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Abstract

Current multicores face the challenge of sharing resources among the different processor

cores. Two main shared resources act as major performance bottlenecks in current

designs: the off-chip main memory bandwidth and the last level cache. Additionally,

as the core count grows, the network on-chip is also becoming a potential performance

bottleneck, since traditional designs may find scalability issues in the near future.

Memory hierarchies communicated through fast interconnects are implemented in almost

every current design as they reduce the number of off-chip accesses and the overall

latency, respectively. Main memory, caches, and interconnection resources, together

with other widely-used techniques like prefetching, help alleviate the huge memory access

latencies and limit the impact of the core-memory speed gap. However, sharing these

resources brings several concerns, being one of the most challenging the management

of the inter-application interference. Since almost every running application needs to

access to main memory, all of them are exposed to interference from other co-runners

in their way to the memory controller. For this reason, making an efficient use of the

available cache space, together with achieving fast and scalable interconnects, is critical

to sustain the performance in current and future designs. This dissertation analyzes

and addresses the most important shortcomings of two major shared resources: the Last

Level Cache (LLC) and the Network on Chip (NoC).

First, we study the scalability of both electrical and optical NoCs for future multicores

and many-cores. To perform this study, we model optical interconnects in a cycle-

accurate multicore simulation framework. A proper model is required; otherwise, im-

portant performance deviations may be observed otherwise in the evaluation results.

The study reveals that, as the core count grows, the effect of distance on the end-to-end

latency can negatively impact on the processor performance. In contrast, the study also

shows that silicon nanophotonics are a viable solution to solve the mentioned latency

problems.

This dissertation is also motivated by important design concerns related to current mem-

ory hierarchies, like the oversizing of private cache space, data replication overheads, and

xix



Abstract xx

lack of flexibility regarding sharing of cache structures. These issues, which can be over-

come in high performance processors by virtue of huge LLCs, can compromise perfor-

mance in low power processors. To address these issues we propose a more efficient cache

hierarchy organization that leverages optical interconnects. The proposed architecture is

conceived as an optically interconnected two-level cache hierarchy composed of multiple

cache modules that can be dynamically turned on and off independently. Experimen-

tal results show that, compared to conventional designs, static energy consumption is

improved by up to 60% while achieving similar performance results.

Finally, we extend the proposal to support both sequential and parallel applications.

This extension is required since the proposal adapts to the dynamic cache space needs

of the running applications, and multithreaded applications’s behaviors widely differ

from those of single threaded programs. In addition, coherence management is also

addressed, which is challenging since each cache module can be assigned to any core at

a given time in the proposed approach. For parallel applications, the evaluation shows

that the proposal achieves up to 78% static energy savings.

In summary, this thesis tackles major challenges originated by the sharing of on-chip

caches and communication resources in current multicores, and proposes new cache hi-

erarchy organizations leveraging optical interconnects to address them. The proposed

organizations reduce both static and dynamic energy consumption compared to conven-

tional approaches while achieving similar performance; which results in better energy

efficiency.



Resumen

Los procesadores multinúcleo actuales cuentan con recursos compartidos entre los dife-

rentes núcleos. Dos de estos recursos compartidos, la cache de último nivel y el ancho de

banda de memoria principal, pueden convertirse en cuellos de botella para el rendimien-

to. Además, con el crecimiento del número de núcleos que implementan los diseños más

recientes, la red dentro del chip también se convierte en un cuello de botella que puede

afectar negativamente al rendimiento, ya que las redes tradicionales pueden encontrar

limitaciones a su escalabilidad en el futuro cercano.

Prácticamente la totalidad de los diseños actuales implementan jerarqúıas de memoria

que se comunican mediante rápidas redes de interconexión. Esta organización es eficaz

dado que permite reducir el número de accesos que se realizan a memoria principal y la

latencia media de acceso a memoria. Las caches, la red de interconexión y la memoria

principal, conjuntamente con otras técnicas conocidas como la prebúsqueda, permiten

reducir las enormes latencias de acceso a memoria principal, limitando aśı el impac-

to negativo ocasionado por la diferencia de rendimiento existente entre los núcleos de

cómputo y la memoria. Sin embargo, compartir los recursos mencionados es fuente de

diferentes problemas y retos, siendo uno de los principales el manejo de la interferencia

entre aplicaciones. Hacer un uso eficiente de la jerarqúıa de memoria y las caches, aśı

como contar con una red de interconexión apropiada, es necesario para sostener el cre-

cimiento del rendimiento en los disenõs tanto actuales como futuros. Esta tesis analiza

y estudia los principales problemas e inconvenientes observados en estos dos recursos: la

cache de último nivel y la red dentro del chip.

En primer lugar, se estudia la escalabilidad de las tradicionales redes dentro del chip con

topoloǵıa de malla, aśı como ésta puede verse comprometida en próximos disenõs que

cuenten con mayor número de núcleos. Los resultados de este estudio muestran que, a

mayor número de núcleos, el impacto negativo de la distancia entre núcleos en la latencia

puede afectar seriamente al rendimiento del procesador. Como solución a este problema,

en esta tesis proponemos una de red de interconexión óptica modelada en un entorno de

xxi
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simulación detallado, que supone una solución viable a los problemas de escalabilidad

observados en los diseños tradicionales.

A continuación, esta tesis dedica un esfuerzo importante a identificar y proponer so-

luciones a los principales problemas de diseño de las jerarqúıas de memoria actuales

como son, por ejemplo, el sobredimensionado del espacio de cache privado, la existencia

de réplicas de datos y rigidez e incapacidad de adaptación de las estructuras de cache.

Aunque bien conocidos, estos problemas y sus efectos adversos en el rendimiento pue-

den ser evitados en procesadores de alto rendimiento gracias a la enorme capacidad de

la cache de último nivel que este tipo de procesadores t́ıpicamente implementan. Sin

embargo, en procesadores de bajo consumo, no existe la posibilidad de contar con tales

capacidades y hacer un uso eficiente del espacio disponible es cŕıtico para mantener el

rendimiento. Como solución a estos problemas en procesadores de bajo consumo, propo-

nemos una novedosa organización de jerarqúıa de dos niveles cache que utiliza una red

de interconexión óptica. Los resultados obtenidos muestran que, comparado con diseños

convencionales, el consumo de enerǵıa estática en la arquitectura propuesta es un 60 %

menor, pese a que los resultados de rendimiento presentan valores similares.

Por último, hemos extendido la arquitectura propuesta para dar soporte tanto a apli-

caciones paralelas como secuenciales. Esta extensión no es trivial, ya que la propuesta

adapta dinámicamente el espacio de cache requerido por las aplicaciones en ejecución, y

es bien conocido que aplicaciones paralelas y secuenciales presentan coomportamientos

muy diferentes. Además, el manejo de la coherencia de memoria se vuelve más comple-

jo, ya que los módulos de cache pueden ser asignados y desasignados a cualquier núcleo

en cualquier momento de la ejecución. Los resultados obtenidos con la esta nueva ar-

quitectura muestran un ahorro de hasta el 78 % de enerǵıa estática en la ejecución de

aplicaciones paralelas.

En resumen, esta tesis estudia y propone soluciones a los problemas derivados de la

compartición de caches y recursos de comunicación dentro del chip en los procesadores

multinúcleo actuales. Las dos organizaciones de cache propuestas reducen el consumo

de enerǵıa tanto estática como dinámica en comparación a otras arquitecturas conven-

cionales, a la vez que consiguen un rendimiento similar.
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Els processadors multinucli actuals compten amb recursos compartits entre els diferents

nuclis. Dos d’aquests recursos compartits, la memòria d’últim nivell i l’ample de banda

de memòria principal, poden convertir-se en colls d’ampolla per al rendiment. A més,

amb el creixement del nombre de nuclis que implementen els dissenys més recents, la

xarxa dins del xip també es converteix en un coll d’ampolla que pot afectar negativament

el rendiment, ja que les xarxes tradicionals poden trobar limitacions a la seva escalabilitat

en el futur proper.

Pràcticament la totalitat dels dissenys actuals implementen jerarquies de memòria que

es comuniquen mitjançant ràpides xarxes d’interconnexió. Aquesta organització és eficaç

atès que permet reduir el nombre d’accessos que es realitzen a memòria principal i la

latència mitjana d’accés a memòria. Les caches, la xarxa d’interconnexió i la memòria

principal, conjuntament amb altres tècniques conegudes com la prebúsqueda, permeten

reduir les enormes latències d’accés a memòria principal, limitant aix́ı l’impacte negatiu

ocasionat per la diferència de rendiment existent entre els nuclis de còmput i la memòria.

No obstant això, compartir els recursos esmentats és font de diversos problemes i reptes,

sent un dels principals la gestió de la interferència entre aplicacions. Fer un ús eficient de

la jerarquia de memòria i les caches, aix́ı com comptar amb una xarxa d’interconnexió

apropiada, és necessari per sostenir el creixement del rendiment en els dissenys tant ac-

tuals com futurs. Aquesta tesi analitza i estudia els principals problemes i inconvenients

observats en aquests dos recursos: la memòria cache d’últim nivell i la xarxa dins del

xip.

En primer lloc, s’estudia l’escalabilitat de les xarxes tradicionals dins del xip amb to-

pologia de malla, aix́ı com aquesta es pot veure compromesa en propers dissenys que

compten amb major nombre de nuclis. Els resultats d’aquest estudi mostren que, a

major nombre de nuclis, l’impacte negatiu de la distància entre nuclis en la latència pot

afectar seriosament al rendiment del processador. Com a solució a aquest problema,

en aquesta tesi proposem una xarxa d’interconnexió òptica modelada en un entorn de
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simulació detallat, que suposa una solució viable als problemes d’escalabilitat observats

en els dissenys tradicionals.

A continuació, aquesta tesi dedica un esforç important a identificar i proposar solucions

als principals problemes de disseny de les jerarquies de memòria actuals com són, per

exemple, el sobredimensionat de l’espai de memòria cache privat, l’existència de rèpliques

de dades i la rigidesa i incapacitat d’adaptació de les estructures de memòria cache.

Encara que ben coneguts, aquests problemes i els seus efectes adversos en el rendiment

poden ser evitats en processadors d’alt rendiment gràcies a l’enorme capacitat de la

memòria cache d’últim nivell que aquest tipus de processadors t́ıpicament implementen.

No obstant això, en processadors de baix consum, no hi ha la possibilitat de comptar

amb aquestes capacitats, i fer un ús eficient de l’espai disponible es torna cŕıtic per

mantenir el rendiment. Com a solució a aquests problemes en processadors de baix

consum, proposem una nova organització de jerarquia de dos nivells de memòria cache

que utilitza una xarxa d’interconnexió òptica. Els resultats obtinguts mostren que,

comparat amb dissenys convencionals, el consum d’energia estàtica en l’arquitectura

proposada és un 60% menor, malgrat que els resultats de rendiment presenten valors

similars.

Per últim, hem estès l’arquitectura proposada per donar suport tant a aplicacions pa-

ral·leles com seqüencials. Aquesta extensió no ès trivial, ja que la proposta adapta

dinàmicament l’espai de memòria cache requerit per les aplicacions en execució, i ès ben

conegut que aplicacions paral·leles i seqüencials presenten comportaments molt diversos.

A més, la gestió de la coherència de memòria es torna més complex, ja que els mòduls de

memòria cache poden ser assignats i desassignats a qualsevol nucli en qualsevol moment

de l’execució. Els resultats obtinguts amb aquesta nova arquitectura mostren un estalvi

de fins al 78 % d’energia estàtica en l’execució d’aplicacions paral·leles.

En resum, aquesta tesi estudia i proposa solucions als problemes derivats de la com-

partició de caches i recursos de comunicació dins del xip en els processadors multinucli

actuals. Les dues organitzacions de memòria cache proposades redueixen el consum de

energia tant estàtica com dinàmica en comparació a altres arquitectùres convencionals,

alhora que aconsegueixen un rendiment similar.



Chapter 1

Introduction

This chapter introduces some concepts to help understand the manuscript and presents

the motivation for the work developed in the proposed approaches. First, background

on Chip Multiprocessors (CMP) is introduced, focusing on major components of the

architecture like the cache hierarchy or the network-on-chip. Next, we discuss major

challenges that arise in these research topics and how they are addressed in current

processors. After that, we present insights about where performance problems arise in

multicores due to shared resources, especially the network on chip (NoC) and the shared

caches. Then, we summarize the way this dissertation addresses these shortcomings by

proposing a novel cache organization. Finally, we present the thesis outline.

1
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1.1 Background: Shared Resources in Chip Multiproces-

sors

Since published by Gordon Moore in 1965, the performance improvement of micropro-

cessors has roughly followed what is known as the Moore’s Law [1], which states that the

amount of transistors in a microprocessor doubles every two years. Following this rule,

the performance of microprocessors has steadily increased throughout the past decades,

thanks to the continuous reductions in the integration scale and the design of more and

more complex hardware structures and architectures. Although this technology scaling

trend has resulted in the achievement of huge computing power, the bigger complexities

and the large amounts of transistors bring new concerns regarding power consumption.

As the number of transistors grows, the electrical power they consume generates heat

that far exceeds the cooling capacities of current processors. This fact is known as

the power wall, which refers to the performance scaling limitations caused by power

consumption constraints in terms of heat and cost. There are two possible solutions

to address the power wall problem: i) designing inexpensive cooling techniques and

technologies; and ii) reducing the processor complexity and, by doing so, cutting down

the power consumption.

In order to keep the power consumption in acceptable levels while sustaining the per-

formance gains brought by technology scaling, processor designers and manufacturers

moved to multicore approaches following the second solution mentioned above. The

multicore paradigm initially pursued to deploy multiple but less complex cores (i.e.

computing units provided with a given amount of private memory) in a processor die

as opposite to increasing the complexity of a single-core monolithic processor. This

approach allows reducing the overall energy consumption while achieving higher aggre-

gated performance than monolithic processors. Currently, multicores can be found not

only in the high-performance computing market but also in almost any other segment

of the market, since these processors have become ubiquitous in almost any commercial

electronic device.

Multicore processors, however, are not exempt from other shortcomings and design

issues. First, single-threaded applications need to be adapted to effectively exploit the
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parallelism provided by multicore architectures. Second, multicore architects reduce cost

by implementing resources (e.g. the main memory bandwidth) which are shared among

the processor cores. This fact, which represents an advantage from the cost perspective,

becomes a shortcoming since inter-application interference is introduced at the shared

resources, making the execution time of individual applications unpredictable.

This dissertation is aimed at achieving an efficient use of shared resources in a chip

multiprocessor. Taking into account the different nature of each resource, this aim is

challenging, since it has to be addressed from different directions. For this reason, we

address this problem with a two-step strategy. First, we explore the use of a novel

technology to address scalability issues of current and future electrical NoCs. Then, the

results of this study are used to build, on the top of that, a holistic solution for the cache

hierarchy. Finally, after these two steps, we refine and adapt the proposed solution to

efficiently work with both single-threaded and multithreaded or parallel applications.

Below, chip multiprocessor architectures are further studied, including the specific chal-

lenges that still remain for each of these shared resources.

1.1.1 Chip Multiprocessor

For the past decades, microprocessor manufacturers exploited the reductions on the inte-

gration scale to achieve more computing power. At the same time, hardware complexity

increased as new components such as non blocking caches, support for out-of-order ex-

ecution, or speculative loads were introduced in the new designs. Together, technology

developments and refined hardware structures have sustained microprocessors perfor-

mance, continuously increasing the maximum frequency (f) that the chips are able to

achieve.

In conjunction with Moore’s law, Dennard scaling [2] has been the other major pillar for

the performance-driven computing industry. Formulated by Robert H. Dennard in 1974,

the MOSFETs scaling rule states that as transistors get smaller, their power density

remains constant. The method proposed by Dennard and his team allowed scaling

chip dimensions, voltage, current and operating frequency while keeping a steady device

power density. Following this rule, if there was a reduction in a transistor’s linear size

by 2, the power it used fell by 4 (with voltage and current both halving).
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Unfortunately, technological advances have exposed new findings that slow down the tra-

ditional scaling path predicted by these rules. On the one hand, as shrinking transistors

becomes more and more challenging, Moore’s law is expected to extend the duration

between technology nodes far from that predicted by the initial rate. On the other

hand, Dennard scaling has already been broken down. With current transistor sizes,

the ability to drop the voltage and the current that they need to operate reliably has

reached an end. This is because the original Dennard scaling rule accounted only for

transistors size, voltage, current and frequency, that is, the dynamic power of the pro-

cessor. However, as transistor dimensions shrinks, a new source of power dissipation

appears in the form of leakage currents. The explanation to this fact is as follows: the

Dennard scaling rule requires an equal scaling of the threshold voltage to scale down

the supply voltage; threshold voltage, however, is physically limited and scaling it down

dramatically increases static power; therefore, failing to scale down threshold voltage

translates to failing to scale down supply voltage, which breaks Dennard scaling. In

all projections, device power densities are expected to keep growing in the foreseeable

future.

As a consequence of the breaking down of Dennard scaling, the operating frequencies

of new devices stopped growing. Given this situation, chip manufacturers and designers

adopted Chip Multiprocessors, also known as multicore processors. A CMP is typically

a single processor that contains multiple cores, computing units that are provided with

small private caches. The cores are connected through an interconnection network on-

chip, which also links the cores to other shared resources like the last level cache (LLC)

or the memory controllers. Multicore designs that implement a significant amount of

cores (e.g. 32 cores) typically follow a mesh topology since it eases the layout of wires

and facilitates the manufacture process.

The adoption of the multicore paradigm helped both performance and power consump-

tion: the former, due to the exploitation of parallelism (i.e. tasks can be distributed

among the available cores); and the latter, because of the lower complexity of the cores,

which reduces their switched capacitance and, ultimately, the dynamic power consump-

tion. These advantages, however, come at the expense of new challenges that need to

be addressed by computer architects and software developers. For instance, in order to
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exploit parallelism, applications first need to be adapted to divide their workload and

therefore be benefited from the multiple cores.

Multicores also pose the challenge of sharing resources. Future multicores are expected

to increase the amount of cores, hindering the management of the shared processor re-

sources. Key shared resources in a typical multicore are the on-chip last level cache

cache and the main memory bandwidth. When the cores are running different appli-

cations concurrently, these applications introduce interference at the shared resources,

thrashing the cache or stressing the main memory bandwidth.

Another shared resource that is gaining importance as the core count increases is the on-

chip network. Technology advancements currently enable integrating hundreds of cores

in a single chip, which compromises the scalability of existent NoC approaches. Addition-

ally, CMPs need from fast communication among cores, caches, memory controllers and

other resources; otherwise, the performance may be significantly compromised. There-

fore, future multicore generations have to face the challenges of fast communications and

low power consumption, so existent interconnection approaches and their scalability need

to be revisited.

In order to sustain the performance while keeping power consumption in acceptable lev-

els, multicore processors need to address the aforementioned issues, and make an efficient

use of the available shared resources. With this objective, this dissertation analyzes and

addresses specific problems derived from current NoCs and cache hierarchies. Below,

these two major components of chip multiprocessors are further discussed and explained.

1.1.2 Cache Hierarchy

Processors have implemented cache memories for more than four decades, becoming a

key component since the design or the first pipelined processors. Cache memories exploit

spatial and temporal localities of the data referenced by the running applications, which

significantly boosts the system performance. Due to the increasing disparity between

the speed of the cache and the main memory, new cache levels were deployed in the

called cache hierarchy. The cache hierarchy includes huge last level caches with the aim

of reducing the number of off-chip main memory accesses, therefore this organization

helps mitigate the consumed main memory bandwidth.
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Most existing multicores implement a three level cache hierarchy, where the two first

levels are private to each core and the third level, referred to as the LLC, is shared by

all the cores. The higher hierarchy cache levels (L1 cache and L2 cache) are small (e.g.

from 32 KB up to 512 KB) and fast, while the LLC size is much bigger, especially in

high-performance processors. For instance, Intel Xeon Skylake processors implement an

LLC of up to 38.5 MB at its maximum configuration (28 cores), and IBM POWER8

devotes to it 96 MB (12-chiplet processor) [3, 4].

It can be noticed that, to reduce the number of main memory accesses, current LLCs are

on the order of tens of MB and this capacity keeps increasing. LLC misses are specially

harmful for the processor performance, since accessing main memory is costly and can

take hundreds of processor cycles. These huge latencies block the reorder buffer of the

cores, and ultimately prevent them issuing new instructions. Additionally, since a key

goal of LLCs is to avoid capacity misses, high associativities need to be used to reduce

the number of conflict misses; for this reason, the associativity degree of the LLCs is

usually higher than 16 ways.

Despite its huge capacity, the fact that the LLC is a shared resource rises important

shortcomings that need to be addressed. First, requests from the co-running applications

compete among them for the LLC, introducing interference in this resource. When

distinct applications access the LLC, they can interfere each other and evict cache blocks

that are being used by the co-runner, impairing the cache performance. Additionally, not

all applications make an efficient use of the LLC, since some workloads (e.g. streaming

applications) may have no locality. Other applications, like those belonging to the cloud

segment, present different needs such as providing isolation or guaranteeing quality of

service (QoS).

Efficiently managing the LLC is, therefore, an important concern that needs to be ad-

dressed for improving performance and fairness. Targeting this objective, many solutions

have been proposed in the past to efficiently share the cache, being the most popular

approach the cache partitioning policies (see Section 2.2.1). Approaches adopting this

solution assign specific cache ways to the applications running in the processor cores ac-

cording to different criteria. Proceeding in this way applications that make a less efficient

use of the cache receive a reduced number of ways, which limits their adverse impact on
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the performance. Way partitioning can be performed by software (i.e. page coloring),

by extending the hardware capabilities or by modifying the replacement algorithm.

Although effective for reducing the interference, existing cache partitioning solutions do

not completely solve the problem. Way partitioning solutions do not reduce the on-chip

latency, since they mostly work at the LLC. Moreover, this kind of approaches are not

as effective for processors that implement low-capacity caches, such as those belonging

to the low-power and embedded segments of the market, as it is for high-performance

processors. This means that, in order to improve the cache performance in multicores, a

holistic approach on the topic needs to be taken, addressing both on-chip latencies and

isolation capabilities.

1.1.3 Network On-Chip

Multicores require from efficient on-chip interconnection networks to provide fast com-

munication among cores, caches and memory controllers. Simple and effective electrical

networks following a mesh topology are the mainstream design choice for many chip

manufacturers, although some processors also implement ring-based topologies (e.g. In-

tel Skylake [3]). However, its effectiveness drops as the core count increases, and the

scalability constraints of conventional electrical NoC need to be revisited.

Regarding scalability issues, the continuous reductions on the integration scale currently

enable integrating hundreds of cores on a single chip [5–7]. Conventional electrical

networks may suffer performance degradation when dealing with such a high number

of cores. These networks often present a mesh topology where memory controllers are

usually placed at the corners and edges of the processor chip. Since the NoC must

interconnect all the processor tiles (e.g. core plus L2 cache), the higher the number of

cores, the higher the average distance from the nodes to the memory controller, and

hence to the main memory. In such a scheme, when a node requests a cache block,

the incurred latencies and energy consumption could be unacceptable depending on the

distance to the memory controller. Current multicore architectures incorporate several

MCs to alleviate this shortcoming but, unfortunately, the number of memory controllers

can not scale linearly with the number of nodes [8].
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The scalability concerns are directly related with power consumption. As discussed

before, in order to prevent heating problems, multicore designers are forced to keep a

limited power budget. NoC designers are not exempt from this directive, since as the

number of network nodes increases, so it does the number of network switches and the

overall cost, in terms of power, of sending data through the network. It is expected,

therefore, that high-performance CMPs exceeding a high number of cores (e.g. 100

cores) suffer from the power bottlenecks of current electrical interconnects [9].

For the last decade, the aforementioned concerns led to new and alternative designs to

conventional NoCs. In this context, one of the most promising solutions to the scalability

issues of existing approaches is photonics interconnects. Below, this novel technology is

briefly presented and discussed.

1.1.3.1 Photonics Interconnects

The need of a faster on-chip multicore communication technology has led to lay out the

use of CMOS-compatible photonic interconnects as a possible solution. Nanophotonics

technology has experienced a vertiginous development during the last decade and this

trend is expected to continue in the next years. Because of its high bandwidth and

energy consumption, which scarcely varies with the communication distance, CMOS

compatible photonics interconnects is the most promising technology to satisfy future

CMPs’ bandwidth demands [10].

Manycore and multicore architectures can leverage the capacities provided by nanopho-

tonics to reduce their network latency and, as a result, their average memory access time.

Additionally, wavelength multiplexing eases the implementation of multicast and broad-

cast operations, which are widely used in CMPs (e.g. the coherence protocol performs

multicast transmissions when invalidates incoherent copies in multiple nodes).

However, new technologies such as photonics interconnects bring the cost of facing also

new challenges. Since this technology is still maturing, it is difficult to find up-to-date

models in CMP simulation frameworks, which are mainly developed by computer ar-

chitects whose focus is on computing and communication aspects. This situation leads

to incomplete models whose results could present important deviations and generate an
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expectancy on this technology that still does not correspond with its current develop-

ment state. Therefore, the first challenge is achieving detailed and accurate simulation

environments to develop reliable CMP simulators considering photonics interconnects.

Other major challenges still remain for this technology, especially for silicon photon-

ics. On the one hand, current losses observed in silicon photonics devices can be too

prohibitive from a power consumption perspective. The higher the loss introduced by

these devices, the higher the output power that the laser source needs to drive all re-

ceivers at satisfaction bit error rates. On the other hand, ring heater power is yet to

be improved. Ring heater power is needed since it mitigates temperature variations

and post-manufacturing geometric mismatches of microring resonators. A prohibitive

heating power means that only a limited amount of microrings can be equipped in the

Optical-Network on Chip (ONoC) [11]; otherwise, the static power consumption would

be out of budget.

However the challenges, the potential benefits that nanophotonics technology can bring

to already existing and future CMP architectures are still worth it. Current efforts

of computer architects shall focus on achieving accurate models and designing new in-

terconnection approaches so, together with technology scaling, on-chip communications

could overcome scalability issues in the near future.

1.2 Main Contributions of the Thesis

The three main contributions of this thesis are described below:

• Accurately modeling an ONoC in a CMP simulation framework. Pho-

tonic interconnects are a promising solution for the so-called communication bot-

tleneck in current CMP architectures. This technology presents an inherent low-

latency and power consumption almost independent of communication distance,

which are key features to improve the performance in future Networks on Chip

generations. Nevertheless, since nanophotonics technology is still growing and

therefore it is still immature, current detailed system simulators lack to provide

complete and detailed models of photonic components. Consequently, in case that

such optical models are assumed, the obtained results may introduce important



Chapter 1. Introduction 10

deviations. This dissertation summarizes all the components that conform a fully

operative optical NoC and presents their current state-of-the-art. Additionally,

realistic ring-based ONoCs featuring token arbitration techniques are evaluated

and compared against their electrical counterparts.

• Increasing energy efficiency in low-power CMPs. Conventional cache hi-

erarchy approaches of current multicores incur area and energy wasting due to

several well-known design issues: oversizing the private cache space, replicating

data through the inclusive cache levels and the increasing cache associative de-

gree. In spite of these shortcomings, the multi-level hierarchy is the commonly

adopted design approach. In this dissertation we claim that a more energy ef-

ficient organization is needed to address these design issues. To this end, this

thesis proposes Flat On-Chip Storage (FOS), a novel cache organization aimed at

addressing energy and area of low-power processors by facing these design issues.

FOS combines L2 and L3 cache levels into a single and flattened cache level com-

posed of a pool of private small cache buffers. These buffers are initially powered

off to save energy, and buffers are powered on and assigned to cores when the sys-

tem performance is expected to improve. To provide fast and uniform access from

the private L1 caches to the FOS cache buffers, multiple architectural challenges

are overcome, including the design of a custom optical network-on-chip.

