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ABSTRACT AND KEY TERMS 

 

Abstract 

Background: The Electrocardiographic Imaging (ECGI) technique, used to non-invasively reconstruct 

the epicardial electrical activity, requires an accurate model of the atria and torso anatomy. Here 

we evaluate a new automatic methodology able to locate the atrial anatomy within the torso based 

on an intrinsic electrical parameter of the ECGI solution.  

Methods: In 28 realistic simulations of the atrial electrical activity, we randomly displaced the atrial 

anatomy for ±2.5 cm and ±30 degrees on each axis. An automatic optimization method based on 

the L-curve curvature was used to estimate the original position using exclusively non-invasive data.  

Results: The automatic optimization algorithm located the atrial anatomy with a deviation of 0.5 ± 

0.5 cm in position and 16.0 ± 10.7° in orientation. With these approximate locations, the obtained 

electrophysiological maps reduced the average error in atrial rate measures from 1.1 ± 1.1 Hz  to 

0.5 ± 1.0 Hz and in the phase singularity position from 7.2 ± 4.0 cm  to 1.6 ± 1.7 cm (p<0.01).  

Conclusions: This proposed automatic optimization may help to solve spatial inaccuracies provoked 

by cardiac motion or respiration, as well as to use ECGI on torso and atrial anatomies from different 

medical image systems. 

 

Keywords: Inverse problem; L-curve curvature; Electrophysiology; Mapping; Dominant Frequency; 

Phase analysis; Reentry; Rotor 
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INTRODUCTION 

The use of non-invasive techniques for mapping the cardiac activity such as Electrocardiographic 

Imaging (ECGI) provides a panoramic view of the electrical activity during heart diseases and sinus 

rhythm. The ECGI has been exploited in the study of both ventricular [1-2], and atrial arrhythmias 

[3-6]. In Atrial Fibrillation (AF), the most frequent arrhythmia in clinical practice, ECGI technology 

has been used to non-invasively identify the atrial regions responsible of the arrhythmia 

maintenance, in form of reentrant activity or rapidly activated regions [3-4]. 

The ECGI reconstruction of the cardiac potentials is conducted through the solution of the so-called 

inverse-problem, using the surface electrical activity and the torso and heart anatomy [7]. However, 

an accurate three-dimensional model of the torso and heart requires the use of medical imaging 

techniques, such as MRI or CT, whose images must be manual or semi-automatically segmented. 

Nowadays, image reconstruction from MRI/CT limits the use of the ECGI in routine clinical practice, 

as these image techniques are commonly used only on the minor AF sub-population referred for 

surgical procedures. 

In prior studies we showed how an intrinsic parameter involved in the electrical ECGI reconstruction, 

the curvature of the L-curve, allows to solve inaccuracies in the heart anatomy location [8]. Due to 

the availability of atrial and torso geometries from different recording methods such as 

photogrammetry, echocardiography, anatomical atlases, etc., we hypothesize that this L-curve 

approach could be used to align the torso and atrial geometries obtained from different imaging 

methods and intrinsically in different coordinate spaces. Moreover, this technique may help also to 

diminish the spatial artifacts present in MRI/CT segmentations, such as those provoked by patient 

motion or respiration.  

However, the heart anatomy location within the torso is a spatial problem with 6 degrees of 

freedom (3 axes of displacement and rotation), and its solution by an optimization algorithm is not 

straightforward. This study presents an optimization algorithm able to automatically solve the atrial 

location and orientation based exclusively on surface electrical measures, using a discrete search 

optimization algorithm. Departing from our previous work in which we showed the dependence of 

the atrial location and the L-curve curvature [8], this manuscript proposes an optimization algorithm 

to automatically locate the atrial anatomy, as well as the validation of this location algorithm using 

clinical AF markers.   
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MATERIALS AND METHODS 

