Metric spaces related to Abelian groups

Amir Veisi ${ }^{a}$ and Ali Delbaznasab ${ }^{b}$
${ }^{a}$ Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran (aveisi@yu.ac.ir)
${ }^{b}$ Department of Mathematics, Shahid Bahonar University, Kerman, Iran (delbaznasab@gmail.com)
Communicated by F. Lin

Abstract
When working with a metric space, we are dealing with the additive group $(\mathbb{R},+)$. Replacing $(\mathbb{R},+)$ with an Abelian group $(G, *)$, offers a new structure of a metric space. We call it a G-metric space and the induced topology is called the G-metric topology. In this paper, we are studying G-metric spaces based on L-groups (i.e., partially ordered groups which are lattices). Some results in G-metric spaces are obtained. The G-metric topology is defined which is further studied for its topological properties. We prove that if G is a densely ordered group or an infinite cyclic group, then every G-metric space is Hausdorff. It is shown that if G is a Dedekind-complete densely ordered group, (X, d) a G-metric space, $A \subseteq X$ and d is bounded, then $f: X \rightarrow G$ with $f(x)=d(x, A):=\inf \{d(x, a): a \in A\}$ is continuous and further $x \in \operatorname{cl}_{X} A$ if and only if $f(x)=e$ (the identity element in G). Moreover, we show that if G is a densely ordered group and further a closed subset of $\mathbb{R}, \mathcal{K}(X)$ is the family of nonempty compact subsets of $X, e<g \in G$ and d is bounded, then $d^{\prime}(A, B)<g$ if and only if $A \subseteq N_{d}(B, g)$ and $B \subseteq N_{d}(A, g)$, where $N_{d}(A, g)=\{x \in X: d(x, A)<g\}, d_{B}(A)=\sup \{d(a, B): a \in A\}$ and $d^{\prime}(A, B)=\sup \left\{d_{A}(B), d_{B}(A)\right\}$.

2010 MSC: 54C40; 06F20; 16H20.
KEYWORDS: G-metric space; L-group; Dedekind-complete group; densely ordered group; continuity.

1. Introduction

In this article, a group $(G, *)$ (briefly, G) is an Abelian group and for readability, we use $g_{1} g_{2}$ instead of $g_{1} * g_{2}$. Let X be a set and \leq relation on X, we recall that the pair (X, \leq) is a partially ordered set (in brief, a poset) if the following conditions hold: $x \leq x$, if $x \leq y$ and $y \leq x$, then $x=y$; if $x \leq y$ and $y \leq z$, then $x \leq z$. In a poset, the symbol $a \vee b$ denotes $\sup \{a, b\}$, i.e., the smallest element c, if one exists, such that $c \geq a$ and $c \geq b$. Likewise, $a \wedge b$ stands for $\inf \{a, b\}$. When both $a \vee b$ and $a \wedge b$ exist, for all $a, b \in A$, then A is called a lattice. A subset S is a sublattice of A provided that, for all $x, y \in S$, the elements $x \vee y$ and $x \wedge y$ of A belong to S. (Thus, it is not enough that x and y have a supremum and infimum in S.) For instance, $C(X)$, the ring of real-valued continuous functions on the topological space X is a lattice. If $f, g \in C(X)$, then $f \vee g=\frac{f+g+|f-g|}{2} \in C(X)$ (note, $f \wedge g=-(-f \vee-g)=\frac{f+g-|f-g|}{2} \in C(X)$). In fact, $C(X)$ is a sublattice of \mathbb{R}^{X}, the ring of real-valued functions on the set X (note, the partial ordering on \mathbb{R}^{X} is: $f \leq g$ if and only if $f(x) \leq g(x)$ for all x in X). A poset in which every nonempty subset has both a supremum and an infimum is said to be a lattice-complete. For example, $P(X)$, the set of all subsets of X with inclusion is lattice-complete. Union (resp. intersection) of sets is the supremum (resp. the infimum) of them. A totally (or linearly) ordered set is a poset in which every pair of elements is comparable, i.e., $x \leq y$ or $y \leq x$ for all x and y in X. We use "ordered sets" instead of "totally ordered sets". An ordered set is often referred to as a chain. A lattice need not be an ordered set, necessarily, but the converse is always true. We notice that $C(X)$ and $C_{c}(X)$, its subalgebra consisting of elements with countable image, are lattices, while they are not ordered sets, also, they are not lattice-complete necessarily. An ordered set is said to be Dedekind-complete provided that every nonempty subset with an upper bound has a supremum, or equivalently, every nonempty subset with a lower bound has an infimum. (For example, \mathbb{R}, the set of real numbers is Dedekind-complete, but not lattice-complete.) An ordered field \mathbb{F} is said to be archimedean if \mathbb{Z}, the set of integers is cofinal, i.e., for every $x \in \mathbb{F}$, there exists $n \in \mathbb{Z}$ such that $n \geq x$. For instance, $\mathbb{Q}(\sqrt{n}):=\{a+b \sqrt{n}: a, b \in \mathbb{Q}, \sqrt{n} \notin \mathbb{Q}\}$ is an archimedean field.

Theorem 1.1 ([3, Theorem 0.21]). An ordered field is archimedean if and only if it is isomorphic to a subfield of the ordered field \mathbb{R}.

A brief outline of this paper is as follows. In Section 2, we introduce the G-metric spaces related to L-groups (i.e., partially ordered groups which are lattices) and study them further. In Section 3, the basic topological properties based on the notion of g-disk are studied. We prove that if G is a densely ordered group or an infinite cyclic group, then every G-metric space is Hausdorff. It is shown that if G is a Dedekind-complete densely ordered group, (X, d) a G-metric space, d is bounded and $A \subseteq X$, then $f: X \rightarrow G$ given by $f(x)=d(x, A):=\inf \{d(x, a): a \in A\}$ is continuous and further $x \in \operatorname{cl}_{X} A$ if and only if $f(x)=e$ (the identity element of G). Moreover, let
$\mathcal{F}(X)$ be the family of nonempty closed sets in $X, e<g \in G, A, B \in \mathcal{F}(X)$ and $d_{A}(B)=\sup \{d(b, A): b \in B\}$. Then for the G-metric space $\left(\mathcal{F}(X), d^{\prime}\right)$ (note, $d^{\prime}(A, B)=\sup \left\{d_{A}(B), d_{B}(A)\right\}$), we have $d^{\prime}(A, B) \leq g$ if and only if $A \subseteq N_{d}(B, \bar{g})$ and $B \subseteq N_{d}(A, \bar{g})$, where $N_{d}(A, \bar{g})=\{x \in X: d(x, A) \leq g\}$. Particularly, if G is a densely ordered group and further a closed subset of \mathbb{R}, X is a G-metric space and $\mathcal{K}(X)$ is the family of nonempty compact sets in X, then $d^{\prime}(A, B)<g$ if and only if $A \subseteq N_{d}(B, g)$ and $B \subseteq N_{d}(A, g)$, where $N_{d}(A, g)=\{x \in X: d(x, A)<g\}$.

