

Metric spaces related to Abelian groups

Amir Veisi a and Ali Delbaznasab b

 a Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran (aveisi@yu.ac.ir)

 b Department of Mathematics, Shahid Bahonar University, Kerman, Iran (delbaznasab@gmail.com)

Communicated by F. Lin

Abstract

When working with a metric space, we are dealing with the additive group $(\mathbb{R}, +)$. Replacing $(\mathbb{R}, +)$ with an Abelian group (G, *), offers a new structure of a metric space. We call it a G-metric space and the induced topology is called the *G*-metric topology. In this paper, we are studying G-metric spaces based on L-groups (i.e., partially ordered groups which are lattices). Some results in G-metric spaces are obtained. The G-metric topology is defined which is further studied for its topological properties. We prove that if G is a densely ordered group or an infinite cyclic group, then every G-metric space is Hausdorff. It is shown that if G is a Dedekind-complete densely ordered group, (X, d) a G-metric space, $A \subseteq X$ and d is bounded, then $f : X \to G$ with $f(x) = d(x, A) := \inf\{d(x, a) : a \in A\}$ is continuous and further $x \in cl_X A$ if and only if f(x) = e (the identity element in G). Moreover, we show that if G is a densely ordered group and further a closed subset of \mathbb{R} , $\mathcal{K}(X)$ is the family of nonempty compact subsets of X, $e < q \in G$ and d is bounded, then d'(A,B) < g if and only if $A \subseteq N_d(B,g)$ and $B \subseteq N_d(A,g)$, where $N_d(A,g) = \{x \in X : d(x,A) < g\}, d_B(A) = \sup\{d(a,B) : a \in A\}$ and $d'(A,B) = \sup\{d_A(B), d_B(A)\}.$

2010 MSC: 54C40; 06F20; 16H20.

KEYWORDS: G-metric space; L-group; Dedekind-complete group; densely ordered group; continuity.

Received 08 October 2020 - Accepted 29 January 2021

1. INTRODUCTION

In this article, a group (G, *) (briefly, G) is an Abelian group and for readability, we use g_1g_2 instead of $g_1 * g_2$. Let X be a set and \leq relation on X, we recall that the pair (X, \leq) is a *partially ordered set* (in brief, a *poset*) if the following conditions hold: $x \leq x$, if $x \leq y$ and $y \leq x$, then x = y; if $x \leq y$ and $y \leq z$, then $x \leq z$. In a poset, the symbol $a \vee b$ denotes $\sup\{a, b\}$, i.e., the smallest element c, if one exists, such that $c \geq a$ and $c \geq b$. Likewise, $a \wedge b$ stands for $\inf\{a, b\}$. When both $a \lor b$ and $a \land b$ exist, for all $a, b \in A$, then A is called a *lattice.* A subset S is a *sublattice* of A provided that, for all $x, y \in S$, the elements $x \lor y$ and $x \land y$ of A belong to S. (Thus, it is not enough that x and y have a supremum and infimum in S.) For instance, C(X), the ring of real-valued continuous functions on the topological space X is a lattice. If $f, g \in C(X)$, then $f \vee g = \frac{f+g+|f-g|}{2} \in C(X)$ (note, $f \wedge g = -(-f \vee -g) = \frac{f+g-|f-g|}{2} \in C(X)$). In fact, C(X) is a sublattice of \mathbb{R}^X , the ring of real-valued functions on the set X (note, the partial ordering on \mathbb{R}^X is: $f \leq q$ if and only if $f(x) \leq q(x)$ for all x in X). A poset in which every nonempty subset has both a supremum and an infimum is said to be a *lattice-complete*. For example, P(X), the set of all subsets of X with inclusion is lattice-complete. Union (resp. intersection) of sets is the supremum (resp. the infimum) of them. A totally (or linearly) ordered set is a poset in which every pair of elements is comparable, i.e., $x \leq y$ or $y \leq x$ for all x and y in X. We use "ordered sets" instead of "totally ordered sets". An ordered set is often referred to as a chain. A lattice need not be an ordered set, necessarily, but the converse is always true. We notice that C(X) and $C_c(X)$, its subalgebra consisting of elements with countable image, are lattices, while they are not ordered sets, also, they are not lattice-complete necessarily. An ordered set is said to be *Dedekind-complete* provided that every nonempty subset with an upper bound has a supremum, or equivalently, every nonempty subset with a lower bound has an infimum. (For example, \mathbb{R} , the set of real numbers is Dedekind-complete, but not lattice-complete.) An ordered field \mathbb{F} is said to be archimedean if \mathbb{Z} , the set of integers is cofinal, i.e., for every $x \in \mathbb{F}$, there exists $n \in \mathbb{Z}$ such that $n \geq x$. For instance, $\mathbb{Q}(\sqrt{n}) := \{a + b\sqrt{n} : a, b \in \mathbb{Q}, \sqrt{n} \notin \mathbb{Q}\}$ is an archimedean field.

Theorem 1.1 ([3, Theorem 0.21]). An ordered field is archimedean if and only if it is isomorphic to a subfield of the ordered field \mathbb{R} .

