of p into p̄.

The main result of this paper is the following theorem.

Theorem 1.3.1. Let Sd and Sr be two saturated classes of spaces of weights

≤ τ . Then, in the class of all sheaves (A, π,X), for which A ∈ Sd and X ∈ Sr,

there exists a proper universal element (Ā, π̄, X̄).

Since the class of T0-spaces of countable weight and the class of separable
metric spaces are saturated classes we have the following corollary.

Corollary 1.3.2. In the class of all sheaves (A, π,X), where A is a T0-space

of countable weight and X is a separable metrizable space there exists a proper

universal element.

2. Proof of the result

Lemma 2.1. Let (A, π,X) be a sheaf of Abelian groups. There exists a subset
B ⊂ A(sec) such that:

(a) ran(B) is a base for the open subsets of A of cardinality w(A) ≤ τ and,
therefore, the set dom(B) is a base for the open subsets of X;

(b) for each U ∈ dom(B), B(U) is a subgroup of the group A(sec)(U).
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(c) for each U, V ∈ dom(B) with U ⊂ V the restriction s|U of any cut
s ∈ B(V ) belongs to B.

Proof. Since A(sec) is a base for A, there exists a subset B0 ⊂ A(sec) such that
ran(B0) is a base for the open subsets of A of cardinality w(A). By induction
we define the subset Bn ⊂ A(sec), n ∈ N, setting

Bn = Bn−1 ∪ (∪{Bn−1
+ (U) ⊂ A(sec)(U) : U ∈ dom(Bn−1)})

∪{s|U : s ∈ Bn−1(V ), U, V ∈ dom(Bn−1), U ⊂ V },

where Bn−1
+ (U) is the subgroup of A(sec)(U) generated by the set Bn−1(U).

It is easy to see that the set B ≡ ∪{Bn : n ∈ ω} is the required set. �

The direct spectrum ΣB
x . Let (A, π,X) be a sheaf, B a subset of A(sec),

satisfying the conditions of Lemma 2.1, and x ∈ X . By property (a) of this
lemma, ran(B) is a base of A and, therefore, the set dom(B) is a base for the
open subsets of X . Hence, the set dom(B)(x) is directed by inclusion “⊂ ”.
By property (c) of Lemma 2.1, for each U, V ∈ dom(B)(x) with U ⊂ V the
restriction of rAU,V onto B(V ) is an isomorphism of B(V ) into B(U). We shall

denote this restriction by rBU,V . Thus, for each x ∈ X we have a direct spectrum

ΣB
x of groups:

ΣB
x ≡ {B(U), rBU,V , dom(B)(x)}. (2.1.1)

Let σB be an arbitrary element of the limit group lim
−→

ΣB
x of the spectrum (2.1.1)

and s ∈ σB . We define the mapping ϑB
x : lim

−→
ΣB

x → Ax setting ϑB
x (σ

B) = s(x).

Lemma 2.2. Let

ϑB,A
x : lim

−→
ΣB

x → lim
−→

ΣA
x

be the mapping defined as follows: for each σB ∈ lim
−→

ΣB
x we put ϑB,A

x (σB) =

σA, where σA is the element of lim
−→

ΣA
x containing σB . Then, ϑB,A

x is well-

defined (that is, the element σA is uniquely determined), one-to-one, onto and
preserves the group operations, that is it is an isomorphism of lim

−→
ΣB

x onto

lim
−→

ΣA
x . Moreover, ϑB

x = ϑA
x ◦ ϑB,A

x and, therefore, ϑB
x is an isomorphism and

onto mapping.

Proof. Since the mappings rBU,V of the spectrum ΣB
x are the restrictions of the

corresponding mappings rAU,V of the spectrum ΣA
x each element σB of lim

−→
ΣB

x is

contained in an uniquely determined element σA of lim
−→

ΣA
x , that is the mapping

ϑB,A
x is well-defined.

We prove that ϑB,A
x is one-to-one. Let σB

1 and σB
2 be two distinct elements of

lim
−→

ΣB
x and let σA

1 , σA
2 ∈ lim

−→
ΣA

x such that σB
1 ⊂ σA

1 and σB
2 ⊂ σA

2 . Suppose

that σA
1 = σA

2 and let s1 ∈ σB
1 and s2 ∈ σB

2 and, therefore, s1, s2 ∈ σA
1 . Then,

there exists s3 ∈ σA
1 , which is a restriction of s1 and a restriction of s2. Since

dom(B) is a base for the open subsets of X (see property (a) of Lemma 2.1)
there exists s0 ∈ B such that x ∈ dom(s0) ⊂ dom(s3) and ran(s0) ⊂ ran(s3).
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Then, s0 is the restriction of s3 and, therefore, the restriction of s1 and s2,
which contradicts the fact that s1 and s2 belong to distinct elements of lim

−→
ΣB

x .

Thus, ϑB,A
x is one-to-one.

We prove that ϑB,A
x is onto. Let σA be an element of lim

−→
ΣA

x and s ∈ σA
x .

Consider an element s0 ∈ B such that x ∈ dom(s0) ⊂ dom(s) and ran(s0) ⊂
ran(s). Then for the element σB containing s0 we have ϑB,A

x (σB) = σA,
proving that ϑB,A

x is onto.