2. G-METRIC SPACES

Definition 2.1. A group G with a partial ordering relation \leq is called a partially ordered group (in brief, a poset group) if the binary operation of G preserves the order, i.e.,

$$
\begin{equation*}
g_{1} \geq g_{2} \text { implies } g_{1} g_{3} \geq g_{2} g_{3} \text { for all } g_{1}, g_{2}, g_{3} \in G \tag{1}
\end{equation*}
$$

Moreover, if a poset group G is a lattice then G is called an L-group.
From the above definition, the following facts are evident: $g_{1} \geq g_{2}$ if and only if $g_{1} g_{2}^{-1} \geq e ; g \geq e$ if and only if $g^{-1} \leq e$; if $g_{1} \geq g_{3}$ and $g_{2} \geq g_{4}$, then $g_{1} g_{2} \geq g_{3} g_{4}$. For example, every archimedean field with the addition is an L-group. But \mathbb{Z}_{n} with the addition of modulo n is not a poset group yet, since this addition does not preserve the order. For an L-group G and $g \in G$, we let $|g|=\sup \left\{g, g^{-1}\right\}=g \vee g^{-1}=\left|g^{-1}\right|$.

Example 2.2. Consider the group $G:=\mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$ (k-times) with the usual addition and the identity element $e=(0,0, \ldots, 0)$. Let $g_{1}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, $g_{2}=\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in G$. Define

$$
g_{1} \leq g_{2} \text { if and only if } m_{i} \leq n_{i} \text { for all } i=1,2, \ldots, k
$$

We see that \leq is a partial ordering relation on G. Also, the condition $\left(R_{1}\right)$ in the above definition is satisfied, i.e., G is a poset group. Let $z_{i}=\max \left\{m_{i}, n_{i}\right\}$ and $z_{i}^{\prime}=\min \left\{m_{i}, n_{i}\right\}$, where $i=1,2, \ldots, k$. Let $g_{3}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ and $g_{4}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{k}^{\prime}\right)$. Then we obtain $g_{1} \vee g_{2}=g_{3}$ and $g_{1} \wedge g_{2}=g_{4}$. Hence, G is an L-group.

By an ordered group, we mean a poset group which is a totally ordered set by its partial ordering relation. It is clear that an ordered group is an L-group. Finally, by Dedekind-complete group, we mean an ordered group which is a Dedekind-complete set with its partial ordering relation, i.e., every nonempty subset with an upper bound has a supremum, or equivalently, every nonempty subset with a lower bound has an infimum. For example, every archimedean field with the addition is a Dedekind-complete group.
Corollary 2.3. If G is an L-group and $g_{1}, g_{2} \in G$, then $\left|g_{1} g_{2}\right| \leq\left|g_{1}\right|\left|g_{2}\right|$.
Proof. We note that $g_{1}, g_{1}^{-1} \leq\left|g_{1}\right|$ and $g_{2}, g_{2}^{-1} \leq\left|g_{2}\right|$. Definition 2.1 now gives $g_{1} g_{2} \leq\left|g_{1}\right|\left|g_{2}\right|$ and also $g_{1}^{-1} g_{2}^{-1} \leq\left|g_{1}\right|\left|g_{2}\right|$. So we have that $\left|g_{1} g_{2}\right|=$ $\sup \left\{g_{1} g_{2},\left(g_{1} g_{2}\right)^{-1}\right\} \leq\left|g_{1} g_{2}\right|$, and the result holds.

Definition 2.4. Let G be a poset group and X a nonempty set. We say the function $d: X \times X \rightarrow G$ is a G-metric on X, whenever the following conditions hold, for every $x, y, z \in X$.
(i) $d(x, y) \geq e(e$ is the identity element in $G)$,
(ii) $d(x, y)=e$ if and only if $x=y$,
(iii) $d(x, y)=d(y, x)$,
(iv) $d(x, y) \leq d(x, z) d(z, y)$ (triangle inequality).

The pair (X, d) (briefly, X) is called a G-metric space. Evidently, every metric space is a G-metric space, when $(G, *)=(\mathbb{R},+)$. If all axioms but the second part of Definition 2.4 are satisfied, we call d a G-pseudometric and then X a G-pseudometric space. Defining $d(x, y)=e$ for all x and y in X, gives a G-pseudometric on X, called the trivial G-pseudometric, in this case, d is a G-metric if and only if X is the singleton set $\{x\}$. Although all the material of this section is developed for G-metric spaces, the basic results remain true for G-pseudometric spaces as well. If (X, d) is a G-metric on X and A is a subset of X, then A inherits a G-metric structure from X in an obvious way, making A a G-metric space.

In the following example, we will present some examples of G-metric spaces.
Before it, let $X=\mathbb{R}^{n}, G_{1}=(\mathbb{R},+), G_{2}=((0,+\infty),),. G_{3}=(\mathbb{R}-\{-1\}, *)$ and $G_{4}=\left(\mathbb{Z}_{2}, \oplus\right)$, where,+ are usual addition and multiplication, the symbol \oplus is the addition of modulo 2 and $*$ is defined as follows: $x * y=x+y+x y$. In G_{3}, the identity element is 0 and the inverse of x is $x^{-1}=\frac{-x}{1+x}$. Checking of the associative property of $*$ is easy.
Moreover, let $\varphi_{i}: G_{i} \times G_{i} \rightarrow G_{i}$, where $i=1,2,3,4$, such that $\varphi_{1}(x, y)=x-y$, $\varphi_{2}(x, y)=\frac{x}{y}, \varphi_{3}(x, y)=\frac{-x y}{1+x}$ and $\varphi_{4}(x, y)=\left\{\begin{array}{ll}0 & \text { if } x=y \\ 1 & \text { if } x \neq y .\end{array}\right.$ Then, since each φ_{i} is continuous, each G_{i} is a topological group as subspaces of \mathbb{R} with the usual topology.