A brief outline of this paper is as follows. In Section 2, we introduce the G-metric spaces related to L-groups (i.e., partially ordered groups which are lattices) and study them further. In Section 3, the basic topological properties based on the notion of g-disk are studied. We prove that if G is a densely ordered group or an infinite cyclic group, then every G-metric space is Hausdorff. It is shown that if G is a Dedekind-complete densely ordered group, (X,d) a G-metric space, d is bounded and $A \subseteq X$, then $f: X \to G$ given by $f(x) = d(x, A) := \inf\{d(x, a) : a \in A\}$ is continuous and further $x \in cl_X A$ if and only if f(x) = e (the identity element of G). Moreover, let

 $\mathcal{F}(X)$ be the family of nonempty closed sets in $X, e < g \in G, A, B \in \mathcal{F}(X)$ and $d_A(B) = \sup\{d(b, A) : b \in B\}$. Then for the *G*-metric space $(\mathcal{F}(X), d')$ (note, $d'(A, B) = \sup\{d_A(B), d_B(A)\}$), we have $d'(A, B) \leq g$ if and only if $A \subseteq N_d(B, \bar{g})$ and $B \subseteq N_d(A, \bar{g})$, where $N_d(A, \bar{g}) = \{x \in X : d(x, A) \leq g\}$. Particularly, if *G* is a densely ordered group and further a closed subset of \mathbb{R} , *X* is a *G*-metric space and $\mathcal{K}(X)$ is the family of nonempty compact sets in *X*, then d'(A, B) < g if and only if $A \subseteq N_d(B, g)$ and $B \subseteq N_d(A, g)$, where $N_d(A, g) = \{x \in X : d(x, A) < g\}$.

2. G-metric spaces

Definition 2.1. A group G with a partial ordering relation \leq is called a *partially ordered group* (in brief, a *poset group*) if the binary operation of G preserves the order, i.e.,

 $g_1 \ge g_2$ implies $g_1 g_3 \ge g_2 g_3$ for all $g_1, g_2, g_3 \in G$. (R₁)

Moreover, if a poset group G is a lattice then G is called an L-group.

From the above definition, the following facts are evident: $g_1 \geq g_2$ if and only if $g_1g_2^{-1} \geq e$; $g \geq e$ if and only if $g^{-1} \leq e$; if $g_1 \geq g_3$ and $g_2 \geq g_4$, then $g_1g_2 \geq g_3g_4$. For example, every archimedean field with the addition is an *L*-group. But \mathbb{Z}_n with the addition of modulo *n* is not a poset group yet, since this addition does not preserve the order. For an *L*-group *G* and $g \in G$, we let $|g| = \sup\{g, g^{-1}\} = g \vee g^{-1} = |g^{-1}|$.

Example 2.2. Consider the group $G := \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$ (k-times) with the usual addition and the identity element $e = (0, 0, \ldots, 0)$. Let $g_1 = (m_1, m_2, \ldots, m_k)$, $g_2 = (n_1, n_2, \ldots, n_k) \in G$. Define

 $g_1 \leq g_2$ if and only if $m_i \leq n_i$ for all $i = 1, 2, \ldots, k$.

We see that \leq is a partial ordering relation on G. Also, the condition (R_1) in the above definition is satisfied, i.e., G is a poset group. Let $z_i = \max\{m_i, n_i\}$ and $z'_i = \min\{m_i, n_i\}$, where $i = 1, 2, \ldots, k$. Let $g_3 = (z_1, z_2, \ldots, z_k)$ and $g_4 = (z'_1, z'_2, \ldots, z'_k)$. Then we obtain $g_1 \vee g_2 = g_3$ and $g_1 \wedge g_2 = g_4$. Hence, G is an L-group.

By an ordered group, we mean a poset group which is a totally ordered set by its partial ordering relation. It is clear that an ordered group is an L-group. Finally, by *Dedekind-complete group*, we mean an ordered group which is a Dedekind-complete set with its partial ordering relation, i.e., every nonempty subset with an upper bound has a supremum, or equivalently, every nonempty subset with a lower bound has an infimum. For example, every archimedean field with the addition is a Dedekind-complete group.

Corollary 2.3. If G is an L-group and $g_1, g_2 \in G$, then $|g_1g_2| \le |g_1||g_2|$.

Proof. We note that $g_1, g_1^{-1} \leq |g_1|$ and $g_2, g_2^{-1} \leq |g_2|$. Definition 2.1 now gives $g_1g_2 \leq |g_1||g_2|$ and also $g_1^{-1}g_2^{-1} \leq |g_1||g_2|$. So we have that $|g_1g_2| = \sup\{g_1g_2, (g_1g_2)^{-1}\} \leq |g_1g_2|$, and the result holds.

Definition 2.4. Let G be a poset group and X a nonempty set. We say the function $d: X \times X \to G$ is a *G*-metric on X, whenever the following conditions hold, for every $x, y, z \in X$.

- (i) $d(x, y) \ge e$ (e is the identity element in G),
- (ii) d(x, y) = e if and only if x = y,
- (iii) d(x,y) = d(y,x),
- (iv) $d(x,y) \leq d(x,z)d(z,y)$ (triangle inequality).

The pair (X, d) (briefly, X) is called a *G*-metric space. Evidently, every metric space is a *G*-metric space, when $(G, *) = (\mathbb{R}, +)$. If all axioms but the second part of Definition 2.4 are satisfied, we call *d* a *G*-pseudometric and then X a *G*-pseudometric space. Defining d(x, y) = e for all x and y in X, gives a *G*-pseudometric on X, called the trivial *G*-pseudometric, in this case, *d* is a *G*-metric if and only if X is the singleton set $\{x\}$. Although all the material of this section is developed for *G*-metric spaces, the basic results remain true for *G*-pseudometric spaces as well. If (X, d) is a *G*-metric on X and A is a subset of X, then A inherits a *G*-metric structure from X in an obvious way, making A a *G*-metric space.

In the following example, we will present some examples of *G*-metric spaces. Before it, let $X = \mathbb{R}^n$, $G_1 = (\mathbb{R}, +), G_2 = ((0, +\infty), .), G_3 = (\mathbb{R} - \{-1\}, *)$ and $G_4 = (\mathbb{Z}_2, \oplus)$, where +, . are usual addition and multiplication, the symbol \oplus is the addition of modulo 2 and * is defined as follows: x * y = x + y + xy. In G_3 , the identity element is 0 and the inverse of x is $x^{-1} = \frac{-x}{1+x}$. Checking of the associative property of * is easy.

