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Abstract 

Nb-containing siliceous porous clay heterostructure (PCH) (Nb-content from 0 to 30 

wt%), prepared from a bentonite, has been used as effective support in the preparation of 

supported NiO catalysts (with NiO loading from 15 to 80 wt%). Supports and NiO-

containing catalysts have been characterized by several physicochemical techniques, and 

tested in the oxidative dehydrogenation of ethane. The characterization results on Nb-

containing supports show the presence of well-anchored Nb5+ species, without the 

formation of Nb2O5 crystals. A high dispersion of nickel oxide (which presents a low 

crystallinity) has been observed when using the Nb-containing PCH supports. In addition, 

when NiO is supported on these Nb-containing porous clays, it displays a higher 

effectiveness in the ODH of ethane (ethylene selectivity of ca. 90 %) than NiO supported 

on the corresponding Nb-free siliceous PCH or on Nb2O5 (ethylene selectivity of ca. 30 

and 60 %, respectively). Factors such as the NiO-Nb5+ interaction, NiO particle size and 

the properties of surface Nin+ species have shown to be determining for the catalytic 

performance.  

 

Keywords: ODH of ethane; supported nickel oxide; niobium oxide: heterostructure. 
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Introduction 

The petrochemical industry presents two opposing forces in terms of the consumption 

pattern of its products. On the one hand, the decrease in the use of oil derivatives as fuels 

makes the future of petrochemicals look bright.[1] On the other hand, the future and 

present restrictions on the use of non-reusable and non-biodegradable plastics suggest a 

negative trend.[2,3] 

Overall, the drastic reduction of oil as a fuel source opens a wide range of possibilities 

for oil to be used as raw material. Nowadays, ethylene is probably the most important 

feedstock of petrochemistry and it is very likely that its production will grow in the next 

years.[4] Unfortunately, the non-catalytic “steam cracking”, which is the main route 

currently used for ethylene production, is one of the most energy-consuming processes in 

the chemical industry.[5,6] Among alternative processes, the catalytic oxidative 

dehydrogenation (ODH) of ethane, an exothermic reaction, stems as an interesting 

pathway that can sort out the main energy problem of steam cracking process.[7-9] For 

instance, in ODH an in situ re-oxidation of the surface of the catalyst takes place, what 

prevents its deactivation. Moreover, the fact that oxygen is fed together with ethane 

avoids coke formation, although carbon oxides are formed. In fact, the excessive 

formation of carbon oxides (COx), with the subsequent decrease in the selectivity to 

ethylene), is probably the main drawback reported up to date. Despite this, there exist two 

promising catalytic systems able to minimize undesired COx formation for the ODH of 

ethane: i) multicomponent MoVTeNb mixed oxides;[10-11] and ii) promoted or diluted NiO 

catalysts catalysts.[12-13]  

NiO system can be considered a paradigmatic example of a host structure in which surface 

redox properties can be modulated to favour selective pathways in partial oxidation 
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reactions.[13-31] For example, unmodified NiO acts as a poor catalyst in the ODH of ethane, 

as it tends to transform ethane mainly into carbon dioxide, showing a low ability for 

ethylene formation. However, if doped/promoted with a suitable transition metal,[13-22] or 

diluted/supported on an appropriate metal oxide,[23-26] the formation of carbon dioxide 

can be minimized, thus reaching high selectivity to ethylene. Despite this, 

support/diluted- or dopant/promoter-induced effects, which provoke such a selectivity 

shift towards ethylene formation, are still unclear. For instance, a decrease in the electrical 

conductivity,[27,28] the reduction of NiO crystallite size,[29, 30] generation of defects,[25,30] , 

or the elimination of non-selective oxygen species [25,31] have been claimed as common 

effects that increase ethylene selectivity in the ODH of ethane, for both promoted and 

supported/diluted NiO catalysts.  

Recently, we have compared the role of both Nb5+ or Ti4+ as promoters and their 

corresponding oxides as supports (i.e. Nb2O5 and TiO2).[26] NiO catalysts, either promoted 

with Ti4+ or supported on TiO2, display high selectivity to ethylene in the ODH of ethane 

(ca. 90 % selectivity). Conversely, a different trend is observed for Nb5+ or Nb2O5 in 

promoted or supported NiO-based catalysts. The incorporation of Nb5+ as dopant leads to 

highly selective catalysts (ethylene selectivity of ca. 90 %), as suggested previously.[12-18] 

On the other hand, supported NiO/Nb2O5 catalysts do not exceed a 60-65 % selectivity to 

ethylene,[31] due to an ineffective active phase-support interaction.  

Accordingly, in the present work we have evaluated the possibility to prepare a supported 

NiO catalyst, with the presence of dispersed niobium species on the support, in order to 

selectively transform ethane into ethylene by ODH. For this purpose, a bentonite has been 

modified to obtain a structure with higher surface area, denoted as porous clay 

heterostructure (PCH). This porous material was used as support to disperse Nb2O5 (Nb-

content from 0 to 30 wt.% of Nb2O5) and NiO (with NiO loading from 15 to 80 wt.%). 
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This catalytic system was evaluated in the ODH of ethane. The results are discussed in 

terms of the ability of surface Nb5+ species present on PCH to modify the 

physicochemical characteristics of NiO. 

Results 

Characterization of supports 

Physicochemical characteristics of supports (i.e. Nb-free and Nb-containing siliceous 

porous clay heterostructure, with Nb-content from 0 to 30 wt.% Nb2O5) are summarized 

in Table 1.   

In a first approximation, supports were analysed by powder X-ray diffraction (XRD), and 

their corresponding XRD patterns are displayed in Figure S1 (Supporting information). 

The first important feature observed in XRD profiles is that Bragg lines corresponding to 

crystalline Nb2O5 are not observed in any of Nb-containing supports. Considering that 

pseudohexagonal Nb2O5 phase is already formed at 500 ºC,[32] its absence could indicate 

that well-anchored NbOx species are formed on PCH surface, as it will be discussed 

below.  