We prove that ϑB,A
x preserves the group operations. Let σB

1 , σB
2 ∈ lim

−→
ΣB

x and

let ϑB,A
x (σB

1 ) = σA
1 and ϑB,A

x (σB
2 ) = σA

2 . Let s1 ∈ σB
1 and s2 ∈ σB

2 . Consider
an element s0 ∈ B such that dom(s0) ⊂ dom(s1)∩dom(s2). Let s

′
1 = s1|dom(s0)

and s′2 = s2|dom(s0). Then, by proprety (c) of Lemma 2.1, s′1, s
′
2 ∈ B and by

property (b) of this lemma, s′1 + s′2 ∈ B. Therefore, s′1 + s′2 ∈ σB
1 + σB

2 . On
the other hand, s′1 ∈ σA

1 and s′2 ∈ σA
2 and, therefore, s′1 + s′2 ∈ σA

1 + σA
2 ,

proving that ϑB,A
x preserves the sum operation. Similarly, we can prove that

ϑB,A
x preserves the taking of the inverse element. Thus, the mapping ϑB,A

x is
an isomorphism of lim

−→
ΣB

x onto lim
−→

ΣA
x .The relation ϑB

x = ϑA
x ◦ ϑB,A

x is easy to
verify. �

The indexed collections S, A and X. Consider the saturated classes Sd

and Sr of the theorem. By set-theoretical reasons we can suppose that there
exists a collection S of sheaves (A, π,X) such that A ∈ Sd, X ∈ Sr and each
sheaf (A′, π′, X ′), for which A′ ∈ Sd and X ′ ∈ Sr, is isomorphic to an element
of S. Moreover, we can suppose that S is indexed by a set Λ:

S ≡ {(Aλ, πλ, Xλ) : λ ∈ Λ}.

We put

A ≡ {Aλ : λ ∈ Λ}, X ≡ {Xλ : λ ∈ Λ}.

and consider A and X as indexed by Λ sets of topological spaces.

The bases BA and BX for A and X, respectively. For each element
(Aλ, πλ, Xλ) ∈ S we consider a subset Bλ ⊂ Aλ(sec) satisfying the conditions
of Lemma 2.1. Since |Bλ| = w(Aλ) ≤ τ (see the property (a) of Lemma 2.1),
we can suppose that Bλ is indexed by the set τ :

Bλ = {sλη : η ∈ τ}.

Furthermore, we put

BAλ

0 ≡ {V Aλ
η ≡ ran(sλη ) : η ∈ τ}, and BXλ

0 ≡ {V Xλ
η ≡ dom(sλη ) : η ∈ τ}.

Let θ0 and θ1 be two one-to-one mappings of τ into itself such that

|θ0(τ)| = |θ1(τ)|, θ0(τ) ∩ θ1(τ) = ∅ and θ0(τ) ∪ θ1(τ) = τ.
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(We note that these mappings are independed on λ ∈ Λ.) For each λ ∈ Λ we
put

WAλ

ζ = V Aλ

θ
−1

0
(ζ)

if ζ ∈ θ0(τ) and WAλ

ζ = π−1
λ (V Xλ

θ
−1

1
(ζ)

) if ζ ∈ θ1(τ).

Therefore, the indexed set

BAλ

1 ≡ {WAλ

ζ : ζ ∈ τ}

is an extension of the indexed base BAλ

0 ofAλ and, simultaneously, an extension
of the indexed set

π−1
λ (BXλ

0 ) ≡ {π−1
λ (V Xλ

η ) : η ∈ τ}

of subsets of Aλ with the extension mappings θ0 and θ1, respectively.

Now, we consider a base

BA ≡ {BAλ ≡ {UAλ
ε : ε ∈ τ} : λ ∈ Λ}

for A, which is an initial base corresponding to the saturated class Sd and,
simultaneously, is an extension of the base

BA

1 ≡ {{WAλ

ζ : ζ ∈ τ} : λ ∈ Λ}

for A with an extension mapping θA.

Also, we consider a base

BX ≡ {BXλ ≡ {UXλ

δ : δ ∈ τ} : λ ∈ Λ}

for X, which is an initial base corresponding to the saturated class Sr and,
simultaneously, is an extension of the base

BX

0 ≡ {{V Xλ
η : η ∈ τ} : λ ∈ Λ}

for X with an extension mapping θX.

The families RA and RX of equivalence relations. We denote by

RA ≡ {∼t
A
: t ∈ F}

a BA-admissible family of equivalence relation on A and by

RX ≡ {∼t
X: t ∈ F}

a BX-admissible family of equivalence relations on X. We suppose that RA

and RX satisfy the following conditions:
(1) for each λ, µ ∈ Λ and t ∈ F the equivalence Xλ ∼t

X
Xµ is true if and

only if the equivalence Aλ ∼t
A
Aµ is true;

(2) for each λ, µ ∈ Λ, t ∈ F , and η1, η2, η ∈ t the equivalence Aλ ∼t
A

Aµ

implies that the conditions:
(21) dom(sλη1

) = dom(sλη2
) and sλη1

+ sλη2
= sλη and

(22) dom(sµη1
) = dom(sµη2

) and sµη1
+ sµη2

= sµη
are equivalent;

(3) for each λ, µ ∈ Λ, t ∈ F , and η1, η2 ∈ t the equivalence Aλ ∼t
A

Aµ

implies that the conditions:
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(31) dom(sλη1
) = dom(sλη2

) and sλη1
= −sλη2

and
(32) dom(sµη1

) = dom(sµη2
) and sµη1

= −sµη2

are equivalent ;
(4) for each λ, µ ∈ Λ, t ∈ F , and η1, η2 ∈ t the equivalence Aλ ∼t

A
Aµ

implies that the conditions:
(41) ran(s

λ
η1
) ⊂ ran(sλη2

) and
(42) ran(s

µ
η1
) ⊂ ran(sµη2

)
are equivalent;

(5) for each λ, µ ∈ Λ, t ∈ F , and η1, η2 ∈ t the equivalence Aλ ∼t
A

Aµ

implies that the conditions:
(51) dom(sλη1

) ⊂ dom(sλη2
) and

(52) dom(sµη1
) ⊂ dom(sµη2

)
are equivalent.

Lemma 2.3. The BA-admissible family RA and the BX-admissible family RX

satisfying conditions (1)− (5) exist.