Moreover, let $\varphi_i : G_i \times G_i \to G_i$, where i = 1, 2, 3, 4, such that $\varphi_1(x, y) = x - y$, $\varphi_2(x, y) = \frac{x}{y}, \varphi_3(x, y) = \frac{-xy}{1+x}$ and $\varphi_4(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y. \end{cases}$ Then, since each φ_i is continuous, each G_i is a topological group as subspaces of \mathbb{R} with the usual topology.

Example 2.5. Let $X = \mathbb{R}^n$, G_i , where i = 1, 2, 3, 4, be as defined in the previous discussion. For $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n) \in X$, ||x - y|| is the usual norm, i.e., $||x - y|| = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$. We claim that each d_i , the functions below, is a G_i -metric and therefore (X, d_i) is a G_i -metric space. We only check that d_2 and d_3 satisfy (iv) of Definition 2.4. Other conditions are routine.

- (1) Let $d_1: X \times X \to G_1$ such that $d_1(x, y) = ||x y||$.
- (2) Let $d_2: X \times X \to G_2$ such that $d_2(x, y) = e^{||x-y||}$.
- (3) Let $d_3: X \times X \to G_3$ such that $d_3(x, y) = e^{\|x-y\|} 1$.
- (4) Let $d_4: X \times X \to G_4$ such that d(x, y) = 0 if x = y; and 1 if $x \neq y$. d_4 is called a *discrete G-metric*.

We notice that the identity elements in G_2 and G_3 are 1 and 0 respectively. Moreover, $d_2(x, y) \ge 1$ and $d_3(x, y) \ge 0$. Now,

$$d_2(x,y) = e^{\|x-y\|} \le e^{(\|x-z\| + \|z-y\|)} = e^{\|x-z\|} e^{\|z-y\|} = d_2(x,z) d_2(z,y).$$

© AGT, UPV, 2021

Also, we have

$$\begin{aligned} d_3(x,y) &= e^{\|x-y\|} - 1 \le e^{\|x-z\|} e^{\|z-y\|} - 1 \\ &= (e^{\|x-z\|} - 1) + (e^{\|z-y\|} - 1) + (e^{\|x-z\|} - 1)(e^{\|z-y\|} - 1) \\ &= d_3(x,z) + d_3(z,y) + d_3(x,z)d_3(z,y) \\ &= d_3(x,z)d_3(z,y). \end{aligned}$$

So d_2 and d_3 satisfy the triangle inequality of Definition 2.4.

A G-metric d on a set X is called *bounded* if $d(x, y) \leq g_0$, for all $x, y \in X$ and some $g_0 \in G$. Thus, the next result is now immediate.

Corollary 2.6. Let G be an L-group, d a G-metric on X, $e < g_1$ a fixed element in G and $d_1(x, y) = \inf\{d(x, y), g_1\}$. Then d_1 is a bounded G-metric.

Lemma 2.7. Let G be an L-group; A and B are finite subsets of G such that $A \ge e$ (i.e., $a \ge e$, for all $a \in A$) and $B \ge e$. Then

- (i) if $A \leq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $a \leq b$) and $e \leq g \in G$, then $\sup(gA) = g \sup A \leq g \sup B = \sup(gB)$, where $gA = \{ga : a \in A\}$.
- (ii) if $A \ge B$ (i.e., for each $a \in A$ there is $b \in B$ such that $b \le a$) and $e \le g \in G$, then $\inf(gB) = g \inf B \le g \inf A = \inf(gA)$.
- (iii) $\sup(AB) = \sup A \sup B$, and also $\inf(AB) = \inf A \inf B$, where $AB = \{ab : a \in A, b \in B\}$.

Proof. First, we note that by definition of an L-group, each of the finite sets A, B and AB has a supremum and an infimum in G. The proofs of (i) and (ii) are routine. (iii). Let $\sup A = \alpha$, $\sup B = \beta$ and $\sup(AB) = \gamma$. Since G is an L-group, it is a poset group. So by Definition 2.1, we have $ab \leq \alpha\beta$, for all $a \in A$ and $b \in B$. Evidently, $\gamma \leq \alpha\beta$. Now, we are ready to show that $\gamma = \alpha\beta$. For the reverse inclusion, let $a \in A$ be fixed. Then $ab \leq \gamma$ implies $b \leq a^{-1}\gamma$. Therefore, B is bounded by $a^{-1}\gamma$. So $\beta = \sup B \leq a^{-1}\gamma$, in other words, $a \leq \beta^{-1}\gamma$. Since $a \in A$ is arbitrary, we deduce that A is bounded by $\beta^{-1}\gamma$. Thus, $\alpha \leq \beta^{-1}\gamma$. This yields $\alpha\beta \leq \gamma$, and we are through. The proof of another assertion (infimum) is done similarly.

Proposition 2.8. Let G be an ordered group. Then defining

 $d: G \times G \rightarrow G$ given by $d(g_1, g_2) = |g_1g_2^{-1}|$,

turns G into a G-metric space.

Proof. We claim that d is a G-metric on G. First, we note that since G is an ordered group, it is an L-group and further $g \in G$ gives $g \ge e$ or $g^{-1} \ge e$. So $|g| = |g^{-1}| = \sup\{g, g^{-1}\} = g$ or g^{-1} . Hence, $|g| \ge e$ and therefore conditions (i)-(iii) of Definition 2.4 hold. Moreover, if $g_1, g_2, g_3 \in G$, then Corollary 2.3 implies

$$d(g_1, g_2) = |g_1g_2^{-1}| = |(g_1g_3^{-1})(g_3g_2^{-1})| \le |g_1g_3^{-1}||g_3g_2^{-1}|$$

= $d(g_1, g_3)d(g_3, g_2)$

© AGT, UPV, 2021

This gives d satisfies the triangle inequality, i.e., it is a G-metric on G and hence G is a G-metric space.