• Increasing energy efficiency in low-power CMPs for multithreaded ap-

plications. The aforementioned drawbacks associated to conventional cache or-

ganizations are especially harmful when running parallel applications. This kind

of applications typically employs multiple threads accessing to shared data, and

efficiently managing these data in the cache hierarchy is key to achieve high perfor-

mance. This dissertation extends the baseline FOS architecture to propose FOS-

Mt, a cache organization aimed at addressing energy savings in current multicores

for multithreaded applications.

1.3 Thesis Outline

This dissertation consists of seven chapters. The remaining chapters are organized as

follows:



• Chapter 2 discusses previous work on both photonics interconnects and cache

organizations.

• Chapter 3 presents the experimental platforms and common aspects of the evalu-

ation methodology.

• Chapter 4 introduces the accurate modeling of optical devices, and the integration

of these models in a state-of-the-art CMP simulation framework.

• Chapter 5 proposes Flat On-chip Storage, an efficient cache organization that

reduces energy consumption in CMPs.

• Chapter 6 extends previous Flat On-Chip Storage approach and optimizes the

proposal for multithreaded applications.

• Chapter 7 summarizes this thesis, discusses future work and enumerates related

publications.





Chapter 2

Related Work

This chapter discusses previous work related to this dissertation, summarizing important

state-of-the-art works which paved the way for the approaches proposed in this thesis.

First, it is introduced the related work regarding optical interconnects, covering both

the latest technological advances and recent optical networks on-chip. Next, we discuss

important work dealing with cache sharing and cache partitioning, focusing our efforts

on energy efficient caches. Finally, we also discuss related work that addresses energy

savings at the cache hierarchy.

13



Chapter 2. Related Work 14

2.1 Optical Interconnects

This section discusses the state-of-the-art work focusing on optical devices and optical

networks on-chip. First, we summarize some representative works dealing with techno-

logical advances in Photonic Integrated Circuits, focusing on the integration of on-chip

lasers and improving microrings efficiency. Next, we discuss important proposals regard-

ing optical networks on-chip in CMPs, which have guided us towards the design of the

networks proposed in this dissertation.

2.1.1 Optical Devices

Current research efforts focusing on Photonic Integrated Circuits (PICs) concentrate on

the realization of reliable hybrid silicon lasers, electro-optical modulators, and detectors,

which are the most critical building blocks of optical circuits. The promising research

results pave the way for achieving fully on-chip integrated devices, able to overcome the

inherent limitations of electronic networks [12].

Laser sources are the most difficult devices to be integrated in the on-chip processor

die due to power, area, and optical signal attenuation constraints. Duan et al. have

developed hybrid silicon/III-V lasers [13, 14] exhibiting new features and lower power

consumption than previous works [15, 16]. However, these advances do not yet achieve

the ultra-low power consumption required for on-chip laser integration. Moreover, in-

tegrated lasers are only able to provide output signal powers of tens of mW , raising

attenuation concerns, although it is expected to accomplish higher figures in the next

few years, hence allowing the exploitation of the real potential of on-chip lasers. In

fact, some works on optical NoCs assume that on-chip lasers will be integrated in future

technologies since they are much more energy-efficient [17].

Also, regarding lasers, other approaches apart from those deriving from technological

improvements are possible. In this regard, Joshi et al. [18] propose a multibus network

architecture to dynamically distribute the laser power across multiple buses and even

turn the laser sources off at run-time, hence reducing the overall energy consumption.

Following a similar approach, in [19] authors propose Ecolaser, an adaptive control

mechanism that turns the laser off and saves up to 77% of the laser power. In addition,
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other works like [20–23] target the heating problem of current designs and propose

thermal management solutions, which is a key design issue to deal with the energy

efficiency requirements of existing and future approaches.

The switching capacity (i.e. data routing) of electro-optical modulators represents the

key feature for establishing the operation bandwidth of any PIC. High-bandwidth mod-

ulation in silicon (achieving up to 30 to 50 Gb/s data rates and working at switching

times of several GHz [24–26]) can be realized by free-carrier induced index change and

using biased pn structures (carrier depletion) [27, 28].

Optical coherent receivers (i.e. detectors), which convert the amplitude, phase, and

polarization of an optical field signal into the electrical domain, have already been inte-

grated showing similar performance to those deployed in commercial devices with very

high data conversion. Polarization-division-multiplexed quadrature phase-shift keying

(PDM-QPSK) has been employed for 100-Gb/s networks, and even higher modulation

formats such as 16-ary quadrature amplitude modulation (16-QAM) can be utilized

. These modulation formats can achieve a performance in commercial devices up to

224 Gb/s with PDM-16-QAM signals [29]. Depending on the technology node, the out-

put signal of these devices may need to be amplified before being used in the digital

circuit. Small input capacitances for transistors would allow obtaining a signal that

would not require any amplifier and therefore would reduce the power consumption [30].

Regarding current research on other PIC components, critical issues are to minimize

light signal attenuation in the manufacturing process of waveguides [31] and to reduce

the width of the light spectrum that resonators can filter. The latter characteristic de-

fines the number of wavelenghts achievable by Dense Wavelength Division Multiplexing

(DWDM), which currently ranges from 64 to 160 wavelengths per waveguide.

2.1.2 Optical Networks On-Chip

Based on the aforementioned technological advances regarding the integration of fully

optical components, many works have been proposed focusing on optical networks on-

chip [30, 32–43]. Next we discuss state-of-the-art research on hybrid photonic-electronic

and pure optical NoC implementations.
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In this regard, Vantrease et al. explore bandwidth requirements of future manycores and

propose Corona [32], which is a 3D-stacked architecture that employs silicon photonics

for both on-chip and off-chip communication. Kurian et al. present ATAC [30], a 1K-

core system that leverages optical interconnects to implement a global broadcast network

designed together with minor modifications in the coherence protocol. LumiNOC [34]

follows a more conservative approach and implements a fully-optical network which is

partitioned into subnets for the sake of efficiency.

Although fully-optical solutions are theoretically possible, their static power is consid-

ered still too high and prevents them to be adopted in the near future. It could be

said that most of the ONoCs that can be found in existing works are hybrid, in the

sense that they put together electrical and optical components. For instance, in [39],

authors propose a hybrid network composed of optical links and a circuit-switched elec-

trical mesh, aimed at improving broadcast operations in current and future manycores.

In [33], authors propose Firefly, a hybrid network that performs node clustering and

communicates these clusters using optical interconnects. METEOR [42] is also a hybrid

network composed of an optical ring and a conventional 2D electrical mesh network,

which authors claim to improve efficiency with respect to previous works like [32, 33].

In [35], authors also target efficiency by globally sharing several optical channels across

the network. The scalability issues attached to optical crossbars are further studied

in [40], where authors propose PROPEL, a hybrid network that implements a scalable

optical crossbar and electrical switching for a 256-core CMP.

Following a different approach, in [37] Joshi et al. explore silicon-photonics clos networks

(PClos), reducing energy consumption with respect to fully-optical global crossbars.

In [38], authors adopt the previous approach and propose a bufferless implementation

of PClos that improves scheduling and routing for this kind of networks.

Research on photonic NoCs is closely related to research on DWDM arbitration tech-

niques. Since most DWDM-based communication schemes require wavelength sharing,

some works consider the arbitration as an important part of the communication effi-

ciency [32, 35]. In this context, Vantrease et al. [44] also take advantage from silicon

photonics to perform arbitration related tasks. They identify latency, average network

utilization and fairness as the key features that a suitable arbitration mechanism must

address.
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Other studies also point out that the cost of photonic resources must be taken into

account. In [45], Garćıa Guirado et al. analyze the overhead of photonic components

employed in some NoC proposals. They note that a responsible management and dis-

tribution of these resources can result in significant performance gains while keeping

optical-related costs in acceptable levels.

Notice that most of the aforementioned works like [32–35] aim to improve network per-

formance (by increasing network bandwidth) while also reducing energy consumption.

Other works do not concentrate on improving the optical networks, but they take advan-

tage of the capabilities that these networks can bring to overcome traditional limitations

of current CMPs. In this context, some works like [36, 46, 47] leverage optical inter-

connects to enhance particular aspects of the architecture. In [46], Bartolini and Grani

enhance a traditional NoC with an optical ring to support low-latency coherence con-

trol messages, making use of the optical technology capabilities to implement multicast

transmissions. In [36], Cianchetti et al. employ an optical crossbar to reduce the number

of hops for distant communications when transmitting 64-byte cache lines, which trans-

lates into a shorter memory access time. Similarly, in [47], a hybrid NoC that employs

optical links for long-distance block transmissions while keeping electrical links for close

communications is proposed.

Finally, other works explore the use of silicon photonics in other architectures different

than CMPs. For instance, in [48], authors leverage optical interconnects to improve

the scalability issues inherent to future GPUs, as the number of compute units grows

in each GPU generation. Authors use a hybrid photonic crossbar to improve latency

and energy efficiency of communications at the memory hierarchy of an AMD Southern

Islands GPU.

2.2 Adaptive Cache Organizations

Cache organizations have been an important research topic when dealing with perfor-

mance and energy consumption in chip multiprocessors. More specifically, important

works [49–52] showed in the past that static and rigid cache hierarchies are inefficient

and that applications may suffer from well known issues like unfairness or starvation in

such systems. On the other hand, some seminal work [53–55] pointed out that splitting
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the cache organization in small and independent cache structures do not only reduce

energy consumption but also, when these structures are properly managed, may also

enhance the system performance.

In this context, research approaches aimed at improving the utilization and efficiency

of the cache hierarchy can be classified following different criteria. This section first

presents a subset of previous cache sharing and cache partitioning approaches, which

are typically applied to shared caches. Next, we discuss some important works that

propose cooperative caching approaches as a way to improve the efficiency of the cache

hierarchy. Finally, other approaches are studied in Section 2.2.3.

2.2.1 Cache Partitioning

This category includes works that pursue to improve the use of the shared cache space

by partitioning it according to different criteria. Approaches falling in this category [49–

51, 56–58] aim to improve the system performance by properly assigning specific cache

ways to the different applications running in the processor cores. An example of cache-

way based partitioning can be found in [49], where a CMP prototype using this technique

at the last level cache is presented. Another interesting piece of research belonging to

this group is UCP [50] by Qureshi and Patt. This approach distributes the cache ways

of the LLC among the co-running applications based on the reduction of cache misses

that each one of them is likely to obtain for a given amount of cache resources. The

estimates on the reduction of misses are carried out by duplicating tags and sampling

a reduced amount of sets. ASM-Cache [56] employs similar techniques to gather useful

information to partition the cache. In [51], authors propose distributing the cache ways

with the aim of improving system fairness rather than just focusing on performance.

Other works [59–61] that also explore cache partitioning at the cache-way granularity

focus on the cache replacement algorithm. Both [59, 60] propose using eviction proba-

bilities to manage the occupation of the LLC, for instance, increasing the probability of

evicting cache lines occupied by a given core. In [61], authors also partition the cache

but control the size of partitions by properly scaling the futility of their cache lines.

A different approach considered to devise cache partitioning solutions is based on skew

associative caches [62] or zcaches [63]. These approaches [64, 65] decouple the cache
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associativity from the number of cache ways by increasing the replacement candidates

upon a cache miss, hence they enable to partition the cache using the replacement

policy. In [64], up to 90% of the cache is partitioned this way, by soft-pinning a large

portion of the cache lines. In [65], authors dynamically partition the cache based on the

predicted transient behavior of latency-critical workloads, maintaining their tail latency

and ensuring QoS.

The aforementioned works focus on approaches that propose hardware modifications to

current designs. However, software-based approaches [66–70] have been also proposed

to partition the cache. Most of these approaches are based on page coloring, which is

used to control the location of the application data in the cache. In [66], authors adopt

a hybrid software and hardware approach, which aims to reduce the cache misses by:

i) color mapping at compile time code and data pages; and ii) adding a page remap

field to the TLB. A simple and software-only approach is followed in [67], which relies

on the OS to allocate the physical page that maps the desired portion of a L2 shared

cache. COLORIS [68] analyzes the case of page coloring in over-committed processors

(i.e. where there are more executable threads than cores) and propose several policies

to reconfigure the assignment of page colors among application threads. Lastly, in [69]

authors refine the approach and propose hot-page coloring, which colors only a small set

of frequently accessed pages for each process. The reason behind this approach is reduc-

ing the adverse effect associated to the lack of versatility of page coloring approaches,

which need to reallocate the pages when repartitioning occurs.

Finally, more recent works [71–75] leverage Intel’s Cache Allocation Technology, imple-

mented in some current processors (e.g. Intel Xeon E5 v4 family), in order to limit the

amount of LLC ways that a hardware thread can occupy. Some of these works [73–75]

focus on the cloud field, and employ Intel CAT to maximize the utilization of large-

scale data centers and to partition the cache when renting virtual machines. In [73],

authors propose Heracles, a feedback-based framework that increases the utilization in

large data centers while ensuring that latency-sensitive jobs meet their latency targets.

In Dirigent [74], a lightweight performance management runtime system is proposed to

accurately control the QoS of latency-critical applications using existing architectural

solutions like Dynamic Voltage and Frequency Scaling (DVFS) or the already mentioned
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Intel’s CAT. In [71], Vicent Selfa et al. propose a family of clustering-based cache parti-

tioning policies to address fairness in systems that feature Intel’s CAT. Finally, in [72],

Lućıa Pons et al. propose a simple and effective approach based on identifying critical

and non-critical applications that considerably improve the workloads’ turnaround times

by featuring Intel’s CAT.

2.2.2 Cooperative Caching

The proposals presented above mostly apply to shared caches, but some works concen-

trate their effort on CMPs implementing private caches, or caches that count with both

private and shared levels. In this category, cooperative caching approaches [76–78] allow

applications with high cache demands to borrow part of the private cache from other (i.e.

neighbor) cores. In [76], Chang et al. propose a centralized directory that manages the

private L2 caches in a four-core system, allowing cache-hungry applications to borrow

cache ways from neighbor cores. This directory is also in charge of keeping coherence

and several counters that indicate the reuse of blocks.

The scalability issues observed in the aforementioned solution are addressed in [77],

where a distributed implementation of the centralized directory is proposed. This pro-

posal introduces several improvements to the centralized version: the tag management

is optimized, reducing the time needed to look up a given block; size and bottlenecks are

also reduced, since distributed directories store the tags in an interleaved manner. How-

ever, these improvements require extending the underlying coherence protocol, which

entails significant hardware modifications.

Finally, the cooperative-caching approach is further refined in [78]. In this proposal,

aimed at working both with private and shared caches, authors propose a hardware so-

lution that dynamically adjusts the cache space available for a given core based on the

behavior of the running application. The approach overcomes the strict private/shared

categories applied to the cache levels and dynamically adjusts the private size on each

cache module, leaving the remaining cache ways to be occupied by shared blocks be-

longing to other executing threads.

Cooperative caching solutions are an interesting approach to address the different cache

requirements that the co-running applications can present. However, the performance of
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these approaches is limited by the interconnection network, which can increase latency

when borrowing cache space from distant cores. Therefore, proposals falling in this

category highly restrict the maximum cache space that is available for a single core. This

fact limits the potential performance gains, especially in processors with a significant

amount of cores.

2.2.3 Other Approaches

This section discusses other approaches that have been proposed dealing with existing

cache hierarchies, and some works that combine and improve previous approaches. In

this regard, we first focus on approaches targeting Non Uniform Cache Access (NUCA)

architectures and on schemes that redefine the complete cache hierarchy.

With the aim of reducing the latency and energy consumption of large caches, some

works explored in the past solutions focused on NUCA architectures [79–86]. Conven-

tional NUCA architectures organize the cache space as a set of interconnected banks

(i.e. modules), which are typically accessed in an interleaved manner. This statically

interleaved access to the cache banks brings well-known shortcomings associated to rigid

cache hierarchies like multiple tag look-ups, excessive data movement and thrashing.

An interesting piece of research that aims to deal with these issues is NUCA-Substrate [83].

In this work, authors propose a dynamic mapping that keeps the most used blocks in

banks close to the running application and the least used blocks are kept farther away,

hence improving the average access latency. In NUCA-Substrate, a cache hungry appli-

cation may occupy a high number of NUCA banks, which are located close to the tile

executing the application, while applications that barely performs cache accesses are left

with a reduced cache space.

Similarly, works like [84–86] also concentrate on placement/migration policies in NUCA

organizations. In [84], a distributed cache design that reacts to different types of cache

accesses and places blocks accordingly is proposed. This approach requires cooperation

from the OS to avoid modifying the coherence mechanism at the last level cache. In [85],

authors propose a NUCA architecture that dynamically controls the amount of cache

space that can be shared by continuously estimating the effect of increasing the available

cache size on performance. Similar to these approaches, ESP-NUCA [86] dynamically
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allocates banks closer to the owner processor while also integrates victims and replicas,

reducing average on-chip access latency and maximizing cache usage.

The discussed approaches and prior research addressing cache efficiency problems demon-

strate that NUCA approaches help reduce the on-chip access latency and that cache par-

titioning techniques are able to provide isolation. However, neither NUCA techniques

work well with hotspot interferences nor cache partitioning approaches significantly re-

duce access latency. To address these shortcomings, in [87, 88] Daniel Sanchez et al.

propose an evolution of existent NUCA architectures and distributed hierarchies, letting

the software define virtual caches over the existent hardware. For this purpose, in [87]

it is presented a hybrid software-hardware approach that defines, by software, collec-

tions of cache bank partitions that act as virtual caches, and gives the software control

over both data placement and capacity allocation. The proposal is further improved

in [88], where they introduce Jenga, a reconfigurable cache hierarchy that adapts itself

to applications. In Jenga, not only the cache space is distributed, but the whole cache

hierarchy is adapted to the applications behavior, for instance, eliminating accesses to

unnecessary cache levels.

2.3 Energy Consumption in the Cache Hierarchy

In the last decade, energy consumption has become a major design concern in the cache

design since caches occupy a significant percentage of area in the processor die. As a

result, many works have been developed aiming to address this issue. A comprehensive

survey of some of these architectural techniques to address the energy challenge on caches

can be found in [89]. This section discusses the main existing approaches by grouping

them in two categories: i) prior solutions to reduce energy consumption in caches; and

ii) alternative technologies that can bring important changes to the design of current

cache organizations.

2.3.1 Reducing Energy Consumption in Caches

One commonly adopted approach that has been followed to reduce the total energy

energy in on-chip caches concentrates on reducing the static energy or leakage of the



Chapter 2. Related Work 23

cache [90–100]. Targeting this objective, drowsy caches [91] allow putting individual

cache ways in a low-power mode. In [92], authors extend this approach and propose a

circuit technique that supports a super-drowsy mode in the cache using a single VDD.

Following this research line, S. Petit et al. [95] studied how temporal locality impacts on

drowsy policies and proposed a new policy that makes use of the reuse information to

trade off performance with energy consumption. In [101], Powell et al. propose Gated-

VDD, an approach that does not only gate the supply voltage of SRAM-cells but also

dynamically reconfigures a resizable cache according to the application needs. DRG-

Cache [93] combines an integrated circuit with an architectural level technique that

reduces leakage power while it avoids destroying the data on a custom standby mode of

operation.

The aforementioned works are considered state-preserving techniques, since they save

the state of the blocks that occupy the ways which are turned off. In contrast, some

other researchers have focused on state-destroying leakage control mechanisms [102–108],

a more aggressive approach. Kaxiras et al. [102] introduce Cache Decay, an approach

that invalidates and turns off individual cache lines when it is estimated that the stored

data is not likely to be used. In [103] authors propose a hardware technique similar to

Cache Decay that dynamically adapts the cache size to the application load, turning off

some cache lines. Other works [106, 108] also explore this research line, and they propose

to adapt and reconfigure the cache based on the cache behavior of running applications,

achieving significant leakage reductions.

State-destroying approaches generally achieve higher energy savings than the state-

preserving ones. This is an expected result since they do not need to refresh the data

in low-power or standby operation modes. However, for applications with high locality

that make a significant use of the cached data, these approaches become ineffective,

because the cost of fetching back an old block is high and incurs a significant penalty.

Therefore, there is a trade-off between performance (and indirectly, dynamic power) and

leakage power when designing leakage-reduction techniques. Additionally, most of these

solutions work at the granularity of cache line, and their implementation complicates

the on-chip circuitry and makes them impractical.

Finally, some researchers [109–111] have also studied the effect of temperature on the

power consumption and leakage policies. In [111], authors propose a thermal-aware
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cache that implements a power-down technique to minimize the power density of the

active parts in the cache. Considering the relationship between leakage power and

temperature, authors in [110] propose a system-level leakage power model and a voltage

scaling technique that adapts VDD to the temperature.

2.3.2 Alternative Technologies

Finally, in this section we discuss some proposals that leverage novel technologies to

reduce energy consumption in on-chip caches. An interesting comparison of cache tech-

nologies that have been employed for last-level caches can be found in [112].

A low-power alternative cache cell technology is Domain Wall Memory (DWM) [113–

116], which inspires the emerging racetrack memories (RM). DWM is a spin-based mem-

ory technology in which several bits of data are densely packed into the domains of a

ferromagnetic wire. The significant density shown by DWM is promising and may

lead to important speed and energy advantages with respect to conventional caches.

TapeCache [114] introduces the first attempt to use a DWM-based memory as last level

cache in a general purpose processor. In [116], Wang et al. extend the approach and

propose a ring-chaped racetrack memory to be used as the L2 cache in 4-core CMP.

Magnetic RAM and Spin-Transfer Torque RAM (i.e. MRAM and STT-RAM) [117, 118]

are memory technologies that present fast read access, high density and non-volatility.

In [117] authors propose a 3D-stacked MRAM-based L2 and reduce the long write laten-

cies to avoid harming performance. Similarly, authors in [118] study STT-RAM memory

cells to reduce their high dynamic energy and the slow write latencies.

2.4 Summary

This chapter has summarized current approaches working on traditional cache hierar-

chies. These approaches have identified a poor use of the cache space and an excessive

energy consumption in the cache hierarchy.

Existing approaches have typically addressed these limitations but working on a rigid

hierarchy. Even those works that could be considered adaptive cache organizations are
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strongly limited by the underlying NoC, which reduces the potential benefits of these

approaches. Unlike this research, in this thesis we claim that most of these shortcomings

come by design from the underlying hierarchy, thus we follow a more risky and disruptive

direction by redesigning the cache hierarchy from scratch.





Chapter 3

Experimental Framework

This chapter presents the working environment and most of the tools that have been used

throughout this dissertation. We first describe Multi2Sim, the simulation framework

that has been employed to implement and evaluate the proposals. Next, the chapter

presents some tools that have been helpful for evaluating the proposed solutions, e.g.

energy-modeling tools like CACTI 6.5. Finally, we show the benchmark suites that have

been chosen to compare and evaluate the studied systems and approaches.

27
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3.1 Simulation Framework

The proposals presented in this thesis (see Chapters 4, 5 and 6) use novel technologies

and hardware prototypes that are not implemented in current commercial processors.

Due to this reason, they have been modeled and evaluated using simulation software

packages, namely Multi2Sim, DRAMSim2 and CACTI. Below, these tools are explained.

3.1.1 Multi2Sim

The Multi2Sim [119, 120] simulation framework has been chosen as the most indicated

implementation and evaluation platform in this thesis. This framework is an accu-

rate cycle-by-cycle execution-driven simulator for CPU-GPU heterogeneous computing.

Multi2Sim faithfully models superscalar pipelines that support out-of-order execution,

a complete memory hierarchy, a CPU-GPU compatible coherence protocol and an inter-

connection layer. It supports different architectures that range from conventional CPU

architectures like Intel x86, MIPS-32 or Arm to more recent GPU architectures like AMD

Southern Islands or NVIDIA Fermi. Since this dissertation focuses on hybrid technolo-

gies applied to CPU environments, we have significantly extended the Multi2Sim source

code for the CPU x86 architecture, including the memory subsystem and the intercon-

nection layer. On the top of these features, Multi2Sim can be easily extended to model

new hardware components and to integrate them in existing software packages.

Multi2Sim divides the simulation into four different phases, namely: i) disassembly;

ii) emulation; iii) timing/detailed simulation; and iv) visualization. The disassembly

stage decodes instructions from a specific ISA into an interpretable representation of

the instruction fields. Regarding the emulation stage, Multi2Sim is an application only

emulator, since it focuses on running the user application and does not emulate in detail

the OS and device drivers. Finally, the detailed simulation stage, also referred to as

timing/architectural simulation, models the behavior and timing of different processor

and memory hardware structures like pipeline stages, registers, caches and network

buffers.

All the experimental results presented in this thesis have been obtained with version 4.2

of Multi2Sim. To make this dissertation self-contained, in this section we present the
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Figure 3.1: Multi2Sim model of a CMP implementing N superscalar cores.

most interesting features of the Multi2Sim framework and the main modifications that

have been carried out to support and evaluate our proposals. More information about

the Multi2Sim framework can be found in http://www.multi2sim.org/downloads/

m2s-guide-4.2.pdf.

3.1.1.1 Chip Multiprocessor

Multi2Sim models superscalar, multithreaded and multicore CPUs. For multicore ar-

chitectures, the processor-related hardware structures (i.e. processor pipelines, registers,

etc.) are replicated, and they work simultaneously in every execution cycle. Figure 3.1

shows an example of how a CMP that implements any number of superscalar cores is

modeled in Multi2Sim.

As shown in the figure, different structures are shared and replicated in each core. In

Multi2Sim, each core can run a given number of hardware threads, which share the main

core resources like the ROB or the functional units; these resources are replicated for

each core. Additionally, each thread counts with its own private resources such as the

TLB or the program counter; these resources are replicated for each thread in each core.

Each running sequential application or process, referred to as context in Multi2Sim, can

be mapped to any hardware thread in any core. In addition, software threads spawned

by parallel or multithreaded applications are also treated as Multi2Sim contexts. For

instance, when running a 4-thread parallel application in a 2-core processor with support

http://www.multi2sim.org/downloads/m2s-guide-4.2.pdf
http://www.multi2sim.org/downloads/m2s-guide-4.2.pdf
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to 2 SMT hardware threads per core (SMT2), a pair of the software threads are mapped

to one of the cores and the rest to the other core.

Since this thesis pursues to improve CPU performance and energy efficiency by exploring

hybrid technologies like photonics interconnects, the research has mainly focused on the

memory subsystem and the interconnection network layers. Therefore, no significant

modifications have been implemented at the processor-related structures, which means

that the previously exposed processor model is the one that has been used in all the

experiments presented in this dissertation.

Main Memory

Figure 3.2: Model of a 2-level memory hierarchy in Multi2Sim.

3.1.1.2 Cache Hierarchy

Multi2Sim also allows configuring the memory hierarchy in a very flexible manner. Cache

levels are recursively defined, without limits regarding the number of levels. Cache

modules can be configured with multiple parameters, defining them as private or shared,

varying their geometry (e.g. size or associativity), and configuring if the access is address-

interleaved among modules and the level of interleaving.

Figure 3.2 presents an example of a cache hierarchy modeled in Multi2Sim. In the

example, those accesses that miss in the L1 caches are forwarded to the next lower level

in the hierarchy, using an all-to-all crossbar. When an access misses in the LLC, it is

forwarded to main memory, from where the block is fetched after a given latency.
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In this thesis, major modifications and extensions have been implemented in the memory

subsystem level of Multi2Sim to model the thesis’ proposals. These modifications are

detailed in Chapters 5 and 6, where these proposals are presented.

3.1.1.3 NMOESI coherence protocol

Multi2Sim implements the NMOESI cache coherence protocol, an extended approach of

the well-known MOESI protocol [121], typically implemented in a majority of conven-

tional chip multiprocessors. Cache lines managed by conventional MOESI protocol can

be in one of five states, (M, O, E, S and I), while the NMOESI approach incorporates an

additional non-coherent state (N) used mainly in GPU architectures. Cache lines that

are in the N state are considered non-coherent, and they do not generate any coherence

traffic like invalidation messages. Thanks to this added state, a given memory hierarchy

can be shared by CPU and GPU cores in an heterogeneous system.

Throughout the development of this thesis, the NMOESI protocol implementation in

Multi2Sim has been thoroughly studied and optimized. Features like critical word sup-

port and optical transmissions for coherence-related messages have been implemented [46].