Realistic simulations of the atrial electrical activity 

A 3D model of the atrial anatomy composed by 284,578 nodes and 1,353,783 tetrahedra was used 

to simulate the atrial electrical activity (673 ± 130 µm inter-node) [9]. Each node was simulated as a 

single atrial cell using the cellular model described by Koivumaki et al. [10] and solved using an 

adaptive algorithm described in [11]. Heterogeneity in the electrophysiological properties of atrial 

myocardium was introduced in form of changes in ion currents and distribution of fibrosis to 

generate AF episodes maintained by reentrant activity and fibrillatory activity with non-uniform 

propagation patterns and different shape and extent of the dominant region [12]. 28 different AF 

episodes of 10 seconds-length driven by a single and spatially-stable rotor in different locations were 

used in this work. For each simulation, a uniform mesh of 2048 nodes (5.3 ± 3.2 mm inter-node) of 

unipolar electrograms (EGM) was calculated at 1 mm from the surface of the epicardium under the 

assumption of a homogeneous, unlimited and quasi-static conductive medium adding all effective 

dipole contributions over the entire model. The computed electrograms were stored for processing 

at a sampling frequency of 500 Hz [12]. 

The ECG potentials at the torso surface were calculated by solving the Boundary Elements Method 

[4, 7] in a mesh formed by 771 nodes and 1538 triangular patches (3.8 ± 1.0 cm inter-node) [13]. 

White Gaussian noise was added to the synthetic ECG signals at a signal-to-noise ratio of 20 dB [12]. 

Inverse problem and L-Curve 

The ECGI solution consists on the reconstruction of the epicardial electrical activity through the 

inverse-problem resolution. Contrary to the forward problem, which allows to calculate the surface 

electrical activity from the epicardial activity, the inverse problem calculates the inverse-computed 

Electrograms (icEGM) from the surface electrical activity (ECG) using: 

 𝑖𝑐𝐸𝐺𝑀(𝜆) = 𝑀−1 ∙ 𝐸𝐶𝐺 (1) 

where M is the forward matrix describing the projection of the surface electrical activity from the 

epicardial potentials through their anatomy. Since M is defined for the forward problem, its inverse 

matrix cannot be calculated in terms of classical linear algebra. The linear equation system can be 

solved using the zero-order Tikhonov method, which substitutes the inverse of the M matrix by an 

invertible matrix [4, 7]: 

 𝑖𝑐𝐸𝐺𝑀(𝜆) = (𝑀𝑡 ∙ 𝑀 +  𝜆 ∙  𝐼𝑡 ∙ 𝐼)−1 ∙ 𝑀𝑡 ∙ 𝐸𝐶𝐺 (2) 

where I is the identity matrix and λ is a constant regularization parameter that does not depend on 

time. The optimal regularization parameter is selected according to the L-curve method, which 

allows to compensate the errors in the solution (residual norm: 𝑙𝑜𝑔(||𝑀 ∙ 𝑖𝑐𝐸𝐺𝑀(𝜆) − 𝐸𝐶𝐺||2)) with 

the numerical errors provoked by the matrix inversion (solution norm: 𝑙𝑜𝑔(||𝑖𝑐𝐸𝐺𝑀(𝜆)||2)) by 

minimizing the expression ||𝑀 ∙ 𝑖𝑐𝐸𝐺𝑀(𝜆) − 𝐸𝐶𝐺||2 + 𝜆2||𝑖𝑐𝐸𝐺𝑀(𝜆)||2, being the operator (|| ∙ ||) the 

Frobenius norm. This was carried out by the L-cuve method, a graphical method which selects the 

regularization parameter 𝜆 that constitutes the corner in the X-Y graph between the residual and 

the solution log norms. The corner of the curve L is then defined as the first point of maximum 

curvature according to: 
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where x is the logarithm of the residual norm (𝑙𝑜𝑔||𝑀 ∙ 𝑖𝑐𝐸𝐺𝑀(𝜆) − 𝐸𝐶𝐺||2) and y the logarithm of 

the solution norm (𝑙𝑜𝑔||𝑖𝑐𝐸𝐺𝑀(𝜆)||2). The optimal regularization parameter was chosen at the first 

maximum value of the curvature [4,7,8]. Previous studies of our group showed that the maximal 

curvature value of the L-curve is a good estimator of the proximity of the atrial position and 

orientation from its natural location [8]. 