Corollary 2.9. Let G be an ordered group, X a nonempty set and $f: X \to G$ a function. Then $d: X \times X \to G$ given by $d(x, y) = |f(x)f^{-1}(y)|$ is a Gpseudometric on X. Moreover, d is a G-metric on X if and only if f is oneone.

The next proposition generalizes Proposition 2.8.

Proposition 2.10. Let G be an ordered group. Then each of the following binary operations on G^n (the n product of G), turns it into a G-metric space, where $g = (g_1, g_2, \ldots, g_n)$ and $g' = (g'_1, g'_2, \ldots, g'_n)$ are arbitrary elements of G^n .

(i)
$$d_1: G^n \times G^n \to G$$
 defined by $d_1(g, g') = |g_1^{-1}g_1'| |g_2^{-1}g_2'| \dots |g_n^{-1}g_n'|$

(ii) $d_2: G^n \times G^n \to G$ defined by

$$d_2(g,g') = \sup\{|g_1^{-1}g_1'|, |g_2^{-1}g_2'|, \dots, |g_n^{-1}g_n'|\}.$$

Proof. We only check that the triangle inequality for d_1 and d_2 . Other conditions are routine. (i). Let $g^{''} = (g_1^{''}, g_2^{''}, \dots, g_n^{''}) \in G^n$. Then

$$\begin{aligned} d_1(g,g^{''}) &= |g_1^{-1}g_1^{''}||g_2^{-1}g_2^{''}|\dots|g_n^{-1}g_n^{''}| \\ &= |(g_1^{-1}g_1')(g_1'^{-1}g_1'')||(g_2^{-1}g_2')(g_2'^{-1}g_2^{''})|\dots|(g_n^{-1}g_n')(g_n'^{-1}g_n^{''})| \\ &\leq |g_1^{-1}g_1'||g_1'^{-1}g_1^{''}||g_2^{-1}g_2'||g_2'^{-1}g_2^{''}|\dots|g_n^{-1}g_n'||g_n'^{-1}g_n^{''}| \\ &= \left(|g_1^{-1}g_1'|g_2^{-1}g_2'|\dots|g_n^{-1}g_n'|\right)\left(|g_1'^{-1}g_1^{''}||g_2'^{-1}g_2^{''}|\dots|g_n'^{-1}g_n^{''}|\right) \\ &= d_1(g,g')d_1(g',g^{''}). \end{aligned}$$

Notice that the above inequality is obtained by Corollary 2.3. (ii). Let $g^{''} = (g_1^{''}, g_2^{''}, \ldots, g_n^{''}) \in G^n$ and let

$$A = \{|g_1^{-1}g_1''|, |g_2^{-1}g_2''|, \dots, |g_n^{-1}g_n''|\},\$$

$$B = \{|g_1^{-1}g_1'||g_1'^{-1}g_1''|, |g_2^{-1}g_2'||g_2'^{-1}g_2''|, \dots, |g_n^{-1}g_n'||g_n'^{-1}g_n''|\},\$$

$$B_1 = \{|g_1^{-1}g_1'|, |g_2^{-1}g_2'|, \dots, |g_n^{-1}g_n'|\}, \text{and}\$$

$$B_2 = \{|g_1'^{-1}g_1''|, |g_2'^{-1}g_2''|, \dots, |g_n'^{-1}g_n''|\}.$$

We notice that G is an L-group. Now, according to Lemma 2.7, we have $A \leq B \leq B_1 B_2$. Therefore,

$$d_2(g,g'') = \sup A \le \sup B \le \sup(B_1B_2) = \sup B_1 \sup B_2 = d_2(g,g')d_2(g',g''),$$

which completes the proof.

Appl. Gen. Topol. 22, no. 1 174

O AGT, UPV, 2021
 O

3. Basic topological concepts in G-metric spaces and some related results

We begin with the following definition.

Definition 3.1. Let G be a poset group, (X, d) a G-metric space and x a point of X. Given $e < g \in G$, we let

$$N_d(x,g) = \{ y \in X : d(x,y) < g \},\$$

and call it the g-disk centered at x. Also, we put $N_d(x, \overline{g}) = \{y \in X, d(x, y) \le g\}$.

A subset U of X is said to be *open* in X if either $U = \emptyset$ or for every $x \in U$ there is a $g \in G$ such that $N_d(x,g) \subseteq U$. Here, x is called an *interior point* of U. The set of all interior points of U is called the *interior* of U, denoted by U° (or $\operatorname{int}_X U$). Also, a set F is called *closed* if and only if its set-theoretic complement is an open set in X. Evidently, a set F is closed if and if every g-disk centered at x meets F, then $x \in F$.

Corollary 3.2. Every g-disk $N_d(x,g)$ is an open set in X (and hence $X \\ N_d(x,g) = \{y \in X : d(x,y) \ge g\}$ is a closed set in X).

Proof. Let $y \in N_d(x,g)$. Then $g_1 = d(x,y) < g$. We claim that $N_d(y,gg_1^{-1}) \subseteq N_d(x,g)$ (note, $gg_1^{-1} > e$). To see this, assume that $z \in N_d(y,gg_1^{-1})$. Hence, $d(z,x) \leq d(z,y)d(y,x) < gg_1^{-1}g_1 = g$. This yields $z \in N_d(x,g)$, i.e., $N_d(y,gg_1^{-1}) \subseteq N_d(x,g)$, and we are done.