Example 2.5. Let $X=\mathbb{R}^{n}, G_{i}$, where $i=1,2,3,4$, be as defined in the previous discussion. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X,\|x-y\|$ is the usual norm, i.e., $\|x-y\|=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}$. We claim that each d_{i}, the functions below, is a G_{i}-metric and therefore $\left(X, d_{i}\right)$ is a G_{i}-metric space. We only check that d_{2} and d_{3} satisfy (iv) of Definition 2.4. Other conditions are routine.
(1) Let $d_{1}: X \times X \rightarrow G_{1}$ such that $d_{1}(x, y)=\|x-y\|$.
(2) Let $d_{2}: X \times X \rightarrow G_{2}$ such that $d_{2}(x, y)=e^{\|x-y\|}$.
(3) Let $d_{3}: X \times X \rightarrow G_{3}$ such that $d_{3}(x, y)=e^{\|x-y\|}-1$.
(4) Let $d_{4}: X \times X \rightarrow G_{4}$ such that $d(x, y)=0$ if $x=y$; and 1 if $x \neq y . d_{4}$ is called a discrete G-metric.
We notice that the identity elements in G_{2} and G_{3} are 1 and 0 respectively. Moreover, $d_{2}(x, y) \geq 1$ and $d_{3}(x, y) \geq 0$. Now,

$$
d_{2}(x, y)=e^{\|x-y\|} \leq e^{(\|x-z\|+\|z-y\|)}=e^{\|x-z\|} e^{\|z-y\|}=d_{2}(x, z) d_{2}(z, y)
$$

Also, we have

$$
\begin{aligned}
d_{3}(x, y) & =e^{\|x-y\|}-1 \leq e^{\|x-z\|} e^{\|z-y\|}-1 \\
& =\left(e^{\|x-z\|}-1\right)+\left(e^{\|z-y\|}-1\right)+\left(e^{\|x-z\|}-1\right)\left(e^{\|z-y\|}-1\right) \\
& =d_{3}(x, z)+d_{3}(z, y)+d_{3}(x, z) d_{3}(z, y) \\
& =d_{3}(x, z) d_{3}(z, y)
\end{aligned}
$$

So d_{2} and d_{3} satisfy the triangle inequality of Definition 2.4.
A G-metric d on a set X is called bounded if $d(x, y) \leq g_{0}$, for all $x, y \in X$ and some $g_{0} \in G$. Thus, the next result is now immediate.
Corollary 2.6. Let G be an L-group, d a G-metric on $X, e<g_{1}$ a fixed element in G and $d_{1}(x, y)=\inf \left\{d(x, y), g_{1}\right\}$. Then d_{1} is a bounded G-metric.
Lemma 2.7. Let G be an L-group; A and B are finite subsets of G such that $A \geq e$ (i.e., $a \geq e$, for all $a \in A$) and $B \geq e$. Then
(i) if $A \leq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $a \leq b$) and $e \leq g \in G$, then $\sup (g A)=g \sup A \leq g \sup B=\sup (g B)$, where $g A=\{g a: a \in A\}$.
(ii) if $A \geq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $b \leq a$) and $e \leq g \in G$, then $\inf (g B)=g \inf B \leq g \inf A=\inf (g A)$.
(iii) $\sup (A B)=\sup A \sup B$, and also $\inf (A B)=\inf A \inf B$, where $A B=$ $\{a b: a \in A, b \in B\}$.

Proof. First, we note that by definition of an L-group, each of the finite sets A, B and $A B$ has a supremum and an infimum in G. The proofs of (i) and (ii) are routine. (iii). Let $\sup A=\alpha, \sup B=\beta$ and $\sup (A B)=\gamma$. Since G is an L-group, it is a poset group. So by Definition 2.1, we have $a b \leq \alpha \beta$, for all $a \in A$ and $b \in B$. Evidently, $\gamma \leq \alpha \beta$. Now, we are ready to show that $\gamma=\alpha \beta$. For the reverse inclusion, let $a \in A$ be fixed. Then $a b \leq \gamma$ implies $b \leq a^{-1} \gamma$. Therefore, B is bounded by $a^{-1} \gamma$. So $\beta=\sup B \leq a^{-1} \gamma$, in other words, $a \leq \beta^{-1} \gamma$. Since $a \in A$ is arbitrary, we deduce that A is bounded by $\beta^{-1} \gamma$. Thus, $\alpha \leq \beta^{-1} \gamma$. This yields $\alpha \beta \leq \gamma$, and we are through. The proof of another assertion (infimum) is done similarly.

Proposition 2.8. Let G be an ordered group. Then defining

$$
d: G \times G \rightarrow G \text { given by } d\left(g_{1}, g_{2}\right)=\left|g_{1} g_{2}^{-1}\right|
$$

turns G into a G-metric space.
Proof. We claim that d is a G-metric on G. First, we note that since G is an ordered group, it is an L-group and further $g \in G$ gives $g \geq e$ or $g^{-1} \geq e$. So $|g|=\left|g^{-1}\right|=\sup \left\{g, g^{-1}\right\}=g$ or g^{-1}. Hence, $|g| \geq e$ and therefore conditions (i)-(iii) of Definition 2.4 hold. Moreover, if $g_{1}, g_{2}, g_{3} \in G$, then Corollary 2.3 implies

$$
\begin{aligned}
d\left(g_{1}, g_{2}\right)=\left|g_{1} g_{2}^{-1}\right| & =\left|\left(g_{1} g_{3}^{-1}\right)\left(g_{3} g_{2}^{-1}\right)\right| \leq\left|g_{1} g_{3}^{-1}\right|\left|g_{3} g_{2}^{-1}\right| \\
& =d\left(g_{1}, g_{3}\right) d\left(g_{3}, g_{2}\right)
\end{aligned}
$$

A. Veisi and A. Delbaznasab

This gives d satisfies the triangle inequality, i.e., it is a G-metric on G and hence G is a G-metric space.

Corollary 2.9. Let G be an ordered group, X a nonempty set and $f: X \rightarrow G$ a function. Then $d: X \times X \rightarrow G$ given by $d(x, y)=\left|f(x) f^{-1}(y)\right|$ is a G pseudometric on X. Moreover, d is a G-metric on X if and only if f is oneone.