To shed some light on the nature of these niobium species, supports were studied by 

means of diffuse reflectance UV-VIS spectroscopy. Figure 1 shows diffuse reflectance 

UV-VIS spectra of Nb2O5 and Nb-PCH supports. Interestingly, Nb-free PCH support 

shows negligible absorption (Figure 1, spectra a). According to this, the sharp absorption 

signals found in all Nb-containing supports (Figure 1, spectra b to e) must arise from 

electronic transitions due to the presence of Nb species on PCH. In this sense, the 

absorption edge is shifted to higher wavenumbers when the amount of Nb on the support 

increases. We have estimated the band-gap energies by applying Tauc´s method (Egap) 
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(see Table 1, and insets in Figure 1).[33, 34] It can be noted that Egap values differ for Nb-

containing PCH supports (i.e. supports B, C and D with Egap between 4.3-4.4 eV) and 

bulk Nb2O5 (Egap= 3.4 eV), underlining the different nature of Nb species in both 

materials.  

 

Figure 1. Diffuse reflectance UV-VIS spectra and their corresponding Tauc plots of 

supports. a) Support A (PCH); b) Support B (5 wt.% Nb2O5 on PCH); c) Support C (15 

wt.% Nb2O5 on PCH); d) Support D (30 wt.% Nb2O5 on PCH); e) Nb2O5. 

 

The position of the absorption edge (and subsequently Egap values) is directly dependent 

on the electronic structure of the absorbing species, which is linked to their specific 

chemical environment and structural features.[35] According to the structural and 

spectroscopic analysis of supports, this shift to higher energy band-gaps in Nb-containing 

PCH materials can be ascribed to the presence of well-anchored Nb5+ sites, rather than to 

the formation of Nb2O5.[36] This improved dispersion of Nb5+ would be responsible for 

the hindered sinterization towards Nb2O5. These findings are in agreement with the 

characterization results reported by Kondo and coworkers,[36] who found a similar effect 

on NbOx- SBA-15 system, in which the authors were able to control the growth of mono- 

bi- and tri-layered niobium oxide on the surface of the mesoporous silica, without Nb2O5 

formation. The analyses of the supports by TEM and EDX show the homogeneous 

distribution of Nb on the porous support (Fig. S2, Supporting Information). 

The surface chemical nature of these Nb species was analysed by XPS. Figure 2 presents 

Nb 3d core-level XPS spectra of Nb-containing supports, showing Nb 3d5/2 lines in the 

range 207-208 eV, typical of Nb5+ species.[37, 38] 
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Figure 2. Nb 3d core-level XPS spectra of Nb-containing supports, i.e. supports B, C and 

D.  For comparison the spectrum of pure Nb2O5 has been also included. 

 

It can be observed that Nb 3d5/2 peak shifts to higher binding energies for Nb-containing 

PCH supports (B.E. = 207.9 eV), with respect to bulk Nb2O5 (B.E.  = 207.0 eV) (Figure 

2). This effect goes in line with our previous statements, by which an effective interaction 

between Nb5+ and PCH support gives rise to dispersed Nb5+ sites, displaying a different 

chemical nature than those Nb entities found in Nb2O5.[36] 

Characterization of supported NiO catalysts 

Taking into consideration the different nature of Nb species detected on the supports, we 

have carried out the synthesis of a series of supported NiO catalysts. The physicochemical 

features of supported catalysts are summarized in Table 2.  

Figure 3 displays powder XRD patterns of supported NiO materials. All the catalysts 

present the characteristic diffraction lines of NiO (Fm3m, JCPDS: 04-0835). Depending 

on the type of support and on NiO-loading, changes in the diffraction profiles are 

observed, especially in line-broadening of NiO peaks. FWHM of Bragg peaks is directly 

related with average crystallite size of NiO, which has been reported to be one of the key 

factors to increase the activity and selectivity of these materials in the ODH of ethane.[29, 

39] 

For instance, increasing NiO-loading on Support C (15 wt.% Nb2O5 on PCH) decreases 

NiO diffraction line width, indicating an increase in NiO particle size (Figure 3a and 

Table 2). On the other hand, when comparing different supports at a fixed NiO loading 
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(50 wt.% NiO), width of NiO Bragg peaks increases with Nb content on PCH (from 0 to 

15 wt.% Nb2O5) (Figure 3b, 50Ni/A, 50Ni/B and 50Ni/C, respectively). This indicates a 

decrease of NiO crystallite size when relatively low amounts of Nb are incorporated on 

PCH (Table 3), suggesting an effective interaction between the support and NiO. 

However, if higher Nb-loadings are incorporated (50Ni/D, 30 wt.% Nb2O5 on PCH), the 

average NiO particle size increases drastically, as it can be inferred from the narrow NiO 

peaks observed for 50Ni/D catalyst (Figure 3b and Table 2). In addition, no Bragg peaks 

corresponding to Nb2O5 phases were detected in any catalyst. 

 

Figure 3.  XRD patterns of supported NiO catalysts.  Characteristics of catalysts in Table 

1. For comparison the XRD patterns of pure NiO and support C has been also included. 

 

To corroborate the effect of supports on the morphology and distribution of supported 

nickel oxide particles, samples with a 50 wt.% NiO-loading were further analysed by 

TEM and EDX (Figure 4).  When NiO is supported on unmodified PCH siliceous support 

(Support A), nickel oxide particles (detected by selected-area electron diffraction) with 

size in the range 5-30 nm are observed (Figure 4, 50Ni/A). On the other hand, if the 

active phase is deposited on PCH with low and intermediate Nb contents (5 and 15 wt.% 

Nb2O5; Support B and C, respectively), NiO particle size decreases down to 5-20 nm for 

50Ni/B  and 3-10 nm for 50Ni/C catalyst (Figure 4). In all cases, EDX analyses show a 

good dispersion of NiO along the support in these three catalysts. In contrast, when the 

amount of Nb deposited on PCH is increased up to 30 wt.% Nb2O5 (Support D), the 

particle size of supported NiO particles increases, falling in the range 20-40 nm (Figure 

4, 50Ni/D). This confirms that, low/intermediate Nb-loadings on PCH favour a smaller 

particle size of NiO. 
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Figure 4.  TEM images and their corresponding EDX maps of supported NiO catalysts 

with 50 wt% of NiO: 50NiO/A; 50NiO/B; 50 NiO/C; and 50NiO/D. 