Additionally, the proposal discussed in Chapter 6 incorporates new hardware structures

that require some minor modifications to the implementation of the coherence protocol.

These slight changes are further explained in the chapter, concretely in Section 6.2.2.

3.1.1.4 Interconnection Layer

The proposals presented in this dissertation leverage photonics interconnects for com-

munication purposes. This novel technology is in an immature state and, while it counts

with significant potential in terms of latency and high density, is is not still implemented

in commercial processors. For this reason, a simulation environment able to accurately

model the latencies achieved by optical interconnects is needed to measure the potential

benefits of this on-chip communication technology.
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Multi2Sim implements a flexible model of interconnection networks that offers a wide

range of possibilities when communicating hardware structures. The model allows defin-

ing custom networks by indicating their topology, nodes, switches, links and routing algo-

rithm. Additionally, Multi2Sim also allows communication over bus architectures, fully-

connected crossbar switches and virtual channels to solve deadlock situations. These

capabilities are enough to define the interconnects in any level of the memory hierarchy,

but some important features like cut-through switching or flow-control are still missed.

The interconnection layer has been significantly modified and extended during the elab-

oration of this thesis. Optical interconnects are now fully supported in Multi2Sim,

including optical arbitration techniques like token-based arbitration. Details regarding

the implementation of an accurate model of an optical NoC in Multi2Sim can be found

in Chapter 4.

Modifications carried out in the network layer also include the extension of the basic

Store-And-Forward (SAF) message (i.e. packet) switching mechanism originally imple-

mented in Multi2Sim. In the store-and-forward packet switching, the whole packet is

stored in the input buffer before being forwarded to the next node. This requires to

wait for the complete packet storage, even when the output channel is free. Past re-

search [122] demonstrated that forwarding (when some conditions are met) the first

bytes of the packet to the next node as soon as they are received reduces the delay and

improves the average latency. The result of this research is widely known as cut-through

switching, a method that divides the messages into smaller transmission units that can

be forwarded as soon as they are received. Extending this approach, the wormhole [123]

switching method divides the messages into flits, i.e. flow control digits, which are the

minimum transmission unit that can be sent in a single network cycle. In order to

make the baseline systems evaluated in our proposals more realistic, virtual cut-through

(VCT) and wormhole (WH) switching have been implemented, although VCT has been

the most used switching method in our experiments.

Finally, in order for Multi2Sim to account for latencies of optical devices in a cycle-

by-cycle basis, the frequency domains of the simulation framework have been adjusted,

which allows synchronizing both optical and electrical transmission networks working in

the same device at different frequencies.
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3.1.2 DRAMSim2

Although Multi2Sim provides realistic models for every on-chip component mentioned

before, it neither models the memory controller nor the main memory. In its stand-

alone version, Multi2Sim models main memory latencies as a constant and fixed value,

which may produce inaccurate results [124], for instance, due to not modeling memory

controller contention. This unrealistic behavior is not acceptable as it puts at risk the

potential conclusions of this work, where many of the proposals involve the memory

subsystem. To overcome this shortcoming, we use Multi2Sim together with DRAM-

Sim2, a dedicated cycle-accurate main memory simulator that includes realistic models

for DRAM memory controllers, DRAM memory modules and the buses that these mod-

ules use for communication purposes. The modeled memory controller, which is a key

component regarding performance due to the effect of contention at its queues, includes

mechanisms like the DRAM Command Ordering Scheme or the Row-Buffer Manage-

ment Policy. Commercial DRAM devices, like the ones implemented in DIMM modules,

are modeled in detail, including its internal organization (i.e. multiple banks working in

parallel). Additionally, DRAMSim2 allows grouping the DRAM devices into ranks, as

it is done in real hardware.

Apart from the internal structure, DRAMSim2 also models the commands to access

the DRAM banks. For instance, three of these commands are Precharge, Activate and

Read/Write.

We integrated DRAMSim2 with Multi2Sim in the following way. Upon an LLC miss,

Multi2Sim triggers the corresponding request to the memory controller, which is then

managed by DRAMSim2. When the memory request is resolved, a Multi2Sim event

indicating that the block is ready is scheduled, and the block is then forwarded to the

LLC.

3.1.3 CACTI 6.5

CACTI [125] is a cache/memory access time, cycle time, power and area model. This

analytical tool is useful for studying the latency, power, cycle-time and area trade-offs

that are inherent to cache design. CACTI supports the following features:
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• Modeling of the cycle time, area, delay and power for caches, including direct

mapped, set-associative and fully-associative caches.

• Both multi-ported UCA caches and multi-ported, multi-banked NUCA caches are

supported.

• A model of leakage power, considering the operating temperature.

• It supports technology nodes of 90, 65, 45 and 32 nm.

As input, CACTI takes the cache capacity, the cache line size, the cache associativity, the

technology generation, the number of ports and the number of independent banks. With

this information, CACTI obtains the corresponding cache configuration that minimizes

delay or other optimization parameters such as area or power. CACTI models up to eight

important components of the cache: deccoder, wordline, bitline, senseamp, comparator,

multiplexor, output driver and inter-bank wires. For these components, delay, power

and area are modeled, and together they compose the output of the tool.

In this thesis, CACTI 6.5 has been used, which is a specially improved release for large-

scale caches and fixes many bugs from prior versions. This software has been employed

to obtain the energy results of some of the proposed approaches (see Chapter 6), and

also to estimate the access time for tag and data arrays.

3.2 Benchmark Suites

All the proposals discussed in this dissertation have been evaluated using a wide set of

benchmarks. Two main suites of benchmarks have been used: SPEC CPU 2006 [126] and

SPLASH-3 [127]. The former suite has been selected as the main suite for evaluating

sequential applications, while the latter has been chosen when running experiments

devised for multithreaded applications. Next we give a brief explanation about the

contents of each suite.

The SPEC CPU 2006 benchmark suite contains a set of CPU-intensive benchmarks,

which can stress the system’s processor, memory subsystem and compiler. Developed by

the Standard Performance Evaluation Corporation [128], the suite contains applications

belonging to the High Performance Computing field, including both integer and floating
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point benchmarks. Recently, the SPEC corporation has released an updated version of

this suite, the SPEC CPU 2017 benchmark suite [129]. Although this suite incorporates

new features (e.g. measuring power), according to our experiments and to other works

like [130], benchmarks belonging to the former SPEC CPU 2006 suite introduce a higher

stress on the memory subsystem. Due to this reason, we have selected the original SPEC

CPU 2006 suite rather than the new release. For all the experiments, the SPEC CPU

2006 workloads are run using the data-ref input set.

Finally, the SPLASH-3 2017 and the ALPBench 2005 benchmark suites have been se-

lected for evaluating parallel applications. The SPLASH-3 suite is the updated release

of the original SPLASH-2 benchmark suite [131]. Applications belonging to this set con-

form a wide variety of complex parallel applications, that have been continuously used

throughout the last two decades. This new release updates and fixes some bugs found

in the previous SPLASH-2 suite [131]. In particular, the fixed bugs come from data

races introduced by some synchronization optimizations. These data races could lead to

unexpected behaviors that translate to non-deterministic, incorrect outputs or even per-

formance errors. For these reasons, we have selected the newer SPLASH-3 suite rather

than the original release. For all the experiments, the SPLASH-3 workloads are run

using the simmedium input set. Regarding ALPBench benchmarks, they are executed

using their default inputs.





Chapter 4

Accurately Modeling an

Optical-NoC in a Detailed

Simulation Environment

Manycore and multicore architectures can take advantage from the capabilities pro-

vided by silicon photonics technology to reduce their network latency and, as a result,

boost performance. However, since on-chip photonics interconnects are still a maturing

technology, it is difficult to find up-to-date CMP simulation frameworks that allow its

modeling. This fact leads to incomplete models of different on-chip optical networks

that lack some components or features, which can present results that differ from those

of current prototypes. This chapter presents and discusses an example of an optical ring

modeled under our extended framework. It also shows results of different simulation

configurations to demonstrate how incomplete models impact on the achieved results.

The chapter is organized as follows. First, some background on optical interconnects,

focusing on the behavior of its main components, is presented. Next, it is explained

how these components have been modeled in our simulation framework and how they

can impact on performance and energy consumption. Finally, the developed model is

studied with different configurations, exposing the deviations observed in configurations

that follow incomplete models.

37
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4.1 Background on Optical Interconnects

Optical on-chip interconnects bring new opportunities to the design of future manycore

and multicore architectures. Already existent implementations and prototypes suggest

that different technologies like Free Space optics with Vertical-Cavity Surface-Emitting

Lasers (VCSELs) or silicon with ring resonators offer low loss, low latency and high

bit density interconnects, able to overcome the main drawbacks of their electrical coun-

terparts [132]. In this chapter, we focus our efforts on modeling and studying ring

resonators-based interconnects.

Despite the promising benefits, to fully leverage the potential advantages offered by

nanophotonics interconnects, it is critical to count with efficient physical components

able to manage the light signal. Promising steps have been accomplished towards achiev-

ing the full integration of optical devices, although still some challenges remain specially

at system and device level [132]. As a result, advances in silicon nanophotonics cur-

rently allow the prototyping and development of functional optical networks in a single

chip [133]. This section presents and describes the main silicon photonic devices needed

to build an optical interconnect, a working example using these devices, and the main

communication schemes followed in the design of current ONoCs.

4.1.1 Silicon Photonics Devices

To be functional, any interconnect requires a power source, a transmission channel and

operating devices. In the concrete case of silicon photonics interconnects, these elements

correspond to lasers, waveguides and ring resonators.

• Laser. A laser source is required to inject light into the transmission channel.

Off-chip placed lasers are usually the most adopted solution, since they ease the

design, do not suffer signal loss due to the device integration in silicon and also

simplifies wavelength locking [15, 16]. Chapter 2 further discusses the different

options regarding power sources in on-chip optics, as well as the different solutions

available in the literature.
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In photonics interconnects, the light signal from the laser is multiplexed into dif-

ferent wavelengths. The number of wavelengths in a waveguide, explained below,

can be increased with Dense Wave Division Multiplexing (DWDM) [134].

• Waveguides. Waveguides are the transmission medium employed to carry the

light signal between the laser and the operating devices. Waveguides employed in

prototypes are typically 0.5 µm wide and usually made of crystalline silicon and

silicon oxide, which present refractive indexes of 3.4401 and 1.4298 respectively.

Then, the speed of propagation of light in silicon is obtained by:

c =
3× 108

3.4401 + 1.4298

2

= 1.23× 108m/s

Therefore, throughout this dissertation, it will be assumed that the speed of prop-

agation of light over the silicon die is 12.3mm/100ps.

• Ring resonators. Microring resonators are ring-shaped waveguides that filter a

specific wavelength. Ring resonators are coupled to a waveguide and, when they

are on-resonance, they remove the light signal of its resonant wavelength from

that waveguide. On the contrary, when resonators are off-resonance, they barely

affect the light signal, so the signal can continue its way through the waveguide.

A ring resonator can be brought into and out of resonance either by applying an

electrical pulse to it or by adjusting its temperature, which modifies the index of

refraction of the ring. By default, the wavelength filtered by a resonator is given

by its diameter, which usually ranges from 3 to 5µm [135], although resonators

can be tuned dynamically to filter different wavelenths.

Given this behavior, ring resonators can be used as diverters, detectors or injectors,

which are key operating devices in photonics interconnects.

– Diverter. A resonator acts as a diverter when it is coupled to a waveguide

while it is on-resonance. Then, the resonant wavelength is filtered by the

resonator and eventually dissipated by the losses in the ring. Therefore,

by bringing the ring resonator into and out of resonance, it is possible to

modulate data by encoding 0s and 1s like the absence or the presence of

light. For this reason, resonators acting as diverters are also referred to as

modulators.
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e) Diverter/

Figure 4.1: End-to-end transmission between two network nodes using photonic in-
terconnects.

– Detector. A detector is a ring resonator that has been doped with Germanium

(Ge), which makes the light signal to be converted into an electric pulse as

it goes through the resonator. Detectors can therefore be used as translators

of the light signal to the electrical domain, and can be also referred to as

photodetectors in the literature.

– Injector. Injectors are resonators that are coupled between two parallel

waveguides, which makes the resonator to inject a given wavelength from

one waveguide to the other.

• Splitters. These devices, which can be referred to also as couplers, split a fraction

of the laser power between two different waveguides, This fraction of the light

signal is split across all wavelengths, hence the unsplit fraction is unaffected by

the device. Splitters provide the capability of distributing power through different

paths, allowing more complex designs and topologies.

4.1.2 Working Example

Figure 4.1 shows an example of an end-to-end transmission between two network nodes

A and B using photonics interconnects. In the example, node A transmits a bit flow to

node B following these steps:
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• Step 1: The laser introduces the light signal, multiplexed in several wavelengths,

into the main waveguide (letters b and g in the figure). As observed in the figure,

the laser is located outside the silicon die.

• Step 2: The wavelength identified by the blue color, henceforth λi, is extracted

by the injector and introduced into the parallel waveguide, which will be the trans-

mission medium to connect both nodes. Ring resonators corresponding to nodes

A and B are placed next to this waveguide.

• Step 3: Node A starts the transmission of a bit flow, which is stored in its output

buffer (letter h in the figure).

• Step 4: Once the light signal corresponding to the wavelength λi reaches the

diverter of node A (letter e), it is absorbed by the ring and modulated according

to the bit flow previously stored in the output buffer. The modulated flow is

re-introduced in the waveguide.

• Step 5: The light signal eventually reaches node B and passes through its ring

resonator. In order to act as a photodetector, this ring has been doped with

Germanium, hence converting the light signal to an electrical one. Photodetectors

typically require the use of an amplifier to strength the outcoming electrical signal,

although for the sake of simplicity, this component has not been included in the

figure.

• Step 6: Finally, the initial bit flow is recovered in the input buffer of node B and

the transmission is completed.

4.1.3 Communication Schemes

As explained above, optical transmissions are carried by a shared transmission medium,

that is, the waveguide. In order to communicate several nodes using a single shared chan-

nel, different communications schemes are defined to avoid collisions and to guarantee

the successful delivery of messages. These schemes define what nodes act as senders (or

writers) and receivers (or readers), and thus, how their resonators are tuned to establish

the communication. There are five well-known communication schemes [134]:
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(a) SWBR scheme (b) SWMR scheme

(c) MWSR scheme (d) MWMR scheme

Figure 4.2: Communication schemes using a single wavelength for transmissions.

• Single Writer Single Reader (SWSR): SWSR is the basic scheme that is followed

by any tranmission between peers. When using this scheme, a single sender and a

single receiver have their resonators statically tuned to the same wavelength and

the communication is one-way from the writer node to the reader node.

• Single Writer Broadcast Reader (SWBR): The SWBR scheme is used to perform a

broadcast among all the receivers in a given wavelength. Broadcast schemes are not

desirable in optical interconnects since they involve tuning all the photodetectors

to the same wavelength each time that a broadcast transmission is performed.

Figure 4.2a presents a simple block diagram of this communication scheme.

• Single Writer Multiple Reader (SWMR): Under this scheme, the sender is in charge

of tuning the resonators of the receivers. This scheme is similar to the SWBR

scheme, but in SWMR only the nodes interested in receiving the message are tuned

by the sender. The block diagram of this communication scheme is presented in

Figure 4.2b.

• Multiple Writer Single Reader (MWSR): The MWSR scheme is used when more

than one sender have one common destination. This scheme requires using an

arbitration technique to guarantee that the shared medium is only used by one of
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(a) SWMR (b) MWSR (c) MWMR

Figure 4.3: Communication schemes using DWDM.

the senders at a time. Figure 4.2c presents the the block diagram of the MWSR

scheme.

• Multiple Writer Multiple Reader (MWMR): The MWMR scheme allows every pos-

sible communication between any source node and any destination node. There-

fore, arbitration is also needed in order to avoid collisions in the network. This

scheme is the one that provides the highest flexibility in the network design, al-

though it implies the use of a high number of optical resources. Its block diagram

is presented in Figure 4.2d.

4.1.3.1 Dense Wavelength Division Multiplexing

The Dense Wavelength Division Multiplexing (DWDM) technology allows multiplexing

the light signal coming from the laser into a wide range of independent wavelengths. This

means that a waveguide carrying a light signal multiplexed into λn different wavelengths

is able to transmit λn different bit flows in parallel. According to the literature, state-

of-the-art resonators can filter ranges that are between 64 and 160 wavelengths per

waveguide. These numbers, however, are expected to change with the evolution of these

devices, since the current ranges of wavelengths achievable by DWDM directly depends

on the width of the light spectrum that resonators can filter.

This technology, therefore, is a key component in the design of ONoC, since it allows

extending the previous communication schemes to communicate several nodes in par-

allel by using different wavelengths. Using a subset of wavelengths to communicate a
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group of nodes, for instance, can be useful in the design of a network that needs to im-

plement multicast transmissions. Figure 4.3 presents three of the previously explained

communication schemes using DWDM to multiplex the light signal into three different

wavelengths. A potential application of the MWSR scheme would be communicating

the nodes with the memory controller, since only one destination node is reached.

4.2 Modeling the Components of an Optical Network-on-

Chip

Due to the possibilities that optical interconnects bring to address communication and

design issues in future CMP architectures, a significant amount of theoretical models

and simulation frameworks have been developed for this field.

However, as indicated in Section 4.1.1, silicon nanophotonics interconnects present a

wide variety of brand new components that behaves completely different from their

electrical counterparts. In addition, this technology is still growing and, consequently,

new alternatives and solutions that change the existing models are proposed on a regular

basis.

Therefore, in order to properly identify the advantages and disadvantages of optical in-

terconnects, it is critical to count with reliable and updated models of their components

and behavior. To achieve a reliable model of these components, they need to be studied

to identify their critical properties and their impact on performance and energy con-

sumption. This analysis, together with a table summarizing the main features of each

optical device, is presented below.

Laser

Since the light signal has to be strong enough to reach all the operating devices involved

in a transmission, lasers are critical components for the energy consumed by an optical

interconnect. As explained in Chapter 2, on-chip lasers are still under development and

current prototypes still suffer from high signal losses and a high dissipation ratio [13, 14].

Off-chip lasers, on the other hand, are currently considered a more suitable solution

whose power budget is kept between 1 and 5 Watts, but that still depends on waveguide
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characteristics like effective refractive indexes, turns, couples, splits, etc. Therefore,

we assume that laser devices are placed off-chip in our simulation environment, and

compute its total power according to the waveguide design and the losses introduced by

the remaining components. Finally, notice that system performance is not affected by

the modeling of laser devices. That is, the execution time is not affected by the laser

characteristics, assuming that the laser is powerful enough to support all the system

interconnects.

Waveguides

Waveguides are the transmission medium for photonics interconnects. They have an

impact on system performance because of two of its main features: i) the achieved

light speed over the silicon die; and ii) the optical path length. Regarding the former

feature, as stated in Section 4.1.1, the light speed over the silicon die is assumed to be

12.3mm/100ps, and so it is in our model. Notice that using a different value for this

parameter would impact on the communication latency and, as a result, on the system

performance. With respect to the optical path length, which depends on the number of

interconnected nodes, the chip dimensions and the chosen topology; it is a value that has

a direct impact on the required laser wattage and, ultimately, in the consumed energy.

For instance, in the baseline system presented in Section 4.3.2, a 576 mm2 CMP [44]

formed by 16 tiles and one memory controller (i.e. a network that interconnects up to

17 nodes) requires a 116 mm path length. Therefore, waveguides are key components

for optical networks, since they may affect both performance and energy.

Ring Resonators: Modulators and Detectors

Modulators and photodetectors are components that can also affect the communication

latency and the system performance, since they are in charge of electrical-to-optical

and optical-to-electrical conversions. In our simulation environment, both modulators

and receivers are modeled as components that take 1 cycle at a given frequency to

transmit 1 bit over a single wavelength. According to the literature (see Chapter 2),

state-of-the-art modulators present a switching time by 100 ps. Therefore, we model

these devices assuming by default that they modulate the light signal at a frequency of

10 GHz. Similarly, photodetectors present latency ranges varying from tens to hundreds
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of picoseconds [17]. So, for the sake of simplicity, we take a conservative approach and

assume that the latency of receivers matches the latency of modulators.

Finally, notice that both devices work at wavelength granularity, that is, a single modula-

tor/photodetector only modulates/converts the light signal of a given wavelength. This

means that, when the light is multiplexed by using DWDM, as many modulators/pho-

todetectors as multiplexed wavelengths are needed to achieve a successful transmission.

Other components: Injectors and Splitters

Injectors are the physical components that are in charge of conveying the light from

the laser to the waveguides and also among waveguides. In our simulation environ-

ment, the first case is translated to a small delay at the beginning of the execution,

since once the laser is turned-on, it provides the light source until the end of the exe-

cution1. Regarding the second case, since these devices are very similar to modulators

and photodetectors, we assume a conservative latency penalty of 1 cycle (indicated as

a parameter in Multi2Sim configuration file) each time the light signal passes through

an injector in the optical path. Performance, therefore, is barely affected by injectors

and splitters. Energy consumption, however, can be compromised since passing through

injectors makes the light signal weaker, introducing losses by 0.1 to 1 decibels. In other

words, the higher the number of injectors in the optical path, the higher laser’s wattage

would be needed to sustain the signal strength.

Unlike injectors, splitters do not present any impact on performance, since they are

passive devices that only split or couple the light signal. However, splitting the signal

also introduces losses in the optical path, typically ranging from 1 to 4 decibels. This

means that increasing the number of splitters throughout the optical path also impacts

on the overall consumed energy.

DWDM and Communication Schemes

The DWDM technology has a strong impact on performance since increasing the avail-

able number of wavelengths in optical transmissions is the equivalent of increasing their

1Due to our methodology of evaluation, this latency penalty is hidden by the fast forward stage of
the execution.
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Element Impact on system performance Impact on energy consumption

Laser Null High

Waveguide High Medium

Modulator Medium Low

Detector Medium Medium

Injector Low Medium

Splitter Low Medium

DWDM High High

Table 4.1: Summary of the main modeled components and their impact on perfor-
mance and energy consumption.

bandwidth. That is, for a 64-wavelength multiplexed signal, the sender node can trans-

mit up to 64 bits in parallel per cycle. Therefore, a suitable waveguide model should

include the number of multiplexed wavelengths, since this is a critical value for the

communication latency and the system performance. Our model supports the DWDM

technology, and the available number of wavelengths per waveguide is required to per-

form any transmission.

Finally, DWDM-based communication schemes (see Section 4.1.3.1) define the possible

communications between the interconnected nodes, that is, they only set the limits of the

network behavior. This means that their impact on performance is not as high as that

of other components like the number of wavelengths. However, notice that, apart from

the simple SWSR and SWBR schemes, all the remaining options require arbitration to

access the shared wavelengths [44]. As a result, in order to properly model an ONoC

it is necessary to define an arbitration mechanism to manage situations where several

nodes have to send or receive a message using the same wavelengths simultaneously.

Summary

Table 4.1 summarizes all the aforementioned elements and how much they impact on

performance or energy consumption. The table categorizes the impact of these elements

into 4 categories: High, Medium, Low and Null. As observed, almost all of the studied

components present a significant impact on the overall consumed energy, since they

introduce losses in the optical path which requires to increase the laser power. Regarding

performance, waveguides are the component that present the highest impact on it since

they give the achieved light speed over the silicon. On the other hand, the laser is
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Figure 4.4: Block diagram of the evaluated system.

the component whose impact on energy consumption is considered the highest, for it is

in charge of carrying the light signal through all the operating devices overcoming the

introduced losses. Finally, DWDM has been considered as the most important feature

of photonics interconnects, since multiplexing the light signal increases the number of

resonators needed to filter each wavelength (increasing the energy consumed) but also

increases the aggregated bandwidth, which has a positive impact on performance.

4.3 Studied System: CMP with ONoC

This section presents the baseline system and the different setups proposed to evaluate

the modeled optical components. In order to point out the potential deviations regarding

performance or energy consumption, we propose a baseline system that includes almost

all the aforementioned components, together with a simple optical-based arbitration

technique.

Figure 4.4 shows the block diagram corresponding to the devised baseline system. The

proposed system is a 16-tiled CMP, where each tile consists of an out-of-order core with

private L1 and L2 caches and the network interface to access the communication layer.

In this chapter, we employ photonics interconnects to communicate the LLC, that is,

the L2 in this example, with the memory controller that is in charge of managing the

main memory accesses. Notice that, when executing sequential applications under this
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setup, the compute cores only exchange messages with the memory controller and not

between them, which simplifies the network design.

A ring-shaped path is chosen as topology for the devised optical network. Ring-based

topologies are usually chosen in on-chip designs since they are simple and can be drawn

onto the silicon surface without introducing significant signal losses due to bends or

crossings. Furthermore, these topologies do not involve using optical switches, which

are still immature components in the ONoC field.

The proposed optical ring is composed of two separate waveguides. One of the waveg-

uides is devoted to messages sent from the cores to the memory controller, so it transmits

request and writeback messages from the LLC to main memory. The other waveguide

operates in the opposite direction, managing the response messages (i.e. acknowledge-

ments and data blocks) sent from the memory controller to the LLC modules. We refer

to these waveguides as channels C0 and C1 respectively. This two-waveguide design is

due to two main reasons: i) on the one hand, it prevents non-critical requests and noti-

fications from delaying the deliveries of data blocks; and ii) on the other hand, it eases

the design of the optical communication schemes since it removes the need of arbitration

in the memory controller side.

Since channel C0 is in charge of transmitting request and writeback messages from

multiple nodes to a single memory controller, it suits a Multiple Writer Single Reader

(MWSR) scheme. This implies that two nodes can not perform a request to the memory

controller at the same time and that an arbitration mechanism needs to be devised. We

further discuss the chosen arbitration mechanism in Section 4.3.1.

Symmetrically, channel C1 adopts a Single Writer Multiple Reader scheme, where the

memory controller acts as the sender node while the LLC modules do it as receivers.

As previously explained, this scheme does not require from any arbitration mechanism

to transmit a message, but it requires tuning the destination node’s resonators before

sending it. To this end, several techniques can be used, like sending an electrical signal

to the corresponding node. In this chapter, however, we adopt another existent solution

which consists in sending a small optical token to the destination node indicating it to

activate its resonators. Since they are of small size, these tuning messages only require

one additional wavelength to be transmitted.
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4.3.1 Optical Token-based Arbitration

Channel C0 adopts a MWSR scheme to communicate the compute cores with the mem-

ory controller. In a MWSR, any node can send a message to the single destination (that

is, any node can write to the channel) but only one node can receive it (that is, read

from the channel). To safely write to the common channel, one of the multiple writers

needs to acquire rights to transmit on it. In this work, we adopt the Optical Token

Channel scheme proposed by Vantrease et al. [44] to perform the arbitration tasks in

channel C0. This proposal is inspired by the 802.5 Token Ring LAN standard [136].

The token channel proposal is a simple mechanism where the nodes that request to send

a message exchange an optical token to gain access to the common channel. A node that

removes the token has exclusive access to the channel and may write and send a message

on it. When the node finishes its transmission, it reinserts the token into the channel

allowing other requesters to gain access to the channel. Therefore, in token channel,

only one source can use the channel at any one time.

We implement the Optical Token Channel arbitration in our simulation framework,

introducing a dedicated threshold to limit the maximum number of messages that can

be sent by a node without releasing the token. Notice that, if only one message can be

sent upon acquiring the token, even when a node has several pending transmissions, the

token has to be released after finishing every single transmission to check if there are

other nodes waiting for the token. In our implementation, a node can hold the token up

to ThrN transmissions, reducing the average number of times that the token is released

per node. Moreover, the threshold also prevents some nodes from continuously holding

the token causing other requesters to suffer long latency penalties or even starvation.

When there are no nodes requesting access to the channel, the token is kept travelling

in the path waiting for a requester to absorb it.