The next proposition generalizes Proposition 2.8.
Proposition 2.10. Let G be an ordered group. Then each of the following binary operations on G^{n} (the n product of G), turns it into a G-metric space, where $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ and $g^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are arbitrary elements of G^{n}.
(i) $d_{1}: G^{n} \times G^{n} \rightarrow G$ defined by $d_{1}\left(g, g^{\prime}\right)=\left|g_{1}^{-1} g_{1}^{\prime}\right|\left|g_{2}^{-1} g_{2}^{\prime}\right| \ldots\left|g_{n}^{-1} g_{n}^{\prime}\right|$.
(ii) $d_{2}: G^{n} \times G^{n} \rightarrow G$ defined by

$$
d_{2}\left(g, g^{\prime}\right)=\sup \left\{\left|g_{1}^{-1} g_{1}^{\prime}\right|,\left|g_{2}^{-1} g_{2}^{\prime}\right|, \ldots,\left|g_{n}^{-1} g_{n}^{\prime}\right|\right\}
$$

Proof. We only check that the triangle inequality for d_{1} and d_{2}. Other conditions are routine. (i). Let $g^{\prime \prime}=\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, \ldots, g_{n}^{\prime \prime}\right) \in G^{n}$. Then

$$
\begin{aligned}
d_{1}\left(g, g^{\prime \prime}\right) & =\left|g_{1}^{-1} g_{1}^{\prime \prime}\right|\left|g_{2}^{-1} g_{2}^{\prime \prime}\right| \ldots\left|g_{n}^{-1} g_{n}^{\prime \prime}\right| \\
& =\left|\left(g_{1}^{-1} g_{1}^{\prime}\right)\left(g_{1}^{\prime-1} g_{1}^{\prime \prime}\right)\right|\left|\left(g_{2}^{-1} g_{2}^{\prime}\right)\left(g_{2}^{\prime-1} g_{2}^{\prime \prime}\right)\right| \ldots\left|\left(g_{n}^{-1} g_{n}^{\prime}\right)\left(g_{n}^{\prime-1} g_{n}^{\prime \prime}\right)\right| \\
& \leq\left|g_{1}^{-1} g_{1}^{\prime}\right|\left|g_{1}^{\prime-1} g_{1}^{\prime \prime}\right|\left|g_{2}^{-1} g_{2}^{\prime}\right|\left|g_{2}^{\prime-1} g_{2}^{\prime \prime}\right| \ldots\left|g_{n}^{-1} g_{n}^{\prime}\right|\left|g_{n}^{\prime-1} g_{n}^{\prime \prime}\right| \\
& =\left(\left|g_{1}^{-1} g_{1}^{\prime}\right| g_{2}^{-1} g_{2}^{\prime}|\ldots| g_{n}^{-1} g_{n}^{\prime} \mid\right)\left(\left|g_{1}^{\prime-1} g_{1}^{\prime \prime}\right|\left|g_{2}^{\prime-1} g_{2}^{\prime \prime}\right| \ldots\left|g_{n}^{\prime-1} g_{n}^{\prime \prime}\right|\right) \\
& =d_{1}\left(g, g^{\prime}\right) d_{1}\left(g^{\prime}, g^{\prime \prime}\right)
\end{aligned}
$$

Notice that the above inequality is obtained by Corollary 2.3. (ii). Let $g^{\prime \prime}=$ $\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, \ldots, g_{n}^{\prime \prime}\right) \in G^{n}$ and let

$$
\begin{gathered}
A=\left\{\left|g_{1}^{-1} g_{1}^{\prime \prime}\right|,\left|g_{2}^{-1} g_{2}^{\prime \prime}\right|, \ldots,\left|g_{n}^{-1} g_{n}^{\prime \prime}\right|\right\} \\
B=\left\{\left|g_{1}^{-1} g_{1}^{\prime}\right|\left|g_{1}^{\prime-1} g_{1}^{\prime \prime}\right|,\left|g_{2}^{-1} g_{2}^{\prime}\right|\left|g_{2}^{\prime-1} g_{2}^{\prime \prime}\right|, \ldots,\left|g_{n}^{-1} g_{n}^{\prime}\right|\left|g_{n}^{\prime-1} g_{n}^{\prime \prime}\right|\right\}, \\
B_{1}=\left\{\left|g_{1}^{-1} g_{1}^{\prime}\right|,\left|g_{2}^{-1} g_{2}^{\prime}\right|, \ldots,\left|g_{n}^{-1} g_{n}^{\prime}\right|\right\}, \text { and } \\
B_{2}=\left\{\left|g_{1}^{\prime-1} g_{1}^{\prime \prime}\right|,\left|g_{2}^{\prime-1} g_{2}^{\prime \prime}\right|, \ldots,\left|g_{n}^{\prime-1} g_{n}^{\prime \prime}\right|\right\}
\end{gathered}
$$

We notice that G is an L-group. Now, according to Lemma 2.7, we have $A \leq B \leq B_{1} B_{2}$. Therefore,
$d_{2}\left(g, g^{\prime \prime}\right)=\sup A \leq \sup B \leq \sup \left(B_{1} B_{2}\right)=\sup B_{1} \sup B_{2}=d_{2}\left(g, g^{\prime}\right) d_{2}\left(g^{\prime}, g^{\prime \prime}\right)$,
which completes the proof.

3. BASIC TOPOLOGICAL CONCEPTS IN G-METRIC SPACES AND SOME RELATED RESULTS

We begin with the following definition.
Definition 3.1. Let G be a poset group, (X, d) a G-metric space and x a point of X. Given $e<g \in G$, we let

$$
N_{d}(x, g)=\{y \in X: d(x, y)<g\}
$$

and call it the g-disk centered at x. Also, we put $N_{d}(x, \bar{g})=\{y \in X, d(x, y) \leq$ $g\}$.

A subset U of X is said to be open in X if either $U=\varnothing$ or for every $x \in U$ there is a $g \in G$ such that $N_{d}(x, g) \subseteq U$. Here, x is called an interior point of U. The set of all interior points of U is called the interior of U, denoted by $U^{\circ}\left(\right.$ or $\left.\operatorname{int}_{X} U\right)$. Also, a set F is called closed if and only if its set-theoretic complement is an open set in X. Evidently, a set F is closed if and if every g-disk centered at x meets F, then $x \in F$.
Corollary 3.2. Every g-disk $N_{d}(x, g)$ is an open set in X (and hence $X \backslash$ $N_{d}(x, g)=\{y \in X: d(x, y) \geq g\}$ is a closed set in $\left.X\right)$.
Proof. Let $y \in N_{d}(x, g)$. Then $g_{1}=d(x, y)<g$. We claim that $N_{d}\left(y, g g_{1}^{-1}\right) \subseteq$ $N_{d}(x, g)$ (note, $g g_{1}^{-1}>e$). To see this, assume that $z \in N_{d}\left(y, g g_{1}^{-1}\right)$. Hence, $d(z, x) \leq d(z, y) d(y, x)<g g_{1}^{-1} g_{1}=g$. This yields $z \in N_{d}(x, g)$, i.e., $N_{d}\left(y, g g_{1}^{-1}\right)$ $\subseteq N_{d}(x, g)$, and we are done.