 

Supported catalysts (with a 50 wt.% NiO) were also characterized by Raman spectroscopy 

(Figure 5). The samples were irradiated with an UV-laser (325 nm), since conventional 

Raman experiments conducted using a 514 nm radiation source resulted in extremely 

noisy spectra, masked by Raman fluorescence phenomena. Interestingly, UV-Raman 

spectroscopy has been reported to be more sensitive to the surface region of solid 

materials,[40, 41] what makes it more suitable to study solid catalysts. All the spectra 

display four Raman bands that can be unambiguously assigned to NiO. These signals 

correspond to one-phonon (1P) TO (transverse optical) and LO (longitudinal optical) 

modes (at ~570 cm-1), two-phonon (2P) 2TO modes (at~730 cm-1), TO + LO (at ~906 

cm-1) and 2LO (at ~1090 cm-1) modes (Figure 5).[42, 43] 

 

Figure 5.  UV-Raman spectra of UV-Raman spectra of supported NiO catalysts with 50 

wt% of NiO: 50NiO/A; 50NiO/B; 50 NiO/C; and 50NiO/D. 

 

The disorder-induced 1P (LO) band at ~570 cm-1 presents low intensity when NiO is 

supported on PCH (Figure 5, 50Ni/A). Interestingly, the relative intensity of 1P (LO) 

band increases for 50NiO/B and 50Ni/C, i.e. at intermediate Nb-loadings on PCH (5 and 

15 wt.% Nb2O5) (Figure 5). Conversely, at higher Nb contents on the support (30 30 

wt.% Nb2O5, Support D), the intensity of 2P modes of NiO increases notably (Figure 5, 

50Ni/D). These spectral features can be explained in terms of NiO particle size. This way, 

the relative intensity of 1P band will increase concomitantly with: i) the decrease of NiO 
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particle size and; ii) the presence of defects. It is worth mentioning that the most selective 

catalysts in the ODH of ethane (as it will be discussed later) show the highest relative 

intensity of LO (1P) Raman band. This could indicate a relationship between selectivity 

to ethylene in the ODH of ethane and particle size and/or concentration of defects, as it 

was previously suggested in literature.[30] 

The effect of NiO-loading and type of support on the reducibility of supported NiO 

catalysts was studied by means of temperature-programmed reduction (TPR-H2) (Figure 

6). H2 up-takes measured during the experiments correspond to the reduction of NiO 

theoretical amounts added in each catalyst (Table 2).  

Figure 6a displays TPR-H2 profiles of NiO supported on PCH with a 15 wt.% Nb2O5 

(Support C). Unmodified NiO presents its main reduction peak at ca. 296ºC, showing a 

shoulder at 315ºC, which is the typical reduction profile of bulk NiO.[29, 30] It can be seen 

that increasing NiO-loading on Support C, leads to a shift of the main reduction peak 

towards lower temperatures, indicating an increased reducibility (Figure 6a). 

If we compare TPR-H2 profiles at a fixed 50 wt.% NiO-loading, it can be found that, 

regardless of the support used, the catalysts present a lower reducibility than bulk NiO, 

displaying their maximum H2 consumption in the range 350-380 ºC (Figure 6b). Despite 

this, 50Ni/C catalyst shows a slightly lower reducibility than the rest of materials 

(reduction peak centred at 375 ºC), which in addition presents the smallest NiO particle 

size (Figure 6b, 50Ni/C).  

 

Figure 6.  TPR-H2 profiles of: a) Supported NiO catalysts, using Support C (i.e. with 15 

wt.% Nb2O5 on PCH); b) supported NiO catalysts with 50 wt% of NiO. 
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To evaluate the effect of Nb-containing supports on the nature of surface Ni species, 

catalysts with a 50 wt.% NiO were studied by XPS. Figure 7 shows Ni 2p core-level 

spectra of 50 wt.% NiO supported catalysts, using supports with increasing Nb-loadings 

(0, 5, 15, 30 wt.% Nb2O5 on PCH, Supports A, B, C and D respectively). For comparison, 

Ni 2p3/2 core-level spectra of NiO/Nb2O5 and unsupported NiO are shown in Figure S3 

(Supporting information). All the spectra display the typical features of Ni 2p core level: 

i) a main peak at ca. 854-855 eV, assigned to Ni2+ surface species, and; ii) two satellite 

structures (Sat I and Sat II) (Figure 7). Sat I, located at ca. 1.5 eV over the main peak, is 

attributed to different types of surface defects such as, Ni2+ vacancies,[44, 45], Ni2+-OH sites 

[46] or the presence of Ni3+ species.[47] Variations in the relative intensity of this peak have, 

in some cases, been ascribed to changes in NiO particle size.[45] On the other hand, the 

appearance of Sat II structure at ca. 7 eV over the main peak, is assigned to metal-ligand 

charge transfer.[44, 46, 48] Although XPS spectral features are still under debate, the spectra 

show that, when NiO is supported on Nb-containing supports, the relative intensity of Sat 

I peak increases, suggesting a higher active-phase support interaction (Figure 7). 

 

Figure 7. Ni 2p core-level spectra of supported NiO catalysts with 50 wt% of NiO: a) 

50NiO/A; b) 50NiO/B; c) 50 NiO/C; and d) 50NiO/D. 