Optimization algorithm 

In order to automatically locate the atrial anatomy within the torso based on the L-curve curvature 

a classical optimization algorithm was used: Pattern Search [14-15], which belongs to the family of 

numerical methods not based on gradient calculation. This algorithm is used for convergence of 

maximums and performs a discrete search with variable meshing. In our case, the optimization 

algorithm explores a 6-dimension space (3 axes of displacement and rotation) looking for the 6D 

point (corresponding to a heart position and orientation) whose ECGI solution gives the maximal L-

curve curvature. Our hypothesis departs from the basis that the location in which the heart was 

located when the ECGI recordings are performed produces the maximal curvature of the L-curve, 

compared to altered locations [8]. Therefore, here the optimization algorithm is used to minimize 

the spatial artifacts present in a supposed altered heart location by optimizing those 6 parameters 

(position and orientation) to obtain the maximal L-curve-curvature.  

The quest starts with a fixed meshing interval and performs an initial search in 12 points with an 

individual increment in each of the 6 axes of freedom (3 for displacement and 3 for rotation). Then, 

it solves the inverse problem and looks for the maximal value of the L-curve in these 13 points: the 

current point and 12 independent increments (± meshing interval) in each axis. Whether the 

maximal curvature is found in a position different from the current point, the algorithm displaces to 

that position and the meshing interval is doubled. Otherwise, the algorithm remains in the same 

location and the meshing interval is reduced by 50%, until changes between iterations are below a 

tolerance (see Fig. 1C). 

Electrophysiological markers for atrial fibrillation 

Due to the regularization process of the inverse solution, the icEGMs signals reconstructed on AF 

episodes have been reported to depict incomplete information regarding local electrical activation 

[12, 16], and are hard to be visually interpreted. Therefore, icEGM signals are commonly post-

processed in order to measure known electrophysiological markers related with the AF driver 

positions, target of the ablation procedures and objective of the ECGI mapping in AF.  

From classic electrophysiological parameters, this paper will evaluate the local temporal evolution 

of the icEGMs traces by using measures of signal correlation. For post-processing markers, this work 

will evaluate the activation frequency maps and the reentrant activity detected by phase analysis. 

These are two of the main techniques used in clinical practice for AF mapping, as they allow to 

identify the fastest-activated and the reentry-activated regions, both features suspected to be 

markers of the atrial regions responsible of AF maintenance [17-18]. The activation frequency maps 

were calculated through the Dominant Frequency (DF) algorithm, which obtains the maximal 
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spectral contribution in the frequency domain after applying the Welch periodogram [17]. For the 

reentrant activity detection, the atrial icEGMs were pre-filtered using a narrow band-pass filtering 

centered at the highest DF and phase signals were obtained through the Hilbert Transform. Stable 

phase singularities were identified in these phase maps as described in [19]. Finally, the reentrant 

activity in 4 seconds-length episodes was summarized in a phase singularity probability map, where 

the amount of reentrant activity occurrences were depicted for each atrial region. The node with 

the highest reentrant contribution was considered as the AF reentrant driver position. 

Description of the Experiments 

The EGMs simulated at the original position for the 28 different AF episodes were used to calculate 

their corresponding surface ECGs through the forward problem. The same atrial anatomy was used 

to simulate all 28 AF episodes. This atrial anatomy was then displaced and rotated from its original 

position by ± 2.5 cm and ± 30° in all 3 displacement and rotation axes randomly. The original surface 

ECG signals were then used to run the location algorithm based on the L-curve. An initial meshing 

interval of 2 (cm or degrees) was used and the tolerance was set to 0.125 (cm or degrees). 

The optimization algorithm was run twice per episode, with 2 different initial positions, in order to 

check if the same final positions (global maximum) were given by both initial points. Once obtained 

the final position by the optimization algorithm, the electrophysiological markers described in the 

previous section were calculated for the icEGM signals at the original, initial and final position of the 

algorithm. Finally, these markers were compared between the original and initial/final positions, in 

order to test the clinical usefulness of the proposed solution. 