Definition 3.3. Let X be a G-metric space and $A \subseteq X$. The closure of A in X is denoted by $\mathrm{cl}_{X} A$ (or briefly clA) and defined by the set

$$
\operatorname{cl} A=\cap\{F \subseteq X: F \text { is closed in } X \text { and } A \subseteq F\}
$$

By the above definition, A is closed if and only if $A=\operatorname{cl} A$.
Corollary 3.4. Let G be a poset group, (X, d) a G-metric space and $\bar{A}=\{x \in$ $X: N_{d}(x, g) \cap A \neq \varnothing$ for all $\left.e<g \in G\right\}$, where $A \subseteq X$. Then
(1) $\bar{A}=c l A$.
(2) If $x \in X$ and $g \in G$, then $\overline{N_{d}(x, g)} \subseteq N_{d}(x, \bar{g})$.

Proof. (1). Let $x \notin \operatorname{cl} A$. Then $x \notin F$, for some closed set F containing A. Now, since $X \backslash F$ is open, there exists $e<g \in G$, such that $x \in N_{d}(x, g) \subseteq X \backslash F$. So $x \notin \bar{A}$. Conversely, suppose that $x \notin \bar{A}$. So for some $e<g \in G, N_{d}(x, g) \cap A=$ \varnothing. Therefore, the closed set $X \backslash N_{d}(x, g)$ contains A but not x. This gives $x \notin$ $\operatorname{cl} A$, and we are done. (2). Suppose that $y \notin N_{d}(x, \bar{g})$. So $d(x, y)>g$ and hence $g_{1}=d(x, y) g^{-1}>e$. We claim that $N_{d}\left(y, g_{1}\right) \cap N_{d}(x, g)=\varnothing$. Otherwise, for some $z \in N_{d}\left(y, g_{1}\right) \cap N_{d}(x, g)$, we have $d(x, y) \leq d(x, z) d(z, y)<g g_{1}=d(x, y)$, a contradiction. Hence, $y \notin \overline{N_{d}(x, g)}$ and we are done.
Proposition 3.5. Let G be an ordered group and X a G-metric space. Then the open sets in X have the following properties:
(i) X and \varnothing are both open.
(ii) Every union of open sets is open.
(iii) Every finite intersection of open sets is open.

Proof. (i) and (ii) are clear. (iii). Let $x \in \bigcap_{i=1}^{n} U_{i}$, where U_{i} is an open set in X. Take $g_{i} \in G$ such that $x \in N_{d}\left(x, g_{i}\right) \subseteq U_{i}$. Since G is an ordered group, there exists $g \in G$ such that $g=\inf \left\{g_{i}\right\}_{i=1}^{n}$ (note, the elements g_{i} form a chain and hence g is one of them). Thus, $x \in N_{d}(x, g) \subseteq \bigcap_{i=1}^{n} N_{d}\left(x, g_{i}\right) \subseteq \bigcap_{i=1}^{n} U_{i}$, which completes the proof.

By the above proposition, every G-metric d on a set X defines a topology τ_{d} on X; members of τ_{d}, or, open subsets of X are unions of g-disks. Clearly, the family of all g-disks is a base for $\left(X, \tau_{d}\right)$. We call τ_{d} the topology induced by the G-metric d (or G-metric topology).

Remark 3.6. Even if G is a Dedekind-complete group, a countable intersection of open sets in a G-metric space need not be an open set necessarily. To see this, consider \mathbb{R} as a G-metric space, where G is $(\mathbb{R},+)$ or $((0, \infty),$.$) . Also,$ recall the fact that every point a of \mathbb{R} is a G_{δ}-set, i.e., $\{a\}=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, a+\frac{1}{n}\right)$.

In [2, I.3], an ordered set X is called a densely ordered set, if no cut of X is a jump, or equivalently, for every pair x, y of elements of X satisfying $x<y$, there exists a $z \in X$, such that $x<z<y$.

Definition 3.7. An ordered group G is called a densely ordered group if it is a densely ordered set with its total ordering relation.

It is clear that densely ordered groups are infinite. For example, every archimedean field like as \mathbb{R} and $\mathbb{Q}(\sqrt{n}):=\{a+b \sqrt{n}: a, b \in \mathbb{Q}, \sqrt{n} \notin \mathbb{Q}\}$ with the addition is a densely ordered group. \mathbb{Z}, the group of integers is an ordered group which is not a densely ordered group while \mathbb{Z}_{n} with the addition of modulo n, is not a poset group yet.

From now on, the group G is assumed to be a densely ordered group.
Proposition 3.8. Let G be a densely ordered group, (X, d) a G-metric space, $x \in X$ and $g \in G$ be fixed, and $A=\{y \in X: d(x, y)>g\}$. Then A is an open set in X (and hence $N_{d}(x, \bar{g}):=\{y \in G: d(x, y) \leq g\}$ is closed).

Proof. Let $y \in A$ be fixed. Then $d(x, y)>g$. We must show that y is an interior point of A. Let $g_{1}=d(x, y) g^{-1}$. Then $g_{1}>e$ and $d(x, y)=g g_{1}$. Since G is a densely ordered group, we take $e<g_{2}<g_{1}$ and claim that $N_{d}\left(y, g_{2}\right)$ is contained in A entirely. To see this, let $z \in N_{d}\left(y, g_{2}\right)$. Then we have $d(y, z)<g_{2}$ and so $g_{2}^{-1}<d^{-1}(y, z)$. Now, the inequality $d(x, y) \leq d(x, z) d(z, y)$ yields

$$
g<g g_{1} g_{2}^{-1}<d(x, y) d^{-1}(y, z) \leq d(x, z)
$$

(Notice that $g<g g_{1} g_{2}^{-1}$ if and only if $g_{2}<g_{1}$.) Therefore, $g<d(x, z)$, i.e., y is an interior point of A. So A is an open set in X, and we are done.