Definition 3.3. Let X be a G-metric space and $A \subseteq X$. The *closure* of A in X is denoted by $cl_X A$ (or briefly clA) and defined by the set

 $clA = \cap \{F \subseteq X : F \text{ is closed in } X \text{ and } A \subseteq F\}.$

By the above definition, A is closed if and only if A = clA.

Corollary 3.4. Let G be a poset group, (X, d) a G-metric space and $\overline{A} = \{x \in X : N_d(x, g) \cap A \neq \emptyset \text{ for all } e < g \in G\}$, where $A \subseteq X$. Then

(1) $\overline{A} = clA$.

(2) If $x \in X$ and $g \in G$, then $\overline{N_d(x,g)} \subseteq N_d(x,\overline{g})$.

Proof. (1). Let $x \notin clA$. Then $x \notin F$, for some closed set F containing A. Now, since $X \smallsetminus F$ is open, there exists $e < g \in G$, such that $x \in N_d(x,g) \subseteq X \smallsetminus F$. So $x \notin \overline{A}$. Conversely, suppose that $x \notin \overline{A}$. So for some $e < g \in G$, $N_d(x,g) \cap A = \emptyset$. Therefore, the closed set $X \smallsetminus N_d(x,g)$ contains A but not x. This gives $x \notin clA$, and we are done. (2). Suppose that $y \notin N_d(x,\overline{g})$. So d(x,y) > g and hence $g_1 = d(x,y)g^{-1} > e$. We claim that $N_d(y,g_1) \cap N_d(x,g) = \emptyset$. Otherwise, for some $z \in N_d(y,g_1) \cap N_d(x,g)$, we have $d(x,y) \leq d(x,z)d(z,y) < gg_1 = d(x,y)$, a contradiction. Hence, $y \notin \overline{N_d(x,g)}$ and we are done. \Box

Proposition 3.5. Let G be an ordered group and X a G-metric space. Then the open sets in X have the following properties:

(i) X and \varnothing are both open.

- (ii) Every union of open sets is open.
- (iii) Every finite intersection of open sets is open.

Proof. (i) and (ii) are clear. (iii). Let $x \in \bigcap_{i=1}^{n} U_i$, where U_i is an open set in X. Take $g_i \in G$ such that $x \in N_d(x, g_i) \subseteq U_i$. Since G is an ordered group, there exists $g \in G$ such that $g = \inf\{g_i\}_{i=1}^{n}$ (note, the elements g_i form a chain and hence g is one of them). Thus, $x \in N_d(x, g) \subseteq \bigcap_{i=1}^{n} N_d(x, g_i) \subseteq \bigcap_{i=1}^{n} U_i$, which completes the proof.

By the above proposition, every G-metric d on a set X defines a topology τ_d on X; members of τ_d , or, open subsets of X are unions of g-disks. Clearly, the family of all g-disks is a base for (X, τ_d) . We call τ_d the topology induced by the G-metric d (or G-metric topology).

Remark 3.6. Even if G is a Dedekind-complete group, a countable intersection of open sets in a G-metric space need not be an open set necessarily. To see this, consider \mathbb{R} as a G-metric space, where G is $(\mathbb{R}, +)$ or $((0, \infty), .)$. Also, recall the fact that every point a of \mathbb{R} is a G_{δ} -set, i.e., $\{a\} = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, a + \frac{1}{n})$.

In [2, I.3], an ordered set X is called a *densely ordered set*, if no cut of X is a jump, or equivalently, for every pair x, y of elements of X satisfying x < y, there exists a $z \in X$, such that x < z < y.

Definition 3.7. An ordered group G is called a *densely ordered group* if it is a densely ordered set with its total ordering relation.

It is clear that densely ordered groups are infinite. For example, every archimedean field like as \mathbb{R} and $\mathbb{Q}(\sqrt{n}) := \{a + b\sqrt{n} : a, b \in \mathbb{Q}, \sqrt{n} \notin \mathbb{Q}\}$ with the addition is a densely ordered group. \mathbb{Z} , the group of integers is an ordered group which is not a densely ordered group while \mathbb{Z}_n with the addition of modulo n, is not a poset group yet.

From now on, the group G is assumed to be a densely ordered group.

Proposition 3.8. Let G be a densely ordered group, (X, d) a G-metric space, $x \in X$ and $g \in G$ be fixed, and $A = \{y \in X : d(x, y) > g\}$. Then A is an open set in X (and hence $N_d(x, \overline{g}) := \{y \in G : d(x, y) \le g\}$ is closed).

Proof. Let $y \in A$ be fixed. Then d(x,y) > g. We must show that y is an interior point of A. Let $g_1 = d(x,y)g^{-1}$. Then $g_1 > e$ and $d(x,y) = gg_1$. Since G is a densely ordered group, we take $e < g_2 < g_1$ and claim that $N_d(y,g_2)$ is contained in A entirely. To see this, let $z \in N_d(y,g_2)$. Then we have $d(y,z) < g_2$ and so $g_2^{-1} < d^{-1}(y,z)$. Now, the inequality $d(x,y) \le d(x,z)d(z,y)$ yields

$$g < gg_1g_2^{-1} < d(x,y)d^{-1}(y,z) \le d(x,z).$$

(Notice that $g < gg_1g_2^{-1}$ if and only if $g_2 < g_1$.) Therefore, g < d(x, z), i.e., y is an interior point of A. So A is an open set in X, and we are done.

© AGT, UPV, 2021

Proposition 3.9. Let G be an ordered group and (X,d) a G-metric space. Then the following statements hold.

- (i) If G is a densely ordered group, then X is Hausdorff.
- (ii) If G is an infinite cyclic group, then X is discrete (and so it is first countable).