The optimization algorithm and the experiments were coded on Matlab (Natick, USA). The most 

computational-expensive parts of the optimization algorithm (forward matrix calculation and matrix 

inversion from the Tikhonov regularization) were accelerated by parallel computing on Graphic 

Processor Unit (GPU) using CUDA code and linked to Matlab through a dedicated dynamic-link 

library (DLL). The number of iterations of each experiment as well as the computation time was 

measured on a 8-cores CPU (i7-7700, 32 RAM GB, 3.60 GHz) with a dedicated GPU (Nvidia P6000, 

24 RAM GB, 3840 cores). 

Results were expressed as average ± standard deviation when standard normal distribution was 

observed (using Kolmogorov-Smirnov test), or as median [interquartile range] otherwise. Statistical 

significance was checked using T-student test for variables with standard normal distribution or 

using Wilcoxon rank sum test otherwise. Statistical significance was considered when p  <  0.01.  
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RESULTS 

Optimization algorithm for location 

In Figure 1 an illustrative example of the optimization process is depicted. In panel A, the torso mesh 

(green) and the atrial anatomy at its original position (red) are shown. Panel B shows the path 

followed by the algorithm in one of the optimization processes from the initial position (2.5, 2.5, -

2.5) to the final position (0, 0, 0.5), and compared with the original position (0,0,0). The algorithm 

found the maximal L-curve curvature 0.5 cm away from the original position. While the deviation in 

orientation in the starting position was -30º in the X axis, 30º in the Y axis and -30º in the Z axis, the 

angular deviation at the final position from the actual orientation was 2° in the X axis, -18 ° in the Y 

axis and -2° in the Z axis. 

 

Fig. 1. Illustrative example. A. Torso geometry (green) and atrial geometry (red). B. Example of the 

localization algorithm using [2.5, 2.5, -2.5] as starting point and [0, 0, 0.5] as final point respect the 

actual location [0, 0, 0]. C. L-curves and their curvature at the maximal curvature point (black dot) 

for the example in Panel B, color-coded according to the optimization algorithm iteration. D. Flow-

chart of the optimization algorithm 

For the entire database, composed by the 28 different simulations in which the optimization 

algorithm was run twice (56 tests), the average error between the original and the final position is 

shown in Figure 2, for an initial error of 4.3 cm and 52º in random directions. The final location for 

the 56 test was obtained after 17 [9 - 33] iterations in 748 [434 - 1686] seconds. For displacements 
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(Panel A), the location algorithm provided a deviation between the actual and the final location of 

0.2 ± 0.2 cm in the X axis, 0.2 ± 0.3 cm for the Y axis and 0.4 ± 0.3 cm for the Z axis, resulting in an 

absolute error of 0.5 ± 0.5 cm in terms of Euclidean distance. For angular deviation (Panel B) we 

observed a deviation of 4.8 ± 3.4° for the X axis, 14.5 ± 9.7° for the Y axis and 4.8 ± 3.0° for the Z 

axis, obtaining an absolute deviation of 16.0 ± 10.7°.  

 

Fig. 2.  Location deviations for displacement (A) and rotation (B). 

 

In 82% of cases (23/28 simulations), the optimization solutions for the 2 different starting points of 

the same simulation gave the same final position (difference lower than 0.2 cm), with an average 

Euclidean distance between both solutions of 0.3 ± 0.2 cm along the entire database. In 68% of cases 

(19/28) the final solution gave the same orientation for both cases (difference lower than 0.2º), with 

a relative error between orientations of same simulation of 0.5 ± 0.3º along the entire database. In 

54% of cases (14/28) both position and orientation matched between solutions, indicating that the 

optimization algorithm provided the same or similar global maximal solution from different starting 

points. 