Proposition 3.9. Let G be an ordered group and (X, d) a G-metric space. Then the following statements hold.
(i) If G is a densely ordered group, then X is Hausdorff.
(ii) If G is an infinite cyclic group, then X is discrete (and so it is first countable).
Proof. (i). Let $x, y \in X$ and $d(x, y)=g>e$. By assumption, since G is a densely ordered set, we can take $g_{1}, g_{2} \in G$ such that $e<g_{1}<g_{2}<g$. Now, we claim that two disks $N_{d}\left(x, g_{1}\right)$ and $N_{d}\left(y, g g_{2}^{-1}\right)$ are disjoint (note, $g g_{2}^{-1}>e$). Otherwise, for some $x^{\prime} \in N_{d}\left(x, g_{1}\right) \cap N_{d}\left(y, g g_{2}^{-1}\right)$, we have $d\left(x, x^{\prime}\right)<g_{1}$ and $d\left(x^{\prime}, y\right)<g g_{2}^{-1}$. Hence, $g=d(x, y) \leq d\left(x, x^{\prime}\right) d\left(x^{\prime}, y\right)<g_{1} g g_{2}^{-1}$. Therefore, $e<g_{1} g_{2}^{-1}$, or equivalently, $g_{2}<g_{1}$, a contradiction. So we are done.
(ii). Let $e<g \in G$ be the generator of G. Then $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$, in fact, we have $G \cong \mathbb{Z}$, the additive group of integers with the generator 1 (or -1). We note that the elements of G form a chain. So we obtain

$$
\ldots<g^{-3}<g^{-2}<g^{-1}<e<g<g^{2}<g^{3}<\ldots
$$

Therefore, for each $x \in X, N_{d}(x, g)=\{y \in X: d(x, y)<g\}=\{y \in X$: $d(x, y)=e\}=\{x\}$. This yields X is discrete (note, in this case G is not a densely ordered group).

Remark 3.10. By Proposition 3.9(ii), if G is an infinite cyclic group then X is first countable. But the converse of that result may be false, since every metric space is first countable, whereas the additive group $(\mathbb{R},+)$ is not even countably generated.

In general, the converse of the above proposition does not need to be true. In the next example, we give examples of Hausdorff G-metric spaces such that the group G is neither a densely ordered group nor an infinite cyclic group.
Example 3.11. (i) Let $d_{1}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $d_{1}(m, n)=|m-n|$. Then, since $N_{d_{1}}(m, 1)=\{m\}$, we obtain \mathbb{Z} is a discrete \mathbb{Z}-metric space. So it is Hausdorff, whereas \mathbb{Z} is not a densely ordered group. But if \mathbb{Z} is considered as a \mathbb{Q}-metric space with the same definition, $d_{1}(m, n)=$ $|m-n|$, it is a discrete \mathbb{Q}-metric space while \mathbb{Q} is a densely ordered group.
(ii) Let $G:=\mathbb{Z} \times \mathbb{Z}$ with the identity element $e=(0,0)$. Define $d_{2}: \mathbb{Z} \times \mathbb{Z} \rightarrow$ G with $d_{2}(m, n)=(|m-n|,|m-n|)$. By example $2.2, G$ is an L-group. It is easy to see that d_{2} is a G-metric on \mathbb{Z}. Now, let $g=(1,1)$. Then

$$
N_{d_{2}}(m, g)=\left\{n \in \mathbb{Z}: d_{2}(m, n)<g\right\}=\{m\}
$$

This yields \mathbb{Z} is a discrete G-metric space, whereas $G=\mathbb{Z} \times \mathbb{Z}$ is not a cyclic group (note, it is a finitely generated group which is generated by the set $\{(0,1),(1,0)\})$.
Definition 3.12. If $\left(X, d_{X}\right)$ (resp. $\left.\left(Y, d_{Y}\right)\right)$ is a $G_{1^{-}}$(resp. $G_{2^{-}}$) metric space, a function $f: X \rightarrow Y$ is called continuous at $x_{0} \in X$ if and only if for each $e_{2}<g_{2} \in G_{2}$ there is some $e_{1}<g_{1} \in G_{1}$ such that $d_{Y}\left(f\left(x_{0}\right), f(y)\right)<g_{2}$,
whenever $d_{X}\left(x_{0}, y\right)<g_{1}$. f is called continuous on X, if it is continuous at every $x \in X$.

A simple translation of the above definition is:
Corollary 3.13. A function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if and only if for each g_{2}-disk $N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right)$ centered at $f\left(x_{0}\right)$, there is some g_{1}-disk $N_{d_{X}}\left(x_{0}, g_{1}\right)$ centered at x_{0}, such that $f\left(N_{d_{X}}\left(x_{0}, g_{1}\right)\right) \subseteq N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right)$.

Theorem 3.14. If $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are G_{1} - and G_{2}-metric spaces respectively, a function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if and only if for each open set V of Y containing $f\left(x_{0}\right)$, there exists an open set U of X containing x_{0} such that $f(U) \subseteq V$.

Proof. (\Rightarrow) : Suppose that f is continuous at x_{0} and V is an open set in Y containing $f\left(x_{0}\right)$. By definition of open sets, there is $g_{2} \in G_{2}$ such that $f\left(x_{0}\right) \in$ $N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right) \subseteq V$. By Corollary 3.13 , there exists a g_{1}-disk $N_{d_{X}}\left(x_{0}, g_{1}\right)$ centered at x_{0} such that $f\left(N_{d_{X}}\left(x_{0}, g_{1}\right)\right) \subseteq N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right) \subseteq V$, where $g_{1} \in G_{1}$. It now suffices to choose $U=N_{d_{X}}\left(x_{0}, g_{1}\right)$.
$(\Leftarrow):$ Consider $e_{2}<g_{2} \in G_{2}$ and $N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right)$ as an open set in Y containing $f\left(x_{0}\right)$. By hypothesis, there exists an open set U in X containing x_{0} such that $f(U) \subseteq N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right)$. Also, we can take $e_{1}<g_{1} \in G_{1}$ such that $N_{d_{X}}\left(x_{0}, g_{1}\right) \subseteq U$. So $f\left(N_{d_{X}}\left(x_{0}, g_{1}\right)\right) \subseteq f(U) \subseteq N_{d_{Y}}\left(f\left(x_{0}\right), g_{2}\right)$, and we are done.

The following lemma is the counterpart of Lemma 2.7 for a Dedekindcomplete group G. The only difference is that there A and B were finite subsets of G but here these sets must be bounded.