4.3.2 Experimental Setup

This section presents the baseline system setup together with the absolute latencies

modeled for every component, including caches and optical devices. Experiments have

been performed using our extended Multi2Sim simulation framework (see Chapter 3),



Chapter 4. Accurately Modeling an ONoC in a Detailed Simulation Environment 51

which also simulates in detail the out-of-order cores and the memory hierarchy. The

Multi2Sim network layer has been widely extended to properly model the optical NoC

and the components described in previous sections. In this chapter, we focus on study-

ing the potential performance and energy consumption deviations in sequential applica-

tions when incomplete models are used. Experiments have been carried out using the

SPEC2006 benchmark suite [126].

We show executions for both individual applications and multi-program mixes to explore

how the detailed network simulations impacts on the achieve results. Applications are

executed for at least 100M instructions after fastforwarding the initial 300M instructions.

This fastforward stage is done to warm-up caches and to avoid introducing performance

differences due to this reason, which would affect the main contribution of this chapter.

When evaluating the performance of multi-program workloads, all the applications are

kept running until the last benchmark finishes the target number of instructions. Oth-

erwise, the fastest benchmarks would be more affected by contention than the slowest

ones, invalidating our results.

Table 4.2 summarizes the main baseline system parameters, corresponding to the setup

of the processing core, the memory hierarchy, the optical ring and the main memory

latency. Regarding the two former components, we model a 16 core CMP working at

a frequency of 3GHz, each one provided with two 32KB L1 caches and a 256KB L2

private cache. As mentioned above, the L2 private caches are connected to the memory

controller by an optical ring, which is divided into two different channels.

Latencies of the optical ring are given by the optical path length, the conversion times,

the arbitration delay and the available number of wavelengths. The roundtrip latency of

the optical ring scales with the length of the optical path drawn by the waveguide onto

the silicon. In order to accurately estimate this length, we assume that the proposed

CMP occupies a 576 mm2 squared area, which is given by the core count. In this setup,

a single tile has length and width proportional to 1/
√
N , being N the number of cores.

Therefore, for N = 16 on a 576 mm2 die processor, a waveguide that reaches every

node and memory controller has 116 mm length (approximately, for the indicated chip

dimensions and the example path presented in Figure 4.4).
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Processing Core

Number of cores 16
Frecuency 3GHz
Issuing policy Out of order
Branch predictor bimodal/gshare hybrid: gshare with 14-bits global history +

16K 2-bit counters, bimodal with 4K 2-bit counters, and se-
lection with 4K 2-bit counters

Issue/Commit width 4 instructions/cycle
ROB size 256 entries

Memory hierarchy

L1 Instruccion cache Private, 32KB, 8 ways, 64Bytes-line, 2 cycles
L1 Data cache Private, 32KB, 8 ways, 64Bytes-line, 2 cycles
L2 Private, 256KB, 16 ways, 64Bytes-line, 11 cycles

Photonic Ring

Topology Ring
Waveguides 2
Wavelengths 64 wavelengths per waveguide
Frequency 10 GHz
Modulator lat 1 network cycle
Photodetector lat 1 network cycle
Arbitration Token channel
Phit size 64 bits
Roundtrip lat 14 network cycles on idle

Main Memory

Latency Fixed latency: 100 cycles

Table 4.2: Baseline system setup. Network cycles account for 100 ps, while clock
cycles account for 333 ps

The overall roundtrip latency of the ring also accounts for modulators, waveguide trav-

elling and receivers latencies. First, the waveguide travelling latency is defined by the

optical path length ant the light propagation speed over silicon, as previously explained

in Section 4.1. Therefore, for a 116 mm path length and assuming the aforementioned

12.3 mm/100ps light propagation speed, the waveguide travelling time on idle is 12 cycles

at a 10Ghz frequency. Then, assuming a latency of 1 cycle for the electrical-to-optical

and optical-to-electrical conversion times introduced by modulators and detectors, the

overall roundtrip latency becomes 14 cycles at 10 GHz, almost 5 processor cycles for

a core working a 3 Ghz. Notice that, since arbitration must be performed before each

node-to-controller transmission in our system, the arbitration model also takes into ac-

count these conversion latencies in order to get reliable results.

Finally, we define the number of wavelengths in which the light can be multiplexed,

which depends on the sensitivity degree of the ring resonators (i.e. the optical technology
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development). As mentioned above, most of the state-of-the-art works like [32, 33, 35] on

optical networks assume 64 wavelengths per waveguide, hence this is the most typically

used value. However, other recent works [17] point out that this figure can grow over

160 wavelengths per waveguide with the current technology development. Therefore,

to make this study up-to-date and to include both present and future perspectives,

in this chapter we evaluate the benefits of silicon photonics interconnects considering

both options. Notice that we consider the number of 64 wavelengths as currently the

most realistic approach, but we also analyze the results obtained with 160 wavelengths

in order to advance technological constraints related with optical networks and the

potential speedups.

The last parameter that we show in Table 4.2 is the main memory latency. Although

Multi2Sim can be linked to the DRAMSim2 framework to improve the accuracy of the

main memory subsystem, in order to isolate the impact on the results of the studied

components, in this chapter we set a fixed latency of 100 cycles to access main memory.

4.4 Experimental Results

This section presents the experimental results achieved by the baseline system under

different simulation setups. Notice that the main contribution of this chapter lies on

pointing out the deviation of performance results that may rise when evaluating in-

complete or unrealistic models of ONoCs. More specifically, the proposed experiments

analyze the potential deviation caused by the absence of arbitration and by the total

number of wavelengths per waveguide. Additionally, experiments have been carried out

with both individual and multi-program workloads, in order to cover a wide variety of

scenarios. Finally, we also study the impact of arbitration and the number of wavelengths

on the overall power needed to sustain the light source.

4.4.1 Benchmark Characterization

We first analyze the behavior of the studied applications, and characterize them based

on their individual memory activity. Notice that those benchmark that access more

frequently to main memory due to their higher miss ratios are also those that make a
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Figure 4.5: Memory Accesses Per KiloInstructions (MAPKI) of SPEC2006.

higher use of the underlying interconnection network. Therefore, studying the memory

behavior of the individual applications helps understand their performance results both

from the memory and the network perspective. In our system, messages can be 8-byte

and 72-byte sized: 8-byte messages are devoted to requests and acknowledgements while

72-byte messages are those carrying data, that is, the 64-byte data block together with

an 8-byte header.

Figure 4.5 shows the number of Memory Accesses per Kilo Instruction (MAPKI) per-

formed by the studied benchmarks in increasing value order. At first glance, two different

groups of applications can be distinguished. Applications on the left side present a low

number of memory accesses (i.e. MAPKI = 2), hence their performance is not sig-

nificantly affected by the ONoC latency. These applications store almost their entire

working set in the private L1 and L2 caches and, as a result, they scarcely access to main

memory. In contrast, applications on the right side incur on a high number of memory

accesses, introducing a much higher load and contention on the network layer.

An interesting observation is that, for applications falling in the first low load category,

arbitration models lacking one or more critical components may achieve accurate results,

since performance deviation may be hidden due to the fact that arbitration is scarcely

needed. Similarly, other mistakes in the network model can be hidden when the network

is saturated because of the contention introduced by high load benchmarks. Since we are

interested in showing how optical network models lacking arbitration delay can affect
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Figure 4.6: Network latency of benchmarks executed with and without arbitration
delay and 64 wavelengths per waveguide.
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Figure 4.7: Network latency of benchmarks executed with and without arbitration
delay and 160 wavelengths per waveguide.

the experimental results, henceforth we will differentiate how they impact on these two

kinds of applications when discussing the remaining experimental results.
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4.4.2 Individual Execution

Different scenarios have been considered to evaluate how the detailed simulation of

optical network models lacking one or more components impacts on the achieved per-

formance results. To clearly differentiate the impact of the optical network on the

individual application performance, we first run every application in an isolated man-

ner. Nevertheless, since arbitration is a key feature of the optical networks, we take

arbitration delay into account even when the application is running alone in the system.

This means that, in the experiments performed in this section, messages must wait for

a full token roundtrip before being sent to the destiny. By doing this, we emulate the

overhead of checking if there are more nodes in the ring also waiting to send a message.

Notice that arbitration impact can be critical even when running individual applications

because token acquire and release must be performed anyway. Then, as explained in

Section 4.3.1, the transmitting node releases the token after sending ThrN messages,

and waits for a roundtrip latency before acquiring the token again. In order to prevent

deadlocks, when there are no nodes requesting access to the channel, the token is kept

travelling in the path waiting for a requester to absorb it.

Figure 4.6 shows the average network latency of the studied applications with and with-

out arbitration delay and assuming 64 wavelengths per waveguide. The lower frame of

the bars refers to the NoArb 64 scheme which does not model arbitration delays, while

the upper frame (Arb 64 ) represents the latency added by arbitration. In the NoArb 64

approach, messages are not delayed by the mentioned token roundtrip latency, hence

they are only delayed when the ring is being occupied by a previous transmission, that

is, by contention. As observed, the network latency for this approach is quite homo-

geneous and close to 5 processor cycles for all the evaluated benchmarks However, this

value grows over 35 cycles when arbitration delay is modeled, which means that this

introduces a network latency deviation higher than a 6 × factor on average.

Next, Figure 4.7 shows the latencies corresponding to the same arbitration and no-

arbitration approaches but assuming 160 wavelengths per waveguide. Such a number of

wavelengths increases the overall network bandwidth, which reduces the cycles needed

to send the 72-byte size messages through the ring, although the latency coming from

arbitration delays remains constant. Therefore, results are similar to the previously
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Figure 4.8: Absolute IPC of executions with and without arbitration delay in 64 and
160 wavelengths per waveguide configurations.

obtained. The results obtained by these setups show that arbitration delay represents

a high percentage of the average network latency, hence significantly increasing the

available bandwidth does not translate to relevant improvements on the overall network

latency. In this regard, notice that the average network latency for the NoArb 160

approach is barely 1 cycle less than for the previously shown NoArb 64, due to the fact

that only big sized messages see their transmission latency reduced.

These results point out the potential latency deviation that experiments carried out

with optical models without arbitration can suffer. This deviation is as much as a

10 × factor in applications like leslie3d, astar or bzip2. However, notice that this

network latency deviation may be translated to different system performance deviation

depending on the applications behavior and their use of the network.

To clearly expose the deviation in performance derived from the network latency results,

Figure 4.8 shows the IPC achieved by the studied approaches. Applications are shown

in increasing order of MAPKI, hence the IPC of the benchmarks on the right side of the

plot is lower than that of the applications on the left side. Therefore, applications on the

right side perform a higher use of the network. As observed, these high load applications

experiment an artificial increase in their IPCs due to the absence of arbitration delays.

On the other hand, low load applications like GemsFDTD or gamess do not present major

differences in their results.
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Figure 4.9: IPC deviation of executions with and without arbitration delay in 64 and
160 wavelengths per waveguide configurations.

Performance deviations incurred by not modeling arbitration delays in both 64 and 160

wavelengths configurations are shown in Figure 4.9. This figure plots the IPC increase

experienced when arbitration overheads are not taken into account; that is, Arb-NoArb-

64 refers to the relation of IPCs of Arb and NoArb configurations with 64 wavelengths

each.

As previously observed in Figure 4.8, applications on the right side show pronounced

IPC variations between the Arb and NoArb approaches while applications on the left side

remain with a similar performance. Besides, the highter the MAPKI that the application

achieves, the higher deviation its results incur: the 5 applications whose MAPKI >= 8

present the highest deviations, farther than 8%. This figure outlines that the absence of

a correct arbitration model can suppose an error in the system performance results up

to 12%, depending on the number of memory accesses the application performs.

4.4.3 Multiprogram Workloads

The performance deviations shown in the previous section may vary when the resources

of the system are shared by several applications. This section presents the results ob-

tained when the applications are executed concurrently with co-runners in other cores

of the CMP, with the aim of analyzing the effect of network and memory contention.

To study the impact on each application, we replicate the application under study in

different cores of the CMP. We refer to these setups as 2astar, 4astar, etc. where 2
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Figure 4.10: Network latencies of executions with and without arbitration delay in
64 and 160 wavelengths per waveguide configurations.

and 4 instances of astar are co-running. Four different benchmarks have been selected

for this study (namd, zeusmp, astar and lbm), covering different MAPKI results (from

low to high memory stress). The objective behind these experiments is to study the

impact of contention on the average network latency and system performance results,

since it can hide the deviations shown by previous experiments.

Figure 4.10 plots the average network latency for both 64 and 160 wavelengths per

waveguide configurations. As observed, the obtained results present a behavior similar

to that of the individual execution. However, because of the effect of contention, the

average network latency is increased with the number of corunners. The latency increase

is as much as 14 cycles for the pair 2astar-8astar and 5 cycles for 2lbm-8lbm, 2namd-

8namd, and 2zeus-8zeus. An interesting observation is that this network latency increase

does not hide the latency deviations between the Arb and NoArb approaches. In fact,

the impact of latency deviation in the average network latency, which varies from a

3× to a 4.5× factor for Arb and NoArb approaches, is much bigger than the latency

introduced by the corunners.

Figure 4.11 shows the deviation in the system performance that rises when arbitration is

not considered. It can be seen that the artificial IPC growth due to the lack of arbitration

in these executions highly depends on the application. In the case of namd, the deviation

is almost null since this application does not perform a significant number of memory

accesses. On the other hand, lbm presents the highest deviation for it is a memory

intensive application. In general, as the network contention grows, the IPC deviation
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Figure 4.11: IPC deviation of executions with and without arbitration delay in 64
and 160 wavelengths per waveguide configurations.

observed in the results is increased. This is an expected result because non-arbitration

approaches take less network latency to access memory, so they are less affected by the

effect of contention.

Finally, in zeusmp, results show that this application is differently affected depending

on the contention introduced by the corunners. When this application runs in isolation

or with only one corunner, its IPC remains almost constant regardless of the studied

approach. However, as the number of corunners is increased, its IPC drops. These results

indicate that zeusmp suffers from memory contention introduced by other corunners, but

the negative impact on performance of this interference can be hidden when arbitration

overhead is not modeled.

4.4.4 Power Consumption

This section summarizes the estimated power consumption for the optical components

modeled and discussed in Section 4.2. We study every component separately, and take

its power consumption from the state-of-the-art studies discussed in Section 2.1.1. To

estimate the power consumption, we distinguish between the dynamic energy consumed

by modulators and detectors, and the static energy consumed by the tuning of micror-

ings and by the laser. Although in Section 4.2 we assert that off-chip lasers are the

more realistic approach nowadays, to perform a self-contained analysis, in this section

we include an on-chip laser budget. If an on-chip laser is used, the power model should
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Energy dynamic

Trasmitters 135 fJ/bit
Receivers 365 fJ/bit
Total 0.42 pJ/bt

Energy static

Laser power output 22.5 mW
Microrings Tunning 1.35 mW/ring
Total 22.5 + (1.35 x rings) mW

Table 4.3: Energy consumption parameters.

also take into account its static energy consumption. Regarding dynamic energy con-

sumption, the power required by the microring tuning, expressed in femtojoules per bit

(i.e. fJ/bit), is shown in Table 4.3. Next we discuss how we estimate the overall power

consumption and how it is affected by the arbitration modeling and by the number of

wavelengths per waveguide.

First, static energy consumption is defined by the laser and microrings tuning. The

energy consumed by the microring tuning directly depends on the number of microrings

employed by the optical network. Thus, the higher number of rings, the higher the

power required and the energy consumed. The minimum number of microrings needed

to achieve the desired communication channels is closely related to the selected com-

munication scheme and the number of wavelengths. Remember that, for the studied

approaches, MWSR and SWMR are the communication schemes that are followed by

the waveguides Ch0 and Ch1 respectively. These schemes imply that, for a given number

W of wavelengths, every node must include 2W microrings, that is, W rings to send

and W to receive. In our system, we set this value to W = 64 and W = 160.

The energy consumption relative to thermo-optic microring tuning depends on the num-

ber of channels that the microring is able to filter and the channel spacing as well. In

this chapter, we assume a conservative approach of 50 GHz of channel spacing, which

means that the power consumption needed to microring tuning is 1.35 mW/ring, as

shown in Table 4.3.

Finally, the power consumption needed by the laser source depends mostly on the losses

that are introduced by the optical path and that weaken the light signal. In this chapter,

we assume an on-chip hybrid silicon laser which presents an injection power of 22.5 mW .
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Figure 4.12: Static power consumption (mW) required by the four photonic network
configurations studied.

Notice, however, that this is the minimum power required to inject light into the waveg-

uide; the final power needed should also take into account the mentioned losses.

Figure 4.12 shows the total amount of static power consumption required by the studied

schemes. As observed, the optical rings that employ 160 wavelengths increase their

power consumption because of their higher number of microrings. Therefore, future

systems with higher number of nodes and wavelengths should face the challenge of

reducing the power consumption associated to thermal tuning while keeping bandwidth

and sustaining performance.

Regarding the effect of arbitration in the power consumption, due to the use of MWSR,

token-arbitration only requires one wavelength to pass the token between senders because

there is only one possible destination node. Then, only one resonator must be added to

each node to guarantee that the token is properly transmitted. Similarly, the destination

selection performed in the SWMR channel Ch0 for the messages sent by the memory

controller also requires only one extra wavelength. These additional wavelengths do not

significantly affect the overall power consumption, since they only suppose about 3%

and 1.23% of the power needed with 64 and 160 wavelengths respectively.

4.5 Summary

This chapter has addressed the importance of developing and counting with complete

and up-to-date models when working with novel technologies like silicon nanophotonics.
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Every component that conforms a fully operative optical NoC has been modeled in order

to obtain accurate, reliable and representative results both in network and system per-

formance. In this dissertation, we have also discussed about the importance of reviewing

current state-of-the-art in optical technology, and pointing out realistic and future pa-

rameters that may change for some optical components like waveguides, modulators or

photodetectors.

Aiming to quantify the deviation that an incomplete optical model could present in a

detailed simulation environment, a realistic proposal composed of two optical rings and

a simple arbitration technique have been modeled, evaluated and compared against an

incomplete setup with no arbitration. Experimental results outline that the deviation

observed in average network latency between the two studied approaches can be as high

as 1000%. Moreover, this is translated to a system performance deviation higher than

a 10% in some cases, both in individual and multi-program workloads execution.

Finally, according to current state-of-the-art power consumption values, the arbitration

approach increases the overall network energy consumption up to 3% with respect to

the non-realistic setup. However, results point out that microrings are the components

that present the strongest impact on the energy consumed, since they consume energy

each time they are tuned at a different wavelength. These results, together with the

demonstrated performance deviations, show that current simulation frameworks must

be properly extended with complete and accurate models in order to obtain reliable

results when researching on such a novel and immature technology.





Chapter 5

FOS: A Low Power Cache

Organization for Chip

Multiprocessors

Most of the current multicore processors typically implement a cache hierarchy that

consists of one or two levels of private caches per core and a large shared last level cache

(LLC). Although this is the most commonly adopted approach, it presents important

design issues like private space over-sizing or data replication. Moreover, conventional

cache organizations also exhibit lack of flexibility, which leads to an inefficient use of the

total cache capacity. This chapter focuses on addressing these shortcomings by introduc-

ing a more energy efficient organization and leveraging silicon photonics interconnects.

The chapter is organized as follows. First, we perform an analysis on the performance

sensitivity of the studied applications to the private cache size. Then, the proposed Flat

On-Chip Organization (FOS) approach is described and discussed, including both the

devised cache organization and the interconnection network. Finally, we present the

evaluation setup and the achieved experimental results.

65
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Figure 5.1: IPC and L2 MPKI values varying the number of buffers (1 buffer is 64 KB
- 8 buffers are 512 KB).

5.1 Cache Demands and Performance Analysis

To guide the design of FOS, this section presents a characterization of a representative

subset of the SPEC CPU2006 benchmarks based on their cache demands. Performance

is also studied since it can be differently affected by the amount of cache resources,

depending on the application behavior. In the following experiments, L2 caches are

assumed to be composed of 64 KB independent cache buffers, and the maximum cache

space has been fixed to 512 KB (8 cache buffers). The remaining system components

are kept like in the baseline system used in the experiments, described in Table 6.4.

Notice that this baseline setup slightly differs from that of the previous chapter, as also
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does the methodology of evaluation. Therefore, results might present small deviations

with respect to those obtained with the CMP studied in Chapter 4.

To characterize the applications, we vary the number of cache buffers from 1 to 8,

and measure the performance (i.e. IPC) and the number of Misses Per Kilo Instruction

(MPKI) of the L2 cache. The goal of this study is twofold: i) to analyze the relation-

ship between these two metrics and the provided cache space, and ii) to evaluate the

potential performance gains of increasing the cache capacity up to the entire 512 KB

space for individual applications. Figure 5.1 presents the achieved results. As depicted

in the figure, applications can be categorized into three main groups based on how the

performance of the studied applications evolves when adding more cache space:

• Minimum Cache Needs (MCN): Applications in this group are characterized

by their performance insensitivity to the number of available buffers due to two

main reasons. First, some applications, like libquantum and zeusmp, present an

inherent low locality so their MPKI does not change regardless of the amount of

available cache buffers. Second, the working set of applications like GemsFDTD and

gamess fits in a single 64 KB buffer, thus their performance scarcely improves or

even remains constant when they are provided whit additional buffers.

• Limited Cache Needs (LCN): Applications like astar, gcc or perlbench reach

their maximum performance when they are executed with 4 or 5 buffers. In this

category, increasing the number of cache buffers over the saturation point does not

impact on the application performance.

• Non-limited Cache Needs (NCN): Applications belonging to this group are

called cache-hungry, since they always improve performance with higher cache

capacities. For instance, both in xalancbmk and bzip2 performance keeps growing

with the number of cache buffers.

This study shows that a flexible distribution of the cache resources among the competing

applications can potentially achieve important benefits. First, it can provide significant

energy savings over conventional L2 caches by powering off cache buffers that are not in

use, especially for applications falling in the first two categories. Second, in multiprogram

workloads, the performance of LCN and NCN applications can be enhanced since LCN
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Figure 5.2: Schematic of the proposed architecture.

applications benefit from the reduction of interferences and cache trashing while NCN

ones can get a high number of buffers. Additionally, applications which, due to the

small size of their working set, are classified as MCN can also experience performance

improvements. This occurs because providing an isolated cache space can prevent other

cache-hungry applications from replacing the blocks exhibiting a high cache-locality of

the MCN applications, which is critical for their performance. Finally, low locality MCN

applications are expected to present the same performance regardless the cache amount

of resources.

5.2 Flat On-chip Storage

The key idea behind the proposal is to have a common pool of cache buffers that replaces

all the cache levels (e.g. second and third) except the private L1 caches implemented in

the core pipeline. All these buffers should be properly interconnected with the cores to

avoid high NoC latency deviations that could negatively affect performance. A high-level

block-diagram of this proposal is depicted in Figure 5.2.

FOS buffers are small (i.e. from 32 to 128KB) cache modules that are assigned to

specific cores at run-time based on the predicted application requirements; once a buffer

is assigned to a core, it is set to private mode for that core. That is, cores allocate

cache buffers and use them in a private manner. Having a common pool avoids the
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constraint of a fixed-size private cache, which has been identified as a key concern in

previous research [50], since it usually incurs area and energy wasting due to over-

provisioning the cache space. Previous approaches [102] handle energy savings at a

very small cache line granularity (e.g. 64 B), which complicates the layout of wires

and increases area overhead, making this approach impractical from an implementation

perspective. However, acting on the entire buffer itself as an activation/deactivation

unit (e.g. 64 KB) helps the implementation of cache energy saving mechanisms.

A flexible distribution of the cache resources, in which each application is provided with

the cache size that it requires for performance, can help improve both energy savings and

performance. To provide a good trade-off between energy and performance, however,

three main architectural challenges must be addressed:

• When should a buffer be allocated/deallocated to/from a core?

• Which buffer must be accessed by a given core upon an L1 cache miss?

• Which interconnect should be used, considering that buffers are not beside the

core?

Different design decisions have been made to deal with these issues. A Buffer Man-

agement Mechanism is proposed to detect at run-time when a given application can

significantly improve its performance by providing an additional buffer. Next, a new

hardware structure, named Private Tag Array, which is in charge of keeping track in

each core of the blocks stored in the allocated buffers, is discussed. Finally, we address

the interconnection challenge by leveraging silicon nanophotonics, hence we propose us-

ing a state-of-the-art optical ring to achieve a rather uniform access time to the cache

buffers. These design decisions are further discussed and explained below.

5.2.1 Buffer Management Mechanism

This section presents the Buffer Management Mechanism (BMM), which implements

both a Buffer Allocation Algorithm and a Buffer Deallocation Algorithm, discussed be-

low.
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Buffer Allocation Algorithm: This algorithm, summarized in Algorithm 2, assigns

buffers to applications based on performance and energy considerations. The algorithm is

triggered at fixed-length (X execution cycles) intervals during the application execution.

During each interval, the number of cache misses in the FOS pool is measured to quantify

the MPKI of the current interval (MPKIn−1). Then, the algorithm predicts if the

performance of each application would improve in case the application was provided

with one additional buffer. The key challenge is that the algorithm needs to estimate the

number of cache misses that each application would have experienced with an additional

cache buffer b + 1, while running with only b buffers. To deal with this issue, we have

modeled extra hardware that works similar to the Auxiliary Tag Directory (ATD) [50].

To reduce the area of this structure, it only implements a tag array corresponding to 32

sets, which are randomly selected among all the sets in the cache.

Using the collected data, the algorithm estimates, for each interval, how much the MPKI

would have improved with an additional buffer. For this purpose, the expected MPKI

decrease rate (MPKIdec rate) of each application with b+ 1 buffers is computed in step

2. This metric alone, however, only considers performance, so it is complemented with

the MPKIhist metric, which helps improve energy efficiency by providing the average

MPKI during a sliding window composed of the last w intervals. This metric can be

used, for instance, to check if adding an extra buffer provides marginal system perfor-

mance benefits, which might not justify in terms of energy consumption the activation

of a new buffer. Lastly, one more metric is computed to obtain the weight of the last

interval MPKI in the mentioned sliding window (MPKIweight).

Step 3 aims to check the conditions that must be fulfilled for energy efficiency. The

MPKIhist must be greater than a minimum threshold (Thrwindow), and the number of

FOS misses (MPKIn−1) must be greater than a threshold (Thrmin). If none of these

conditions is satisfied, Step 4 is skipped and no buffer is activated.

Finally, Step 4 checks the conditions for performance provided that Step 3 conditions

have been fulfilled. The MPKIdec rate of the application must be higher than the Thrdec

threshold, or the weight of the last interval MPKI in the sliding window (MPKIweight)

must exceed threshold Thrweight. The last condition enables the proposal to react to

sharp application phase changes that cannot be detected by MPKIdec rate.
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Algorithm 1 Buffer Management Mechanism.

Algorithm Inputs: n: current interval number; b: buffers currently assigned to the
application; w: size of the history window (measured in number of intervals); {Thrx}:
thresholds.

————-Allocation Algorithm————-

1. Initialization. At the beginning of interval n, for each running application, compute its
MPKIn−1 and MPKIn−1(b+ 1).

2. Metric computation. For each running application, calculate:

MPKIdec rate = MPKIn−1(b+1)
MPKIn−1

− 1,

MPKIhist =
∑n−1

i=n−w MPKIi
w , and

MPKIweight = MPKIn−1

MPKIhist
.

3. Filtration. Skip step 4) iif:

MPKIhist < Thrwindow or MPKIn−1 < Thrmin.

4. Request. Request a new buffer iif:

MPKIdec rate > Thrdec or MPKIweight > Thrweight.

———- Deallocation Algorithm ———-

1. Initialization. At the beginning of interval n, for each running application, compute its
MPKIn−1 and MPKIn−1(b− 1).

2. Metric computation. For each running application, calculate:

MPKIinc rate = 1− MPKIn−1

MPKIn−1(b−1) ,

3. Release. Release an allocated buffer iif:

MPKIinc rate < Thrinc and IddleInts > Thrrel.

The proposal requires keeping track of which buffers are assigned to each core. To do so,

the Buffer Allocation Logic is accessed at the end of each interval through the devised

optical network (ONoC). When a buffer is requested, the allocation logic selects, powers

on and assigns an empty buffer to the requesting core by sending the corresponding

acknowledgment to it. If several requests take place simultaneously, the allocation logic

serves them following a simple FIFO order. Note that the allocation logic is simple and

only works between intervals upon requests of additional buffers.