 

Since Nb-containing siliceous porous clays heterostructures present an effective 

interaction with the active phase (i.e. they are able to modify structural and chemical 

characteristics of NiO), we decided to study the chemical nature of surface Nb species in 

50 wt.% NiO supported catalysts by XPS. Figure 8 presents Nb 3d core-level XPS spectra 

of NiO supported catalysts. The spectra show differences depending on Nb content in the 

support. At relatively low Nb concentration on the support (5 and 15 % Nb), the samples 
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display a single Nb 3d5/2 XPS peak centred at 207.9 eV, which can be assigned to 

anchored Nb5+ species (Figure 8, spectra a and b, respectively).[36] When increasing the 

amount of Nb incorporated on siliceous porous clays heterostructures, a new peak at 

lower binding energies (ca. 206.5 eV) appears in the spectra (Figure 8, spectra c), which 

can be assigned to Nb5+ in Nb2O5.[37, 38]  

 

Figure 8. Nb 3d core-level spectra of Nb-containing supported NiO catalysts with 50 
wt% of NiO: a) 50NiO/B; b) 50 NiO/C; and c) 50NiO/D. 

 

On the other hand, diffuse reflectance UV-VIS spectra for the series of supported NiO 

catalysts with a 50 wt.% NiO loading show similar features than those observed on the 

Nb-containing supports: i) a red shift in the absorption edge when Nb-content in the 

support increases (Figure S4, Supporting information); and ii) an increase in the Egap 

value when NiO is supported on Nb-containing PCH (Table 1 and Figure S5 in 

Supporting information).  

In summary, spectroscopic analysis of supports and catalysts, show that two types of Nb 

species can exist in the catalysts: i) well-dispersed Nb5+ species at low Nb-loadings on 

PCH, which are able to substantially modify NiO (particle size, number of defects, etc.) 

and, ii) Nb5+ sites similar to those observed in Nb2O5 (appearing at high Nb-loadings on 

the support). The use of Nb-containing PCH as supports for NiO improves the dispersion 

of NiO in comparison with unmodified PCH and Nb2O5. 

 

Catalytic results in the ODH of ethane 
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According to the changes in the chemical nature of NiO induced by the different supports 

(particle size, reducibility, concentration of defects…), NiO-containing catalysts were 

tested as catalysts for the oxidative dehydrogenation (ODH) of ethane (Table 3). During 

the catalytic tests, the only reaction products observed were ethylene and CO2. Traces of 

CO cannot be discarded, although, if present, the selectivity should be lower than 1%. 

Figure 9a compares the catalytic activity (in gC2 kgcat
-1 h-1) of xNiO/C series with 

different NiO contents. It can be observed that catalytic activity increases with the NiO-

loading until 50 wt.% NiO (Figure 9a). For higher NiO loadings the catalytic activity is 

kept rather stable. However, if the activity per gram of NiO is considered, there exists a 

clear maximum at 50 wt.% NiO (Table 3).   

We have also compared the activity of 50 wt.% NiO catalysts supported on PCH with 

increasing Nb-loading (Supports A-D with 0 to 30 wt.% Nb2O5). The catalytic results are 

shown in Figure 9b. In this case, the activity increases with the Nb content until reaching 

a maximum at 15 wt.% Nb2O5 (50Ni/C) (Table 3). Further increasing Nb-loading in the 

support (i.e. Support D, with 30 wt.% Nb2O5) leads to a decrease in the catalytic activity.  

 

Figure 9. Influence of NiO loading (for catalysts of xNiO/C series) (a) and influence of 

Nb-loading on support (for catalysts with 50wt% of NiO) (b) on catalytic activity (in gC2 

kgcat
-1 h-1) during the ODH of ethane over supported NiO catalysts. Reaction conditions: 

C2/O2/He = 3/1/26 molar ratio, T = 450ºC and W/F = 4 gcat h molC2
-1. 

 

Provided that the differences in activity are not of orders of magnitude, the selectivity to 

ethylene is a more important factor to consider in order to determine the efficiency of this 

series of catalysts. Accordingly, the catalytic performance of supported NiO catalysts has 



14 
 

been studied by using different contact times (i.e. varying catalyst weight or the total 

flow) and fixing reaction temperature and C2/O2/He ratio. This way, we can compare the 

selectivity to ethylene in the ODH of ethane at a given conversion.  

Figure 10a displays the variation of ethylene selectivity with NiO content for xNi/C 

series at isoconversion conditions (i.e. ethane conversion of 10% at 450 ºC). It can be 

noted that the selectivity to the olefin increases concomitantly with NiO-loading, reaching 

the maximum at 50 wt.% NiO (catalyst 50Ni/C; Sethylene= 87 %). Higher NiO loadings led 

to a decrease in the selectivity to ethylene.   

 

Figure 10. a) Variation of the selectivity to ethylene as a function of NiO-loading on 

Support C (15 wt.% Nb2O5 on PCH. b) Variation of the selectivity to ethylene as a 

function of ethane conversion for supported 50 wt.% NiO catalysts. Reaction conditions 

as in Fig. 9.  

 

We have also analysed the catalytic behaviour 50 wt.% NiO catalysts supported over 

PCHs materials with increasing Nb-loading (Supports A-D). Figure 10b shows the 

variation of the selectivity to ethylene in the ODH of ethane as a function of ethane 

conversion for 50 wt.% NiO catalysts at 450 ºC. It is worth mentioning that, regardless of 

the nature of the catalysts, the selectivity to ethylene barely varies with ethane conversion 

under the reaction condition applied in the study. This means that, even for the less 

selective materials, the deep oxidation of the olefin to carbon oxides does not take place, 

i.e. carbon oxides are essentially formed directly from ethane.[49]  

Despite this, variations in the selectivity to ethylene in the ODH of ethane are observed 

depending on the nature of the support (Figure 10b). When NiO is supported on 
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unmodified PCH, a low selectivity to ethylene (of ca. 38 %) is achieved (Figure 10b, 

50Ni/A). This selectivity lies in the range of that reached on bulk NiO (ca. 33 %) (Table 

3), indicating that the unmodified PCH support is not able to provide an effective active-

phase support interaction. On the other hand, when NiO on a PCH support with 5 wt.% 

Nb2O5 (Support B), the selectivity to the olefin drastically increases, up to 67 % (Figure 

10b, 50Ni/B), which is slightly higher than the one achieved on the Nb2O5-supported 

catalyst (ca. 59 %) (Table 3). By increasing the amount of Nb deposited on PCH up to 

15 wt.% Nb2O5 (Support C), the selectivity to ethylene further increases, up to ca. 87 %, 

which is in the range of the best NiO-based catalysts reported in the literature (for 

instance, Nb-doped NiO catalysts)[13] (Figure 10b, 50Ni/C). However, if higher amounts 

of Nb are deposited on PCH support (30 wt.% Nb2O5, Support D), selectivity to ethylene 

drops down to ca. 64 % (Figure 10b, 50Ni/D).    