Lemma 3.15. Let G be a Dedekind-complete group and; A and B are bounded subsets of G such that $A \geq e$ (i.e., $a \geq e$, for all $a \in A$) and $B \geq e$. Then
(i) if $A \leq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $a \leq b$) and $e \leq g \in G$, then $\sup (g A)=g \sup A \leq g \sup B=\sup (g B)$, where $g A=\{g a: a \in A\}$.
(ii) if $A \geq B$ (i.e., for each $a \in A$ there is $b \in B$ such that $b \leq a$) and $e \leq g \in G$, then $\inf (g B)=g \inf B \leq g \inf A=\inf (g A)$.
(iii) $\sup (A B)=\sup A \sup B$, and also $\inf (A B)=\inf A \inf B$, where $A B=$ $\{a b: a \in A, b \in B\}$.
In the remainder of this article, G is assumed to be a Dedekind-complete densely ordered group (i.e., a densely ordered group in which every bounded nonempty subset has a supremum and an infimum in $G),(X, d)$ a G-metric space, and d is bounded. The distance of a point x to a set $A(\subseteq X)$ is defined by $d(x, A)=\inf \{d(x, a): a \in A\}$, if $A \neq \varnothing$, and $d(x, \varnothing)=e$.

Theorem 3.16.

(i) The mapping $f: X \rightarrow G$ defined by $f(x)=d(x, A)$ is continuous.
(ii) $x \in c l_{X} A$ if and only if $f(x)=d(x, A)=e$, in fact, $c l_{X} A=f^{-1}(e)$.

Proof. (i). First, by Proposition 2.8, we have $\left(G, d^{\prime}\right)$ is a G-metric space, where $d^{\prime}\left(g_{1}, g_{2}\right)=\left|g_{1} g_{2}^{-1}\right|$. Let $x_{0} \in X, g_{0} \in G$ and $N_{d^{\prime}}\left(f\left(x_{0}\right), g_{0}\right)$ be an open set containing $f\left(x_{0}\right)$. Then
$d\left(x_{0}, a\right) \leq d\left(x_{0}, x\right) d(x, a)$, and $d(x, a) \leq d\left(x, x_{0}\right) d\left(x_{0}, a\right)$.
Now, if we let $G_{1}=\left\{d\left(x_{0}, a\right): a \in A\right\}$ and $G_{2}=\left\{d\left(x_{0}, x\right) d(x, a): a \in A\right\}$, then G_{1} and G_{2} are two subsets of G with the same cardinality and $G_{2} \geq G_{1}$. By Lemma 3.15 (ii), we have $\inf _{a \in A} G_{1} \leq \inf _{a \in A} G_{2}$. In other words, taking infimum on both sides of each of the inequalities in $\left(R_{2}\right)$ with respect to $a \in A$, we obtain

$$
\inf _{a \in A} d\left(x_{0}, a\right) \leq d\left(x_{0}, x\right) \inf _{a \in A} d(x, a), \text { and } \inf _{a \in A} d(x, a) \leq d\left(x, x_{0}\right) \inf _{a \in A} d\left(x_{0}, a\right)
$$

Thus, $f\left(x_{0}\right) \leq d\left(x, x_{0}\right) f(x)$ and $f(x) \leq d\left(x, x_{0}\right) f\left(x_{0}\right)$. Hence, $f\left(x_{0}\right) f^{-1}(x) \leq$ $d\left(x, x_{0}\right)$ and also $f(x) f^{-1}\left(x_{0}\right) \leq d\left(x, x_{0}\right)$, i.e., $d\left(x, x_{0}\right)$ is a common upper bound for $f\left(x_{0}\right) f^{-1}(x)$ and $f^{-1}\left(x_{0}\right) f(x)$. Therefore,

$$
d^{\prime}\left(f\left(x_{0}\right), f(x)\right)=\left|f(x) f^{-1}\left(x_{0}\right)\right|=\sup \left\{f\left(x_{0}\right) f^{-1}(x), f^{-1}\left(x_{0}\right) f(x)\right\} \leq d\left(x, x_{0}\right)
$$

Now, for the g_{0}-disk $N_{d}\left(x_{0}, g_{0}\right)$ we have $f\left(N_{d}\left(x_{0}, g_{0}\right)\right) \subseteq N_{d^{\prime}}\left(f\left(x_{0}\right), g_{0}\right)$, and we are through.
(ii). Necessity: First, we note that by Corollary 3.4, $\operatorname{cl} A=\bar{A}=\{x \in X$: $N_{d}(x, g) \cap A \neq \varnothing$, for all $\left.g>e\right\}$. If $d(x, A)=g>e$ then $d(x, a) \geq g>e$, for all $a \in A$. By assumption, since G is a densely ordered group, we can take $g_{1} \in G$ such that $g>g_{1}>e$. Now, we observe that $N_{d}\left(x, g_{1}\right) \cap A=\varnothing$. Hence, $x \notin \bar{A}$.

Sufficiency: Let $x \notin \bar{A}$. Then $N_{d}(x, g) \cap A=\varnothing$, for some $e<g \in G$. Hence, $d(x, a) \geq g$, for all $a \in A$. Therefore, $d(x, A) \geq g>e$. So $d(x, A) \neq e$, and we are done.
Theorem 3.17. Let G be a Dedekind-complete densely ordered group, (X, d) a G-metric space, d is bounded, $g \in G$, and let $\mathcal{F}(X)$ be the family of all nonempty closed subsets of X. For $A, B \in \mathcal{F}(X)$ define

$$
d_{B}(A)=\sup \{d(a, B): a \in A\}, \text { and } d^{\prime}(A, B)=\sup \left\{d_{A}(B), d_{B}(A)\right\}
$$

Then the following statements hold.
(1) d^{\prime} is a G-metric on $\mathcal{F}(X)$. We call it the Hausdorff G-metric on $\mathcal{F}(X)$.
(2) $d^{\prime}(A, B) \leq g$ if and only if $A \subseteq N_{d}(B, \bar{g})$ and $B \subseteq N_{d}(A, \bar{g})$, where $N_{d}(A, \bar{g})=\{x \in X: d(x, A) \leq g\}$.
Proof. (1). (i) and (iii) of Definition 2.4 are evident. Let $d^{\prime}(A, B)=e$. Then $d_{B}(A)=e=d_{A}(B)$. So $d(a, B)=e$ for all $a \in A$. By Theorem 3.16 (ii), $a \in \mathrm{cl} B=B$, i,e., $A \subseteq B$. Similarly, $B \subseteq A$. This proves (ii) of Definition 2.4. For the proof of triangle inequality, let $A, B, C \in \mathcal{F}(X)$ and $a \in A, b \in B, c \in C$. We notice that $d(a, B) \leq d(a, b)$ and $d(b, C) \leq d_{C}(B)$. Thus,

$$
d(a, B) \leq d(a, b) \leq d(a, c) d(c, b)
$$

Taking infimum on both sides of the above inequality with respect to $c \in C$ plus Lemma 3.15 yield

$$
d(a, B) \leq \inf _{c \in C}\{d(a, c) d(c, b)\}=\inf _{c \in C} d(a, c) \inf _{c \in C} d(c, b)
$$