Buffer Deallocation Algorithm: The operation of releasing a buffer allows feeding

the common pool of free buffers and prevents an application from unnecessarily holding

a high number of buffers after a hungry phase. The release mechanism is summarized in

the bottom of Algorithm 2. This algorithm aims to estimate whether the performance
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of a given application on a long-enough steady state would remain the same or similar in

case that a buffer is deallocated from it. For these estimates, the ATD-based approach

is used.

First, on each interval, the algorithm obtains the MPKIn−1(b − 1) of the application.

This value is used to estimate the number of cache misses that a given application would

have experienced during the last interval with one less buffer. Using the value provided

by the ATD, we obtain the estimated MPKIinc rate metric, which is the ratio that the

MPKI is expected to grow in case that one buffer was deallocated from the cache space

of the application. The MPKIinc rate is compared to the Thrinc threshold and, if it

is smaller enough and the application is in a steady state (i.e. it has not asked for any

buffer during the last Thrrel intervals), one buffer is released. The Least Recently Used

(LRU) policy is employed to choose which buffer is deallocated.

To address performance and energy, FOS tries to reduce the time devoted to release the

buffer. To this end, the devised implementation of the draining operation carries out in

parallel the two main writeback steps required to safely deallocate and power the buffer

off for energy savings: i) writeback those modified blocks in the L1 caches that belong

to the target buffer, and ii) writeback those modified blocks in the target buffer. During

the draining intervals the dirty blocks are written back to main memory spread over

time, while the remaining data are kept accessible to the threads. When the draining

phase finishes, the buffer is powered off and becomes available to be assigned.

5.2.2 Buffer Management Mechanism Evaluation

We evaluate the behavior of the allocation/deallocation algorithms of the Buffer Manage-

ment Mechanism (BMM) across different types of applications. To this end, Figure 5.3

depicts a histogram of the MPKI and the number of buffers allocated to xalancbmk,

gcc and libquantum along the execution time. The figure also shows the number of

buffers used by FOS under no allocation restrictions (NA). Under this setup, buffers

are assigned without restriction as soon as more cache space is required, they are never

deallocated and there is no constraint regarding the number of buffers that a single core

can allocate.
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(c) gcc MPKI and buffer allocation histogram.

Figure 5.3: MPKI and allocated buffers for xalancbmk, gcc and libquantum along
execution time.

In xalancbmk, an application previously identified as NCN, Non-limited Cache Needs, it

can be observed that BMM allocates buffers from the beginning of the execution until

the application gets 14 buffers, which is the maximum number of buffers per core that

has been set in these experiments. Notice that the deallocated buffers (intervals 19, 60

and 85) are quickly reallocated by the BMM since MPKI improvements are expected

along all the execution time. This means that the devised algorithm correctly identifies

the buffer needs for xalancbmk.

In gcc, an LCN (i.e. Limited Cache Needs) application, the algorithm must face different

stages during the execution. During the initialization stage (intervals 0 to 40), BMM

assigns up to 6-7 buffers to the application. Then, a sharp increase in the MPKI is

observed, thus the allocation algorithm increases the number of buffers up to 8. After

that, the application returns to a steady state and the deallocation algorithm turns off

two buffers, coming back to 6. At the end, the application enters in an irregular stage
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Figure 5.4: Average number of buffers allocated with and without activating the
deallocation algorithm.

where several MPKI peaks are observed. The final stage is managed by the algorithm by

reacting to these sharp increases turning on more buffers, while simultaneously trying

to deallocate buffers. This example shows how BMM is able not only to identify buffer

needs in different applications but also to react to sharp increases in the MPKI.

Lastly, libquantum is studied as an example of a MCN (i.e. Minimum Cache Needs)

application. As observed, the BMM only allocates two buffers even when the MPKI

is higher than that observed in xalancbmk. This means that the ATD-based algorithm

correctly detects that allocating more space for this application is pointless because an

MPKI reduction is not expected.

To conclude this study and provide insights on the effect of powering off buffers, Fig-

ure 5.4 plots the average number of buffers allocated depending on whether the deal-

location algorithm is used or not. As can be seen in the figure, the allocate/deallocate

approach reduces in some applications like astar and milc up to almost 2 buffers the

average number of allocated buffers. This directly translates (as it will be shown later in

Section 5.5.1) to a reduction of up to 30% in the static energy consumed due to leakage

currents. Only those applications that do not allocate any buffers (NCN applications)

keep the same amount of cache space under both approaches, which means that energy

savings are achieved for any other types of applications. Therefore, activating the deal-

location algorithm has a significant effect on the energy consumed by FOS. Moreover,
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performance is scarcely affected when the deallocation algorithm is active (less than 1%

performance degradation in the worst case).

5.2.3 Implementation Issues and Shared Data Support

Private Tag Array: In FOS, an application running in a given core typically has a

subset of the FOS buffers assigned. Then, upon an L1 cache miss, the core only needs

to check those buffers assigned to it to locate the block in the pool of buffers. In other

words, when running sequential applications, it is not strictly necessary to search a block

in all the buffers that are powered on. To ease the block location in the allocated buffers,

we decoupled the tag arrays of the blocks stored in the buffer pool from their data arrays

and moved these tag arrays close to the L1 caches as similarly done in some commercial

processors (e.g. IBM POWER5).

The tags of the decoupled buffers are managed on each core by the Private Tag Array

(PTA), which corresponds with the L2 tags modules shown in Figure 5.2. The PTA

block diagram is presented in Figure 5.5. As observed, the PTA is organized in multiple

(e.g. MaxBuffers) banks, where each bank, when active, keeps the tags associated to

one of the assigned buffers. Those banks that are not in use (depicted in darker color in

the figure) are switched off. The operation of the PTA is described as follows:

1. The PTA is indexed with the address of the block to be accessed in the FOS pool.
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2. The active banks are accessed in parallel by the logic and the results (hit or miss

and location information) are notified to the Selection Logic.

3. Upon a hit, the Selection Logic provides the buffer, set, and way identifiers where

the target block is stored.

4. If the tag is not present in any bank, i.e. on a FOS pool miss, the Selection Logic

replaces the LRU line in the LRU buffer. The decision of retrieving the LRU buffer

follows a hierarchical LRU approach [137], much simpler than a strict LRU. We

assume that LRU control information is stored in the PTA.

Hardware Overhead: The main hardware overheads introduced by FOS are the

PTA and the two ATD structures required by the BMM. Below, the overhead associated

to these structures is studied. First, a PTA requires as many banks as the maximum

number of buffers that a single core can be assigned. Theoretically, since FOS guarantees

at least two buffers per core, the maximum number of buffers in a PTA, being n the

number of cores, is given by the equation:

MaxBuffers = TotalBuffers− 2 ∗ (n− 1)

For scalability and hardware simplicity reasons, we limit this value to MaxBuffers =

12. Notice that not limiting this value would imply an excesive and unsustainable growth

in the PTA size when the core count grows beyond 16 cores. However, limiting the PTA

size can not be done at the cost of performance. For this reason, to find the optimal

PTA size, we have experimentally explored the effect of this value, and results showed

that setting it to 12 buffers allows the system to achieve the maximum performance in

almost all the studied cases. Hence, we consider that this is a reasonable value that

trades off performance and scalability.

Then, the hardware cost per PTA is obtained by multiplying MaxBuffers by: i) the

maximum number of blocks that can be stored in a buffer; and ii) the number of bits

in a tag entry (i.e. typically the tag bits plus the valid bit). This is summarized in the

following expression:

PTAcost = MaxBuffers×
Sizebuffer

Sizeblock
× Sizeentry
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Table 5.1: Evolution of size devoted to tag-storing structures in FOS .

Conventional Cache FOS
#Cores Data Array Tag Array Data Array Tag Array Overhead

2 1024 KB (95.35%) 50 KB (4.65%) 16 × 64 = 1024 KB (92.6%) 82 KB (7.41%) 32 KB (2.98%)
4 2048 KB (95.35%) 100 KB (4.65%) 32 × 64 = 2048 KB (92.6%) 164 KB (7.41%) 64 KB (2.98%)
6 3072 KB (95.35%) 150 KB (4.65%) 48 × 64 = 3072 KB (92.6%) 246 KB (7.41%) 96 KB (2.98%)
8 4096 KB (95.35%) 200 KB (4.65%) 64 × 64 = 4096 KB (92.6%) 328 KB (7.41%) 128 KB (2.98%)
10 5120 KB (95.35%) 250 KB (4.65%) 80 × 64 = 5120 KB (92.6%) 410 KB (7.41%) 160 KB (2.98%)
12 6144 KB (95.35%) 300 KB (4.65%) 96 × 64 = 6144 KB (92.6%) 492 KB (7.41%) 192 KB (2.98%)

Additionally, the overhead associated to an ATD that leverages Set Sampling is up to

32 replicated sets per core [50], which is translated to 960 bytes. Overall, the tag area

required for PTAs and ATDs in a 2-core, 16-buffer CMP is 82 KB (39 KB PTA +2 KB

ATD on each core), which is 7.4% of the total area (data plus tag array) of a 1 MB

shared cache. Compared to a conventional cache (which occupies 4.65% of the total

area), this represents a relatively small (i.e. by 2.97%) overhead. To clearly expose

this overhead, Table 5.1 lists the different tag capacity of FOS and a conventional cache

scaling with the number of cores and buffers. In this table, the tag space of FOS has

been computed assuming the aforementioned value MaxBuffers = 12 and a 25-bit tag

size.

Finally, we discuss the hardware cost associated to the implementation of the Buffer

Management Mechanism. First, reduced hardware is needed to compute the four MPKI

related metrics (i.e. MPKIn−1(b), MPKIn−1(b + 1), MPKIhist, MPKIweight) used

in the algorithm. This hardware compute the metrics with a small set of hardware

counters that keeps track of the target event. For instance, two counters are needed to

gather the number of committed instructions and the amount of cache misses, which

are required to obtain MPKIn−1(b). In addition, five registers are used to store the

threshold values. As discussed below, there is no need to use additional logic neither to

compute the metrics nor to check the thresholds, since these fast computations can be

carried out with the available functional units of the core at the time the core is stalled.

Execution Time Overhead: Note the BMM does not need to act at strictly fixed-

length periods of time. Therefore, to mitigate the overhead in time, the logic of the

devised approach could be triggered during the core stall cycles (e.g. when the ROB is

blocked due to long memory latencies). According to our experiments, the period of

time when the processor is blocked, referred to as the core slack time, is on average a
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24% of the total time. Then, taking into account the low complexity of the required

computations (e.g. just tens of processor cycles every 40 M cycles), there is no appre-

ciable impact on the system performance even if the core is stopped to perform these

computations.

Shared Data Support: This work focuses on multiprogram workloads composed

of sequential applications. To support the execution of shared memory multithreaded

applications, FOS needs to be extended to avoid multiple non-coherent copies of the same

block to be present in the buffer pool. To address this issue, FOS can be extended with a

small number of distributed directory nodes, similarly to distributed cooperative caches

schemes (e.g. [77]). With this structure, after a PTA miss, FOS would be able to notify

the accessing core if the block is already present in the buffer pool, so preventing the

replication of shared blocks. In addition, the sharer vector and other coherence protocol

information could be stored either in the distributed directories or in the buffers. The

design of such structures and FOS adjustments for multi-threaded applications can be

found in Chapter 6.

5.3 FOS Network-on-Chip

FOS provides a novel and flexible management of a common pool of buffers. This disrupt-

ing approach relies on a Network on-Chip (NoC) that must fulfill two main conditions:

speed and low latency variability. Speed is needed since most of the accesses that miss

in the L1 cache result in (by using the PTA) hits in the FOS pool, thus the network

must be fast enough to avoid delaying these hits. With respect to low latency variability

we mean that the access to the target buffer must present similar latency regardless of

the accessed buffer. Distinct NoCs might be devised fulfilling these conditions, although

in this work we focus on Optical Networks-on-Chip (ONoCs).

As stated in Chapter 4, current advances in silicon nanophotonics allow the integration of

a complete functional optical network on a single chip [138–140]. These networks present

several features that meet the aforementioned requirements: first, fast transmissions

are possible even with a reduced number of optical resources; second, the impact of

distance on the average latency in optical networks is much lower than in traditional
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Table 5.2: Optical network-on-chip parameters and latencies.

ONoC Parameters

Frequency 10 GHz
Wavelengths per channel 32 - 128 - 8 λ
Signal propagation 11.4 ps/mm
Modulation bandwidth 10 Gbps

ONoC Latencies (ps)

Token transmission Varying in range [100..500]
Microring tuning delay 400
Data modulation (64b-576b) 100 - 500
Trans. latency Varying in range [100..900]

electrical networks. Nevertheless, the ONoC must be properly designed in order to avoid

a prohibitive increase in the overall network energy consumption.

5.3.1 FOS ONoC

The main features of the devised network are:

• A rather uniform and low transmission latency regardless of the accessed buffer.

• Reduced number of optical resources and network complexity.

Table 5.2 summarizes the modeled ONoC parameters and latencies. Considering the

aforementioned network characteristics, a ring topology can be used since it does not

involve the use of optical switches and it has an inherent low complexity. Optical rings

[45] have been studied in previous research work and have been proved to work with a

reduced number of optical components.

With the aim of reducing the data access time, the FOS ring is configured with three

separated, spatially multiplexed channels C0, C1 and C2, which interconnect the L1 and

the pool of buffers. Channel C0, provided with 32 wavelengths, is used to send requests

and data from L1 caches to the FOS level. Next, the C1 channel is used to deliver

the requested blocks from the FOS buffers to the L1 caches. Incurring a high latency

when delivering data blocks to the L1 level can be critical for the core performance so,

to provide a reduced latency, this channel is provided with 128 wavelengths. Finally,

a third channel is employed to communicate the FOS buffers with the PTA structure
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described in Section 5.2.3. FOS buffers use this channel to notify the PTA when writing

and replacement operations are finished. Since notification messages are small (4 B),

this channel is provided with just 8 wavelengths. Channels use different waveguides,

so transmissions can take place in all of them simultaneously, regardless of the tuned

wavelengths.

Communication on each channel follows a custom Multiple Writer Multiple Reader

(MWMR) [134] approach. As previously explained in Section 4.1.3, following a MWMR

scheme requires several steps before performing any transmission. First, a sender node

must get access to the channel, which is granted by an arbitration logic. In this pro-

posal, we adopt a Token Channel-based arbitration, as similarly done in Section 4.3.1.

Token-based arbitration techniques are widely used in optical rings since they guarantee

collision-free transmissions and barely introduce extra overhead [44]. The proposed To-

ken Channel-based arbitration requires to acquire 1-bit token before transmitting data,

and optical tokens help reduce the token acquiring latency [44]. The implementation of

optical tokens only requires an additional wavelength on each channel, and the token

transmission latency mainly depends on the silicon lightspeed and the path length. As-

suming a signal propagation of light of 11.4 ps/mm [47] in silicon, a 10 GHz ONoC,

and a ring length of 44.8 mm, token transmission latencies range from 100 ps to 500 ps,

depending on the distance 1. The ring shape of the proposed ONoC is shorter than that

of Chapter 4 because of its oval shape, instead of the much longer ”C” shape ring path

presented before.

After getting ring access, the sender must notify the receiver that a message is going

to be sent using a given wavelength λi. This action is performed using several extra

wavelengths to ask the receiver to turn on its ring resonators in order to read the

modulated wavelength. Regarding tuning/detuning latencies, the most recent works

like [47] assume up to 400 ps tuning delays.

Once a communication path has been established between two nodes, the data transmis-

sion can be carried out. The overall transmission latency (leaving apart communication

setup) comes from delays associated to electrical-to-optical conversion, data transmission

1Notice that some of the values (i.e. signal propagation of light, ring length) assumed in these exper-
iments slightly differ from those presented in Chapter 4. This is because, despite the previously shown
values being theoretically correct, in this chapter we update some of the values that we employed in
previous research according to more recent state-of-the-art parameters.
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Table 5.3: Loss values of the photonic components.

Component Value Reference
Laser Efficiency 5 dB [47]
Coupler 1 dB [141]
Waveguide path loss 0.1 dB/mm [47]
Waveguide bend/cross 0.005/0.5 dB [47]
Ring drop 1 dB [141]
By/Through ring loss 0.001/0.1 dB [141]
Photodetector 0.1 dB [141]
Receiver sensitivity -25 dB [141]

along the waveguide, and optical-to-electrical conversion. As stated in Chapter 4, in our

simulation environment, both conversions are assumed to take 1 cycle at the network

frequency to transmit 1 bit over a single wavelength. In the studied system, request

messages are 8 B long, data messages are 72 B (576 bits) long and notification messages

are 4 B (32 bits) long. Considering the number of wavelengths available on each channel

(32, 128, 8) and 10 Gbps conversion speeds, each conversion takes 200 ps, 500 ps and

400 ps, respectively, on each channel. Analogously, the data transmission delay also

depends on the length and the width (number of wavelengths) of the optical path. For a

44.8 mm ring and depending on the number of wavelengths, the maximum transmission

latencies for 64-, 576- and 32-bit messages are 600, 900 and 900 ps, respectively. These

latencies can be lower for path lengths shorter than 44.8 mm.

Overall, for a 2 GHz core clock frequency and assuming no contention, the whole trans-

mission latency (i.e. considering the latencies of tuning resonators, both conversions,

and the message size) of any message varies, depending on the distance, between 2 and

4 clock cycles. In short, from an experimental perspective, the NoC latency variability

does not exceed two clock cycles regardless of the location of the end-to-end points, hence

becoming rather uniform in the studied system. Notice that other alternative networks,

like an electrical mesh or a crossbar, might be much slower and present a higher latency

variability.

5.3.2 Energy Consumption in the FOS ONoC

To satisfy the latency requirements, apart from including a relatively high number of

wavelengths on the C1 channel, FOS ONoC replicates some optical resources to allow
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simultaneous transmissions on channels C0 and C2. This section analyzes the energy

consumption of these components.

The components that determine the power consumption in an ONoC are mainly the

laser and the microring resonators. First, regarding the microrings power consumption,

according to previous research [142] we consider 5µW/ring for the thermal tuning of

resonators. Although a huge number of microrings performing filtering actions might

increase the power loss and the crosstalk noise power, the FOS ONoC does not present

this technological constraint because all its rings never work simultaneously. The worst

case scenario for FOS occurs when all the three channels are communicating simultane-

ously and, in this case, only requires a reduced number of tuned microrings.

Second, laser power in ONoCs depends on the total losses that optical devices introduce

along the communication path. To estimate the minimum laser power needed to reach

all the components in the FOS ONoC, we use the power model provided by Morris et

al. in [141], given by the equation:

Plaser = Prx + Closs +Ms,

In this model, Plaser is the laser power, Prx is the receiver sensitivity, Closs is the channel

loss, and Ms is the system margin. The model is fed with the loss values listed in

Table 5.3, and the outcome provides the minimum laser power to carry a signal strong

enough to be received by the photodetectors on every node.

The energy per bit for the FOS ONoC has been computed using the average number

of transferred bits and execution time across the executed workloads. According to the

model, the energy per bit consumed by the ONoC is up to 1.5 pJ/bit. In contrast, the

energy dissipation value expected in electrical links is 0.25 pJ/bit (estimated with the

ORION 2.0 tool [143]). As expected, the ONoC presents higher energy consumption

than conventional electrical links, but it should be noticed that electrical private links

only implement point-to-point communications, while the FOS network interconnects

every L1 cache to every FOS buffer. Nevertheless, the power savings reached by FOS

mainly come from buffer deactivation as it is discussed in Section 5.5.
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Table 5.4: Baseline system parameters.

Core

Number of cores 2 - 4, OoO, 4 issue/commit width
Frequency 2 GHz
ROB size 128 entries

Cache Hierarchy

L1 Inst-Data cache Private, 32KB, 8-way, 64Bytes, 2 cycles
L2 Private, 512KB, 16-way, 64Bytes, 8 cycles

Interconnect L1-L2

Frequency 2 GHz
Bandwidth 64 Bytes/cycle

Main Memory & Memory Controller

DRAM bus freq. 1066MHz
DRAM device DDR3 (2133 Mtransfers/cycle) 8 banks
Latency tRP , tRCD, tCL 13.09ns each

5.4 Experimental Framework and Studied Approaches

5.4.1 Simulation Setup

We have widely extended the code of the Multi2Sim simulation framework [119] to

model and evaluate our approach. As stated in Chapter 3, to improve the accuracy of

the DRAM memory subsystem, Multi2Sim has been linked to the DRAMSim2 frame-

work [144], which is a hardware-validated DRAM simulator. Also, the CACTI v6.5

[125] tool has been used to estimate the energy consumption and access times of the

studied cache structures for a 32nm technology node. Experiments have been carried

out using the SPEC CPU2006 benchmark suite. Applications have been executed until

they commit at least 500 M instructions after fast-forwarding the initial 300 M instruc-

tions. When evaluating mixes composed of multiple applications, they are kept running

until the slowest one commits the target number of instructions, but statistics for each

individual application are gathered at the time it commits the targeted 500 M instruc-

tions. This way prevents some applications to run in isolation during the last part of

the execution of the mix, which would result in higher IPC values.
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5.4.2 Studied Approaches

The FOS implementation mainly modifies the cache hierarchy and the NoC. In order to

study where the achieved benefits come from, the proposal has been compared with four

different systems modifying these components; that is, different L2 cache organizations

and L1-L2 interconnection networks have been considered. All the four combinations

that have been considered will be referred to as a tuple X-Y, where X indicates the L2

cache organization (e.g. shared or private) and Y the underlying NoC technology (e.g.

electrical or optical). For instance, Shared-OPT refers to a system with an L2 shared

cache with optical NoC. Below, the four baseline schemes are discussed.

• Private-ELC: This scheme presents 512 KB L2 private caches, connected to

the corresponding cores through electrical links. This configuration is used to

study the performance constraints associated to fixed-size private caches. Table 6.4

summarizes the main parameters of this baseline system.

• Shared-ELC: Unlike the previous one, this scheme presents a unified shared L2

cache connected to the L1 cache level with electrical links. This scheme is aimed at

comparing FOS against a common shared space, which exhibits inter-application

interference.

• Shared-OPT: This configuration replicates the same cache hierarchy as the Shared-

ELC approach, but electrical links are replaced by an optical ring. The parameters

and latency values used in this ring match those of FOS ’s ONoC (see Section 5.3.1).

This scheme, together with Shared-ELC, contribute to discern whether the per-

formance enhancements come from reducing the network latency or from a better

performance of the shared organization.

• NUCA-OPT: A NUCA-based approach is introduced to replicate the FOS sys-

tem without the SMM algorithm. For this purpose, this scheme is configured as

a pool of n cache buffers of k size, where n and k match the values selected for

the FOS setup. This scheme presents the same optical network as FOS. The mo-

tivation behind this scheme is twofold: i) exposing clearly the energy efficiency

benefits in terms of cache management brought by the SMM algorithm, and ii)

comparing FOS against a scheme with faster cache modules and equal network

latencies.
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Table 5.5: Composition of the evaluated 2- and 4-benchmark mixes. Legend: M:
Minimum Slice Needs, L: Limited Slice Needs, N: Non-limited Slice Needs.

Mix 4-benchmark mixes 2-benchmark mixes

Mix0 astar (L), dealII (L), milc (M), soplex (L) astar (L), bzip (N)
Mix1 GemsFDTD (M), soplex (L), xalancbmk (N), h264ref (M) astar (L), gcc (L)
Mix2 xalancbmk (N), gromacs (L), omnetpp (L), zeusmp (M) astar (L), xalancbmk (N)
Mix3 libquantum (M), omnetpp (L), milc (M), xalancbmk (M) gobmk (L), gromacs (L)
Mix4 perlbench (L), povray (M), gamess (M), gromacs (L) gobmk (L), h264ref (M)
Mix5 omnetpp (L), astar (L), libquantum (M), milc (M) milc (M), h264ref (M)
Mix6 gamess (M), perlbench (L), omnetpp (L), xalancbmk (N) omnetpp (L), perlbench (L)
Mix7 gcc (L), libquantum (M), milc (M), zeusmp (M) povray (M), libquantum (M)
Mix8 astar (L), gcc (L), dealII (L), zeusmp (M) soplex (L), zeusmp (M)

Finally, FOS has been configured in the same way as NUCA-OPT, that is, as a pool

of n buffers of k size. Experimental results consider k equal to 64 KB and n equal to

8 times the number of cores. In this way, the compared schemes have the same storage

capacity, i.e. 1024 KB and 2048 KB for 2- and 4-core systems respectively.

The reason why we select 64 KB sized buffers for FOS is twofold. First, reducing the

buffer size below 64 KB increases the demands of networks resources, hence increasing

the energy consumption and the hardware complexity. Second, the larger the granularity,

the lower the number of buffers (i.e. the pool size) that BMM has available to distribute,

hence the lower the flexibility of the allocation and the deallocation algorithms which can

also affect the performance. Taking these considerations into account, we experimentally

concluded that 64 KB is the most suitable buffer size for evaluation purposes.

Regarding the BMM algorithm setup, a wide set of experiments has been performed

to tune the BMM parameters. To illustrate the potential of FOS, this work presents

the results with the parameter values that showed the best energy efficiency on average

through most of the experiments; that is, Thrmin=0.2, Thrwindow=0.8, Thrdec=0.25,

Thrweight=1.5, Thrrel=25. Finally, w and the interval length have been set to 10 inter-

vals and 40k cycles, respectively.

5.4.3 Design of Multiprogram Workloads

To evaluate our approach, experiments have been launched for applications running

alone and for multiprogram workloads in conventional 2-core and 4-core multicores.

Experiments with more cores are not required since, as explained in Section 5.5.3, our
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approach assigns the same cache space to each application regardless of the number of

co-runners. In other words, since applications obtain always the same amount of cache

as long as there are enough buffers for every running application, the benefits of FOS

are expected to be similar when scaling the number of cores. The multiprogram mixes

were randomly generated varying the ratio of applications belonging to each one of the

three categories identified in Section 5.1. The list of studied multiprogram workloads

for 2-core and 4-core experiments is presented in Table 5.5.

5.5 Experimental Results

This section analyzes the impact of the devised FOS’s cache management and buffer

distribution on energy and performance of multiprogram workloads. By design, FOS

assigns buffers exclusively as private to cores, which means that, provided that there

is enough cache space, FOS will assign the same cache space to each application as it

assigns in individual execution. In other words, FOS behaves similar for each application

in multiprogram workloads as it behaves in individual execution in terms of performance

and energy. This behavior is a key issue in the design of FOS, for it is aimed at scaling

with the number of cores or concurrently running applications.

5.5.1 Energy Consumption of Multiprogram Workloads

This section evaluates the energy consumption of the 2 and 4-benchmark multiprogram

workloads across all the studied approaches. Regarding 2-benchmark mixes, Figure 5.6

plots the consumed energy normalized to the Shared-ELC approach and broken down

into: i) static energy consumption due to cache leakage, ii) dynamic energy consumption

due to cache lookups, and iii) network energy consumption. We show the latter energy

component in order to highlight the energy consumption differences between both elec-

trical and optical approaches, since in this work FOS is implemented with a custom

optical ring. Notice that energy savings directly coming from the proposal, however, are

found in the cache’s (static and dynamic) energy values, and these savings are indepen-

dent of the underlying network supporting FOS. In other words, in case that FOS was

implemented over a high-performance electrical network, the energy savings achieved by

the cache management would remain.
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Figure 5.6: Normalized energy consumption of 2-benchmark mixes.
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Figure 5.7: Normalized energy consumption of 4-benchmark mixes.

As observed, the static energy (i.e. leakage currents) consumption of caches is the com-

ponent that clearly dominates the overall energy consumption across all the conventional

cache organizations. Notice that this energy component is largely reduced by FOS thanks

to the number of buffers that are turned off dynamically at runtime. These savings are

especially significant in Mix4 or Mix7, where FOS improves leakage currents by 60% to

70% over conventional organizations. Nevertheless, when executing cache-hungry mixes

like Mix2 the whole pool of buffer needs to be activated for performance, which means

that FOS is correctly working. Of course, performance improvement is achieved at

the cost of energy, which in this case matches the one consumed by Shared-ELC and

Shared-OPT approaches.