Then, it seems that the impregnation of an appropriate amount of Nb on a bentonite-

derived PCH material (and the subsequent addition of NiO) leads to a drastic 

improvement in the selectivity to ethylene in the ODH of ethane, from ca. 38% (50Ni/A 

catalyst, i.e. when using a Nb-free support) to ca. 87% (50Ni/C catalyst). Moreover, the 

use of a matrix such as the pillared clay to deposit niobium is necessary to obtain efficient 

catalysts. In this sense, the use of the Nb-modified porous clay support leads to an 

improvement in the selectivity to ethylene from ca. 60% (50Ni/Nb2O5) to ca. 87% 

(50Ni/C). Therefore, to achieve optimal results in the ODH of ethane, the presence of a 

high surface area material on which niobium oxide can be dispersed is necessary. 

Thereby, the absence of either niobium or PCH gives rise to an ineffective NiO-support 

interaction, leading to low ethylene selectivity (ca. 30-60 %). 

We want to mention that these catalytic results have been obtained using C2/O2 ratio of 

3. However, the use of a feed richer in oxygen leads to a slight drop in the selectivity to 
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ethylene. Then, over 50Ni/C catalyst, using W/F = 2 gcat h molC2
-1 and a C2/O2 ratio of 1 

(C2/O2/He = 1/1/8 molar ratio), the ethane conversion is 10.7% and the selectivity to 

ethylene is 82.3%. 

 

Discussion 

In this study we have shown that by dispersing niobium on a high surface area porous 

clay heterostructure (PCH) material, a suitable support for NiO can be synthesized. NiO 

catalysts supported on Nb-containing PCH display an enhanced catalytic performance in 

the ODH of ethane, compared to formulations in the absence of PCH (NiO/Nb2O5)[31] or 

Nb-free PCH (NiO/PCH, this work). Interestingly, as it takes place in Nb-promoted NiO 

catalysts,[13-16] in our supported catalysts the Nb-loading should be controlled to optimize 

the catalytic results. Then, an appropriate amount of niobium must be deposited on the 

surface of the PCH matrix. Then, the optimal Nb-loading corresponds to 15 wt.% Nb2O5 

(Support C). Lower or higher Nb-loadings on PCH support (5 or 30 wt.% Nb2O5, 

respectively) lead to supported NiO catalysts presenting a lower ethylene formation in the 

ODH of ethane. Despite this, NiO/Nb-PCH materials display an improved catalytic 

behaviour (in terms of ethylene selectivity), with respect to NiO supported on PCH 

(sample 50NiO/A) or supported on Nb2O5 (sample 50Ni/Nb2O5). 

For bulk NiO catalysts, NiO crystallite size has been demonstrated to play an important 

role in olefin formation in the ODH of ethane.[29, 30] By modifying the synthesis procedure 

(for instance, adding organic additives, [39] or transition metal promoters[29]), it is possible 

to decrease NiO average crystallite size, what generally leads to higher ethylene 

selectivity. In the same way, the addition of low/intermediate amounts niobium on PCH 

support (0-15 wt.% Nb2O5, Supports B and C) favours a lower NiO crystallite size, an 
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improved NiO dispersion and a higher selectivity to ethylene. On the contrary, higher Nb-

loadings on PCH (30 wt.% Nb2O5, Support D) give rise to bigger NiO particles and a 

decrease in ethylene selectivity.  

Figure S6A shows the variation of ethylene selectivity (measured at isoconversion 

conditions, 10 % ethane conversion) as a function of NiO crystallite size for all 

synthesized materials. For Nb-containing catalysts, the selectivity follows a quite defined 

trend, in a way that the lower the NiO crystallite size, the higher the selectivity to ethylene. 

However, selectivity levels for Nb-free catalysts are far below the levels that would 

correspond to the same NiO crystallite size in Nb-containing catalysts. These 

observations suggest that other factors (apart from the particle size) have to be taken into 

consideration to explain the catalytic performance of these materials (such as reducibility, 

nature of surface Ni sites or NiO-support interaction),  

The reducibility of nickel oxide species can have some influence on the selectivity to 

ethylene achieved.[13-29, 31] Since reducibility is not a parameter easy to be quantified, we 

have selected the temperature for the maxima of the main TPR peak as a reference value. 

This way, the higher the reduction temperature, the lower the reducibility of Nin+ sites on 

the catalyst. Figure S6B (supporting information) shows the variation of the selectivity to 

ethylene measured at isoconversion conditions (10 % ethane conversion) as a function of 

the maximum H2-consumption temperature in H2-TPR profiles for each NiO-based 

catalyst. It can be seen that the most selective catalysts are those with the lowest 

reducibility. This suggests that highly reducible nickel oxide species are prone to activate 

ethane in a non-selective way, thus directing the reaction towards total oxidation, rather 

than to oxidative dehydrogenation.[26] 
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Characterization results of supports and supported NiO catalysts indicate that we can have 

two different types of Nb sites with different chemical nature: i) Nb5+ site that are well 

anchored to PCH support and, ii) Nb5+ species similar to those found in Nb2O5. 

Depending on the type of Nb on the support, variations in NiO-support interaction will 

take place, thus giving rise to different NiO particles showing a different selectivity to 

ethylene in the ODH of ethane.  