Therefore, $d(a, B) \leq d(a, C) d(b, C)$. Since $d(b, C) \leq d_{C}(B)$, we have $d(a, B) \leq$ $d(a, C) d_{C}(B)$. Taking supremum on both sides of the latter inequality with respect to $a \in A$, we obtain

$$
d_{B}(A) \leq d_{C}(A) d_{C}(B)
$$

On the other hand, taking infimum over $c \in C$ on both sides of the inequalities $d(b, A) \leq d(a, b) \leq d(a, c) d(c, b)$ we obtain $d(b, A) \leq d(a, C) d(b, C)$ (Lemma 3.15). Furthermore, $d(a, C) \leq d_{C}(A)$ gives $d(b, A) \leq d_{C}(A) d(b, C)$. Now, take supremum on both sides of the latter inequality respect to $b \in B$. Thus,

$$
\begin{equation*}
d_{A}(B) \leq d_{C}(A) d_{C}(B) \tag{4}
\end{equation*}
$$

Combining $\left(R_{3}\right)$ and $\left(R_{4}\right)$ we get

$$
d^{\prime}(A, B) \leq d_{C}(A) d_{C}(B) \leq d^{\prime}(A, C) d^{\prime}(C, B)
$$

Hence, d^{\prime} satisfies (iv) of Definition 2.4, and we are done.
(2). (\Rightarrow) : Let $d^{\prime}(A, B) \leq g$. Then $d_{B}(A) \leq g$ and $d_{A}(B) \leq g$. Hence, $d(a, B) \leq g$, for all a in A. So $A \subseteq N_{d}(B, \bar{g})$. Similarly, $B \subseteq N_{d}(A, \bar{g})$.
(\Leftarrow) : Since $A \subseteq N_{d}(B, \bar{g})$, it gives $d(a, B) \leq g$, for all a in A, and therefore $d_{B}(A)=\sup _{a \in A} d(a, B) \leq g$. The assertion $d_{A}(B) \leq g$ is deduced similarly. So $d^{\prime}(A, B) \leq g$, and we are through.

Corollary 3.18. Let G be a densely ordered group and further a closed subset of $\mathbb{R}, \mathcal{K}(X)$ the family of nonempty compact subsets of X and $A, B \in \mathcal{K}(X)$ such that X, d, g, d_{A} and d^{\prime} be as defined in Theorem 3.17. Then $d^{\prime}(A, B)<g$ if and only if $A \subseteq N_{d}(B, g)$ and $B \subseteq N_{d}(A, g)$, where $N_{d}(A, g)=\{x \in X$: $d(x, A)<g\}$.

Proof. We first recall the fact that a nonempty subset of \mathbb{R} has the least-upperbound property (equivalently, the greatest-lower-bound property) if and only if it is closed in \mathbb{R}. So G has the least-upper-bound property and hence it is a Dedekind-complete densely ordered group. Moreover, by Proposition 3.9, X is Hausdorff and therefore every compact set in X is closed. Thus, the conditions of Theorem 3.17 are satisfied. The necessary condition is obvious. To prove the sufficiency, let us define

$$
f_{1}, f_{2}: X \rightarrow G \text { with } f_{1}(x)=d(x, A) \text { and } f_{2}(x)=d(x, B)
$$

Now, since A and B are compact subsets of X and further; f_{1} and f_{2} are continuous functions on X (Theorem 3.16), $f_{1}(B)$ and $f_{2}(A)$ are compact sets in G (note, since G is closed, f_{1} and f_{2} are well defined). Therefore, $\sup f_{1}(B) \in$ $f_{1}(B)$ and also $\sup f_{2}(A) \in f_{2}(A)$. So we have

$$
d_{A}(B)=\sup f_{1}(B)=f_{1}\left(b_{1}\right)=d\left(b_{1}, A\right), \text { for some } b_{1} \in B
$$

and also

$$
d_{B}(A)=\sup f_{2}(A)=f_{2}\left(a_{2}\right)=d\left(a_{2}, B\right), \text { for some } a_{2} \in A
$$

By assumption, we now get $d_{A}(B)<g$ and $d_{B}(A)<g$. Hence, $d^{\prime}(A, B)<g$, and we are through.

Acknowledgements. The authors are grateful to the referee for providing helpful comments and recommendations to improve the quality of the paper.

References

[1] A. Arhangel'skii and M. Tkachenko, Topological groups and related structures, Atlantis press/ World Scientific, Amsterdam-Paris, 2008.
[2] R. Engelking, General topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
[3] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
[4] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
[5] O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of $C(X)$, Appl. Gen. Topol. 16, no. 2 (2015), 183-207.
[6] M. Namdari and A. Veisi, Rings of quotients of the subalgebra of $C(X)$ consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561-571.
[7] D. J. S. Robinson, A course in the theory of groups, second edition, Springer-Verlag New York, Inc. 1996.
[8] J. Rotman, An Introduction to the Theory of Groups, Vol. 148, 4th edition Springer, New York, 1995.
[9] A. Veisi, The subalgebras of the functionally countable subalgebra of $C(X)$, Far East J. Math. Sci. (FJMS) 101, no. 10 (2017), 2285-2297.
[10] A. Veisi, Invariant norms on the subalgebras of $C(X)$ consisting of bounded functions with countable image, JP Journal of Geometry and Topology 21, no. 3 (2018), 167-179.
[11] A. Veisi, e_{c}-Filters and e_{c}-ideals in the functionally countable subalgebra of $C^{*}(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395-405.
[12] A. Veisi and A. Delbaznasab, New structure of norms on \mathbb{R}^{n} and their relations with the curvature of the plane curves, Ratio Mathematica 39 (2020), 55-67.
[13] S. Willard, General Topology, Addison-Wesley, 1970.