Proof. (i). Let $x, y \in X$ and d(x, y) = g > e. By assumption, since G is a densely ordered set, we can take $g_1, g_2 \in G$ such that $e < g_1 < g_2 < g$. Now, we claim that two disks $N_d(x, g_1)$ and $N_d(y, gg_2^{-1})$ are disjoint (note, $gg_2^{-1} > e$). Otherwise, for some $x' \in N_d(x, g_1) \cap N_d(y, gg_2^{-1})$, we have $d(x, x') < g_1$ and $d(x', y) < gg_2^{-1}$. Hence, $g = d(x, y) \leq d(x, x')d(x', y) < g_1gg_2^{-1}$. Therefore, $e < g_1g_2^{-1}$, or equivalently, $g_2 < g_1$, a contradiction. So we are done.

(ii). Let $e < g \in G$ be the generator of G. Then $G = \{g^n : n \in \mathbb{Z}\}$, in fact, we have $G \cong \mathbb{Z}$, the additive group of integers with the generator 1 (or -1). We note that the elements of G form a chain. So we obtain

$$\dots < g^{-3} < g^{-2} < g^{-1} < e < g < g^2 < g^3 < \dots$$

Therefore, for each $x \in X$, $N_d(x,g) = \{y \in X : d(x,y) < g\} = \{y \in X : d(x,y) = e\} = \{x\}$. This yields X is discrete (note, in this case G is not a densely ordered group).

Remark 3.10. By Proposition 3.9(ii), if G is an infinite cyclic group then X is first countable. But the converse of that result may be false, since every metric space is first countable, whereas the additive group $(\mathbb{R}, +)$ is not even countably generated.

In general, the converse of the above proposition does not need to be true. In the next example, we give examples of Hausdorff G-metric spaces such that the group G is neither a densely ordered group nor an infinite cyclic group.

- **Example 3.11.** (i) Let $d_1 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $d_1(m,n) = |m-n|$. Then, since $N_{d_1}(m,1) = \{m\}$, we obtain \mathbb{Z} is a discrete \mathbb{Z} -metric space. So it is Hausdorff, whereas \mathbb{Z} is not a densely ordered group. But if \mathbb{Z} is considered as a \mathbb{Q} -metric space with the same definition, $d_1(m,n) = |m-n|$, it is a discrete \mathbb{Q} -metric space while \mathbb{Q} is a densely ordered group.
 - (ii) Let $G := \mathbb{Z} \times \mathbb{Z}$ with the identity element e = (0, 0). Define $d_2 : \mathbb{Z} \times \mathbb{Z} \to G$ with $d_2(m, n) = (|m n|, |m n|)$. By example 2.2, G is an L-group. It is easy to see that d_2 is a G-metric on \mathbb{Z} . Now, let g = (1, 1). Then $N_{d_2}(m, g) = \{n \in \mathbb{Z} : d_2(m, n) < g\} = \{m\}.$

This yields \mathbb{Z} is a discrete *G*-metric space, whereas $G = \mathbb{Z} \times \mathbb{Z}$ is not a cyclic group (note, it is a finitely generated group which is generated by the set $\{(0, 1), (1, 0)\}$).

Definition 3.12. If (X, d_X) (resp. (Y, d_Y)) is a G_1 - (resp. G_2 -) metric space, a function $f : X \to Y$ is called *continuous* at $x_0 \in X$ if and only if for each $e_2 < g_2 \in G_2$ there is some $e_1 < g_1 \in G_1$ such that $d_Y(f(x_0), f(y)) < g_2$, whenever $d_X(x_0, y) < g_1$. f is called *continuous* on X, if it is continuous at every $x \in X$.

A simple translation of the above definition is:

Corollary 3.13. A function $f : X \to Y$ is continuous at $x_0 \in X$ if and only if for each g_2 -disk $N_{d_Y}(f(x_0), g_2)$ centered at $f(x_0)$, there is some g_1 -disk $N_{d_X}(x_0, g_1)$ centered at x_0 , such that $f(N_{d_X}(x_0, g_1)) \subseteq N_{d_Y}(f(x_0), g_2)$.

Theorem 3.14. If (X, d_X) and (Y, d_Y) are G_1 - and G_2 -metric spaces respectively, a function $f : X \to Y$ is continuous at $x_0 \in X$ if and only if for each open set V of Y containing $f(x_0)$, there exists an open set U of X containing x_0 such that $f(U) \subseteq V$.

Proof. (\Rightarrow) : Suppose that f is continuous at x_0 and V is an open set in Y containing $f(x_0)$. By definition of open sets, there is $g_2 \in G_2$ such that $f(x_0) \in N_{d_Y}(f(x_0), g_2) \subseteq V$. By Corollary 3.13, there exists a g_1 -disk $N_{d_X}(x_0, g_1)$ centered at x_0 such that $f(N_{d_X}(x_0, g_1)) \subseteq N_{d_Y}(f(x_0), g_2) \subseteq V$, where $g_1 \in G_1$. It now suffices to choose $U = N_{d_X}(x_0, g_1)$.

 (\Leftarrow) : Consider $e_2 < g_2 \in G_2$ and $N_{d_Y}(f(x_0), g_2)$ as an open set in Y containing $f(x_0)$. By hypothesis, there exists an open set U in X containing x_0 such that $f(U) \subseteq N_{d_Y}(f(x_0), g_2)$. Also, we can take $e_1 < g_1 \in G_1$ such that $N_{d_X}(x_0, g_1) \subseteq U$. So $f(N_{d_X}(x_0, g_1)) \subseteq f(U) \subseteq N_{d_Y}(f(x_0), g_2)$, and we are done.