Interestingly, the relative intensity of Sat I peak in the XPS spectra slightly increases with 

respect to the main peak when Nb is incorporated in the PCH support, concomitantly with 

the increase in the selectivity to ethylene in the ODH of ethane (Figure 7). This fact 

suggests that the support does not exclusively modulates NiO particle size, but also 

modifies the concentration of defects in the active phase, like Ni3+, Ni2+ vacancies or Ni2+-

OH surface sites, which can play a key role in the catalytic behaviour. For example, the 

presence of Ni3+ species has been linked with a higher concentration of electrophilic 

oxygen species, responsible for total oxidation.[50] 

On the other hand, Ni 2p XPS spectra of the less selective catalysts, i.e. 50NiO/A (Figure 

7, spectra a), NiO/Nb2O5 (Figure S2, spectra a; Supporting information) and unsupported 

NiO (Figure S2, spectra b; Supporting information), display high similarities, particularly 

a low Sat I/Main peak ratio. Accordingly, it seems that these supports are not able to 

interact efficiently with NiO, leading to similar Nin+ surface sites and, subsequently, to a 

low selectivity to ethylene in the ODH of ethane (ca. 30-60 %). 

We must underline that supports used (unmodified PCH or Nb-containing PCH) show a 

negligible conversion of ethane under the reaction conditions used in this study. 

Therefore, the reactivity is completely determined by the catalytic potential of the nickel 

oxide. In the case of Nb-free 50Ni/A catalyst, NiO-support interactions will be dominated 
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by NiO-silica contact, which is not able to modify the chemical nature of NiO.[30] Thus, 

a low selectivity to ethylene in the ODH of ethane is achieved (ca. 30 %, similar to that 

observed for unsupported NiO). In the same line, 50NiO/Nb2O5 does not interacts 

efficiently with NiO, leading to low NiO dispersion and large NiO particles similar to 

those in non-selective NiO.[31] On the contrary, when NiO is supported on Nb containing 

PCH materials, a drastic increase in the selectivity to ethylene is observed (up to 87 % for 

50Ni/C catalyst). Unlike in the case of Nb2O5, Nb species present on these supports are 

able to interact in an efficient way with NiO. The efficiency of this active phase-support 

interaction will depend fundamentally on the amount of Nb loaded in on the porous clay 

heterostructure.  

At low Nb-loadings (5 wt.% Nb2O5 on PCH, 50Ni/B catalyst), at which the optimum Nb-

coverage is not achieved, the support presents two main regions susceptible to interact 

with NiO: i) dispersed Nb5+ surface sites and; ii) uncovered PCH silica-rich zones. The 

interaction between well-anchored Nb5+ sites leads to selective sites in the ODH of 

ethane, whereas interaction between NiO and SiO2 zones on PCH gives rise to unselective 

sites (similar to those found in unsupported NiO). Then, for 50Ni/B sample (5 wt.% 

Nb2O5 on PCH), higher selectivity to ethylene is observed (ca. 67 %), in comparison with 

PCH-supported catalysts (50Ni/A, presenting a selectivity to ethylene of 38 %). 

Consequently, it is possible to optimize the catalytic performance of this system by 

incorporating increasing amounts of Nb on the support. This way, when using a 15 wt.% 

Nb PCH support for NiO (50Ni/C catalyst) we are favouring the desired Nb5+-NiO 

interaction, minimizing the exposure silica zones on the support, thus achieving a high 

selectivity to ethylene in the ODH of ethane (ca. 87 %). However, if relatively high 

amounts of Nb are deposited on PCH support (30 wt.% Nb2O5 on PCH, 50Ni/D catalyst), 
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the segregation of bulk Nb2O5 can take place, leading to bigger NiO particles, a lower 

dispersion of the active phase, and a decrease of the selectivity to the olefin (ca. 64 %).  

One of the main problems of the Nb-promoted NiO catalysts is their lack of stability with 

the time on stream. This instability has been related to the formation of the less active 

NiNb2O6 phase[13, 16] and the reduction of the amount of active oxygen in NiO[16-21] and 

to a decrease in the surface area. [16, 51] We have wanted to check if our supported catalysts 

also present that instable behaviour. After 8 h on line, 50Ni/C catalyst presented a slight 

decrease of the ethane conversion (Figure S7, Supporting information) together with a 

slight increase in the ethylene selectivity. A further study for longer times would be 

required to determine the industrial applicability of these materials. 

Conclusions 

In summary, it has been proven that it is possible to prepare efficient supported NiO 

catalysts for the ODH of ethane, by using Nb-modified porous clay heterostructures (Nb-

PCH) as supports. NiO catalysts supported on Nb-PCH materials present an enhanced 

selectivity to ethylene (up to ca. 90%) with respect to PCH- and Nb2O5-supported nickel 

oxide catalysts, which shows a selectivity to ethylene of ca. 30 and 60%, respectively).  

While Nb2O5 and unmodified PCH do not modify the chemical nature of NiO, Nb-

containing PCH supports are able to: i) decrease NiO particle size; ii) induce changes on 

Nin+ surface sites and; iii) decrease the reducibility of Nin+ species. According to catalytic 

results, the key factor to achieve a high selectivity to ethylene in the ODH of ethane is to 

control NiO-support interaction. This can be achieved by controlling Nb-loading on the 

support. Thus, Nb-loadings of 15wt.% Nb2O5 deposited on PCH minimize non-selective 

silica zones exposed on the surface, thus leading to an ethylene selectivity values in the 

range of the best catalysts reported in the literature. 
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Characterization of Nb-containing supports and catalysts demonstrate that Nb5+ species 

on PCH present a different chemical nature than that observed in Nb2O5. Specifically, 

XRD, XPS and UV-VIS results suggest that Nb5+ species are dispersed and well-anchored 

on PCH surface. These species are able to interact efficiently with NiO, giving rise to an 

excellent catalytic performance in the ODH of ethane, which is not the case of Nb5+ sites 

in Nb2O5.     