Proof. Since the class Sd is saturated there exists a BA-admissible family
R0,A ≡ {∼t

0,A: t ∈ F}, which is initial for the base BA and the class Sd.

Similarly, there exists BX-admissible family R0,X ≡ {∼t
0,X: t ∈ F}, which is

initial for the base BX and the class Sr.

Let t ∈ F and η1, η2, η ∈ t. We denote by ∼t
i, i ∈ {2, 3, 4, 5}, the equivalence

relation on A defined as follows: Aλ ∼t
i Aµ, λ, µ ∈ Λ, if and only if the

conditions (i1) and (i2) are equivalent for all indexes η1, η2, η, which belong to
t. Obviously, the relations ∼t

i, i ∈ {2, 3, 4, 5}, are admissible.

Let R1,A ≡ {∼t
1,A: t ∈ F} be the family of equivalence relations on A, where

∼t
1,A=∼t

0,A ∩(∩{∼t
i: i ∈ {2, 3, 4, 5}}) for each t ∈ F . Now, for each t ∈ F

we define the equivalence relation ∼t
A

on A as follows: Aλ ∼t
A

Aµ, λ, µ ∈ Λ,
if and only if Aλ ∼t

1,A Aµ and Xλ ∼t
0,X Xµ. Also, we define the equivalence

relation ∼t
X
, t ∈ F , on X as follows: Xλ ∼t

X
Xµ if and only if Aλ ∼t

A
Aµ. It

is easy to see that

RA ≡ {∼t
A
: t ∈ F} and RX ≡ {∼t

X
: t ∈ F}

are the required families of equivalence relations. �

The equivalence relations ∼A and ∼X. We put

∼A= ∩{∼t
A
: t ∈ F} and ∼X= ∩{∼t

X
: t ∈ F}.

The following two lemmas can easily be proved.

Lemma 2.4. Let Aλ ∼A Aµ, λ, µ ∈ Λ. Then, the algebra of subsets of Aλ,
generated by the set BAλ , and the algebra of subsets of Aµ, generated by the set

BAµ , are isomorphic and the correspondence UAλ
ε → U

Aµ
ε , ε ∈ τ , generates this

isomorphism. Therefore, for any κ ⊂ τ the algebra of subsets of Aλ, generated
by the set {UAλ

ε : ε ∈ κ}, and the algebra of subsets of Aµ, generated by the
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set {U
Aµ
ε : ε ∈ κ}, are isomorphic and the correspondence UAλ

ε → U
Aµ
ε , ε ∈ κ,

generates this isomorphism. Moreover, for each η, η1, η2 ∈ τ we have:
(a) the cut sλη1

is a restriction of the cut sλη2
if and only if the cut sµη1

is the
restriction of the cut sµη2

;

(b) the equalities dom(sλη1
) = dom(sλη2

) and sλη = sλη1
+ sλη2

are true if and
only if the equalities dom(sµη1

) = dom(sµη2
) and sµη = sµη1

+ sµη2
are true;

(c) the equalities dom(sλη1
) = dom(sλη2

) and sλη1
= −sλη2

are true if and only
if the equalities dom(sµη1

) = dom(sµη2
) and sµη1

= −sµη2
are true.

Lemma 2.5. Let Xλ ∼X Xµ, λ, µ ∈ Λ. Then, the algebra of subsets of Xλ,
generated by the set BXλ , and the algebra of subsets of Xµ, generated by the set

BXµ , are isomorphic and the correspondence UXλ

δ → U
Xµ

δ , δ ∈ τ , generates
this isomorphism. Therefore, for any k ⊂ τ the algebra of subsets of Xλ,
generated by the set {UXλ

δ : δ ∈ κ}, and the algebra of subsets of Xµ, generated

by the set {U
Xµ

δ : δ ∈ κ}, are isomorphic and the correspondence UXλ

δ → U
Xµ

δ ,
δ ∈ κ, generates this isomorphism.

The triad (Ā, π̄, X̄). We put Ā = T(BA,RA), X̄ = T(BX,RX) and define
the mapping π̄ as follows. Let a ∈ Ā and (aλ,Aλ) ∈ a for some λ ∈ Λ. Then,
we put π̄(a) = x, where x is the point of X̄ containing the pair (πλ(a

λ), Xλ).
In what follows we shall prove that the triad (Ā, π̄, X̄) is the required universal
sheaf.

Lemma 2.6. The mapping π̄ is correctly defined (that is, it is independent
from the element (aλ,Aλ) ∈ a considered in its definition).

Proof. Let a ∈ Ā and (aλ,Aλ), (b
µ,Aµ) ∈ a, that is (aλ,Aλ) and (bµ,Aµ) are

∼B
A

RA
-equivalent. We must prove that if πλ(a

λ) = xλ and πµ(b
µ) = yµ, then

(xλ, Xλ) and (yµ, Xµ) are ∼B
X

RX
-equivalent, that is Xλ ∼X Xµ and for each

δ ∈ τ either xλ ∈ UXλ

δ and yµ ∈ U
Xµ

δ or xλ /∈ UXλ

δ and yµ /∈ U
Xµ

δ . Since

(aλ,Aλ) and (bµ,Aµ) are ∼
B

A

RA
-equivalent, Aλ ∼A Aµ. By the condition (1) of

the definitions of RA and RX we have Xλ ∼X Xµ. Suppose that there exists

δ0 ∈ τ such that, for example, xλ ∈ UXλ

δ0
and yµ /∈ U

Xµ

δ0
. Then, aλ ∈ π−1

λ (UXλ

δ0
)

and bµ /∈ π−1
µ (U

Xµ

δ0
).