The following lemma is the counterpart of Lemma 2.7 for a Dedekindcomplete group G. The only difference is that there A and B were finite subsets of G but here these sets must be bounded.

Lemma 3.15. Let G be a Dedekind-complete group and; A and B are bounded subsets of G such that $A \ge e$ (i.e., $a \ge e$, for all $a \in A$) and $B \ge e$. Then

- (i) if $A \leq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $a \leq b$) and $e \leq g \in G$, then $\sup(gA) = g \sup A \leq g \sup B = \sup(gB)$, where $gA = \{ga : a \in A\}$.
- (ii) if $A \ge B$ (i.e., for each $a \in A$ there is $b \in B$ such that $b \le a$) and $e \le g \in G$, then $\inf(gB) = g \inf B \le g \inf A = \inf(gA)$.
- (iii) $\sup(AB) = \sup A \sup B$, and also $\inf(AB) = \inf A \inf B$, where $AB = \{ab : a \in A, b \in B\}$.

In the remainder of this article, G is assumed to be a Dedekind-complete densely ordered group (i.e., a densely ordered group in which every bounded nonempty subset has a supremum and an infimum in G), (X, d) a G-metric space, and d is bounded. The *distance* of a point x to a set $A (\subseteq X)$ is defined by $d(x, A) = \inf\{d(x, a) : a \in A\}$, if $A \neq \emptyset$, and $d(x, \emptyset) = e$.

Theorem 3.16.

- (i) The mapping $f: X \to G$ defined by f(x) = d(x, A) is continuous.
- (ii) $x \in cl_X A$ if and only if f(x) = d(x, A) = e, in fact, $cl_X A = f^{-1}(e)$.

© AGT, UPV, 2021

Proof. (i). First, by Proposition 2.8, we have (G, d') is a *G*-metric space, where $d'(g_1, g_2) = |g_1g_2^{-1}|$. Let $x_0 \in X, g_0 \in G$ and $N_{d'}(f(x_0), g_0)$ be an open set containing $f(x_0)$. Then

$$d(x_0, a) \le d(x_0, x)d(x, a), \text{ and } d(x, a) \le d(x, x_0)d(x_0, a).$$
 (R₂)

Now, if we let $G_1 = \{d(x_0, a) : a \in A\}$ and $G_2 = \{d(x_0, x)d(x, a) : a \in A\}$, then G_1 and G_2 are two subsets of G with the same cardinality and $G_2 \ge G_1$. By Lemma 3.15 (ii), we have $\inf_{a \in A} G_1 \le \inf_{a \in A} G_2$. In other words, taking infimum on both sides of each of the inequalities in (R_2) with respect to $a \in A$, we obtain

$$\inf_{a \in A} d(x_0, a) \le d(x_0, x) \inf_{a \in A} d(x, a), \text{ and } \inf_{a \in A} d(x, a) \le d(x, x_0) \inf_{a \in A} d(x_0, a).$$

Thus, $f(x_0) \leq d(x, x_0) f(x)$ and $f(x) \leq d(x, x_0) f(x_0)$. Hence, $f(x_0) f^{-1}(x) \leq d(x, x_0)$ and also $f(x) f^{-1}(x_0) \leq d(x, x_0)$, i.e., $d(x, x_0)$ is a common upper bound for $f(x_0) f^{-1}(x)$ and $f^{-1}(x_0) f(x)$. Therefore,

$$d'(f(x_0), f(x)) = |f(x)f^{-1}(x_0)| = \sup\{f(x_0)f^{-1}(x), f^{-1}(x_0)f(x)\} \le d(x, x_0).$$

Now, for the g_0 -disk $N_d(x_0, g_0)$ we have $f(N_d(x_0, g_0)) \subseteq N_{d'}(f(x_0), g_0)$, and we are through.

(ii). Necessity: First, we note that by Corollary 3.4, $clA = \overline{A} = \{x \in X : N_d(x,g) \cap A \neq \emptyset$, for all $g > e\}$. If d(x,A) = g > e then $d(x,a) \ge g > e$, for all $a \in A$. By assumption, since G is a densely ordered group, we can take $g_1 \in G$ such that $g > g_1 > e$. Now, we observe that $N_d(x,g_1) \cap A = \emptyset$. Hence, $x \notin \overline{A}$.

Sufficiency: Let $x \notin \overline{A}$. Then $N_d(x,g) \cap A = \emptyset$, for some $e < g \in G$. Hence, $d(x,a) \ge g$, for all $a \in A$. Therefore, $d(x,A) \ge g > e$. So $d(x,A) \ne e$, and we are done.

Theorem 3.17. Let G be a Dedekind-complete densely ordered group, (X, d) a G-metric space, d is bounded, $g \in G$, and let $\mathcal{F}(X)$ be the family of all nonempty closed subsets of X. For $A, B \in \mathcal{F}(X)$ define

$$d_B(A) = \sup\{d(a, B) : a \in A\}, and d'(A, B) = \sup\{d_A(B), d_B(A)\}.$$

Then the following statements hold.