Dynamic energy consumption (shown in the upper component of each bar) represents
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the smallest energy component. NUCA-OPT presents the best results, thanks to the re-

duced complexity of their cache modules. FOS implements cache modules with the same

size, although its dynamic energy consumption is slightly higher than in NUCA-OPT

because of the PTA overhead. Since tag lookups in the PTA structure are performed

only for the active buffers, however, the corresponding overhead reduces the dynamic

energy consumption on average by a 4× factor over Shared-ELC and Shared-OPT ap-

proaches. Moreover, when executing mixes with a low number of active buffers like Mix4

and Mix7, FOS achieves a dynamic energy consumption similar to that of NUCA-OPT.

Regarding the network energy, it can be observed that, on average, the energy con-

sumption of optical interconnects is by 10× higher than that of electrical links. This

overhead translates to an overall energy consumption increase by 20% from Shared-ELC

to Shared-OPT. In the NUCA-OPT, the optical network overhead, together with the

higher leakage values of 64 KB modules, leads to an energy consumption by 35% higher

than the Shared-ELC baseline. On the contrary, and despite experiencing also this net-

work overhead, FOS presents an energy consumption by 23% on average lower than

Shared-ELC, improving energy consumption over the electrically-connected approaches

in seven out of nine mixes.

In summary, it can be observed that the energy savings provided by FOS coming from

cache management nicely compensate the energy expenses coming from the optical net-

work. These results show the high potential of the proposal, which is one of the main

aims of this work, and let us to conclude that FOS would provide higher energy savings

while sustaining the performance if it was implemented with a low power NoC that was

able to fulfill the latency requirements.

Lastly, Figure 5.7 plots the energy results for the 4-benchmark multiprogram work-

loads. As observed, FOS provides cache energy savings across most of the mixes. These

savings come from both dynamic and static energy consumptions. Dynamic energy con-

sumption is highly improved, in percentage, compared to Shared-ELC and Shared-OPT

approaches. Static energy consumed by the cache modules is also significantly reduced

in a wide set of mixes, being in some cases less than half the energy consumed by conven-

tional approaches. Again, in cache intensive workloads like Mix1, FOS keeps an energy

consumption similar to that exhibited by the Shared-ELC system, since as mentioned

above, FOS activates buffers for performance.
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Figure 5.8: Normalized performance of the individual applications.
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Figure 5.9: Memory subsystem latencies broken down in four main categories. Leg-
end: A: Shared-ELC, B: Shared-OPT, C: NUCA-OPT, D: FOS.

5.5.2 Performance Evaluation of Individual Applications

This section evaluates the FOS’s performance considering each benchmark running alone

in one of the cores of a 2-core system, while the other core is left empty. First, we analyze

and compare the normalized performance (in terms of IPC) of FOS and the four studied

schemes: Private-ELC, Shared-ELC, Shared-OPT and NUCA-OPT. Figure 5.8 shows

the results normalized with respect to Private-ELC. As observed, in spite of the fact

that the main goal of FOS is not related to achieve better performance, our approach

improves performance, on average, over Private-ELC by 8% (i.e. by 3% higher than

that of Shared-ELC ). The schemes with optical network (i.e. Shared-OPT and NUCA-

OPT ) achieve the highest speedups, improving performance by 10% and 12% over the

Private-ELC scheme.

To provide further insights on where performance improvements come from, we analyzed
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the memory subsystem latency, breaking this latency down into five main components:

i) L1 cache access time, ii) L1 to L2 cache NoC latency, iii) L2 cache access time, iv) L2

cache to memory controller NoC latency, and v) memory controller latency to handle the

main memory access. Figure 5.9 plots the results for the first four components, since the

main memory subsystem is the same across all the studied approaches. Results are shown

for the Shared-ELC, Shared-OPT, NUCA-OPT and FOS systems, which are referred

to as A, B, C and D, respectively, in the figure. As observed, optical interconnects

provide a 1000 ps faster L1-L2 network latency, on average, than the electrical links

employed by the Shared-ELC scheme. This latency reduction explains, at a first glance,

why all the optical approaches outperform both Private-ELC and Shared-ELC systems

in individual execution.

Latency differences across the studied systems can also rise, however, because of the dif-

ferent access times of the L2 cache modules. NUCA-OPT system divides its cache space

in 64 KB modules, while Shared-ELC and Shared-OPT implement a single 1024 KB

module, whose access time is 3× higher2. On the other hand, the access time presented

by FOS depends on the number of buffers actually being allocated. For instance, in

xalancbmk, a cache intensive application, the FOS memory subsystem latency is up to

1100 ps; however, in h264ref, a compute intensive application, this time drops down to

700 ps. Notice that the L2 latency of FOS is slightly higher than that of the NUCA-OPT

system. This small increase is due to the sequential access to the tag and data arrays

that FOS performs.

In summary, optical NoC and small L2 cache buffers help improve performance for

individual execution. In this regard, both the optical NUCA and FOS present similar

performance.

5.5.3 Performance and Cache Space Management Evaluation for Mul-

tiprogram Workloads

In addition to the performance in isolated execution, this section presents results for 2-

and 4-program mixes. Figure 5.10 shows the system performance (i.e. IPC harmonic

2According to the cache model results obtained with the CACTI 6.5 tool using a 32 nm technology
node.
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Figure 5.10: Normalized Performance of 2-bench mixes.
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FOS.

mean) across the 2-program mixes. As expected, the NUCA-OPT approach is on av-

erage slightly the best performing approach, closely followed by Shared-OPT and FOS.

Results, however, are not homogeneous across all the studied workloads since FOS has

to face different scenarios depending on the cache behavior of each mix.

To provide deeper insights and identify these behaviors, we measured the MPKI of FOS

on the allocated cache buffers, and the MPKI of the L2 cache on the remaining schemes.

Figure 5.11 presents the results for Private, Shared, NUCA and FOS systems, which

are referred to as A, B, C and D respectively. The legends App0 and App1 refer to

the order of the application in the mix as stated in Table 5.5. Since FOS trades off

performance against cache space, we should consider MPKI jointly with the number of
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Figure 5.12: Average number of buffers assigned to each application in FOS.

allocated buffers in the analysis. Figure 5.12 shows the average number of buffers that

the SMM algorithm allocates to each application.

First, we analyze the cache behavior of each mix according to the categories previously

identified in Section 5.1. Applications with Minimum Cache Needs (MCN) like milc

or libquantum (i.e. App0 in Mix5 and App1 in Mix7, see Table 5.5) do not present

major differences in their MPKIs among the studied approaches due to their inherent

low locality. The BMM algorithm realizes this fact and only allocates 3 and 2 buffers to

them on each mix. Secondly, applications with Limited Cache Needs (LCN), like astar

in mixes 0 and 1 (App0 ) or gcc in Mix1 (App1 ), are provided with 5 buffers each and

present MPKI values similar as the ones shown by conventional configurations. These

values, however, are slightly higher than those with shared L2 caches since FOS has to

progressively activate buffers as they are predicted to be needed. Finally, applications

included in the Non-limited Cache Needs (NCN), like xalancbmk in Mix2 (App1 ) or

bzip2 in Mix0 (App1 ), are provided with 10 and 7 buffers on average and clearly present

better MPKI values than the Private cache configuration.

These MPKI results match the cache sensitivity study carried out in Section 5.1. When

executing multiprogram workloads, however, MPKI can increase due to the inter-application

interference. Nevertheless, since FOS assigns buffers as private to cores, the inter-

application interference at the shared space is avoided. For instance, in Mix5, h264ref

(App1 ) reduces its MPKI compared to both Shared and NUCA systems even though
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in this mix there are only 4.5 active buffers on average during execution. In short,

reducing the inter-application interference in the shared space allows FOS to improve

performance over the NUCA approach in some mixes like Mix5. Notice that MCN appli-

cations with small working sets (like h264ref) are very sensitive to block replacements,

hence preventing other applications from accessing their cache buffers translates to rel-

evant performance gains. This is the reason why h264ref does not present significant

performance improvements in individual execution, but it does in Mix5.

Although the BMM algorithm covers a wide set of cache demanding scenarios, there are

two corner cases where the BMM algorithm does not achieve the best behavior. Next,

we discuss these cases and how they could be addressed. These cases appear due to

two different situations: i) buffers are assigned to applications in FIFO order, which

means that an application with high cache needs may obtain a big amount of buffers in

the earlier stages of its execution while reducing the available space for the co-running

application, and ii) irregular and fast-changing cache demands are hard to be identified

with the experimental BMM thresholds. An example of the first case can be seen in

Mix2, where xalancbmk (App0 ) slightly reduces the available space for astar from 5

buffers to 4 and, due to this reason, the MPKI of the latter is higher in this mix than

Mix0 and Mix1. This behavior, however, can be prevented in FOS by adjusting the

corresponding threshold to limit the maximum number of buffers that an application

can be assigned. An example of the second case is gromacs (App1 in Mix3). It can be

seen that, when executed in the FOS system, this application almost doubles the MPKI

of the Private system, in spite of having by 45% of the cache space still available. A

more aggressive setup of the BMM algorithm would limit this behavior but, in this work,

only the setup that provides the highest energy efficiency is shown (see Section 5.5.1).

To conclude the analysis of 2-benchmark mixes, results have shown that, on average,

FOS assigns only 55% of the total cache space that the other evaluated approaches,

with none or negligible performance losses. This cache space is dynamically distributed

according to application needs, which allows some applications to work with a smaller

cache space.

Figure 5.13 presents the performance results for the 4-benchmark mixes. These mixes

have been evaluated with 2 MB cache storage capacity for all the evaluated cache

approaches. Results show that, on average, FOS improves performance by 4% over the
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Figure 5.13: Normalized Performance of 4-bench mixes.
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Figure 5.14: Energy Delay Squared Product of 2-benchmark mixes.

Private-ELC system, while Shared-ELC, Shared-OPT and NUCA-OPT improve by 4%,

5% and 6%, respectively. Performance differences are lower than in 2-benchmark mixes

between electrical and optical approaches, mainly because optical rings present slightly

higher contention. Performance, however, could be enhanced with an improved optical

NoC and with more aggressive thresholds. The performance improvements achieved by

FOS are especially significant in mixes 0, 5 and 7 because in these mixes FOS prevents

milc from interfering the other applications in the shared space. Moreover, despite

turning off part of the cache space and making an efficient use of the cache space, FOS

just presents by 2% performance degradation with respect to NUCA-OPT.
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5.5.4 Energy Efficiency

To summarize the previously exposed performance and energy results and conclude the

experimental evaluation, in this section it is discussed the overall energy efficiency of

FOS with respect to conventional approaches. To this end, Figures 5.14 and 5.15 show

the energy delay squared product (ED2P) for 2- and 4-benchmark mixes, respectively.

It can be seen that, on average, FOS is the approach presenting the best results, re-

ducing the ED2P in seven out of nine mixes both in 2- and 4-benchmark multiprogram

workloads. Moreover, in some cases this reduction is over 60%. An interesting observa-

tion is that, according to the performance results presented below, the best performing

approach (i.e. NUCA-OPT ) shows the worst ED2P values in both figures, while the

worst performing approach (i.e. Private-ELC ) presents the second lowest ED2P values.

This means that in the former case, NUCA-OPT increases performance at the expense

of energy, mainly due to the optical NoC; while in the latter it occurs the opposite, that

is, energy savings are achieved at the expense of performance.

FOS addresses these trade-offs showing that, in spite of presenting an energy consump-

tion even lower than that of Private-ELC in most mixes, it achieves similar performance

to NUCA-OPT, which translates to better ED2P results.

Finally, Table 5.6 summarizes a quantitative comparison of the energy, performance and

energy efficiency values corresponding to all the studied approaches. Results show that

FOS is the most energy-efficient approach, improving by 16.55% the energy efficiency

with respect to Private-ELC. NUCA-OPT is shown as the least efficient scheme, since in
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Table 5.6: Energy efficiency, performance and energy savings achieved by each archi-
tecture normalized to the Private-ELC approach.

Architecture Energy efficiency Performance Energy savings
Shared-ELC −8.91% 3.33% −14.42%
Shared-OPT −14.8% 4.87% −22.29%
NUCA-OPT −18.24% 7.03% −27.61%

FOS 16.55% 3.79% 8.45%

spite of being the best performing approach, it prohibitively increases energy consump-

tion by 27.61% over Private-ELC. Similarly, Shared-ELC and Shared-OPT configura-

tions achieve marginal performance gains but increase the energy consumed, which also

makes Private-ELC a more efficient organization than these approaches. This means

that, among all the studied approaches, FOS is the only one that improves performance

over the private baseline while also reducing the energy consumed.

5.6 Summary

In this chapter, FOS has been presented as a novel cache organization and management

approach to trade off performance for energy consumption. The FOS architecture re-

places conventional low level (e.g. L2 and L3) caches with a single level consisting of

a pool of cache buffers, and introduces a novel management approach especially suited

for low power processors. Buffers are much larger (i.e. by a thousand times larger)

than individual cache lines, which eases the implementation of practical energy-aware

approaches working at this granularity. For the sake of exploring the impact of FOS on

performance, it has been implemented and evaluated with an underlying Optical Net-

work on Chip, since it provides a rather fast and uniform access latency to the buffers.

Other networks (not necessarily optical) might be used, whenever latency requirements

are satisfied.

Experimental results have shown that FOS reduces dynamic energy consumption on

average by a factor of up to 4× over a shared cache organization with the same storage

capacity. Energy savings on static energy consumption are also achieved, reaching a

reduction by up to 60% of the total static energy over conventional approaches. As

a result, FOS is the least energy consuming approach among all the studied cache
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organizations. Overall energy results also include the overhead introduced by the devised

ONoC, which means that energy benefits can be even higher.

Moreover, FOS energy savings do not come at the expense of performance, since moder-

ate performance improvements come from the network and the cache side. That allows

FOS to achieve a similar performance to an optically connected NUCA cache, in spite of

using, on average, 50% of the total cache space. In summary, we have shown that FOS

is the most energy efficient approach, as it does not only achieves the highest energy

savings but also sustains performance.





Chapter 6

FOS-Mt: An efficient Flat

Storage Organization for

Multithreaded Workloads

Chapter 5 has presented and evaluated the FOS architecture. The achieved results show

that there is significant potential redesigning existent cache organizations when deal-

ing with energy efficiency in current processors. However, although the presented FOS

architecture makes important progress towards this objective, it still lacks of several fea-

tures like coherence management or providing support for multithreaded applications.

Therefore, the FOS architecture needs to be extended to support any kind of applica-

tions. This chapter describes the required features for this purpose, and evaluates the

approach with multi-threaded workloads.

The chapter is organized as follows. First, we introduce FOS-Mt and its new features

with respect to the FOS architecture. Then, the details of the FOS-Mt architecture

are further explained, specially focusing on coherence management and the new buffer

allocation algorithm. Finally, we present the evaluation setup, which has been extended

with respect to the previous chapter, and the experimental results.

99
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6.1 Background: the FOS architecture

The architecture presented in this chapter builds on the FOS architecture previously

discussed in Chapter 5. The FOS architecture is the result of a research on the lack

of flexibility and several issues regarding energy inefficiency in current cache organiza-

tions. The proposed solution consists in having a common pool of cache buffers that are

dynamically assigned to cores at runtime. Buffers are initially powered off for energy

savings, and they are powered on and allocated to a single core based on the cache needs

of the running application. This approach has been demonstrated to be effective since

it reduces both static and dynamic energy consumption at the same time it sustains

performance.

However, this approach still presents some limitations that need to be addressed in order

for it to support multithreaded applications. First, multithreaded workloads presents

different needs and behaviors with respect to sequential applications. For this kind of

workloads, the management of shared data blocks in the cache is critical in order to

sustain performance. Due to this fact, another issue that needs to be addressed in the

multithreaded design of FOS is the allocation algorithm that is in charge of assigning

buffers to cores. Finally, since new hardware structures would be needed to support cache

coherence management, the underlying network must be also adapted and modified with

respect to that employed in FOS.

6.2 Flat On-chip Storage for Multithreaded Applications

This section presents the proposed architecture, its main components, the implementa-

tion details, and a working example.

6.2.1 FOS-Mt Architecture Overview

Similarly to its predecessor FOS, the FOS-Mt architecture redesigns the cache hierarchy

to address energy and enable practical implementation of energy aware mechanisms at

a coarse grain granularity (e.g. 128KB buffer size). Having a single buffer pool, which

replaces L2 and L3 caches, shrinks the area which is a key concern in low power and
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Figure 6.1: Block diagram of FOS-Mt.

embedded designs. Neither low power nor embedded processors are allowed to build huge

last level caches, hence managing the limited cache space in an efficient way trading off

energy and performance becomes a major design concern.

Figure 6.1 presents a block diagram of the updated FOS-Mt approach. As observed,

the pool of buffers remains, together with the PTAs, the special Buffer Allocation Logic

(labeled as BAL) node and the interconnection network (labeled as optical ring) which

connect all the structures. Additionally, new directory structures that help manage

coherence (labeled as DN, Directory Nodes) are also shown in the diagram. Below these

components are discussed.

The off-core buffers are still organized as a pool of elements that can be individually

assigned to any core. One of the main issues of such an organization is that it implies

that the access latency will vary depending on the target buffer that a given core is

accessing to, which may affect performance. The FOS architecture addresses this is-

sue by implementing an on-chip optical network that provides a rather homogeneous

access time (see Section 5.3 for further details on the FOS network). This approach

remains in FOS-Mt, although the optical network has been adapted to introduce the
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new hardware structures (e.g. the directory nodes). Section 6.3.1 presents the details of

the implemented network.

Unlike NUCA-based conventional approaches where the cache modules are accessed

by address interleaving, FOS-Mt dynamically distributes and assigns to the cores the

available cache buffers. Therefore, in our approach, address interleaving is not a valid

way to access the target buffer. To overcome this shortcoming while providing a flexible

buffer management the FOS architectures decouple the off-core buffer tag arrays from

their corresponding data arrays. Decoupling tags from data has been also done in

modern processors like the IBM POWER5 [145].

The aforementioned directory structures store the decoupled tags and the coherence in-

formation, and manage the accesses to the off-core data buffers. FOS-Mt introduces two

types of hardware structures (see Figure 6.1) called Directory Nodes (DNs) and Private

Tag Arrays (PTAs). The PTAs were also implemented in the original FOS architecture;

they replicate, in each core, a subset of the tags of the locally accessed blocks; while the

DNs, located in the off-core area, store the decoupled tags and coherence information of

the active buffers.

Finally, a Buffer Allocation Logic (BAL) is needed to keep track of the buffers that are

being assigned to the execution cores. This logic is connected to the optical ring through

a special node, labeled in Figure 6.1 as BAL. Notice that, in the layout of a physical

implementation, this node can be located elsewhere provided that it is connected to the

execution cores.

Below, the implementation of these structures and their operation are discussed. To help

the understanding of these structures, Section 6.2.2 presents a simple working example

with 2 PTAs associated to the two cores, 2 DNs and 4 off-chip buffers.

6.2.2 FOS-Mt Architecture: Detailed Implementation

This section discusses the details of the FOS-Mt architecture, including key design de-

cisions as explained below. To help understand these decisions, Table 6.1 summarizes

them together with the rationale (advantage) that led us to take that decision as well

as the downside or drawback associated to such design decision.
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Table 6.1: FOS-Mt design considerations.

Design decision Advantage Potential Disadvantage
Decoupled tags &
Distributed DNs

Prevents centralized block lookup
bottlenecks and helps the system
to scale

ONoC complexity must be ad-
dressed (see Section 6.3)

Per-core (Private)
PTAs

Block location information are
placed close to the core to
speedup the access to the block
and reduce network contention

PTA entries must be invalidated
on block replacements in the
buffers

Keeping coherence
information in DNs

Access time to coherence informa-
tion is reduced

None

Supporting invali-
dations of PTA en-
tries

Improve memory access time on
L1 cache misses

PTA invalidations must be sup-
ported

Decoupled Tags and Distributed Directory Nodes

FOS-Mt needs to find out the location of data blocks in the buffer pool. Unlike conven-

tional architectures, this is achieved by decoupling the tag arrays from the data buffers

and distributing them among several Directory Nodes.

Distributing this information among several DNs balances the number of accesses of

the cores among the DNs and prevents the potential bottleneck of having a centralized

directory structure. Additionally, decoupling and distributing tags also helps the system

to scale. A closely related implementation can be found in some commercial designs like

the Niagara II [146].

To find the location of a data block, first, the target DN is selected in an interleaved

way, that is, using the least significant bits of the block address. Then, the DN is looked

up to obtain the target buffer, the buffer set and the buffer way where the requested

block is located. With this information, the subsequent access to the data array can be

performed as fast as in a direct-mapped cache. To simplify the hardware implementation,

each DN is organized including as many Buffer Tag Arrays (BTAs) as off-core buffers,

and BTAs present the same set-associative organization as the buffers.

Compared to a conventional cache organization, this approach requires an additional

NoC hop since it has to access to the DN, which might slightly affect the average mem-

ory access time. To address this potential adverse impact on performance a hardware

structure, tha PTA, has been devised (see Section 5.2.3).
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Per Core (Private) Tag Array

The PTAs are implemented as cache-like structures that keep a copy of the DNs’ tag

and location information for a subset of the blocks locally accessed by the core. Having

the tags of the requested blocks closer to the core reduces the number of accesses to the

DNs, thus reducing both network contention and improving the average memory access

time. The PTA consists of two main types of substructures: several BTAs and a single

Shared Tags Table (STT) structure.

The BTAs of the PTA of a given core cache both the tags and the locations of the

blocks stored in the data buffers assigned to that core. Each active (powered on) BTA

is mapped to a given buffer assigned to the core. Due to hardware complexity and

scalability reasons, FOS-Mt limits the number of BTAs per core, thus constraining the

number of data buffers that can be assigned to a given core. To quantify the impact

of this design issue, an analysis of the performance sensitivity to the PTA size (i.e. the

number of BTAs implemented in each core) is presented in Section 6.5.1.

The STT keeps track of tags and locations of shared blocks (i.e. accessed by several

cores) that reside in buffers not assigned to the local core. This structure acts as a small

local cache (e.g. 1K entries in our experimental setup) that enables a fast location of

the shared blocks without accessing to the DNs.

A PTA access can result in a hit or a miss. On a PTA miss, the corresponding DN

must be accessed in order to find the location of the target data block. This location is

cached in the PTA either in a BTA or in the STT, depending on whether the block is

located in one of the assigned buffers or not. On a PTA hit, the cached location is used

to directly get the target block without a DN lookup.

The PTA entry (i.e. the stored information) of a given block can be made invalid due

to different reasons. For instance, if a block is replaced from a buffer, then the cached

PTA information for that block must be invalidated to prevent future accesses to that

block take the data from its previous location. In addition, PTA information can be

invalidated due to coherence management.
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Figure 6.2: Example implementation of a 2core-4buffers FOS-Mt.

Coherence Management: The Role of DNs and PTAs

FOS-Mt coherence management in L1 caches is based on conventional directory-based

MOESI with minor modifications to accommodate FOS-Mt design decisions.

The first design decision that must be taken related to coherence management is where

coherence information (i.e. the MOESI directory) is placed, since this decision may affect

the system performance. Coherence information can be stored at the off-core buffers,

or decoupled of such buffers and moved to the DNs. In the former case, an additional
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hop through the target DN is necessary to access to it when the PTA contains invalid

location information. Therefore, in FOS-Mt, coherence information is stored at the DNs.

Note that this design decision does not modify the underlying MOESI protocol.

The second design decision related to coherence management that may affect the system

performance is related to the PTA. In a conventional MOESI implementation, coherence

information should be accessed either i) on an L1 cache miss, to identify a remote

L1 cache that contains the last updated version of the target block; or ii) on a write

to a non-modified block, to identify and invalidate copies of the block in remote L1

caches. Both conditions could be applied directly to FOS-Mt without modifying the

conventional MOESI implementation. Notice, however, that in FOS-Mt, the L1 cache

miss management can be optimized when the target block has not been modified by any

remote L1 cache. In this case, the contents of the target block can be directly retrieved

from the data buffer pointed by the PTA, so avoiding the DN access.

This optimization, however, introduces a corner case when a block is modified in a

remote L1 cache and, therefore, the copy of the block in the data buffers becomes stale.

This means that the PTA will point to stale data after the block is written. We solve this

problem by invalidating the corresponding PTA entries. These invalidations are carried

out alongside with the coherence actions performed in the DN and remote cores when

the block is modified. After the modification, a PTA miss due to a remote invalidation

will access to the DN coherence information where a core with an updated copy of the

block is obtained.

Putting It All Together: PTAs & DNs Operation

The mentioned components work together as follows. Upon an L1 cache miss, the PTA

is looked-up to check whether the tag of the missing block is in any of its structures. On

a hit in the PTA (either in any BTA or in the STT), the PTA logic indicates the target

buffer, set and way identifiers of the target block, and the missing block is fetched from

that location to the L1 cache.

On a PTA miss, the corresponding DN is accessed to check the buffer tags are not present

in another PTA. On a hit in the DN, the block is fetched from the corresponding data

buffer or L1 cache, according to the coherence information stored in the DN. As explained
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above, coherence information in the DN must be properly updated in the following cases:

i) on a PTA miss; ii) on a write to a non-modified copy of a shared block; and iii) when

a block is evicted from the L1 and a writeback to a data buffer needs to be performed.

In addition to provide a copy of a block to the requesting core, the PTA of the core and

the corresponding DN location information must be updated. To perform this operation,

on a PTA miss, a message is sent to the DN indicating a buffer assigned to the core and

a way in this buffer to perform the replacement. Then, the DN checks the location of

the block, and in case the block is not present in the data buffers, it will be brought from

main memory to that location, updating the BTAs in the PTA and the DN accordingly.

If the block is already in the data buffers, it can be in a data buffer assigned or not to

the requesting core. In the first case, the BTAs are already updated, while in the second

case the location information is obtained from the DN and cached in the STT.

Finally, notice that whenever a block is replaced from the data buffers, the location

information in DNs and PTAs must be properly updated. This implies i) updating

the BTA of the buffer storing the block in the PTA of the core that has this buffer

assigned, ii) updating the BTA in the corresponding DN, and iii) invalidating the STT

entry in the PTAs of the other cores sharing the block. These actions do not introduce

additional overhead because data buffer replacements already require accessing the DN

and invalidating block copies in the cores.

To illustrate the operation of the proposed approach, Figure 6.2 shows a FOS-Mt ex-

ample that involves all the aforementioned structures. In this example, there are two

cores, 2 DNs and the maximum number of buffers that can be allocated to each core is

limited to 3. As can be seen in the PTAs of core C0 (PTA-C0) and core C1 (PTA-C1),

PTA-C0 has allocated buffers B0 and B2, while PTA-C1 has been provided with buffers

B1 and B3. The remaining BTAs (BTA−X in the figure) in each PTA are powered off

since there are no more buffers available.

As observed, B0 and B2 BTAs in PTA-C0 store the tags 128 and 136 respectively and, by

block address interleaving, these tags are kept in the directory node DN0. Accordingly,

the data arrays associated to these tags are stored in buffers B0 and B2. In addition,

core C0 is the owner of both blocks. There are no sharers recorded for these blocks,

which means that so far these blocks have only been accessed by core C0.
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On the other hand, PTA-C1 keeps the tags 231 in B1 and 273 in B3. Since these are

odd tags, in this case DN1 is the directory node in charge of keeping the references to

these blocks. In this example, unlike the blocks fetched by core C0, the blocks 136 and

273 are shared, as indicated by the coherence information in the BTAs B1 and B3 of

DN1. This means that these blocks have been first accessed by Core 1 and afterwards

by core C0, and so they are recorded in the Shared Tags Table of PTA-C0. Thanks to

this structure, PTA-C0 can access to shared blocks without asking DN1 for the buffer

where they are stored, avoiding the associated latency penalty. In case the location of a

shared block were not found at the STT either because it has been replaced or it is the

first access of the sharer, the location can still be obtained from the corresponding DN.