Since the set BXλ

0 is a base for the open subsets of Xλ, there exists η ∈ τ

such that xλ ∈ V Xλ
η ⊂ UXλ

δ0
. Let δ1 = θX(η) and, therefore, V Xλ

η = UXλ

δ1

and V
Xµ
η = U

Xµ

δ1
. Then, UXλ

δ1
⊂ UXλ

δ0
. By Lemma 2.5 we have U

Xµ

δ1
⊂ U

Xµ

δ0

and, therefore, yµ /∈ U
Xµ

δ1
= V

Xµ
η . Since BA is an extension of π−1

λ (BXλ

0 )

with the extension mapping θA ◦ θ1 we have UAν
ε = π−1

ν (V Xν
η ) for each ν ∈ Λ

and ε = θA(θ1(η)). Therefore, for λ and µ we have UAλ
ε = π−1

λ (V Xλ
η ) and

U
Aµ
ε = π−1

µ (V
Xµ
η ), respectively, and hence aλ ∈ UAλ

ε and bµ 6= U
Aµ
ε , which

contradicts the fact that (aλ,Aλ) and (bµ,Aµ) are ∼B
A

RA
-equivalent. �
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The following lemma can easily be verified.

Lemma 2.7. For each λ ∈ Λ the following relation is true:

π̄ ◦ iAλ

Ā
= iXλ

X̄
◦ πλ, (2.7.1)

where iAλ

Ā
is the natural embedding of Aλ into Ā and iXλ

X̄
is the natural em-

bedding of Xλ into X̄.

Lemma 2.8. For each η ∈ τ and H ∈ C(RA) we have

π̄(U Ā
ε (H)) = U X̄

δ (L),

where ε = θA(θ0(η)), δ = θX(η) and L is the element of C(RX), consisting of
all elements Xλ ∈ X for which Aλ ∈ H (we shall say that L and H correspond
each other).

Proof. Let η ∈ τ , ε = θA(θ0(η)), δ = θX(η) and H ∈ C(RA). Then, for each
λ ∈ Λ, UAλ

ε = im(sλη ). By the definition of the elements of the standard base
of the Containing Spaces, we have

U Ā
ε (H) = ∪{iAλ

Ā
(UAλ

ε ) : Aλ ∈ H} = ∪{iAλ

Ā
(ran(sλη )) : Aλ ∈ H}.

Therefore, using relation (2.7.1), we have

π̄(U Ā
ε (H)) = ∪{π̄(iAλ

Ā
(ran(sλη ))) : Aλ ∈ H} =

∪{iXλ

X̄
(πλ(ran(s

λ
η ))) : Xλ ∈ L} = ∪{iXλ

X̄
(dom(sλη )) : Xλ ∈ L} =

∪{iXλ

X̄
(UXλ

δ )) : Xλ ∈ L} = U X̄
δ (L).

�

Proposition 2.9. The mapping π̄ is continuous.

Proof. Since the set

{U X̄
δ (L) : δ ∈ θX(τ),L ∈ C(RX)}

is a base of the space X̄ it suffices to prove that the set π̄−1(ŪX
δ (L)) is open

in Ā for each δ ∈ θX(τ) and L ∈ C(RX).

Let δ be a fixed element of θX(τ) and L a fixed element of C(RX). Let η =
θ−1
X

(δ) and ε = θA(θ1(η)). Then, for each ν ∈ Λ we have

π−1
ν (UXν

δ ) = UAν
ε . (2.9.1)

We shall prove the following equality, which will prove the continuity of π̄:

π̄−1(U X̄
δ (L)) = U Ā

ε (H), (2.9.2)

where H is the element of C(RA) corresponding to L. Let a ∈ π̄−1(U X̄
δ (L)),

that is π̄(a) ≡ x ∈ U X̄
δ (L). Let (xλ, Xλ) ∈ x and (aµ,Aµ) ∈ a. Since π̄(a) = x,

by the definition of π̄ we have (πµ(a
µ), Xµ) ∈ x. This means that Xλ ∼X Xµ,

that is Xµ ∈ L and, therefore, Aµ ∈ H. Also, πµ(a
µ) ∈ U

Xµ

δ and, therefore,

aµ ∈ π−1
µ (U

Xµ

δ ) = UAµ
ε (2.9.3)
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(see relation (2.9.1)). SinceAµ ∈ H, the relation (2.9.3) shows that a ∈ U Ā
ε (H),

proving that the left side of the relation (2.9.2) is contained in the right.

Conversly, let a ∈ U Ā
ε (H) and (aµ,Aµ) ∈ a. Then, Aµ ∈ H and aµ ∈ U

Aµ
ε .

Therefore, Xµ ∈ L and aµ ∈ π−1
µ (U

Xµ

δ ) (see relation 2.9.1) or πµ(a
µ) ∈ U

Xµ

δ .

This means that π̄(a) ∈ U X̄
δ (L) and, therefore, a ∈ π̄−1(U X̄

δ (L)), proving that
the right side of (2.9.2) is contained in the left, completing the proof of the
proposition. �

The set Āx, x ∈ X̄. For each x ∈ X̄ we put

Āx = {a ∈ Ā : π̄(a) = x}.

We shall prove that Āx is an Abelian group. First we shall prove the following
lemma.

Lemma 2.10. Let (Aλ, πλ, Xλ) and (Aµ, πµ, Xµ) be two elements of S such
that Aλ ∼A Aµ and let x ∈ X̄. Then, for each two elements

(xλ, Xλ), (x
µ, Xµ) ∈ x ∈ X̄

there exists an isomorphism ϑxλ
xµ

of Aλ,xλ onto Aµ,xµ such that:

(a) ϑxλ
xλ

is the identical isomorphism;

(b) ϑ
xµ
xν ◦ ϑxλ

xµ
= ϑxλ

xν
, where (xν , Xν) ∈ x.