Inverse-computed EGM maps and traces 

In Figure 3 the inverse-reconstructed voltage maps obtained at the actual position, initial and final 

iteration of the algorithm are depicted, at the instant in which the spatial correlation is higher 

between the actual and the final potential distribution. On this example, same as Fig. 1, the 

deviation on the final position was 0.5 cm and 18º. Potential distributions at the actual location and 

at the first iteration presented important differences: electrical dipoles at positions #1 and #2 in the 

actual position are displaced to lower positions on the first iteration. The reconstructed map at the 

final position preserves the original potential distribution, as the location of maximum and minimum 

potential appear at similar locations.   
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Fig. 3.  Reconstruction of the epicardial potential. Potential distribution maps at the actual position 

(A), first iteration (B) and last iteration (C). D. Correlation Coefficient (CC) between the potential 

signals at the actual vs. at the first (left) or last (right) iteration. E. Example of 2 reconstructed 

potential traces at positions marked in panels A-C. 

 

The corresponding EGM and inverse-computed EGM (icEGM) traces for the 2 points marked in 

Panels A-C are depicted in Panel E. All inverse-computed signals had lower amplitudes than the 

starting EGM, due to the regularization process, but the icEGM traces at the original and final 

positions showed an activation sequence similar to the starting EGM. Nevertheless, the icEGM trace 

obtained at the initial point (in black) did not show clear activations and they were unrelated with 

the starting EGM. The agreement between individual signal traces can be observed in Panel D, 

where the correlation coefficients between the icEGM at the actual position and the icEGMs at the 

first and last iterations of the location algorithm were calculated for each individual atrial node. We 

obtained a moderate correlation coefficient (0.74 ± 0.17) between the actual and last positions, 

compared to the obtained between the actual and initial positions (0.02 ± 0.32, p<0.01). However, 

as the spatial distribution of the electrical potential was relatively well maintained at the final 

iteration compared with the actual position, their average spatial CC values were higher (0.98 ± 
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0.01) than the CC across temporal signals. Spatial CC between initial and actual position was also 

higher than for temporal CC (0.20 ± 0.18, p<0.01) although still showing low spatial correlation.   

Activation frequency and reentrant activity maps 

Figure 4 shows the Dominant Frequency (DF) maps obtained at the actual, first and last position for 

the example on Figure 3. At the original position, the fastest activated region was present at the RA 

lateral wall and activated around 5.5 Hz, whereas the rest of the atria was activated at lower 

frequencies (3 Hz). The final DF distribution resembled the original, and the fastest region can be 

identified as a region with similar shape and location and activated at the same frequency (5.5 Hz). 

However, the DF map at the initial iteration resulted unable to reconstruct the starting DF 

distribution, showing small regions at 5.5 Hz distributed in areas different to the original fastest site.  

 

Fig. 4.  Reconstruction of activation rate maps through Dominant Frequency analysis at the actual 

position (A), first iteration (B) and last iteration (C). 

 

Figure 5 shows an example of the reentrant activity analysis. In this example, with a final deviation 

of 0.7cm and 12º, the AF episode was sustained by a rotor located at the Right Atrial Appendage 

(RAA). Phase map obtained at the actual position provided a stable phase singularity at the RAA 

(Panel A). In contrast, the phase distribution at the initial iteration was irregular and no stable phase 

singularity could be identified at the rotor position, although other phase singularities appeared at 

different locations. The phase map obtained at the final iteration presented the same features as 

the actual one: a phase singularity near the RAA and a smooth propagation towards the rest of the 

atrial tissue. 

A summary of all the phase singularities detected for each episode is shown at the right column of 

Figure 5 as a reentrant activity probability map. As expected, this reentrant activity map at the 

original and final position showed the highest value at the RAA (in red), where the simulated rotor 
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was located, and with a Euclidean distance between maximal histogram nodes of 0.4 cm. The 

reentrant activity map at the initial position did not have a maximal contribution close to the RAA, 

and its maximal value was present at the Left Inferior Pulmonary Vein (LIPV), 9.6 cm away from the 

RAA rotor. 