6.2.3 Off-Core Buffer Management

The management of the off-core cache buffers covers both the assignment and the release

of buffers. The former task is carried out by the Buffer Allocation Algorithm (BAA),

which assigns buffers to threads only when that assignment is expected to provide a

good trade-off between energy and performance.

The latter operation is carried out by a simple Release Mechanism that deallocates a

buffer from a core based on time and activity criteria. Design decisions have been made

conservative to keep energy low, and only one buffer at a time (i.e. at each interval) can

be assigned to or unassigned from each core.

The key challenge for the Buffer Allocation Algorithm is to estimate the performance

that a thread would have experienced if it had had an additional buffer. For this purpose,

when the algorithm is applied, and before making the decision on whether a buffer is

assigned or not to a thread, some performance estimates needs to be done. That is, FOS-

Mt needs to estimate the performance that a thread would have experienced with one

additional buffer b+ 1 while being executed with b buffers, which is challenging. Notice

that this issue was already solved during the design of FOS, by implementing additional

shadow tags in the BTAs of the PTA. These additional tags are used for estimating the

number of cache misses with one additional buffer and they are replicated only in 32

sets of each BTA to limit the overhead.

Buffer Allocation Algorithm
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The devised algorithm is applied at the beginning of each execution interval to each

application thread, after measuring the performance of the assigned buffers during the

expiring interval. Execution intervals are assumed to be fixed-length (8M processor

cycles) for evaluation purposes. Algorithm 2 summarizes the three main steps of the

devised algorithm.

In the first step, Buffer Performance Measurement, FOS-Mt computes the performance

of the assigned buffers (b) in the expiring n − 1 interval. Performance is represented

in terms of BTAs-Misses Per Kilo-Instruction (BTAs MPKIn−1(b)). In addition, the

performance with an additional buffer b+1 is estimated (BTAs MPKIn−1(b+1)) with

the shadow tags. Finally, the amount of hits in the BTAs (BTAshits) and in the STT

and DN (STT/DNhits) are also accounted.

Once these values have been computed, the BAA moves to its second step, Filtration,

where the relevance of the previously gathered values is studied. First, the global MPKI

of a given thread must surpass a given threshold Thrmin, since reducing low MPKI

values by adding one extra buffer is a waste of energy. Also, to guarantee that the

metrics are computed over a significant number of hits, the collected BTAshits must be

higher than the threshold ThrBH . If any of these conditions is not met, the algorithm

finalizes without assigning any additional buffer to the thread for the incoming interval.

In the last step, Buffer Allocation and Performance Analysis, the algorithm computes

two metrics and makes the decision on whether a new buffer should be allocated to the

thread. On the one hand, the algorithm computes the improvement of the BTAs MPKI

rate (MPKIdec rate), which quantifies the rate in which the BTAs MPKI of the thread

is expected to decrease by allocating one extra buffer. On the other hand, we compute

the BTAs hits to total hits rate(BTAsweight), which indicates how much use that thread

is making of its assigned buffers. These two metrics together indicate how much impact

allocating a new buffer for the thread can have on performance.

To make the decision on assigning an extra buffer, the previous metrics must be compared

with experimental thresholds. During the experiments, we found that static thresholds

do not perform well enough since applications and even threads belonging to the same

application can present different needs. To deal with this issue, we introduce a constant

K to scale the thresholds. This way, K is obtained by categorizing at execution-time
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Algorithm 2 Buffer Allocation Algorithm.

Inputs:
n: incoming interval number;
b: amount of buffers currently assigned to the thread;
K: MPKI category for this thread;
{Thrx}: algorithm thresholds.

1. Buffer Performance Measurement. For each running thread:

BTAs MPKIn−1(b),
BTAs MPKIn−1(b+ 1),

BTAshits and STT/DNhits.

2. Filtration. For each running thread:

if ( MPKIn−1 < Thrmin) or ( BTAshits < ThrPH )

Skip step 3 and finalize.

3. Buffer Allocation and Performance Analysis. For each running thread:

MPKIdec rate = BTAs MPKIn−1(b+1)
BTAs MPKIn−1(b)

− 1,

BTAsweight = BTAshits

BTAshits+STT/DNhits
.

if ( BTAs−MPKIdec rate > K × ThrMPKI ) and
( BTAsweight > K × Thrweight )

Request a new buffer.

each thread ranging from 1 to 4 based on its historic MPKI value (i.e. considering the

total number of off-core misses), and thresholds are scaled on each interval by multiplying

its base value by this constant. Finally, if both performance metrics surpass their cor-

responding threshold, the algorithm considers that energy is traded off by performance

and a new buffer is assigned to the thread.

Buffer Allocation Algorithm Working Example

This section presents through a working example how the devised Buffer Allocation Al-

gorithm works. To illustrate the algorithm’s behavior, Figure 6.3 shows the number of

buffers assigned by BAA, dynamically at run-time, to each of the 8 threads of barnes

(each plot represents a different thread), one of the benchmarks used in this paper and

presented in Section 6.4. Additionally, the figure also plots both BTAs and STT/DN

Hits per Kilo-Instruction (referred to as BTAs-HPKI and STT/DN-HPKI) and the to-

tal MPKI (i.e. considering the total number of off-core misses of each thread). The

experiment has been run using the FOS-Mt setup explained in Section 6.4.
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Figure 6.3: Number of allocated buffers during execution time for the 8 barnes

threads.

At the beginning of the execution, the Buffer Allocation Logic assigns one buffer to each

thread. Then, starting from the second interval, BAA is applied to each thread at the

beginning of each execution interval. As explained above, two key conditions must be

fulfilled for requesting a new buffer: the BTAs MPKI is expected to improve, and the

BTAs hits to total hits rate(BTAs weight) is over a given threshold. In the figure, the
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second condition can be appreciated in the plots of threads 100, 106 and 107, which are

those experiencing a higher amount of BTAs hits, and therefore are awarded with extra

buffers during their execution.

Notice that, between intervals 4 and 19, the total number of buffers allocated for all

the threads is 12 (the initial 8 buffers plus the additional 4 assigned to thread 100).

However, those threads that do not allocate extra buffers in those intervals keep their

MPKI in a similar value than that of thread 100.

This is because these threads do not require any extra buffers for their private blocks

and are accessing shared blocks previously fetched by Thread 100 to its assigned buffers

during intervals 3 to 7. Moreover, the MPKI is not only kept low among the different

threads under FOs-Mt, but also the overall MPKI is very close to that of the same

application executed on a much larger (i.e. up to 4MB) shared conventional L2 cache

organization, as it will be shown later in Section 6.5.

This example shows how the BAA properly addresses when a given thread requires

additional buffers. Furthermore, the devised approach is also able to identify which

threads do not need any additional cache space when they are accessing to shared data,

and this is directly translated to a much more efficient use of the cache.

Buffer Release

FOS-Mt implements a simple release mechanism lying on time and thread activity cri-

teria. A release mechanism is necessary as it allows feeding the buffer pool and prevents

threads from unnecessarily holding the maximum number of buffers after a hungry

phase. The proposed mechanism consists of two different conditions: i) first, the ex-

ecuting thread must neither have requested nor deallocated any other buffer in the last

Thrrelease intervals; and ii) the thread’s BTAsweight must be lower than K × Thrweight.

By meeting these two conditions, we ensure that FOS-Mt only releases a buffer after a

long-enough steady state and only in case that low performance losses can be introduced.

The LRU policy is used to choose which buffer is deallocated. The details about the

deallocation process are already explained in Section 5.2.1.
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Experimental results show that the proposed solution offers a reasonable performance,

since the draining phase of the Buffer Release process represents on average a small frac-

tion (i.e. around 1%) of the overall 8M-cycle interval length. Remember that this length

determines the amount of cycles at which the buffer allocation and release algorithms are

triggered. In summary, since the draining phase takes less than than 1% of the overall

interval length, we can conclude that the impact on both energy and performance of the

devised draining approach can be considered negligible.

Implementation Details in FOS architectures

The FOS architectures are complex organizations whose implementation is not trivial. In

this section, we summarize some details to provide insights regarding the implementation

of some of the features of these architectures.

First, the initial number of buffers turned-on for each core can be set by the hardware

threshold Thrlow, which also indicates the minimum number of buffers that a single

core can have assigned. To simplify the evaluation, all the experiments in this chapter

assume 1 as the value of this threshold.

Secondly, as already explained in Section 5.2.3, it is not required to execute the BAA

at fixed time intervals. We leverage the core stall cycles, when the ROB is blocked, to

execute the BAA.

In addition, although not depicted in Figure 6.1 for simplicity reasons, FOS-Mt also

counts with the Buffer Allocation Logic (BAL), located in a special node of the on-chip

network. This small logic keeps track of which buffers are being assigned to each core,

and manages the buffer allocation/deallocation requests. Its functionality is already

described in Section 5.2.1.

Finally, we discuss the case of a context switch in FOS-Mt. In other words, what would

occur in case a context switch event is triggered by the OS, so that the thread stops its

execution and is evicted from the core. On such a case, one possible option would be to

deallocate all the buffers previously assigned to that core but only one buffer and marked

to be powered-off after a certain number of intervals (e.g. one OS quantum). However,

if the evicted thread returns to resume its execution on the same core before the interval

expires, the deallocated buffers are restored and assigned to the thread again. The key
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idea behind this design is to prevent the thread from losing all its data in case it is

evicted for a short time, e.g. a hardware interruption. Notice that this rationale also

applies when running sequential workloads.

Multiprogram Multithreaded Workloads

The implementation of FOS-Mt allows the concurrent execution of multiple multi-

threaded workloads. When running such multiprogram workloads, FOS-Mt allocates

banks according to the cache space requirements of the different threads, regardless of

the application they belong to. However, regarding the management of shared blocks,

notice that threads belonging to a given application would not access to banks allocated

by the threads from other co-running application. Therefore, provided that there is

enough cache space, the benefits of FOS-Mt with respect to conventional approaches

when running multiprogram workloads composed of multithreaded applications would

remain.

6.3 FOS-Mt Optical Network-on-Chip

One of the main lessons learnt during the design of the FOS architecture is that the

underlying network that interconnects the different components of the architecture plays

an important role sustaining performance, specially when accessing to the farthest cache

buffers. Preliminary studies show that the NoC supporting FOS must i) be fast enough

to avoid delaying hits in the buffer pool, and ii) provide low latency variability in order

to guarantee that all the pool buffers present similar access time. To satisfy these

requirements, the FOS architecture employs an Optical-NoC, since optical transmissions

are fast even in relatively simple designs and the impact of distance in the network

latency is much lower compared to their electrical counterparts.

As its predecessor, the FOS-Mt architecture takes the same solution and implements an

ONoC to communicate the cache buffers, the compute nodes and the dedicated hardware

structures. Although the main idea remains, due to the higher complexity of FOS-Mt

with respect to FOS, some modifications have been added to the network design. This

section presents the FOS-Mt customized ONoC, and discusses its new features.
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6.3.1 FOS ONoC

The ONoC implemented in FOS-Mt keeps the ring-based topology already used in the

FOS architecture. Despite having more components to be connected, an optical ring

still suffices to meet the latency requirements, even using a reduced number of optical

resources.

With the aim of preventing non-critical requests and notifications from delaying the

access to the buffer pool, the network also keeps its multi-channel organization. In FOS-

Mt, we propose a ring with three separated channels C0, C1 and C2, which interconnects

the L1 caches, the buffer pool and the FOS-Mt hardware structures. Communications

on each channel take place on different waveguides, and each of them implements a dif-

ferent set of wavelengths working together so transmissions can take place in the three

channels simultaneously. Note that wavelengths on each channel are used to carry dis-

tinct bits of the same message to the destination; in other words, increasing the number

of wavelengths of a given channel directly translates to higher available bandwidth for

the packets, and therefore reducing the packet latency. This means that, in FOS-Mt’s

ONoC, a single channel can not carry bits of different messages in parallel, but it is pos-

sible to transmit faster a message on each channel. Although the design is quite similar

to that of FOS, the channels have been slightly modified to support the communication

with the DNs and the coherence traffic. Channel C0 performs transmissions from the

L1 caches and PTAs to the pool as well as between PTAs and DNs. Since its traffic is

mainly composed of requests and L1 writebacks, its bandwidth requirements are rela-

tively low. Thus, this channel is provided with just 32 wavelengths. Channel C1 delivers

the requested blocks from the pool to the L1 caches. Incurring a high latency when

delivering these blocks can be critical for performance; therefore, this channel is con-

figured with 128 wavelengths. Finally, channel C2 is employed to notify the PTAs and

the DNs when writing and replacement operations are finished in the buffer pool. Since

notification messages are small (4B), this channel is provided with just 8 wavelengths.

Sender nodes get channel access by arbitration. Optical token-based arbitration (see

Section 4.3.1) is also used in FOS-Mt, since it guarantees collision-free transmissions

and barely introduces extra overhead. Moreover, this arbitration mechanism has been

already demonstrated to efficiently work in FOS.
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As already explained in Chapter 4, token transmission latency mainly depends on the

silicon lightspeed and the path length. The FOS-Mt ring keeps the same size as its

predecessor, that is, 44.8 mm; therefore, token transmission latencies are also the same:

from 100 to 500 ps, depending on the distance. A reduced nubmer of extra several

wavelengths are still needed, in order for the sender to notify the receiver when a message

is going to be transmitted and tune its resonators. Tuning operations are consistently

assumed to take 400 ps delay.

Since most of the parameters are kept equal with respect to the ring implemented in

FOS, it is expected that the overall transmission latency (conversions plus data transmis-

sion) will be similar. First, remember that electrical-to-optical and optical-to-electrical

conversions introduce a delay by 9.5 ps/bit and the latter by 4.0 ps/bit, according to

the literature (see Section 4.1.1). Next, data transmission is computed exactly as it was

originally done in FOS. In the FOS systems, request and acknowledgment messages are

8B (64 bits) long, data messages are 72B (576 bits) long and notification messages are

4B (32 bits) long. Considering the number of wavelengths available on each channel

(32, 128, 8) and 10 Gbps conversion speeds, each conversion requires 200 ps, 500 ps and

400 ps, respectively. Analogously, data transmission delay also depends on the length

and the width of the channel. Since FOS-Mt also implements a 44.8 mm long ring, the

head of the message takes 500 ps to reach the farthest node. After that, the remaining

transmission latency depends on the message size and the channel bandwidth (i.e. the

number of wavelengths). For instance, a 576-bit writeback message sent from an L1

node to the farthest buffer in the pool over channel C0 takes 1400 ps (500 + 900), while

a 576-bit data message sent from the buffer to the same L1 node takes only 1000 ps

(500 + 500) because it is transmitted over the widest channel C1.

Table 6.2 summarizes the discussed ONoC parameters and latencies. With these param-

eters and latencies, the whole transmission delay of any message assuming no contention

varies between 2 and 4 core cycles for a 2 GHz core clock frequency, which is fast and

uniform enough to accomplish the aforementioned FOS-Mt requirements. Note that the

highest latency variation introduced because of distance is 500 ps, which means that the

distance between transmitting nodes presents a limited impact on latency, which is one

of the FOS-Mt NoC main requirements.
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Table 6.2: Optical network-on-chip parameters and latencies.

Parameters

Frequency 10 GHz
Wavelengths per channel 32 - 128 - 8 λ
Signal propagation 11.4 ps/mm
Modulation bandwidth 10 Gbps

Latencies (ps)

Token transmission Varying in range [100..500]
Microring tuning delay 400
Data modulation (64b-576b) 100 - 500
Trans. latency Varying in range [100..900]

Table 6.3: Loss values of photonic components.

Component Value Reference
Laser Efficiency 5 dB [47]
Coupler 1 dB [141]
Waveguide path loss 0.1 dB/mm [47]
Waveguide bend/cross 0.005/0.5 dB [47]
Ring drop 1 dB [141]
By/Through ring loss 0.001/0.1 dB [141]
Photodetector 0.1 dB [141]
Receiver sensitivity -25 dB [141]

6.3.2 Energy model

To complete the ONoC analysis, in this section we apply the energy model already

presented before in Section 5.5.1. Notice that, although most parts of the optical network

remain identical, the number of components has been increased, since there are more

nodes, structures and buffers to interconnect.

The power consumption of the laser is computed using the model of Morris et al. that

we presented in Chapter 5. The equation is as follows:

Plaser = Prx + Closs +Ms,

where Plaser is the laser power, Prx is the receiver sensitivity, Closs is the channel loss,

and Ms is the system margin. The model is fed with the loss values listed in Table 6.3,

and its outcome provides the minimum laser power to carry a signal strong enough to

be received by the photodetectors in each node. These values are the same than those
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employed in FOS, since they do not depend on the ONoC design but on the technology

state-of-the-art.

The FOS-Mt ONoC keeps the advantages of the previous design regarding energy effi-

ciency. Aimed at reducing the power loss and the crosstalk noise power, the FOS-Mt

ONoC supports up to 3 transmissions that can be performed in parallel, each of them

involving a number of resonators equal to the 2× number of wavelengths allocated for

the corresponding channel (32 for C0, 128 for C1 and 8 for C2). This means that, at any

time there can be at most 336 active resonators from a total amount of 6720.

The total energy per bit for the devised ONoC has been computed using the average

number of transferred bits and execution time across the executed workloads. According

to the model, the energy per bit consumed by the ONoC is up to 1.5 pJ/bit. In contrast,

the energy dissipation value expected in electrical links is 0.25 pJ/bit (estimated with

ORION 2.0 [143]). Further details on the energy results achieved by FOS-Mt are shown

in Section 6.5.3.

6.4 Experimental Framework

We have widely extended the Multi2Sim simulation framework [119] code to model

and evaluate our proposal. As stated in Chapter 3 and similarly done in Chapter 5,

Multi2Sim has been linked to the DRAMSim2 framework [144], a hardware-validated

DRAM simulator. Also, the CACTI v6.5 [125] tool has been used to estimate the

energy consumption and access latency of the studied cache structures for a 32 nm

technology node. Experiments have been carried out using a subset of benchmarks from

the SPLASH3 2017 and the ALPBench 2005 suites [127, 147].

The evaluation methodology is as follows. Applications are run until the end of their

execution, but statistics are gathered only on those intervals where multiple threads

are running simultaneously. This methodology prevents the results from being affected

by the initialization stage of the applications, where some applications typically execute

only one thread and allocate a reduced amount of cache banks. Otherwise, the presented

results would show lower average energy consumption.
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(a) Block diagram of Private-ELC. (b) Block diagram of Shared-ELC.

(c) Block diagram of Shared-OPT. (d) Block diagram of NUCA-OPT.

Figure 6.4: Block diagrams of all the conventional baseline approaches.

6.4.1 Studied Approaches

FOS-Mt has been configured with a pool of n buffers of k size, and each buffer counts

with 8 ways. In this work, experimental results consider k equal to 128KB and n equal

to 4 times the number of cores; that is, the total L2 cache capacity for an 8-core mul-

tiprocessor is 4MB. Notice that, in order to keep a reasonable number of maximum

buffers, the size of the buffers has increased with respect to the previous chapter; how-

ever, other combinations are also possible. To interconnect these 32 buffers with the

memory controllers, FOS-Mt implements an electrical mesh that concentrates 4 buffers

per node. Regarding the buffer allocation algorithm setup, a wide set of experiments has

been performed to tune its parameters. These parameters could be farther refined with

more experiments, however, this work presents the results with the parameter values

that showed the best energy efficiency through most of the experiments: Thrmin=0.2,

ThrMPKI=0.05, Thrweight=0.125.

To study where the achieved benefits come from, the proposal has been first compared
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Table 6.4: Baseline system parameters.

Core

Number of cores 8, OoO, 4 issue/commit width
Frecuency 2 GHz
ROB size 128 entries

Cache Hierarchy

L1 Inst-Data cache Private, 64KB, 8-way, 64Bytes, 1 cycles
L2 Private, 512KB, 16-way, 64Bytes, 8 cycles

Interconnect L1-L2

Frequency 2 GHz
Bandwidth 64 Bytes/cycle

Main Memory & Memory Controller

DRAM bus freq. 1600MHz
DRAM device DDR4 (3200 Mtransfers/cycle) 8 banks
Latency tRP , tRCD, tCL 13.75ns each

with four different systems varying the cache hierarchy and the NoC, which are the

components modified by our proposal. That is, different L2 cache organizations and

L1-L2 interconnection networks have been considered. The remaining components of

the architecture (e.g. memory controllers, L2 to main memory interconnection, etc.)

are the same across all the studied systems, including FOS-Mt.

To refer to a given configuration, we use the identifier of the L2 cache organization

combined with that of the L1-L2 interconnection network. For instance, Shared-OPT

refers to a system with an L2 shared cache with optical NoC. To expose the differences

among the four conventional systems that are compared to FOS-Mt, Figure 6.4 presents

a block diagrams of these approaches. Additionally, with the aim of comparing FOS-

Mt against other existing approaches, we have extended the simulation framework to

implement the widely known cache decay [102] mechanism that powers off the cache

lines that have not been accessed for a long-enough number of cycles. Below, the main

characteristics of these five schemes are summarized.

• Private-ELC: In order to study the performance constraints associated to fixed-

size private caches, we implement a scheme that presents 512KB L2 private caches

(i.e the overall L2 cache capacity is 4MB), connected to the corresponding cores

through point to point electrical links. Table 6.4 summarizes the main parameters

of this baseline system, whose block diagram is presented in Figure 6.4a.
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• Shared-ELC: To compare FOS-Mt to a scheme with a a common shared space

that exhibits inter-application and inter-thread interference, we implement an ap-

proach with a 4MB shared and monolithic L2 cache connected to the first level

cache (i.e. L1 cache) by an electrical crossbar, as can be seen in Figure 6.4b. For

the energy study, this cache organization has been modeled in CACTI with 8 UCA

sub-banks.

• Shared-OPT: To discern whether the performance enhancements come either

from reducing the network latency or from improved performance of the shared

organization, this configuration presents the same cache hierarchy as Shared-ELC,

but the electrical crossbar is replaced by an optical ring whose technological pa-

rameters match those of the proposed ONoC (see Section 6.3.1). This means that

the latencies associated to the optical components of this network (e.g. waveguides,

photodetectors, etc.) are the same as those of FOS-Mt’s ONoC. However, since

this approach does not implement neither DNs nor BAL nodes, its ring implements

only 2 channels of 32 and 128 wavelengths respectively. The block diagram of this

approach is presented in Figure 6.4c.

• NUCA-OPT: A NUCA-based approach is introduced to replicate the FOS-Mt

system without the FOS-Mt buffer allocation algorithm. That is, in this approach

all the cache banks are active during the execution, and they are statically accessed

to cores by address interleaving. The motivation behind this scheme is twofold:

i) exposing clearly the energy efficiency benefits, in terms of cache management,

brought by FOS-Mt; and ii) compare the benefits of FOS-Mt against those of a

scheme with small and fast cache modules and similar network latencies. This

scheme is configured as a pool of n NUCA modules of k size, where n and k

match the values selected for the buffers in the FOS-Mt setup. Regarding the

interconnection network, NUCA-OPT implements an optical ring with 2 channels

similar to that of Shared-OPT, but interconnecting more network nodes (all the

cores and NUCA modules). The block diagram of this approach is exposed in

Figure 6.4d.

• Decay-OPT: Finally, a shared cache organization implementing a cache decay

technique is modeled to compare our proposal against an existing energy-aware

approach. To this end, a cache decay mechanism has been implemented in our
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simulation framework. The decay technique uses two hardware counters to measure

the number of cycles that a cache line has experienced without being accessed.

When this number exceeds a given amount of cycles, the line is powered off and

the block occupying it is evicted from the cache. In order to make a fair comparison

between Decay-OPT and our proposal, we apply the decay mechanism to the L2

cache (Shared-OPT block diagram) with an optical interconnect.

6.5 Experimental Results

6.5.1 Impact of the PTA Size on Performance

As explained in Section 6.2, the number of Buffer Tags Arrays (BTAs) in the PTA limits

the amount of buffers assigned to a given core. On the other hand, including a high

number of BTAs per PTA increases access latency and area overhead. In other words,

there is a trade-off between performance and PTA complexity. To study this trade-off,

in this section we range the number of BTAs per PTA from 1 to 12 and calculate the

impact on access latency, hardware complexity and performance.

Table 6.5 shows the access latency (both in nanoseconds and processor cycles) and the

storage capacity of the BTAs for all the studied setups. In order to lookup a matching

tag, all the BTAs in a PTA are accessed in parallel. Therefore, as a conventional cache,

the access time depends on the accessed number of ways. That is, the number of BTAs

per PTA multiplied by the number of ways per BTA (which is equal to 8, i.e. the number

of ways in a buffer). Regarding the storage capacity, it is calculated as:

Capacity = BTAs per PTA× tags per BTA× bits per tag. (6.1)

Table 6.5: Access time and capacity of the Buffer Tag Arrays.

#BTAs T (ns) T (cc) Capacity (KB)

1 0.21 1 6.75
2 0.27 1 13.5
4 0.33 1 27
6 0.39 1 40.5
8 0.47 1 54
12 0.59 2 81
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Figure 6.5: Execution Time.

For 128KB buffers composed of 64B lines, the number of tags per BTA is equal to 2048

(128KB/64B). Assuming 27-bit tags, this gives a BTA capacity of 6.75KB. Note that

the total capacity of the PTA is the sum of that of the BTAs, the Shared Tags Table

(STT) and the shadow tags needed by the Buffer Allocation Algorithm. Regarding the

STT, we have checked different sizes and organizations, and found that a single STT

with 1024-entries and 8-way associative is enough to avoid harming performance. Note

that this is in line with other works [148] showing that in parallel workloads, most of

the storage space is used by private blocks and, in comparison, the space needed for

shared blocks is relatively small. Taking into account that a STT stores, for each entry,

the buffer and way identifiers, the capacity of such a STT is equal to 4.375KB. With

respect to the shadow tags, we applied a Set Sampling of 32 sets per BTA, which gives

an additional overhead of 864B per BTA.
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To evaluate the sensitivity of performance to the number of BTAs, Figures 6.5 and 6.6

plot the impact on the execution time and on the distribution of the result of access

(i.e. private hit, shared hit, and miss), respectively. Regarding the result of the access

(Figure 6.6), it can be observed that in 6 out of 10 applications the hit rates drop

significantly when the number of BTAs is less than 6. In the remaining applications,

the miss rate is unaffected because the working set, and specially the shared data, fit in

the buffers assigned to each thread. Next, as shown in Figure 6.5, performance is also

affected, specially in cholesky, ocean-ct and ocean-nct. On the other hand, providing

the PTAs with more than 6 BTAs does not translate to performance gains for any studied

application. To sum up, we can conclude that these results show that 6 BTAs provide

the best tradeoff between hardware complexity and performance. Therefore, from now

on we will employ this setup in the remaining experiments.

6.5.2 Impact of the Optical Ring in FOS-Mt
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Figure 6.7: Execution time across the studied workloads for FOS-Mt with electrical
crossbar and optical ring interconnects.

Regarding interconnects, as stated in Section 6.3, our proposal only requires a fast-

enough network able to provide rather uniform access latency between the computing

cores and the buffer pool. In this section, we evaluate FOS-Mt using both an optical ring

(labeled as FOS-Mt-OPT ) and an ideal electrical crossbar (FOS-Mt-ELC ) to intercon-

nect the L1 caches and the data buffers. We perform these experiments to investigate

how the proposal would behave with a different network. Other approaches, like an
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electrical mesh, could be also studied, although these solutions would strongly depend

on the topology and would require a dedicated design.