Moreover, for each aλ ∈ Aλ,xλ , we have

(aλ,Aλ) ∼
B

A

RA
(ϑxλ

xµ(aλ),Aµ). (2.10.1)

Proof. Let (xλ, Xλ), (x
µ, Xµ) ∈ x ∈ X̄ for some fixed λ, µ ∈ Λ. Then, xλ ∈

UXλ

δ for some δ ∈ θX(τ) if and only if xµ ∈ U
Xµ

δ , that is xλ ∈ dom(sλη ) for
some η ∈ τ , if and only if xµ ∈ dom(sµη ). Denote by κ all such η. By Lemma

2.5 it follows that the mapping dom(sλη ) → dom(sµη ), η ∈ κ, is an isomorphism

of the directed by inclusion set dom(Bλ)(x
λ) onto the directed by inclusion set

dom(Bµ)(x
µ). Let

σλ ≡ {sλη : η ∈ τ(σλ)}

be an element of the limit group lim
−→

ΣBλ

xλ , where τ(σλ) is the set of all η ∈ τ

for which sλη ∈ σλ. Consider the set

σµ(λ) ≡ {sµη : η ∈ τ(σλ)}

of sections of Aµ. Let s
λ
η1
, sλη2

∈ σλ such that ran(sλη1
) ⊂ ran(sλη2

), that is the

section sλη1
is the restriction of the section sλη2

. By relation Aλ ∼A Aµ and
Lemma 2.4 it follows that ran(sµη1

) ⊂ ran(sµη2
), that is the section sµη1

is the
restriction of the section sµη2

. This means that the set σµ(λ) is a subset of an

unique determined element σµ of the limit group lim
−→

Σ
Bµ

xµ .

Similarly, the constructed element σµ of the limit group lim
−→

Σ
Bµ

xµ defines a

set σλ(µ) of sections of Aλ. By construction, σλ ⊂ σλ(µ) and, therefore,
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σλ = σλ(µ). Similarly, σµ = σµ(λ). We will say that σλ ∈ lim
−→

ΣBλ

xλ and

σµ ∈ lim
−→

Σ
Bµ

xµ correspond each other. Thus, we have defined mutually inverse,
one-to-one and onto mappings

ϑ(xλ, xµ) : lim
−→

ΣBλ

xλ → lim
−→

Σ
Bµ

xµ and ϑ(xµ, xλ) : lim
−→

Σ
Bµ

xµ → lim
−→

ΣBλ

xλ .

We prove that the mapping ϑ(xλ, xµ) is an isomorphism, that is it preserves the

group operations. Let σλ
1 , σ

λ
2 ∈ lim

−→
ΣBλ

xλ and let sλη1
∈ σλ

1 and sλη2
∈ σλ

2 . Since

the set dom(Bλ)(x
λ) is a base of Xλ at the point xλ, there exists sλη ∈ Bλ such

that U ≡ dom(sλη ) ⊂ dom(sλη1
) ∩ dom(sλη2

). By condition (c) of Lemma 2.1 the

restrictions sλη1
|U and sλη2

|U belong to Bλ and by condition (b), sλη1
|U + sλη2

|U
belongs to Bλ. Then, there exist η′1, η

′
2, η

′
0 ∈ τ such that

sλη′

1

= sλη1
|U ∈ σλ

1 , sλη′

2

= sλη2
|U ∈ σλ

2 and sλη′

0

= sλη′

1

+ sλη′

2

∈ σλ
1 + σλ

2 .

Let

ϑ(xλ, xµ)(σλ
1 ) = σµ

1 , ϑ(xλ, xµ)(σλ
2 ) = σµ

2 , and ϑ(xλ, xµ)(σλ) = σµ.

By Lemmas 2.4 and 2.5 we have

V ≡ dom(sµη ) ⊂ dom(sµη1
) ∩ dom(sµη2),

sµ
η′

1

= sµη1
|V ∈ σµ

1 , sµ
η′

2

= sµη2
|V ∈ σµ

2 , and, sµ
η′

0

= sµ
η′

1

+ sµ
η′

2

∈ σµ
1 + σµ

2

Therefore,

ϑ(xλ, xµ)(σλ
1 + σλ

2 ) = ϑ(xλ, xµ)(σλ
1 ) + ϑ(xλ, xµ)(σλ

2 ).

Similarly, we prove that ϑ(xλ, xµ)(−σλ
1 ) = −ϑ(xλ, xµ)(σλ

1 ). Thus, the mapping
ϑ(xλ, xµ) and, therefore, the mapping ϑ(xµ, xλ) is an isomorphism and onto.

The required isomorphism ϑxλ

xµ of Aλ,xλ onto Aµ,xµ is defined by setting

ϑxλ

xµ = ϑ
Bµ

xµ ◦ ϑ(xλ, xµ) ◦ (ϑBλ

xλ )
−1.

Conditions (a) and (b) of the lemma can easily be verified.

We prove relation (2.10.1). Let aλ ∈ Aλ,xλ and σλ
0 = (ϑBλ

xλ )
−1(aλ). Then,

ϑxλ

xµ(aλ) = ϑ
Bµ

xµ (ϑ(xλ, xµ)(σλ
0 )) = ϑ

Bµ

xµ (σ
µ
0 ),

where σµ
0 is the element lim

−→
Σ

Bµ

xµ corresponding to σλ
0 . Thus, it suffices to prove

that the pairs (ϑBλ

xλ (σ
λ
0 ),Aλ) and (ϑBµ

xµ (σµ
0 ),Aµ) belong to the same element of

Ā. Let UAλ
ε be an element of BAλ containing ϑBλ

xλ (σ
λ). We need to prove that

ϑ
Bµ

xµ (σµ) ∈ UAµ
ε . (2.10.2)

Since the set {ran(s) : s ∈ σλ} is a base for the open subsets of Aλ at the point

ϑ
Bµ

xµ (σµ), there exists η ∈ τ such that sλη ∈ σλ and

ϑBλ

xλ (σ
λ) ∈ ran(sλη ) ⊂ UAλ

ε .
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Since σµ corresponds to σλ, sµη ∈ σ. By the definition of the mapping ϑ
Bµ

xµ ,

ϑ
Bµ

xµ (σµ) = sµη (x
µ) ∈ ran(sµη ). Since Aλ ∼A Aµ, the condition ran(sλη ) ⊂ UAλ

ε

implies that ran(sµη ) ⊂ U
Aµ
ε , proving relation (2.10.2). �

Proposition 2.11. For each x ∈ X̄ the set Āx is an Abelian group and for
each (xλ, Xλ) ∈ x, λ ∈ Λ, the natural embedding iAλ

Ā
of Aλ into Ā maps the

fiber Aλ,xλ of Aλ onto the set Āx.