 

 

Fig. 5.  Reconstruction of phase maps (left) and phase singularity probability maps (right) at the 

actual position (A), first iteration (B) and last iteration (C). Phase singularities in the phase maps 

are marked with white dots. 

Accuracy of the AF markers after optimization 

In Figure 6 the measures of activation frequency and rotor position were compared between the 

actual position and the first/last iteration of the algorithm across the whole database, for both the 

ground-truth solution from the EGM and the ECGI reconstruction. In panel A, the error in Hz 

between the DF values of each individual atrial node was obtained between the actual and the 

first/last location. When compared with the ground-truth EGM, the last position provided an error 
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of 0.8 ± 1.4 Hz whereas at the first position was 1.4 ± 1.5 (p<0.01). When compared with the ECGI 

solution at the actual position, the last position provided an error of 0.5 ± 1.0 Hz whereas at the first 

position was 1.1 ± 1.1 (p<0.01). No significant differences were found between the errors against 

ECGI and EGM ground-truth at the actual position (p>0.05). 

Differences in locating the reentrant activity phase maps were calculated as the distance between 

maximal rotor histogram sites (Figure 6.B). When compared against the ground-truth EGM 

distribution, the final iteration of the location algorithm provided an average distance to the original 

rotor location of 1.9 ± 2.1 cm while at the initial position was 6.9 ± 4.8 cm (p<0.01). When compared 

against the ECGI at the actual position, the final iteration of the location algorithm provided an 

average distance to the original rotor location of 1.6 ± 1.7 cm while at the initial position was 7.2 ± 

4.0 cm (p<0.01), with no significant differences against the deviations provided against the ground-

truth EGM solution (p>0.05). 

 

Fig. 6.  Errors committed in the atrial activation rate and rotor position for the first, mid-way (50% 

of iterations) and last iteration when compared with the EGM ground-truth (black) and the ECGI 

(blue) solutions at the actual position. 
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DISCUSSION 

In this study, a novel technique able to automatically locate the atrial anatomy within the torso 

using the curvature of the L-curve is presented. The average error obtained in atrial location was 

less than 0.5 cm for displacements and around 15º in rotation. We showed that different initial 

points provided similar solutions, showing the robustness of the algorithm to identify the global 

maximum. Moreover, we evidenced that the position provided by the location algorithm allows to 

properly reconstruct the main electrophysiological AF markers, such as dominant frequency 

gradients or reentrant activity location. On these markers we obtained an average error of 0.5 Hz in 

DF and 1.6 cm in the rotor position between the actual anatomical position and the final iteration 

of the optimization algorithm. Both measures were within the range of acceptable precision for their 

use in clinical practice: ablation lesions in guided procedures usually cover areas of 2 to 3 cm2 [20], 

and differences lower than 0.5 Hz are not considered as DF gradients when targeting fastest regions 

[17]. 

Medical imaging acquisition in ECGI 

Medical imaging techniques such as MRI and CT play a crucial role in the identification of 

cardiovascular conditions that predispose to the development and perpetuation of cardiac 

arrhythmias. These image techniques provide important anatomical information to refine clinical 

strategies based on the pathological and functional information of the cardiac tissue and allows the 

characterization of the arrhythmogenic substrate itself. As CT and MRI are the techniques which 

provide the more accurate anatomical structure description and are commonly available in many 

health institutions, they are classically used to obtain the heart and torso models used in ECGI.  

However, the use of these imaging techniques may suppose a limitation for the use of ECGI in 

normal clinical cardiology practice. The CT/MRI techniques are used on a huge variety of patients 

and medical conditions, which in some cases limit their use as screening or daily tool in the 

cardiovascular service due to their low priority. Therefore, CT/MRI scans are only obtained for AF 

patients already referred for ablation, limiting the ECGI use to this minor AF sub-population (<1% of 

AF patients).  Also the need to obtain the medical images wearing the ECGI electrodes, supposes an 

extra logistic issue for ECGI. Nowadays there are alternative methods to MRI/CT that allow obtaining 

the torso geometry, as those based on photogrammetry [21]. Through this technique, Perez-Alday 

et al. have reported the location of 74 surface electrodes with an error in their location, compared 

with the typical scanner (MRI/CT) of 11.27 ± 3.05 mm [22]. Schulze et al. with a similar analysis using 

a two calibrated cameras system and a phantom anatomical model with 80 electrodes reported an 

error of 1 ± 1 mm [23].  