 

Experimental Section 

Preparation of Supports and catalysts 

A bentonite from “Sierra de Níjar” (Spain) supplied by Minas de Gador S. A. was used 

as the raw material. The bentonite presents a high proportion of montmorillonite as 

reported in previous studies.[26] Prior to the synthesis, montmorillonite phase was 

collected by sedimentation and treated with a solution of NaCl for 1 day to obtain the 

homoionic montmorillonite (Na-mont). More details of the preparation are shown 

elsewhere.[26] Si-pillars were then dispersed in an n-propanol solution with a ratio Si/n-

propanol = 1 and added to the previous suspension, and stirring for 3 days. The source of 

silicon used was tetraethyl orthosilicate (Aldrich). Then, the gel was filtered and washed 

with water and ethanol and dried at 60 °C in air for 12 h. Finally the surfactant was 

removed by calcination in air at 550 °C for 6 h. Thus, the sample with Si-pillars, a 

siliceous porous clay heterostructure (PCH), was named as support A. 

Nb-containing siliceous porous clay heterostructure were prepared by adding solutions of 

niobium oxalate monooxalate adduct, i.e. C10H5NbO20 (ABCR), to the PCH support. 

After evaporation under vigorous stirring the paste obtained was dried at 120ºC overnight 
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and then calcined at 500ºC for 2h in static air. Thus, Nb-containing supports have been 

named as B, C or D for samples with a Nb content of 5, 15, or 30 wt.%, respectively. The 

characteristics of supports are shown in Table 1. 

Supported NiO catalysts were synthesized as follows: an ethanolic solution of nickel(II) 

nitrate Ni(NO3)2•6H2O and oxalic acid (both from Sigma-Aldrich) was prepared (oxalic 

acid/Ni molar ratio of 3). To this mixture a porous clay heterostructure (PCH) derived 

from bentonite with or without niobium (samples A, B, C or D) was added. After 

evaporation in a hot plate stirrer and drying at 120ºC overnight, the catalysts were 

calcined at 500ºC for 2h in static air. The catalysts have been named as xNi/support 

(support= A, B, C or D), x being the NiO wt% content. For example, the catalyst 50Ni/C 

contains 50 wt.% NiO, the support consisting of 15 wt.% Nb2O5 deposited on BG (sample 

C).  

Diluted NiO/Nb2O5 catalysts were synthesized as follows: an ethanolic solution of nickel 

nitrate Ni(NO3)2•6H2O and oxalic acid (both from Sigma-Aldrich) was prepared (oxalic 

acid/Ni molar ratio of 3). To this mixture niobium oxide (hydrothermally synthesized, see 

reference[31]; SBET = 70 m2 g-1) was added. Then the mixture was vigorously stirred at 

60ºC until a paste was achieved.  This material was introduced in a furnace and kept at 

120 ºC overnight and then was heat-treated in static air for 2 h at 500 ºC. The catalysts 

have been named as 50NiO/Nb2O5 (i.e. 50 wt% content of NiO). The characteristics of 

catalysts are shown in Table 2. 

Characterization  

Powder X-ray diffraction patterns were recorded in a powder diffractometer model D8 

Avance A25 Bruker brand with a CuKα source operated at 40 kV and 40 mA. 
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Transmission electron microscopy (TEM) images, selected-area electron diffraction 

(SAED) patterns and Energy-dispersive X-ray spectroscopy (EDX) maps were collected 

in a field-emission gun TECNAI G2 F20 S-TWIN electron microscope, operating at 200 

kV. Samples were sonicated in ethanol and deposited on a copper grid prior to analysis. 

N2-adsorption isotherms were recorded in a Micromeritics ASAP 2000 device. The 

materials were degassed in vacuum at 300 ºC prior to N2 adsorption. Surface areas were 

estimated by the Brunauer-Emmet-Teller (BET) method. 

Raman spectroscopy was carried out in an inVia Renishaw spectrometer equipped with 

an Olympus microscope, at an exciting wavelength of 325 nm.  

Temperature-programmed reduction in H2 (TPR-H2) was carried out in a Micromeritics 

Autochem 2190 instrument, equipped with a thermal conductivity detector (TCD). 

Samples were heated up to 800 ºC (heating rate of 10 ºC min-1) using a reductive mixture 

of 10 % H2 in Ar, at a total flow of 50 mL min-1.  

XPS measurements were carried on a Physical Electronics spectrometer (PHI Versa 

Probe II Scanning XPS Microprobe with monochromatic X-ray Al Kα radiation (100 µm, 

100 W, 20 kV, 1486.6 eV) and a dual-beam charge neutralizer. The spectrometer was 

calibrated with Au 4f7/2, Ag 3d5/2 and Cu 2p3/2 photoelectron lines at 84.0, 368.2 and 932.7 

eV, respectively. The Au 4f7/2 line was recorded with 0.73 eV FWHM at a binding energy 

(BE) of 84.0 eV, under a constant pass energy mode at 23.5 eV condition. XPS spectra 

were analysed using PHI SmartSoft software and processed using MultiPak 9.3 package. 

The binding energy values for the measured spectra were referenced to C 1s signal of 

adventitious carbon at 284.8 eV. Recorded spectra were fitted using Gauss–Lorentz 

curves. Atomic concentration percentages of the constituent elements of the surfaces were 



24 
 

determined taking into account the corresponding area sensitivity factor for the different 

measured spectral regions. 

Diffuse-reflectance UV-VIS spectra were recorded in a Cary 5000 spectrophotometer, in 

the 200-800 nm wavelength range.  

Catalytic tests for ethane ODH 

The catalytic experiments were carried out under steady state conditions using a fixed-

bed quartz tubular reactor working at atmospheric pressure.[26] The flow rate (25–100 ml 

min−1) and the amount of catalyst (0.1–0.3 g, 0.3–0.5 mm particle size) were varied in 

order to achieve different ethane conversion levels at a given reaction temperature. The 

feed consisted of a mixture of ethane/oxygen/helium with molar ratio of 3/1/26. 

