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Abstract 

 

Materials from WO3-Nb2O5 system, presenting bronze-type crystal structures, 

display outstanding functional properties for several applications, like 

thermoelectric materials, lithium-ion battery electrodes, or as catalysts. In this 

work a series of W-Nb-O oxide bronzes has been synthesized by the 

hydrothermal method (with Nb/(W+Nb) ratios in the range 0-1). A combination of 

bulk and surface characterisation techniques has been applied to get further 

insights on: i) the effect of thermal treatments on as-prepared materials; and ii) 

the surface chemical nature of W-Nb-O oxide bronzes. Thermal treatments 

promote the following structural changes: i) loss of emerging long-range order 

and; ii) the elimination of NH4+ and H2O species from the structural channels of 

the as-synthesized materials. It has been observed that W-Nb-O bronzes with Nb 

at. % of ca. 50 % are able to retain long-range order after heat-treatments, what 

is related with the presence of Cs0.5[W2.5Nb2.5O14]-type structure. Increasing 

amounts of Nb5+ in the materials: i) promote a phase transition to 

pseudocrystalline phases ordered along c-axis; ii) stabilize surface W5+ species 

(elucidated by XPS); and, iii) increase the proportion of surface Lewis acid sites 

(as determined by FTIR of adsorbed CO). Results suggest that pseudocrystalline 

oxides (with a Nb at. % ≥ 50 %) are closely related with NbO7 pentagonal 

bipyramids-containing structures. The stabilisation of Lewis acid sites on these 

pseudocrystalline materials leads to a higher yield to heavy compounds, at the 

expense of acrolein formation, in the gas-phase dehydration of glycerol.  

 

Keywords:       
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Introduction 

Metal oxides with bronze-type structures can be considered one of the most 

versatile families of materials in terms of functional properties and applications. 

Their wide applicability derives in part from their adaptive compositional features, 

but also from their defect-rich chemistry.1,2 

Metal oxide bronzes are usually defined as partially reduced transition metal 

oxide phases, in which constituent elements incorporated within the crystal 

framework (generally W, Mo, V, Nb, Ta, Ti or U) present a mixed oxidation state.1 

This mixture of oxidation states can be stabilized either by the incorporation of 

electropositive species (like alkaline-earth metals, or ammonium ions), generally 

inside of 5-8 membered channels of the structure (i.e. intercalation compounds)3 

or by the generation of structural defects (like in the case of block structures in 

niobium oxide system,4,5 or Magneli phases in tungsten oxides 6,7).  

Among them, tungsten oxide bronzes are one of the most studied systems. 

Perovskite, hexagonal (HTB) or tetragonal (TTB) tungsten oxide bronzes have 

found applications in a vast numbers of research fields, such as 

superconductors,8 capacitors,9 catalysis,10-13 magnetic14 or optical materials.15,16 

In all cases, the possibility to achieve such diverse functionalities comes from 

their ability to admit a great variety of elements within their crystal lattice, from 

most of the groups of the periodic table, like rare earths,17,18 transition metals1 or 

semimetals.19 

In the present study, we have focused our attention on the WO3-Nb2O5 system. 

In particular, novel applications for W-Nb-O bronze type oxides have recently 

emerged. For instance, mixed W-Nb-O oxides with a TTB structure have shown 
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thermoelectric properties,20 and also outstanding rates for lithium-ion diffusion 

and high storage capacity.21 This system also displays interesting catalytic 

properties in the transformation of biomass-derived feedstocks,11-13,22,23 

presenting high activity and selectivity, and also good stability under highly 

demanding reaction conditions, like very low pH and aqueous environments.23 

Despite their wide applications in materials science, studies on their formation 

mechanisms under mild conditions (like hydrothermal or reflux methods)24,25 and 

on their surface chemistry, as well as those dedicated to study activation 

processes, are scarce. This derives from the more extended synthesis protocols 

applied, which are based on high temperatures heat treatments (above 1000ºC) 

under controlled atmospheres. These synthetic procedures are suitable for most 

of their practical uses. However, for applications in catalysis, soft synthesis 

methods are required. Hydrothermal,11-13,26-29 reflux30,31 or slurry32 methodologies 

are the most common ones, not only for the synthesis of tungsten-bronze based 

materials, but also for the preparation of other bronze-type oxides based on 

molybdenum or vanadium.33-35 Unlike methods based on solid state reactions, 

these mild synthesis protocols allow to achieve active surface areas large enough 

to carry out catalytic reactions. 