On the other hand, obtaining the 3D model of the cardiac anatomy can also be performed through 

techniques different to MRI/CT scans. Among others, echocardiography equipment can reconstruct 

the cardiac surface with enough spatial resolution for ECGI. The fluoroscopy equipment or the 

electro-anatomic navigators present in the electrophysiology lab have also been used to obtain the 

cardiac anatomy for ECGI, with an error respect CT scans lower than 10mm [24]. Although these are 

an invasive methodology (navigators) or involve patient radiation (fluoroscopy), they are commonly 

used in AF ablation procedures and their routine outcomes can be used to extract the atrial anatomy 

without a secondary scan. 
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Accuracy in Location and Electrical Characterization 

Reconstruction of ECGI involves the combination of electrical surface signals and the atrial and torso 

geometries. In both cases, the pre-processing steps involve some uncertainties or noise, which are 

then projected on the reconstructed maps. When different image acquisition systems are used, the 

co-registration of their anatomical positions has been reported to generate spatial divergences on 

the range of [1-8] cm and up to 50º when manual land-marking is used [25]. On the other hand, 

cardiac motion and respiration also involves spatial artifacts in the range of [1-3] cm and up to 30º 

in each axis [26-27]. We opted to validate our methodology with an initial error able to mimic both 

conditions: normal heart movement and possible co-registration divergences. 

The ability of ECGI to properly reconstruct these maps during cardiac arrhythmias in presence of 

spatial deviations has been extensively evaluated, and it has been reported that errors up to 1 cm 

in location can provide a proper interpretation [12, 28-29]. Different strategies have been proposed 

to mitigate these spatial artifacts, such as the automatic location method proposed by Coll-Font et 

al [30]. The results in atrial location presented in this manuscript fall within this range (0.5 cm, 15º), 

and therefore the electrophysiological features reconstructed at these locations are also within the 

clinically acceptable range. 

The localization measures reported on this manuscript showed that higher displacement errors 

were committed on the vertical (Z) axis than on the horizontal (X,Y) axes. We hypothesize this can 

be provoked by the higher proximity of surface electrodes to the heart on the horizontal plane (front 

and back electrodes) than on the vertical plane (shoulder and hip electrodes). On the other hand, 

higher deviations in orientation were reported on the Y axis, corresponding to the front-back axis. 

We believe that in this case it was provoked by the low volume displacement when rotations in the 

Y axis occur: Y axis coincides with the longest axis in the atrial anatomy (from left to right 

appendage), and rotations around the longer axis provoke less free space occupation/emptying. The 

deviations reported on this manuscript coincides also with those reported on patients on our 

previous work [8]. 

The ECGI technique also deals with the inherent and always present reconstruction error provoked 

by the regularization process, so even in the best scenario where no spatial deviations are present, 

the reconstructed electrical activity presents significant differences with the actual epicardial 

potentials. These reconstructions errors can be comparable and even greater than those caused by 

location displacements [8]. Therefore, location algorithms as the presented in this manuscript can 

be of great utility as long as the effect on the reconstruction provoked by the localization is lower 

than the intrinsic regularization errors.  

ECGI Reconstruction and Inverse Solution 

The solution of the inverse problem enabling to the ECGI reconstruction constitutes nowadays a 

challenge that many research teams are addressing. This work made use of one of the most common 

inverse problem methods as the Tikhonov regularization. It is considered as reference when 

compared to other methods although it has been shown that can over-smooth the reconstructed 

maps [31]. This regularization methodology was used on this manuscript as their intrinsic parameter 
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(L-curve curvature) allows to refine the heart anatomy as a secondary outcome. However, the use 

of Tikhonov regularization on the location process do not become a limitation, once the heart is 

properly located, to the use of novel and more accurate inverse-problem methodologies enabling 

better ECGI reconstructions and/or including transmural differences [32-34]. 