Experiments were carried out in the 350-450 ºC temperature range. Reactants and reaction 

products were analysed by on-line gas chromatography, using two packed columns: [26] 

(i) Porapak Q (3 m); and ii) molecular sieve 5 Å (2.5 m). 
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Table 1. Characteristics of support.  

Sample Characteristics of support Egap (eV) 

Support A Nb-free PCH - 

Support B  PCH with 5wt% of Nb2O5 4.3 

Support C PCH with 15wt% of Nb2O5 4.5 

Support D PCH with 30wt% of Nb2O5 4.4 

Nb2O5 Hydrothermally synthesized Nb2O5 3.5 
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Table 2. Characteristics of catalysts. 

Sample NiO 

wt.% 

Nb2O5 in 

the support 

SBET 

(m2/g) 

NiO 

Crystallite 

size (nm) a 

H2-uptake  b LO(1P) / 

2LO(2P)c 

Egap 

(eV) d 

50NiO/A 50 0 244 11 260 1.05 3.7 

50NiO/B 50 5 246 9.6 228 1.47 4.0 

50NiO/C 50 15 263 5.8 231 1.67 4.0 

50NiO/D 50 30 165 26.1 269 0.43 3.7 

20NiO/C 20 15 317 4.5 99 n.d n.d 

80NiO/C 80 15 68 32.1 403 n.d n.d 

50NiO/Nb2O5 50 100 61 12.4 248 n.d 3.6 

NiO 100 0 15 27 490 n.d 3.6 

 

a) Mean NiO crystallite size estimated by the Scherrer equation through the XRD patterns; b) hydrogen 

consumption in the TPR experiments, in mL/g; c) LO(1P)/2LO(2P) bands ratio in the UV-Raman spectra; 
d) Ban gap of pure Nb2O5 of 3.5 eV. 
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Table 3. Catalytic results in the ODH of ethane.a 

Catalyst Ethane 

conversion (%) 

Selectivity to 

ethylene (%) 

Catalytic activity b Catalytic Activity per 

NiO loading c 

STY rate of product 

formation d 

TOF e 

50NiO/A 4.5 38.6 330 659 119 4.56 

50Ni0/B 7.5 67.1 549 1099 334 7.60 

50NiO/C 12.7 87.5 930 1860 760 12.9 

50NiO/D 11.7 64.1 857 1713 513 11.9 

20NiO/C 4.2 75.2 305 1530 215 10.6 

80NiO/C 11.1 53.9 813 1016 409 7.02 

50NiO/Nb2O5 13.4 e 59.7 1961 3923 1094 27.2 

NiO 7.5 e 33.3 1098 1098 339 7.6 

a) At 450ºC and a contact time, W/F, of 4 gcat h molC2
-1; b) Catalytic activity (in gC2H6/kgcat h); c) Catalytic activity per loading of NiO (in gC2H6/kgNiO 

h); d) Space time yield, STY, is the formation rate of ethylene (in gC2H4/kgcat h); e) TOF (in 10-4 molecules C2H6 at-1
Ni s-1) at 450ºC and a contact time, 

W/F, of 2 gcat h molC2
-1. 
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Caption to figures 

 

Figure 1. Diffuse reflectance UV-VIS spectra and their corresponding Tauc plots of 

supports. a) Support A (PCH); b) Support B (5 wt.% Nb2O5 on PCH; c) Support 

C (15 wt.% Nb2O5 on PCH); d) Support D (30 wt.% Nb2O5 on PCH); e) Nb2O5. 

Figure 2. Nb 3d core-level XPS spectra of Nb-containing supports, i.e. supports B, C and 

D.  For comparison the spectrum of pure Nb2O5 has been also included. 

Figure 3.  XRD patterns of supported NiO catalysts.  Characteristics of catalysts in Table 

1. For comparison the XRD patterns of pure NiO and support C has been also 

included. 

Figure 4.  TEM images and their corresponding EDX maps of supported NiO catalysts 

with 50 wt% of NiO: 50NiO/A; 50NiO/B; 50 NiO/C; and 50NiO/D. 

Figure 5. UV-Raman spectra of supported NiO catalysts with 50 wt% of NiO: 50NiO/A; 

50NiO/B; 50 NiO/C; and 50NiO/D. 

Figure 6.  TPR-H2 profiles of: a) Supported NiO catalysts, using Support C (i.e. with 15 

wt.% Nb2O5 on PCH); b) supported NiO catalysts with 50 wt% of NiO. 

Figure 7. Ni 2p core-level spectra of supported NiO catalysts with 50 wt% of NiO: a) 

50NiO/A; b) 50NiO/B; c) 50 NiO/C; and d) 50NiO/D. 

Figure 8. Nb 3d core-level spectra of Nb-containing supported NiO catalysts with 50 

wt% of NiO: a) 50NiO/B; b) 50 NiO/C; and c) 50NiO/D. 

Figure 9. Influence of NiO loading (for catalysts of xNiO/C series) (a) and influence of 

Nb-loading (for catalysts with 50wt% of NiO) (b) on catalytic activity (in gC2H6 

kgcat
-1 h-1) during the ODH of ethane on supported NiO catalysts. Reaction 

conditions: C2/O2/He = 3/1/26 molar ratio, T = 450ºC and W/F = 4 gcat h molC2
-

1. 

Figure 10. a) Variation of the selectivity to ethylene as a function of NiO-loading on 

Support C (15 wt.% Nb2O5 on PCH. b) Variation of the selectivity to ethylene 

(at 10% ethane conversion) as a function of ethane conversion for supported 

50 wt.% NiO catalysts. Reaction conditions as in Fig. 9.  
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NiO supported on a Nb-containing porous clay heterostructure (PCH) shows outstanding 
catalytic properties in the ODH of ethane (ca. 90% selectivity to ethylene). Controlling 
the chemical nature of Nb5+ species on PCH is the key factor to achieve an effective NiO-
support interaction. 
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