Herein we report the structural and chemical evolution of W-Nb-O oxides, 

presenting bronze-type structures, during their thermal activation. The materials 

were prepared by hydrothermal synthesis and subsequently heat-treated at 

different temperatures in N2 flow. Surface features of heat-treated W-Nb-O oxide 

bronzes are discussed and linked with both their particular structural 

characteristics and their catalytic performance in the gas-phase dehydration of 

glycerol.  
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Experimental 

Synthesis  

A series of W-Nb-O oxides, with Nb at. % ratios in the range 0-100, have been 

synthesized by the hydrothermal method, using ammonium metatungstate 

hydrate (≥85 wt.% WO3 basis, Sigma-Aldrich) and niobium oxalate (monooxalate 

adduct, ABCR) as precursors. Acidified aqueous solutions containing 

stoichiometric amounts of the corresponding metal salts (pH= 1, H2O:(W+Nb) 

molar ratio 53:1) were introduced into Teflon-lined stainless steel autoclaves, and 

subsequently purged with N2. Autoclaves were then heated at 175 ºC for 48 h. 

The resulting solids were filtered, washed with distilled water, and dried at 100 ºC 

for 16 h. Finally, dried as-prepared solids were heat-treated at 550 ºC or 800 ºC 

under N2 flow (15 mL min-1 gcat-1).  Nb-containing catalysts are named WNby, 

being y the bulk Nb at. % measured by XEDS. Table 1 shows some 

characteristics of samples heat-treated at 550°C.  

Pure Niobium oxide, heat-treated at 550 ºC, was named as Nb100.  For 

comparison, pure tungsten oxide, denoted as WOx, was heat-treated at 450 ºC 

in order to avoid the phase transition from the hexagonal tungsten bronze 

structure (h-WO3) to the monoclinic tungsten oxide phase (m-WO3).11 
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Table 1. Characteristics of W-Nb-O oxide bronzes heat-treated at 550°C. 

Sample Nb/(W+Nb) W5+/(W6++W5+) 
surface ratiob 

Surface Oxygen (at. %)b 

Bulka Surfaceb Lattice Defects 

WOx 0.00 0.00 0.14 92.5 7.5 

WNb29 0.29 0.23 0.05 74.1 25.1 

WNb62 0.62 0.55 0.18 83.7 16.3 

WNb80 0.80 0.70 0.22 84.5 15.5 

WNb95 0.95 0.84 0.34 67.9 32.1 

Nb100 1.00 1.00 0.00 76.7 23.3 

a) Determined by Energy Dispersive X-ray Spectroscopy (XEDS).  
b) Determined by XPS. 

 

Characterisation of materials 

The bulk chemical composition of W-Nb-O oxides was measured by Energy 

Dispersive X-ray Spectroscopy (XEDS) in a JEOL 6300 scanning electron 

microscope equipped with an Oxford LINK ISIS detector. Each spectrum was 

recorded at a counting time of 100 s. 

Scanning electron Microscopy (SEM) images were collected in a ZEISS Ultra-55 

field-emission scanning electron microscope. All the images were acquired at an 

accelerated voltage of 2 kV using an InLens detector. 

Powder X-ray diffraction (XRD) patterns were recorded in a Panalytical X´pert 

PRO diffractometer (X´Celerator detector in a Bragg-Brentano geometry). 

Diffractograms were collected using Kα1 radiation of Cu. 