Proof. Let x ∈ X̄ , (xλ, Xλ) ∈ x for some fixed λ ∈ Λ and a ∈ Āx. By relation

(2.7.1) it follows that iAλ

Ā
(Aλ,xλ) ⊂ Āx. We must prove that iAλ

Ā
(Aλ,xλ) =

Āx. By the definition of the Containing Spaces there exists µ ∈ Λ and a
point aµ ∈ Aµ such that (aµ,Aµ) ∈ a. Using relation (2.7.1) we can see that

(xµ, Xµ) ∈ x, where xµ = πµ(a
µ). Let aλ = (ϑxλ

xµ)−1(aµ). Then, by the

relation (2.10.1), (aλ,Aλ) ∼BA

RA
(aµ,Aµ) and, therefore, (aλ,Aλ) ∈ a, that is

iAλ

Ā
(aλ) = a, proving that iAλ

Ā
maps the fiber Aλ,xλ of Aλ onto the set Āx.

Now, on the set Āx, x ∈ X̄, we define the group operations. Let a1, a2 ∈ Āx

and let (aλ1 ,Aλ) ∈ a1 and (aλ2 ,Aλ) ∈ a2. Then, we put a1 + a2 = a, where a

is the element of Āx, containing the pair (aλ1 + aλ2 ,Aλ). Also, we consider that
−a1 is the element of Āx, containing the pair (−aλ1 ,Aλ). Obviously, by these
operations Āx becomes an Abelian group such that the restriction onto Aλ,xλ

of the natural embedding iAλ

Ā
of Aλ into Ā, is an isomorphism of Aλ,xλ onto

Āx.

It remains to prove that the defined operations are independent of the element
(xλ, Xλ) ∈ x. Let (xν , Xν) ∈ x for some ν ∈ Λ, (aν1 ,Aν) ∈ a1 and (aν2 ,Aν) ∈
a2. We need to prove that the pair (aλ1 + aλ2 ,Aλ) and (aν1 + aν2 ,Aν) belong

to the same element of Āx. Since, by Lemma 2.10, ϑxλ

xν is an isomorphism we
have

ϑxλ

xν (aλ1 + aλ2 ) = ϑxλ

xν (aλ1 ) + ϑxλ

xν (aλ2 ).

On the other hand, since the pairs (aλ1 ,Aλ) and (ϑxλ

xν (aλ1 ),Aν) belong to the

same element of Ā we have (ϑxλ

xν (aλ1 ),Aν) ∈ a1 and since (aν1 ,Aν) ∈ a1 we have

ϑxλ

xν (aλ1 ) = aν1 . Similarly, ϑxλ

xν (aλ2 ) = aν2 . Therefore, ϑxλ

xν (aλ1 + aλ2 ) = aν1 + aν2 .

Since, by Lemma 2.10, the pairs (aλ1 + aλ2 ,Aλ) and (ϑxλ

xν (aλ1 + aλ2 ),Aν) belong
to the same element of Ā, the pairs (aλ1 +aλ2 ,Aλ) and (aν1 +aν2 ,Aν) also belong
to the same element of Ā, proving that the sum operation is independent of
the element (xλ, Xλ) ∈ x. Similarly, we prove that the operation of taking the
inverse element is independent of (xλ, Xλ) ∈ x. The proof of the proposition
is completed. �

The mappings ̟Ā and iĀ. We put

Ā⊠ Ā ≡ {(a,b) ∈ Ā × Ā : π̄(a) = π̄(b)}
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and define the mappings

̟Ā : Ā⊠ Ā → Ā and iĀ : Ā → Ā

setting

̟Ā(a,b) = a+ b and iĀ(a) = −a.

Proposition 2.12. The mappings ̟Ā and iĀ are continuous.

Proof. We prove that ̟Ā is continuous. Let (a1, a2) ∈ Ā⊠ Ā and a ≡ a1+a2.
Let U be an open neighbourhood of a in Ā. We must find open neighbourhoods
U1 and U2 of a1 and a2, respectively, in Ā such that

̟Ā((U1 × U2) ∩ (Ā⊠ Ā)) ⊂ U. (2.12.1)

Without loss of generality, we can suppose that U is an element U Ā
ε (H) of

the standard base of Ā, where ε is a fixed element of τ and H is a fixed
element of C(∼t

A
) for some fixed t ∈ F . Moreover, we can suppose that ε ∈

θA(θ0(τ)). This means that for each Aµ ∈ H we have U
Aµ
ε = ran(sµη ), where

η = (θA ◦ θ0)
−1(ε) and, therefore,

U Ā
ε (H) = ∪{i

Aµ

Ā
(UAµ

ε ) : Aµ ∈ H} = ∪{i
Aµ

Ā
(ran(sµη )) : Aµ ∈ H}.

Let λ be a fixed element of Λ such that Aλ ∈ H and a ∈ iAλ

Ā
(ran(sλη )).