Signal artifacts provoked by ventricular activity or their residuals after QRS subtraction can limit the 

accuracy of the ECGI reconstruction of the atrial electrical activity in real scenarios. However, the 

present optimization algorithm does not require temporal continuity of the surface signals for the 

ECGI reconstruction, so surface signals free of ventricular activity (T-Q intervals) can be identified 

and concatenated to be used by the optimization algorithm, ensuring the electrical activity under 

analysis is atrial activity alone. Also in cases in which patients remain in sinus rhythm, the P waves 

can be identified and used by the optimization algorithm to refine location. This last point, as well 

as the use of ventricular surface activity for the ventricular activity location, should be further 

evaluated as the presence of a single depolarization wave-front (contrary to AF where several wave-

fronts can coexist) may limit the location accuracy.  

This manuscript measures the accuracy of the solution provided by the location algorithm respect 

to the ECGI solution at the anatomical correct position as well as respect to the EGM ground truth. 

For both atrial frequency rate and location of reentrant activity markers, slightly higher deviations 

on these parameters were observed when compared against the ground truth (EGM) than when 

compared against the ECGI solution at the actual position, although with no statistical differences. 

These higher deviations are expected as the ECGI solution at the actual location has been reported 

to present deviations against the ground-truth [12]. However, the marker deviation provoked by 

the heart geometry misalignment due to co-registration or respiration is significantly greater than 

the inherent ECGI deviation, and therefore the presented location algorithm allows to improve the 

ECGI solution in these cases.   

Limitations 

The presented work is based on simulated data and will need human validation. The decision to use 

a simulated database was motivated by two main premises. First, human real data will suffer of 

spatial artifacts provoked by heart movement or co-registration between image and ECG position 

positions, and therefore the anatomical ground truth would be diluted. Second, the use of 

simulations from a database already calibrated against spatial artifacts [8] provides a comparative 

measure of the error provoked by the ECGI reconstruction and can be compared with the deviation 

provoked by the location algorithm.  

This study used a simplistic torso model with no inhomogeneity, without no lungs nor bones, since 

it was previously reported that they do not significantly affect the resolution of the inverse problem 

[28, 35-37] in comparison with the effect of changes in the heart position. The inverse problem was 

solved using all the 771 nodes on the surface, including those at unrealistic anatomical locations for 

an ECG recording electrode. Previous studies suggested using these locations does not suppose a 

significant difference on ECGI outcome [12]. We used a unique atrial and torso anatomy and 

therefore the location algorithm should be validated on a representative population of cardiac 

patients. 
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We have chosen one of the best-known methods for optimization (Pattern Search) to solve the 

anatomy localization, since it has provided an adequate balance between accuracy and calculation 

time, as one of the objectives of this project was to use this algorithm in clinical practice. However, 

other optimization algorithms may improve the localization results at the expense of calculation 

time. We also tuned the tolerance of the optimization algorithm using our simulated database, 

looking for a compromise between spatial accuracy and number of iterations. We found that the 

thresholds used here (0.125 cm/º) allowed to achieve this cost-effectiveness balance with a clinical-

relevant accuracy. However, these values should be reviewed in a clinical database.  

Conclusions 

This work presents a novel technique for identifying the heart location within the torso based on 

electrical measurements. Using this algorithm, we reported average errors in location less than 0.5 

cm for displacements and around 15 degrees in rotation. The characterizations of the electrical 

activity by ECGI using our location algorithm was feasible for AF episodes, as the deviations in the 

electrophysiological markers fall within the clinically allowed: an average error less than 0.5 Hz for 

dominant frequency, and an average error of 1.6 cm in the reentrant activity location. This 

automatic location algorithm can be used to align atrial and torso anatomies from different 

recording techniques or to mitigate the possible spatial artifacts provoked by motion or respiration. 
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