FTIR spectra were collected in the 4000-400 cm-1 spectral region, in a Nicolet 

205xB spectrophotometer. Spectra were measured at a resolution of 1 cm-1 and 
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128 accumulations per scan. Samples were diluted in KBr and pressed into 

pellets prior to measurements. 

Temperature programmed oxidation experiments were carried out in a TPD/2900 

instrument (Micromeritics). 0.150 g of as-synthesized materials were introduced 

in a quartz reactor and heat-treated at a heating-rate of 10 ºC min-1 in air flow. 

Released species were analysed by a mass spectrometer connected at the 

output of the system.  

X-ray photoelectron spectroscopy (XPS) analyses were carried out in a SPECS 

spectrometer equipped with a Phoibos 150 MCD-9 detector. Spectra were 

recorded at ultra-high vacuum (10-9 mbar) using a non-monochromatic AlKα 

(1486.6 eV) X-ray source and an analyser pass energy of 50 eV (X-ray power of 

100 W). Data treatment was performed with CasaXPS software after Shirley-type 

background subtraction. All the signals were referenced to C1s signal at 284.5 

eV. 

CO-adsorption FTIR spectroscopy was performed at 77 K in a Perkin-Elmer PE 

100 spectrometer, equipped with an MCT detector. Spectra were collected in 

transmission mode, at a resolution of 0.5 cm-1 (256 accumulations per scan). W-

Nb-O oxides (heat-treated at 550 ºC in N2) were pressed into self-supported 

wafers of ca. 20 g cm-2, and introduced inside the IR cell connected to a vacuum 

system. Prior to CO adsorption, the samples were activated in O2 atmosphere 

(200 mbar) at 300 ºC for 2h, and subsequently cooled down to room temperature. 

Then the cell was evacuated (P= 5.10-6 mbar) and temperature was further 

decreased down to 77 K (2 mbar of He were admitted to promote heat-transfer 

during cooling). Once a temperature of 77 K is reached, a spectrum of the 

activated sample prior to CO adsorption is collected. Afterwards increasing 
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amounts of CO are admitted into the cell, and spectra at each equilibrium 

pressure (Peq= 0.001 – 6.4 mbar) are measured. Finally, the cell is evacuated 

and the process is monitored by recording spectra at decreasing equilibrium 

pressures (Peq= 0.1- 10-6 mbar). In some cases, the results are presented as 

background-subtracted spectra, considering the spectrum of the activated 

samples recorded at 77 K as the background. 

 

Catalytic tests 

Catalytic tests in the gas-phase dehydration of glycerol were conducted in a fixed-

bed reactor at 320 ºC, atmospheric pressure, and a contact time, W/F, of 81 gcat 

h (molglycerol)-1, with an Glycerol/O2/H2O/He molar ratio of 2/4/40/54. The output 

stream was then bubbled in a condensation system which was maintain at a 

temperature of 0-3 ºC. Analysis of reactants and products have been carried out 

by gas chromatography.31 Condensed liquid products were analysed in a Varian 

3900 gas chromatograph equipped with a 100% dimethylpolysiloxane capillary 

column (100 m × 0.25 mm × 0.5 μm), while the remaining gaseous stream was 

analysed in an on-line HP 6980 gas chromatograph equipped with two columns: 

i) molecular sieve (5 Å, 3.0 m length) and; ii) Porapak Q (3 m length). 
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Results and discussion 

Effects of thermal treatments on W-Nb-O oxides 

To deal with structural and chemical consequences of heat-treatments, as-

prepared and heat-treated W-Nb-O oxides were analysed by several 

physicochemical techniques. 

Figures 1A displays XRD patterns of heat-treated W-Nb-O oxides. For 

comparison, XRD patterns of the corresponding as-prepared samples are 

included in Figure S1-A (Supporting Information). As indicated previously,22 the 

incorporation of Nb5+ within the hexagonal tungsten bronze, h-WO3, framework 

(showing three and six-membered channels along [001] direction) promotes: i) 

the stabilisation of the hexagonal tungsten bronze structure (at low Nb contents) 

and; ii) the loss of long-range order in the ab plane of the structure at increasing 

Nb concentrations in the materials. This loss of periodicity, which is observed in 

both heat-treated (Fig. 1A, patterns d to h) and as-prepared samples (Fig. S1-

A), gives rise to the so-called pseudocrystalline W-Nb-O oxides, ordered just 

along c direction.  