Therefore, there exists a point aλ ∈ ran(sλη ) ⊂ Aλ such that iAλ

Ā
(aλ) = a,

that is (aλ,Aλ) ∈ a. Let πλ(a
λ) = xλ ∈ Xλ. Then, by relation (2.7.1),

iXλ

X̄
(xλ) = π̄(a) ≡ x ∈ X̄ and, therefore, (xλ, Xλ) ∈ x. By Lemma 2.10,

there are points aλ1 , a
λ
2 ∈ Aλ,xλ such that (aλ1 ,Aλ) ∈ a1, (a

λ
2 ,Aλ) ∈ a2 and

(aλ1 + aλ2 ,Aλ) ∈ a. Since (aλ,Aλ) ∈ a we have aλ1 + aλ2 = aλ ∈ ran(sλη ).

Since the mapping ̟λ is continuous, there exist ε1, ε2 ∈ τ such that aλ1 ∈ UAλ
ε1

,

aλ2 ∈ UAλ
ε2

and

̟λ((U
Aλ
ε1

× UAλ
ε2

) ∩ (Aλ ⊠Aλ)) ⊂ ran(sλη ). (2.12.2)

Without loss of generality, we can suppose that ε1, ε2 ∈ θA(θ0(τ)), that is there
exist cuts sλη1

and sλη2
such that ran(sλη1

) = UAλ
ε1

, ran(sλη2
) = UAλ

ε2
, dom(sλη1

) =

dom(sλη2
) ⊂ dom(sλη ). Condition (b) of Lemma 2.1 implies that there exists

η0 ∈ τ such that sλη0
= sλη1

+ sλη2
and, therefore, dom(sλη0

) = dom(sληi
), i = 1, 2.

In this case, the left side of the relation (2.12.2) takes the form

̟λ((ran(s
λ
η1
)× ran(sλη2

)) ∩ (Aλ ⊠Aλ)). (2.12.3)

Since

Aλ ⊠Aλ = ∪{Aλ,xλ ×Aλ,xλ : xλ ∈ Xλ},

the expression (2.12.3) takes the form

̟λ(∪{(ran(s
λ
η1
) ∩ Aλ,xλ)× (ran(sλη2

) ∩ Aλ,xλ) : xλ ∈ Xλ}). (2.12.4)

Since

ran(sληi
) ∩ Aλ,xλ = ∅ if xλ /∈ dom(sληi

), i = 1, 2, (2.12.5)
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and

ran(sληi
) ∩Aλ,xλ = {sληi

(xλ)} if xλ ∈ dom(sληi
), i = 1, 2, (2.12.6)

the expression (2.12.4) takes the form

̟λ(∪{{s
λ
η1
(xλ)} × {sλη2

(xλ)} : xλ ∈ dom(sλη0
)}) =

̟λ(∪{{(s
λ
η1
(xλ), sλη2

(xλ))} : xλ ∈ dom(sλη0
)}) =

∪{{sλη1
(xλ) + sλη2

(xλ)} : xλ ∈ dom(sλη0
)} =

∪{{(sλη1
+ sλη2

)(xλ)} : xλ ∈ dom(sλη0
)}) = ran(sλη0

).

Thus, relation (2.12.2) implies that ran(sλη0
) ⊂ ran(sλη ).

Let t′ ∈ F and {η1, η2, η, η0} ∪ t ⊂ t′. Denote by H′ the element of C(∼t′

A
)

containing Aλ. Therefore, H
′ ⊂ H. Then, for each Aµ ∈ H′ we have

Aµ ∼t′

A
Aλ, ran(sµη1

) = UAµ
ε1

, ran(sµη2
) = UAµ

ε2
. (2.12.7)

By condition (4) and (5) of the definitions of the families RA and RX, we have

dom(sµη1
) = dom(sµη2

) = dom(sµη0
), (2.12.8)

ran(sµη1
+ sµη2

) = ran(sµη0
) ⊂ ran(sµη ). (2.12.9)

We shall prove that the sets

U Ā
εi
(H′) = ∪{i

Aµ

Ā
(ran(sµηi

)) : Aµ ∈ H′}, i = 1, 2,

are the required open neighbourhoods Ui of ai. Obviously, ai ∈ Ui. By Lemma
2.11 we have

Ā∆Ā = ∪{Āx × Āx : x ∈ X̄} = {iAν

Ā
(Aν,xν )× iAν

Ā
(Aµ,xν ) : Aν ∈ A, xν ∈ Xν}

Using this relation and the relation (2.12.7) we have

̟Ā((U
Ā
ε1
(H′)× U Ā

ε2
(H′)) ∩ (Ā⊠ Ā)) =

̟Ā(∪{(i
Aµ

Ā
(ran(sµη1

)) ∩ iAν

Ā
(Aν,xν ))× (i

Aξ

Ā
(ran(sξη2

)) ∩ iAν

Ā
(Aν,xν )) :

: Aξ ∈ H′,Aν ∈ A, xν ∈ X̄})). (2.12.10)

If Aν /∈ H′, then the intersections in the right side of the above equality are
empty. Therefore, we can suppose thatAν ∈ H′. In this case, relations (2.12.7)-

(2.12.9) are true if we replace the letter “µ ” by “ ν ”. Let a1 ∈ i
Aµ

Ā
(ran(sµη1

))∩

iAν

Ā
(Aν,xν ). Then relation a1 ∈ i

Aµ

Ā
(ran(sµη1

)) implies that there exists aµ1 ∈

ran(sµη1
) and (aµ1 ,Aµ) ∈ a1 and the relation a1 ∈ iAν

Ā
(Aν,xν ) implies that

there exists aν1 ∈ Aν,xν such that (aν1 ,Aν) ∈ a1 and πν(a
ν
1) = xν . From these

it follows that Aµ ∼A Aν and since aµ1 ∈ U
Aµ
ε1 = ran(sµη1

) we have aν1 ∈

UAν
ε1

= ran(sνη1
). Therefore, aν1 = sνη1

(xν). Similarly, if a2 ∈ i
Aξ

Ā
(ran(sξη2

)) ∩

iAν

Ā
(Aν,xν ), then there exists aν2 ∈ ran(sνη2

) and πν(a
ν
2) = xν . Thus, aν1 , a

ν
2 ∈

Aν,xν . Then, the equality (2.12.10) can be continued as follows:

̟Ā(∪{(i
Aν

Ā
(sνη1

(xν)), iAν

Ā
(sνη2

(xν))) : Aν ∈ H′, xν ∈ dom(sνη0
)}) =

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 1 164



On sheaves of Abelian groups and universality

∪{iAν

Ā
(sνη1

(xν) + sνη2
(xν)) : Aν ∈ H′, xν ∈ dom(sνη0

)} =

∪{iAν

Ā
((sνη1

+ sνη2
)(xν)) : Aν ∈ H′, xν ∈ dom(sνη0

)} =

∪{iAν

Ā
(ran(sνη0

)) : Aν ∈ H′} ⊂

∪{iAν

Ā
(ran(sνη)) : Aν ∈ H′} = U Ā

ε (H′) ⊂ U Ā
ε (H).

We note that for the first equality of the above expression we use the fact that
the restriction of the mapping iAν

Ā
on the set Aν,xν is an isomorphism.

Thus, we proved relation (2.12.1), which means that the mapping ̟Ā is con-
tinuous. Similarly, we prove that the mapping iĀ is continuous. The proof of
the proposition is completed. �

Proposition 2.13. For each point a ∈ Ā there exists an open neighbourhood
U of a in Ā such that π̄ maps U homeomorphically onto an open set of X̄.

Proof. Let a ∈ Ā and (aλ,Aλ) for some λ ∈ Λ. There exists an open neigh-
bourhood of aλ in Aλ, which πλ maps homeomorphically onto an open subset
of Xλ. Since BAλ

0 is a base for the open subsets of Aλ, without loss of gener-
ality, we can suppose that this open neighbourhood is an element V Aλ

η of this

base. Let t ∈ F such that η ∈ t and H be the element of C(∼t
A
) containing

Aλ. We prove that U Ā
ε (H), where ε = θA(θ0(η)), is the required open subset

U .

By Lemma 2.8 we have

π̄(U Ā
ε (H)) = U X̄

δ (L),

where δ = θX(η) and L is the element of C(RX) corresponding to H. First,

we prove that the restriction of π̄ onto the open subset U Ā
ε (H) of Ā is one-

to-one. Indeed, if not, there are two distinct points b1 and b2 of U Ā
ε (H) such

that π̄(b1) = π̄(b2) ≡ x ∈ X̄ , that is b1,b2 ∈ Āx. Let (xν , Xν) ∈ x for
some ν ∈ Λ. By Proposition 2.11 there exist points bν1 , b

ν
2 ∈ Aν,xν such that

iAν

Ā
(bν1) = b1 and iAν

Ā
(bν2) = b2, that is (bν1 ,Aν) ∈ b1 and (bν2 ,Aν) ∈ b2. We

have bν1 , b
ν
2 ∈ UAν

ε = V Aν
η = ran(sνη), b

ν
1 6= bν2 and πν(b

ν
1) = πν(b

ν
2) = xν , which

contradicts the fact that the πν maps homeomorphically the set ran(sνη) onto
an open subset of Xν .

Since the restriction of the mapping π̄ onto the set U Ā
ε (H) is one-to-one we can

consider the inverse mapping, denoted by s̄ε,H, of the set U X̄
δ (L) onto U Ā

ε (H).

We shall prove that s̄ε,H is continuous. Let x1 ∈ U X̄
δ (L) and a1 = s̄ε,H(x1).

Let also U1 be an arbitrary open neighbourhood of a1 in U Ā
ε (H). Since U Ā

ε (H)
is open in Ā, without loss of generality, we can suppose that U1 belongs to the
standard base of Ā, that is it has the form U Ā

ε1
(H1). Moreover, we can suppose

that ε1 = θA(θ0(η1)) for some η1 ∈ τ and H1 ∈ C(∼t1
A
), where t1 is an element

of F such that t ⊂ t1. Thus, we have a1 ∈ U Ā
ε1
(H1) ⊂ U Ā

ε (H). By Lemma 2.8,

π̄(U Ā
ε1
(H1)) = U X̄

δ1
(L1),

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 1 165



S .D. Iliadis and Yu. V. Sadovnichy

where δ1 = θX(η1) and L1 is the element of C(RX) corresponding to H1.

As the above, the restriction of the mapping π̄ onto U Ā
ε1
(H1) is one-to-one

and, therefore, we can consider the inverse mapping, denoted by s̄ε1,H1
, of

the set U X̄
δ1
(L1) onto the set U Ā

ε1
(H1). The mapping s̄ε1,H1

coincides with the

restriction of the mapping s̄ε,H onto the set U X̄
δ1
(L1), that is s̄ε,H(U X̄

δ1
(L1)) =

U Ā
ε1
(H1), which shows that s̄ε,H is continuous. Thus, π̄ maps the set U Ā

ε (H)

homeomorphically onto an open subset of X̄ . The proof of the proposition is
completed. �

The final of the proof of Theorem 1.3.1 Relation (2.7.1) implies that for

each (Aλ, πλ, Xλ) ∈ S the natural embedding iXλ

X̄
of Xλ into X̄ is the induced

mapping of the natural embedding iAλ

Ā
of Aλ into Ā. Proposition 2.11 shows

that the embedding iAλ

Ā
is proper. The rest of the proof of Theorem 1.3.1

follows immediately from Propositions 2.9, 2.11, 2.12 and 2.13.
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