- (1) d' is a G-metric on $\mathcal{F}(X)$. We call it the Hausdorff G-metric on $\mathcal{F}(X)$.
- (2) $d'(A,B) \leq g$ if and only if $A \subseteq N_d(B,\bar{g})$ and $B \subseteq N_d(A,\bar{g})$, where $N_d(A,\bar{g}) = \{x \in X : d(x,A) \leq g\}.$

Proof. (1). (i) and (iii) of Definition 2.4 are evident. Let d'(A, B) = e. Then $d_B(A) = e = d_A(B)$. So d(a, B) = e for all $a \in A$. By Theorem 3.16 (ii), $a \in clB = B$, i.e., $A \subseteq B$. Similarly, $B \subseteq A$. This proves (ii) of Definition 2.4. For the proof of triangle inequality, let $A, B, C \in \mathcal{F}(X)$ and $a \in A, b \in B, c \in C$. We notice that $d(a, B) \leq d(a, b)$ and $d(b, C) \leq d_C(B)$. Thus,

$$d(a, B) \le d(a, b) \le d(a, c)d(c, b).$$

Taking infimum on both sides of the above inequality with respect to $c \in C$ plus Lemma 3.15 yield

$$d(a,B) \le \inf_{c \in C} \{d(a,c)d(c,b)\} = \inf_{c \in C} d(a,c) \inf_{c \in C} d(c,b).$$

Therefore, $d(a, B) \leq d(a, C)d(b, C)$. Since $d(b, C) \leq d_C(B)$, we have $d(a, B) \leq d(a, C)d_C(B)$. Taking supremum on both sides of the latter inequality with respect to $a \in A$, we obtain

$$d_B(A) \le d_C(A)d_C(B). \tag{R3}$$

On the other hand, taking infimum over $c \in C$ on both sides of the inequalities $d(b, A) \leq d(a, b) \leq d(a, c)d(c, b)$ we obtain $d(b, A) \leq d(a, C)d(b, C)$ (Lemma 3.15). Furthermore, $d(a, C) \leq d_C(A)$ gives $d(b, A) \leq d_C(A)d(b, C)$. Now, take supremum on both sides of the latter inequality respect to $b \in B$. Thus,

$$d_A(B) \le d_C(A)d_C(B). \tag{R4}$$

Combining (R_3) and (R_4) we get

$$d'(A,B) \le d_C(A)d_C(B) \le d'(A,C)d'(C,B).$$

Hence, d' satisfies (iv) of Definition 2.4, and we are done.

(2). (\Rightarrow) : Let $d'(A, B) \leq g$. Then $d_B(A) \leq g$ and $d_A(B) \leq g$. Hence, $d(a, B) \leq g$, for all a in A. So $A \subseteq N_d(B, \overline{g})$. Similarly, $B \subseteq N_d(A, \overline{g})$.

 (\Leftarrow) : Since $A \subseteq N_d(B, \bar{g})$, it gives $d(a, B) \leq g$, for all a in A, and therefore $d_B(A) = \sup_{a \in A} d(a, B) \leq g$. The assertion $d_A(B) \leq g$ is deduced similarly. So $d'(A, B) \leq g$, and we are through.

Corollary 3.18. Let G be a densely ordered group and further a closed subset of \mathbb{R} , $\mathcal{K}(X)$ the family of nonempty compact subsets of X and A, $B \in \mathcal{K}(X)$ such that X, d, g, d_A and d' be as defined in Theorem 3.17. Then d'(A, B) < g if and only if $A \subseteq N_d(B,g)$ and $B \subseteq N_d(A,g)$, where $N_d(A,g) = \{x \in X : d(x, A) < g\}$.

Proof. We first recall the fact that a nonempty subset of \mathbb{R} has the least-upperbound property (equivalently, the greatest-lower-bound property) if and only if it is closed in \mathbb{R} . So G has the least-upper-bound property and hence it is a Dedekind-complete densely ordered group. Moreover, by Proposition 3.9, X is Hausdorff and therefore every compact set in X is closed. Thus, the conditions of Theorem 3.17 are satisfied. The necessary condition is obvious. To prove the sufficiency, let us define

$$f_1, f_2: X \to G$$
 with $f_1(x) = d(x, A)$ and $f_2(x) = d(x, B)$.

Now, since A and B are compact subsets of X and further; f_1 and f_2 are continuous functions on X (Theorem 3.16), $f_1(B)$ and $f_2(A)$ are compact sets in G (note, since G is closed, f_1 and f_2 are well defined). Therefore, $\sup f_1(B) \in f_1(B)$ and also $\sup f_2(A) \in f_2(A)$. So we have

$$d_A(B) = \sup f_1(B) = f_1(b_1) = d(b_1, A)$$
, for some $b_1 \in B$,

and also

$$d_B(A) = \sup f_2(A) = f_2(a_2) = d(a_2, B)$$
, for some $a_2 \in A$

© AGT, UPV, 2021

By assumption, we now get $d_A(B) < g$ and $d_B(A) < g$. Hence, d'(A, B) < g, and we are through.

ACKNOWLEDGEMENTS. The authors are grateful to the referee for providing helpful comments and recommendations to improve the quality of the paper.

References

- A. Arhangel'skii and M. Tkachenko, Topological groups and related structures, Atlantis press/ World Scientific, Amsterdam-Paris, 2008.
- [2] R. Engelking, General topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- [4] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
- [5] O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16, no. 2 (2015), 183–207.
- [6] M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561–571.
- [7] D. J. S. Robinson, A course in the theory of groups, second edition, Springer-Verlag New York, Inc. 1996.
- [8] J. Rotman, An Introduction to the Theory of Groups, Vol. 148, 4th edition Springer, New York, 1995.
- [9] A. Veisi, The subalgebras of the functionally countable subalgebra of C(X), Far East J. Math. Sci. (FJMS) 101, no. 10 (2017), 2285–2297.
- [10] A. Veisi, Invariant norms on the subalgebras of C(X) consisting of bounded functions with countable image, JP Journal of Geometry and Topology 21, no. 3 (2018), 167–179.
- [11] A. Veisi, e_c -Filters and e_c -ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395–405.
- [12] A. Veisi and A. Delbaznasab, New structure of norms on Rⁿ and their relations with the curvature of the plane curves, Ratio Mathematica 39 (2020), 55–67.
- [13] S. Willard, General Topology, Addison-Wesley, 1970.