Figure 1B shows XRD patterns in the 2θ range 3-17º for heat-treated materials, 

whereas the corresponding XRD patterns of as-prepared samples are presented 

in Figure S1-B. Despite the loss of long-range order observed, as-prepared 

pseudocrystalline materials present two broad features in this region (Fig. S1-B, 

patterns c to f marked with an asterisk). Interestingly, these two broad lines at low 

angles could indicate some long-range order, which could be related with the 

presence of nascent Cs0.5[W2.5Nb2.5O14]-type phase (ICDD: 01-076-5882). This 

polymorph presents some differences with respect to the hexagonal tungsten 
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bronze structure:36, 37 i) it shows five-, six- and seven-membered channels; and 

ii) Nb5+ is incorporated within the pentagonal channel, in the form of NbO7 

bipyramids (Figure 1B). 

 

Fig. 1. A) XRD patterns in the 2θ region 5-65º of W-Nb-O oxides heat-treated at 

550°C, except sample WOx, which was heat-treated at 450 ºC. Samples: a) WOx; 

b) WNb29; c) WNb62; d) WNb80; e) WNb95; f) Nb100. B) XRD patterns of W-

Nb-O oxides in the 3-17º 2θ region. For comparison, the pattern of an 

orthorhombic Cs0.5[W2.5Nb2.5O14]-type phase36,37 is also included (g). 

 

These channels (either the heptagonal and/or hexagonal) are usually occupied 

by electropositive metals (like alkaline metal cations,38,39 for instance, Cs+ in 

Cs0.5[W2.5Nb2.5O14]), although other types of species, like rare earth cations,18 or 

even ammonium ions,40 can be incorporated. In our case, since ammonium 

cations are present in the reaction media, they could be easily accommodated 

within the hexagonal and/or heptagonal rings of these bronze-like frameworks, 

and subsequently eliminated after heat treatments.  

Interestingly, heat-treated samples present some differences in the low-angle 

diffraction region (Fig. 1B), with respect to as-prepared oxides (Figure 1S-B). 

Particularly, it can be noted that heat-treated pseudocrystalline samples (i.e. 

those presenting high Nb at. %, > 62 %) loss the above-mentioned broad 

diffraction lines (Fig. 1B, patterns d to f). On the other hand, WNb62, with Nb at. 

% of ca. 50%, retains these low-angle signals (Fig. 1B, patterns c), which is 

related to an emerging long-range order in the materials. In fact, in a previous 
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work we already observed the formation of nanoparticles (5-10 nm) displaying a 

Cs0.5[W2.5Nb2.5O14]-type structure, at Nb/(W+Nb) ratios close to 0.5.23 

To further understand the effect of the incorporation of Nb in W-Nb-O system, the 

samples were heat-treated at higher temperatures (800 ºC in N2), and analysed 

by XRD (Fig. 2). It can be observed that hexagonal W-Nb-O oxides, with low Nb 

contents (i.e. WOX and WNb29 samples), undergo a phase transition to a ReO3-

type structures (JCPDS: 00-020-1324) (Fig. 2, patterns a and b). On the other 

hand, at both intermediate or high Nb contents, the pseudocrystalline oxides W-

Nb-O evolve to tetragonal tungsten bronze-type (TTB) structures (JCPDS: 01-

075-0560) (samples WNb62 and WNb80; Fig. 2, patterns c and d) or T-Nb2O5-

type (JCPDS: 00-30-0873) (samples WNb95 and Nb100; Fig. 2, patterns e and 

f). Interestingly, these latter phases show the presence of NbO7 pentagonal 

bipyramids as a common structural motif. Therefore, according to the structural 

evolution of W-Nb-O oxides at medium-high Nb contents, pseudocrystalline 

materials seem to show more similarities to those NbO7 containing bronze-like 

structures, rather than the hexagonal tungsten bronze.  