Figure 6.7 shows the execution time across the studied workloads for FOS-Mt with

electrical crossbar and optical ring interconnects As observed, in those workloads that

introduce low traffic into the network like water-spa, water-nsq or radiosity, FOS-

Mt-ELC is slightly the best performing approach. This is due to the small overhead

introduced by the optical ring, which needs to arbitrate, tune the microrings and grant

exclusive access to the ring before starting any transmission. This penalty is not suffered

by the electrical crossbar approach, which under low-traffic and no contention offers a

similar latency to that of the optical ring. When running more memory intensive ap-

plications like ocean-ct, ocean-nct and ftt, however, FOS-Mt-ELC becomes clearly

the worst approach. The electrical crossbar presents worse performance in terms of la-

tency than the optical ring. Moreover, it does not considers differentiated channels as

the optical NoC, so transmissions in the critical path are more affected by contention.

Therefore, we can conclude that the optical ring is more suitable to manage NoC con-

tention than the electrical crossbar.

In summary, these results show that the devised ONoC presents the best performance

on average across the studied applications, since it not only performs much better in

memory intensive workloads than the studied electrical crossbar, but it also sustains

the performance in compute intensive (and low NoC utilization) applications. Because

of this reason, the following sections will only present results for the FOS-Mt-OPT

approach.

6.5.3 Energy Evaluation

This section evaluates FOS-Mt’s energy consumption and compares it with the ap-

proaches explained in Section 6.4. To this end, Figure 6.8 plots the energy consumption

of the studied approaches normalized to the Private-ELC one. In the figures, the energy

consumption is broken down into three main components: i) the energy consumption

coming from the network side, that is, from electrical links and from optical rings; ii)

the static energy consumed in the cache modules due to leakage currents; and iii) the

dynamic energy consumed on every access to the cache modules. In the case of FOS-Mt,
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Figure 6.8: Normalized energy consumed by conventional approaches and FOS-Mt
with respect to Private-ELC.

the latter value also considers the dynamic energy consumed in the PTA and the DN

lookups.

Results presented in Figure 6.8 show that the static energy consumption of cache modules

is clearly the component that dominates the overall energy consumption across all the

studied cache organizations. However, in the case of FOS-Mt thanks to the number

of cache buffers that it does not activate at run-time, these static energy consumption

values are drastically reduced in 10 out of 15 applications.

To provide further insights on the energy savings of FOS-Mt, Figure 6.9 presents the

average amount of cache space allocated by each application during its execution time.

The figure shows that, on average, FOS-Mt allocates by 49% of the total cache space,

varying from 1MB in the case of water-spa to almost 4MB (that is, the whole pool)

in the cases of ocean-ct and ocean-nct. As a result, static energy savings are spe-

cially significant in applications with a low average number of active buffers like fmm,

radiosity, water-spansq, raytrace or sphinx3, where FOS-Mt improves static en-

ergy consumption by up to 75% over the Private-ELC baseline. On the other hand,

when running applications that need to turn on the whole cache space, FOS-Mt’s static

energy values match those obtained by other shared approaches. This behavior means

that FOS-Mt is properly working, since it is correctly trading off performance and energy

when needed.

The static energy differences among the remaining approaches are due to two main

reasons. First, it can be observed that the 32 cache modules implemented in NUCA-OPT

consume a higher amount of energy than the monolithic 4MB cache module implemented
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Figure 6.9: Average amount of cache space (KB) allocated during execution in FOS-
Mt.

in Shared-OPT/ELC. The second reason is the execution time achieved by the studied

approaches. For instance, in the case of barnes, Private-ELC presents the highest static

energy consumption since the execution time is by 40% higher than that of the other

approaches (see Section 6.5.4). The impact of the execution time on the overall static

energy consumed can be also observed in MPGdec and MPGenc.

Regarding dynamic energy consumption, it can be observed that NUCA-OPT is the

approach that presents the best results, closely followed by FOS-Mt. This is due to

the low complexity of the 128KB cache modules employed in both cache organizations,

which is directly translated to a lower energy spent on each access. Consequently, the

large monolithic modules implemented in the Shared-ELC and Shared-OPT approaches

present the highest energy consumption values of this component. Regarding FOS-Mt,

notice that, despite implementing cache modules of the same size as those of NUCA-

OPT, the PTA and the Directory Nodes introduce a relatively low overhead, which

represents on average by about 4% of the total energy consumption. Moreover, this

energy overhead is only suffered in the access to the tag array, thus the overall dynamic

energy consumption in FOS-Mt is only by 45% higher than that of NUCA-OPT on aver-

age. Only in some applications like ocean-ct and ocean-nct, where FOS-Mt allocates

a high amount of buffers, its dynamic energy consumption can be by 100% higher than

that of NUCA-OPT. On the other hand, in applications that allocate a reduced amount

of buffers like raytrace, the dynamic energy consumption of FOS-Mt matches that of

NUCA-OPT.
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Regarding the energy consumption coming from the network side, it is plotted at the

bottom of each bar. It can be seen that, on average, the network energy consumption of

the optical approaches is from 8 to 12 times higher than that of Private-ELC and Shared-

ELC. This means that all the optical approaches experience an energy consumption

increase by up to 10% with respect to the electrically connected configurations.

When comparing the optical approaches, it can be observed that the optical network of

Shared-OPT presents a slightly lower energy consumption than the network of NUCA-

OPT. This is due to the different number of nodes implemented on each network. NUCA-

OPT implements 32 cache modules, and the amount of optical microrings needed to

interconnect them is higher than in Shared-OPT, where only one cache module is con-

nected to the network. FOS-Mt is the system that presents the highest network energy

consumption since its ONoC implements an additional channel for control messages, as

explained in Section 6.3. This channel, which is not needed in NUCA-OPT and Shared-

OPT, requires additional microrings that increase the network energy consumption. In

some cases, like barnes or MPGenc, however, the contention may rise in the optical chan-

nels due to the access to the L2 tags, so increasing the network latency. As a result, the

energy consumed by the optical approaches may not be determined only by the number

of optical resources. Notice that this effect does not happen in FOS-Mt since the buffer

tags are located close to the cores.

In spite of being the optical approach with the highest network energy consumption,

overall, FOS-Mt provides the highest energy savings due to its highest cache efficiency.

These savings cannot be achieved with a NUCA because it does not allocate buffers to

applications according to their needs as FOS-Mt does. Notice that this fact remains even

for an electrically connected NUCA, since it would only save up to by 10% compared

with NUCA-OPT.

Recall that FOS-Mt needs to fully interconnect every cache buffer with every L1 cache

as well as providing a low and rather uniform access latency to the buffer pool; thus,

from a performance perspective, a common electrical mesh is not suitable for FOS-

Mt. Anyway, in case that FOS-Mt was implemented over a different kind of network

(e.g. a high-performance electrical network) the energy savings achieved by the Buffer

Allocation Algorithm would remain.
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Figure 6.10: L2 Misses Per Kilo-Instruction.

6.5.4 Performance analysis

Figure 6.10 plots the L2 Misses Per Kilo Instruction (MPKI) of the studied approaches.

Overall, the shared approaches are those that achieve the lowest MPKI values, which is

explained by the fact that private caches cannot store enough data for some applications

and because of the ping-pong effect of shared blocks in this kind of cache organizations.

In general, NUCA-OPT is the best performing system for all applications, closely fol-

lowed by FOS-Mt. Moreover, for ocean-ct and ocean-nct, NUCA-OPT and FOS-Mt

reduce the MPKI compared to other shared setups, thanks to the reduction of conflict

misses with respect to the monolithic shared approaches. This reduction is mainly due

to the distribution of cache accesses among different cache buffers.

FOS-Mt’s MPKI is only slightly higher than that of other shared approaches in radix

and fmm. This occurs because these applications experience sudden sharp increases of

their MPKIs during execution to which the Buffer Allocation Algorithm is unable to

react.

Finally, Figure 6.11 presents the speedup that FOS-Mt and the other shared hierar-

chies achieve over Private-ELC. On average, and despite the fact that FOS-Mt is not

an approach aimed at performance, all the shared approaches and FOS-Mt present sim-

ilar performance values. Moreover, in the case of barnes, FOS-Mt even presents the

best performance among the studied approaches, achieving a speedup by 36% over the

baseline. The only application where FOS-Mt suffers a perceptible, although slight,



Chapter 6. FOS-Mt: An efficient Flat Storage Organization for Multithreaded
Workloads 130

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Sp
ee
d
u
p

Private-ELC Shared-ELC Shared-OPT NUCA-OPT FOS-Mt

Figure 6.11: Speedup with respect to Private-ELC.

performance drop is radix. As seen in Figure 6.10, this corresponds to a small increase

in the L2 MPKI.

6.5.5 Energy Efficiency
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Figure 6.12: Energy Delay Product (EDP) of the studied approaches.

To study the energy efficiency of the studied approaches, Figure 6.12 presents the Energy

Delay Product (EDP) across the executed workloads. As observed, FOS-Mt shows the

lowest (i.e. the best) EDP values thanks to the achieved energy savings. Accordingly,

in those applications where the Buffer Allocation Algorithm powers on the whole buffer

pool (e.g. ocean-ct and ocean-nct), the EDP of FOS-Mt is almost the same as that

of NUCA-OPT. Also, in some cases like fft or cholesky, it can be observed that the

higher execution time of FOS-Mt translates to an EDP similar to that of Shared-OPT.
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The discussed results prove the energy efficiency of FOS-Mt, whose energy savings not

only are able to contain the overheads incurred by the implemented hardware structures

and the optical network, but also reduce the overall energy consumption by up to 77%

in the best case (i.e. sphinx3). Moreover, these energy savings do not come at the

expense of performance, since the execution time is not higher than by 2% on average

compared to the best performing approach. These results show that -Mt behaves as the

most energy efficient organization among the studied approaches since it achieves the

best EDP.

6.5.6 Comparison against Cache Decay Approaches
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Figure 6.13: Execution time of FOS-Mt and various decay approaches.

Previous sections have discussed the performance and energy of FOS-Mt with respect

to typical conventional cache hierarchies. Nevertheless, none of these approaches is

specifically designed to save energy, as it is our proposal. In this section, FOS-Mt is

compared against a well-known energy-saving technique like cache decay. Since the life

time of a cache block stored in the L2 or a lower cache level may present huge variations

among different applications, and even within blocks of the same application [149, 150],

we study three cache decay configurations varying the decay interval time. Three main

interval lengths have been explored: 1M-cycle, 5M-cycle and 10M-cycle. This number

is used to refer to a given approach. For instance, in Decay1M-OPT a cache line that

has not been accessed for the last million of processor cycles is turned-off.
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Figure 6.14: Average percentage of cycles powered off per way during the execution.

Figure 6.13 shows the execution time (in millions of clock cycles) achieved by the studied

decay approaches and FOS-Mt. As expected, reducing the decay interval turns into an

increase in the execution time. Therefore, the longer the decay interval, the better the

performance; hence the best performing decay approach is Decay10M-OPT. Compared

to this approach, FOS-Mt achieves better or similar performance in all the applications

except cholesky.

Although increasing the decay interval helps improve performance, longer intervals imply

a reduction in the average amount of time that cache lines are powered off through the

execution. To quantify this adverse effect, Figure 6.14 presents the average percentage

of time that a line is powered-off. On average, this percentage is as much as 51% in

the case of FOS-Mt, while in the case of Decay1M-OPT (i.e. the less consuming decay

approach) this percentage drops to 37%.
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Figure 6.15: Energy Delay Product of FOS-Mt and Decay configurations.
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Finally, Figure 6.15 plots the EDP of all the studied decay approaches together with

FOS-Mt. As observed, FOS-Mt achieves the best EDP values in 13 out of 15 applications,

with the only exceptions of fft and fmm. Regarding the decay variants, it can be

appreciated that both Decay5M-OPT and Decay10M-OPT offer on average roughly the

same EDP, while Decay1M-OPT is the approach that presents the worst EDP value.

These results are explained due to the poorer performance of Decay1M-OPT with respect

to the remaining approaches. Some applications show a very low EDP mainly due to

their short execution time compared to the longer ones.

In conclusion, these results prove that FOS-Mt not only achieves higher energy savings

on average than the studied decay approaches, but also presents the lowest execution

time in most of the executed workloads. Moreover, the cache decay approach imposes

many constraints from an implementation point of view, reducing the effective storage

area mainly due to the additional circuitry required to cut the power supply to all

the cache lines. However, working at a coarser granularity as FOS-Mt does, eases the

implementation.

6.6 Summary

This chapter has discussed FOS-Mt, a novel cache organization for low-power multi-

processors that trades-off performance with energy consumption. FOS-Mt extends the

previous FOS architecture, and incorporates new features like support of multithreaded

applications and coherence management. As its predecessor, the proposed architecture

conforms a single, sliced and flattened cache space that replaces conventional low level

caches (e.g. L2 and beyond). FOS-Mt’s cache space is divided into relatively small

buffers (e.g. 128KB), which are dynamically allocated by the execution cores at run

time. These buffers are much larger than individual cache lines, which eases the imple-

mentation of practical energy aware approaches that work at this granularity.

Experimental results have shown that FOS-Mt reduces by up to 78% the static energy

consumption due to leakage currents in the cache modules. Thanks to the small size of

the FOS-Mt’s buffers, dynamic energy savings are also achieved, since FOS-Mt reduces

this component by a factor of 4× with respect to a shared cache of the same size. Fi-

nally, when compared with other conventional approaches like NUCA, shared or private
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caches of the same size, FOS-Mt presents similar performance, only suffering a slight

performance degradation of by 1%. Although the widely known Cache Decay approach

imposes serious implementation constraints from a practical perspective, we have also

compared FOS-Mt against this approach from an energy efficiency perspective. Exper-

imental results show that FOS-Mt improves EDP on average by 19.3% over the best

decay interval across the studied workloads, being in some cases up to 48%.



Chapter 7

Conclusions

This thesis has focused on improving resource sharing in current chip multiprocessors.

Two major system components, and their impact on performance and energy consump-

tion, have been thoroughly studied: the cache hierarchy and the network on-chip. In

this regard, this dissertation has proposed a novel cache organization aimed at reduc-

ing energy consumption in low-power CMPs, and explored silicon photonics as a viable

alternative to face communication challenges in current and future multicores.

This chapter summarizes the main contributions of the dissertation, discusses future

work directions, and enumerates the scientific publications related with the proposed

approaches.

135
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7.1 Contributions

Chip multiprocessors have demonstrated to be an effective solution to the power con-

sumption wall of previous monolithic single-threaded processors. Although multicores

efficiently exploit thread level parallelism to achieve better performance, the fact of shar-

ing resources among the co-running threads (or applications) makes to rise contention

at the shared resources. The most critical shared resources in current multicores are

the main memory bandwidth, the LLC, and the network on-chip. To improve the ef-

ficiency of current and future multicores, this dissertation has addressed specific issues

that impact on two of these resources: the LLC and the NoC.

Regarding the network on-chip, Chapter 4 proposes silicon photonics as a viable can-

didate to replace or complement existing interconnects in multicores. To support this

claim, in this chapter we quantified the deviation that wrong optical models could present

when integrated in detailed CMP simulation environments, and concluded that employ-

ing accurate models when simulating this technology is of paramount importance to

obtain representative results. The analysis presented in Chapter 4 can be divided in two

parts: i) description; and ii) evaluation. First, to provide the required background on the

matter, the chapter described each component needed to fully implement an ONoC and

integrate it in a silicon die. In particular, it was explained how each of these components

is modeled, as well as the impact of each of them on the transmission latency. Then, for

experimental evaluation, two approaches were modeled and implemented in a detailed

simulation framework: the former, a realistic optical NoC composed of two rings and

featuring a state-of-the-art arbitration technique; the latter, the same optical NoC with

no arbitration. In order to extend the validness of the study for future scenarios, exper-

iments were carried out using 64 and 160 maximum wavelengths. Experimental results

show that the variation in average network latency between the two approaches can be

as much as three orders of magnitude, presenting IPC deviations higher than 10% in

some cases. Additionally, a state-of-the-art power consumption model stated that the

realistic approach increases network energy consumption by 3% in the best case.

Regarding the LLC, Chapter 5 presented FOS, a novel cache organization and manage-

ment approach to trade-off performance for energy consumption. FOS replaces conven-

tional low level (e.g., L2 and L3) caches with a single level consisting of a pool of cache
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buffers, and introduces a novel management approach especially suited for low-power

processors. These buffers are much larger (i.e. 64−128 KB) than individual cache lines,

which eases the implementation of energy-aware techniques working at this granularity.

FOS has been implemented and evaluated with an underlying ONoC, since it provides

rather fast and uniform access latency to the buffers. Experimental results showed that

FOS reduces both dynamic and static energy consumption. Compared to a conventional

shared cache with the same storage capacity, FOS reduces the static energy consump-

tion by up to 60%. Dynamic energy consumption is also significantly reduced, by a up

to 4× factor over a conventional shared cache of the same capacity. Moreover, FOS

energy savings do not come at the expense of performance, since moderate performance

improvements come from the network and the cache side. That allows FOS to achieve

similar performance to an optically connected NUCA cache, despite using on average

only 50% of the cache space.

Motivated by the promising results achieved in Chapter 5, in Chapter 6 we extended

the approach to support multithreaded applications. This approach entails multiple

challenges, such as designing new buffer allocation policies or efficiently managing the

cache coherence. In order to address these challenges, new hardware structures, namely

Private Tag Array and Directory Nodes, have been implemented in the simulation frame-

work. These structures keep track of the location and state of the data blocks, easing the

coherence management and reducing the average latency. Additionally, a new Buffer

Allocation Algorithm has been devised aimed at exploiting the locality of the shared

data in the active buffers. Putting all these new features together, experimental results

showed that FOS-Mt reduces by up to 78% the static energy consumption due to leakage

currents in the cache modules and by up to a 4× factor the dynamic energy consump-

tion. Compared to existing conventional approaches like NUCA architectures, shared

or private caches of the same size, FOS-Mt presents similar performance, only suffering

minor performance degradation (up to 1% on average). The proposal has been also

compared to the widely known Cache Decay approach, a work of reference in the field

of cache energy savings. In this study, FOS-Mt improves EDP on average by 19.3% over

the best decay interval across the studied workloads, being in some cases up to 48%.
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7.2 Future Directions

The proposals summarized in this dissertation explore the use of optical interconnects

as a useful tool for computer architects. Future directions of this idea are directly re-

lated to extending the approach to other shared resources or other architectures. An

interesting idea might be using optical interconnects together with prefetching, manag-

ing the available wavelengths according to the prefetching policy. On the other hand,

GPU architectures are an interesting field of study for optical interconnects due to the

communication bottlenecks they are exposed to. Finally, following a different direction,

we also plan to evaluate our FOS proposals without leveraging optical interconnects but

other existing low-latency electrical networks.

7.3 Publications

The following papers related with this dissertation were submitted and accepted for

publication in different international journals and conferences with peer review.

Journals:

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. FOS: a low-power cache

organization for multicores. The Journal of Supercomputing (JS), volume 75, issue

10, pages 6542-6573, 2019.

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. An efficient cache flat stor-

age organization for multithreaded workloads for low power processors. Future

Generations Computer Systems (FGCS), volume 110, pages 1037-1054, 2020.

Conferences:

• J. Puche, S. Lechago, S. Petit, M. E. Gómez, and J. Sahuquillo. Accurately

Modeling a Photonic NoC in a Detailed CMP Simulation Framework. In Proceed-

ings of the International Conference on High Performance Computing Simulation

(HPCS), pages 387-394, Innsbruk, Austria, 2016.
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In addition, other related papers have been published in international summer schools

and domestic conferences:

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. Flat On-chip Storage: A Novel

Cache Organization for Low Power Processors. In Proceedings of the 14th Inter-

national Summer School on Advanced Computer Architecture and Compilation for

High-Performance and Embedded Systems (ACACES), Fiuggi, Italy, 2018.

• J. Puche, J. Duro, S. Petit, M. E. Gómez, and J. Sahuquillo. Estudio de explo-

ración sobre la aplicación de la tecnoloǵıa fotónica en NoCs. In Actas de las XXVI

Jornadas de Paralelismo (JP), pages 361-369, Córdoba, Spain, 2015.

• J, Duro, J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. Explotación de la

Localidad de Banco en Cargas Multiprogramadas. In Actas de las XXVI Jornadas

de Paralelismo (JP), pages 305-312, Córdoba, Spain, 2015.

• J. Puche, S. Lechago, S. Petit, M. E. Gómez, and J. Sahuquillo. Modelado realista

de una NoC fotónica en un entorno de simulación CMP detallado. In Actas de las

XXVII Jornadas de Paralelismo (JP), pages 415-420, Salamanca, Spain, 2016.

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. FOS: Una nueva organi-

zación de cache con interconexión fotónica. In Actas de las XXVIII Jornadas de

Paralelismo (JP), pages 283-292, Málaga, Spain, 2017.

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. P-FOS: Una Organización de

Cache Eficiente para Procesadores Multinúcleo. In Actas de las XXIX Jornadas

de Paralelismo (JP), pages 135-141, Teruel, Spain, 2018.

• J. Puche, S. Petit, M. E. Gómez, and J. Sahuquillo. FOS-Mt: Una Organización

Eficiente de Cache para Aplicaciones Paralelas en Procesadores de Bajo Consumo.

In Actas de las XXX Jornadas de Paralelismo (JP), pages 196-202, Badajoz, Spain,

2019.

All publications listed above are exclusively related with this thesis. The Ph.D. can-

didate has contributed to the design, implementation and evaluation of the proposals,

which includes the discussion of early designs, the implementation of the devised algo-

rithms, the preparation of the experimental framework, the execution of the experiments,
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the processing and analysis of the results, the writing of the paper drafts for publica-

tion, and the presentation of the papers in the national and international conferences.

Throughout these iterative processes, the co-authors have strongly supported the can-

didate, providing experienced advice to improve the work and make it evolve into this

dissertation.

In addition, the author of this dissertation has also participated in the development

of research work analyzing the impact of resource sharing in the major components

of cloud systems. This work, therefore, can be considered indirectly related with the

work developed in this thesis. Below, the papers summarizing the main results of the

developed work are listed.

• L. Pons, J. Feliu, J. Puche, C. Huang, S. Petit, J. Pons, M. E. Gómez, and J.

Sahuquillo. Understanding Cloud Workloads Performance in a Production like

Environment. Journal of Parallel and Distributed Computing (JPDC), submitted

to Journal of Parallel and Distributed Computing.

• L. Pons, J. Feliu, J. Puche, C. Huang, S. Petit, J. Pons, M. E. Gómez, and J.

Sahuquillo. Cloud White: A Production System Approach for Estimating QoS

Degradation in the Public Cloud. Future Generations Computer Systems (FGCS),

submitted to Future Generations Computer Systems.
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Electronics and Design, ISLPEDâ04, . doi: 10.1145/1013235.1013254.

[93] A. Agarwal, H. Li, and K. Roy. Drg-cache: A data retention gated-ground cache

for low power. In Procs. of Design Automation Conference, DAC 2002.

[94] H. Hanson, M.S. Hrishikesh, V. Agarwal, S.W. Keckler, and D. Burger. Static

energy reduction techniques for microprocessor caches. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 2003. doi: 10.1109/TVLSI.2003.812370.

[95] Salvador Petit, Julio Sahuquillo, Jose M. Such, and David R. Kaeli. Exploiting

temporal locality in drowsy cache policies. In Procs. of the 2nd Conference on

Computing Frontiers, CF 2005.

[96] W. Zhang, M. Karakoy, M. Kandemir, and G. Chen. A compiler approach for

reducing data cache energy. 2003.

[97] Nasir Mohyuddin, Rashed Bhatti, and Michel Dubois. Controlling leakage power

with the replacement policy in slumberous caches. In Procs. of the 2nd Conference
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Yúfera. Memory hierarchy characterization of spec cpu2006 and spec cpu2017 on

the intel xeon skylake-sp. PLOS ONE, 2019. doi: 10.1371/journal.pone.0220135.

[131] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs:

characterization and methodological considerations. In Procs. of the 22nd Annual

International Symposium on Computer Architecture, ISCA 1995, 1995. doi: 10.

1109/ISCA.1995.524546.

[132] M. Dana Vantrease. Optical Tokens in Manycore Processors. PhD thesis, Univer-

sity of Wisconsin-Madison, 2010.

[133] S. Abadal, A. Cabellos-Aparicio, Jose A. Lazaro, E. Alarcon, and J. Sole-Pareta.

Graphene-enabled hybrid architectures for multiprocessors: Bridging nanopho-

tonics and nanoscale wireless communication. In Transparent Optical Networks

(ICTON), 2012 14th International Conference on, 2012. doi: 10.1109/ICTON.

2012.6254490.

[134] Bergman K. Carloni, L. P. Bibermani, A. Chan, and Hendry G. Photonic Network-

on-Chip Design. 2014. ISBN 978-1-4419-9335-9.

[135] Qianfan Xu, David Fattal, and Raymond G. Beausoleil. Silicon microring res-

onators with 1.5-µm radius. Opt. Express, 2008. doi: 10.1364/OE.16.004309.

[136] Local Area Networks: Token Ring Access Method and Physical Layer Specifica-

tions, Std 802.5. Technical report, ANSI/IEEE, 1989.

[137] Jean-Loup Baer, Douglas Low, Patrick Crowley, and Neal Sidhwaney. Memory

hierarchy design for a multiprocessor look-up engine. In 12th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT 2003), 2003.

[138] A. Shacham, K. Bergman, and L.P. Carloni. On the design of a photonic network-

on-chip. In First International Symposium on Networks-on-Chips, NOCS 2007.

[139] Guoqing Chen, Hui Chen, Mikhail Haurylau, Nicholas Nelson, Philippe M.

Fauchet, Eby G. Friedman, and David Albonesi. Predictions of cmos compat-

ible on-chip optical interconnect. In Procs. of Int. Workshop on System Level

Interconnect Prediction, SLIP 2005.



References 157

[140] Jun Pang, Christopher Dwyer, and Alvin R. Lebeck. Exploiting emerging tech-

nologies for nanoscale photonic networks-on-chip. In Procs. of 6th Int. Workshop

on NoC Architectures, NoCArc 2013.

[141] R. Morris, A. K. Kodi, and A. Louri. Dynamic reconfiguration of 3d photonic

networks-on-chip for maximizing performance and improving fault tolerance. In

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 282–293. doi: 10.1109/MICRO.2012.34.

[142] Yigit Demir and Nikos Hardavellas. Parka: Thermally insulated nanophotonic

interconnects. NOCS 2015, . doi: 10.1145/2786572.2786597.

[143] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0: A fast

and accurate noc power and area model for early-stage design space exploration.

In DATE, pages 423–428. European Design and Automation Association, 2009.

ISBN 978-3-9810801-5-5.

[144] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accu-

rate memory system simulator. IEEE Comput. Archit. Lett., pages 16–19. ISSN

1556-6056. doi: 10.1109/L-CA.2011.4.

[145] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.

Power5 system microarchitecture. IBM Journal of Research and Development,

2005. doi: 10.1147/rd.494.0505.

[146] Manish Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hether-

ington, P. Jordan, M. Luttrell, C. Olson, Bikram Saha, D. Sheahan, L. Spracklen,

and A. Wynn. Ultrasparc t2: A highly-treaded, power-efficient, sparc soc. In 2007

IEEE Asian Solid-State Circuits Conference, 2007. doi: 10.1109/ASSCC.2007.

4425786.

[147] Man-Lap Li, R. Sasanka, S. V. Adve, Yen-Kuang Chen, and E. Debes. The

alpbench benchmark suite for complex multimedia applications. In Procs. of the

IEEE International Workload Characterization Symposium, 2005, IIWC’05, 2005.

[148] J. J. Valls, M. E. Gomez, A. Ros, and J. Sahuquillo. A directory cache with

dynamic private-shared partitioning. In Procs. of the IEEE 23rd International



References 158

Conference on High Performance Computing, HiPC 2016. doi: 10.1109/HiPC.

2016.051.

[149] Alejandro Valero, Salvador Petit, Julio Sahuquillo, David R. Kaeli, and José Du-

ato. A reuse-based refresh policy for energy-aware edram caches. Microprocessors

and Microsystems - Embedded Hardware Design, 2015. doi: 10.1016/j.micpro.2014.

12.001.

[150] Alejandro Valero, Julio Sahuquillo, Salvador Petit, Pedro López, and José Duato.
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