 

Fig. 2. XRD patterns of selected W-Nb-O oxides heat-treated at 800 ºC in N2. a) 

WOx; b) WNb29; c) WNb62; d) WNb80; WNb95; f) Nb100. 

 

This fact should have consequences in the chemical nature of the constituent 

elements (i.e. W and Nb), according to the different environment of MO6 

octahedra in these NbO7 containing crystal structures. In this sense, hexagonal 

tungsten bronze structure shows only vertex-sharing octahedra, meanwhile 

pentagonal bipyramid-containing structures display a higher concentration of 
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edge-sharing motifs (i.e. those octahedra located at the equatorial edges of the 

bipyramids; see insets in Figure 2).  

Figure 3 displays FTIR spectra (1500-400 cm-1) of as-prepared and heat-treated 

W-Nb-O oxides (Figs. 3A and 3B, respectively). All materials present high 

intensity bands in the 1000-400 cm-1 region, which can be assigned to M=O and 

M-O-M stretching modes of bronze-like metal oxides.12,13 In addition, as-prepared 

materials display a narrow band at ca. 1402 cm-1, which can be assigned to 

deformation δ(NH) modes of incorporated ammonium cations (Fig. 3A).  

 

 

Fig. 3. FTIR spectra of as-prepared (A) and heat-treated (B) W-Nb-O oxides; and 

temperature-programmed oxidation (TPO) profiles of selected as-prepared W-

Nb-O samples (C), following the characteristic mass of ammonia (m/z= 15). 

Samples: WOx (a); WNb29 (b); WNb62 (c); Nb100 (d). As indicated in text, 

sample WOx was heated-treated at 450ºC whereas the rest of samples were 

heat-treated at 550ºC. 

 

After activation at 550ºC in N2, this signal disappears for all Nb-containing 

samples (Fig. 3B, spectra b to d). Nevertheless, WOx sample (heat-treated at 

450ºC in N2) still displays some remaining NH4+ species (see Fig. 3B, spectrum 

a). These ammonium species are reported to be necessary to keep h-WO3 

structure stable.40 

The activation process (i.e. ammonium release during thermal treatments) has 

been studied by temperature-programmed oxidation (TPO). The corresponding 

profiles for some selected materials were recorded by following the characteristic 
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mass of ammonia (m/z= 15) by mass spectrometry (Fig. 3C). Interestingly, a shift 

of the maximum in m/z=15 TPO profiles to lower temperatures is observed when 

the Nb-content in the materials increases (Fig. 3C). This means that, as we 

incorporate Nb5+ in W-Nb-O oxides, ammonium species are more easily 

eliminated by thermal treatments. This observation could be a consequence of a 

decreasing particle size in Nb-containing samples, as deduced from Scanning 

Electron Microscopy images of W-Nb-O series (Fig. S2, Supporting Information). 

In this context, a smaller particle size will decrease diffusion paths of ammonium 

within the structural channels of W-Nb-O oxides, facilitating their elimination by 

thermal treatments. However, and as will be discussed later, it cannot be ruled 

out that the elimination of ammonium ions at higher temperatures for tungsten-

rich samples could also be a consequence of greater interaction with the solid 

(presence of Brönsted centres, as observed in zeolitic materials).41 In addition to 

ammonia, some water was also detected by mass spectrometry during these 

experiments (Fig. S3). Signals at low (100-200 ºC) and medium-high (250-400 

ºC) temperatures can be ascribed to physisorbed water, and water released from 

the structural channels, respectively (Fig. S3).   

Surface analysis of W-Nb-O oxides 

Surface composition and chemical nature of W-Nb-O oxides were studied by X-

Ray Photoelectron Spectroscopy (XPS). For comparison, Nb-free sample, WOx, 

heat-treated at 450ºC, has also been included. The whole series displays a 

throughout slightly reduced surface Nb content (determined by XPS) compared 

to that measured by XEDS (Table 1). This indicates a depletion of Nb-content on 

the catalyst surface.  
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Figure 4 displays W 4f core-level spectra of W-Nb-O oxides. Considering 

tungsten species, all the samples show a major W 4f7/2 peak at binding energies 

in the range 35.2-35.8 eV, which can be assigned to the presence of W6+ 

species.40,42,43 An additional W 4f7/2 peak, located at binding energies of ca. 34.2-

34.7 eV is also observed, which can be ascribed to the presence of W5+ species 

on the catalyst surface.40,42,43  

On the contrary, a different trend is observed in the case of niobium surface 

species. We must mention that the Nb 3d XPS core-level spectra of W-Nb-O 

oxides shows only a single Nb 3d5/2 XPS peak (appearing at B.E.= 206.8-207.1 

eV) (Figure S4), indicating the presence of Nb5+ species.44 Although not 

significant differences are observed in terms of line-shape, a slight decrease in 

binding energy of Nb 3d signal is detected when Nb-content increases (from 

207.0 to 206.8 eV). This finding could indicate a decrease in the mean oxidation 

state of niobium species, as reported previously.45 

As far as tungsten bronze based materials are concerned, they can be 

understood as partially reduced phases, in which tungsten can be present in a 

wide variety of oxidation states.1,2 In this context, undoped WOx sample shows a 

significant amount of W5+ on the catalyst surface (Fig. 4, spectrum a), with a 

W5+/(W6++W5+) surface atomic ratio of ca. 0.14 (Table 1). In tungsten-rich 

samples (up to 29 at. % of niobium), the XPS signal due to W5+ decreases (Fig. 

4, spectrum b), presenting a W5+/(W6++W5+) surface atomic ratio of ca. 0.05 

(Table 1). However, the incorporation of higher amounts of Nb5+ (Nb at. % > 30) 

leads to a progressive increase of the intensity of W5+ XPS peak (Fig. 4, spectra 

c to e), observing W5+/(W6++W5+ surface atomic ratios of 0.08–0.34 (Table 1).  
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Fig. 4.  W 4f core-level XPS spectra of W-Nb-O oxides heat-treated at 550 ºC in 

N2: b) WNb29; c) WNb62; d) WNb80; e) WNb95. For comparison, Nb-free 

samples heat-treated at 450ºC, WOx (a), is also included. 

 

This suggests that the further incorporation of Nb5+ within the structure of the 

tungsten oxide bronze (Nb at. % > 30) could lead to the stabilisation of new W5+ 

surface species. In fact, we have to take into consideration that heat-treatments 

of Nb-containing samples (activated at 550 ºC in N2) differ for Nb-free tungsten 

oxide (WOx sample, heat-treated at 450ºC). This implies that, unlike in the case 

of h-WO3 phase, W5+ species in W-Nb-O with relatively high Nb contents show a 

higher thermal stability; i.e., they remain stable after higher temperature heat 

treatments (550 ºC) (Fig. 4, spectra c to e).  

The correlation between the thermal stability of h-WO3 phase and the presence 

of NH4+ within the hexagonal channels (which is also linked to the presence W5+ 

and other reduced species) has already been reported elsewhere.40 The 

elimination of NH4+ ions from the channels due to high temperatures heat 

treatments (>450 ºC) and the concomitant oxidation of those W5+ species into 

W6+, leads to the phase transition to m-WO3, showing low surface areas and low 

concentration of surface acid sites.10,29,40 In this particular example, in which Nb 

is absent in the formulation, the partially reduced nature of the crystal phase is 

maintained by the presence of those ammonium ions in the hexagonal channels, 

associated to W5+ sites. Once those ammonium ions are completely eliminated 

(for example, by high temperature heat treatments), the hexagonal structure is 

no longer stable. Then, this means that bronze-type phases are thermally stable 

as far as they are able to retain their partially reduced nature.  
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An interesting strategy to increase the thermal stability of the hexagonal phase 

consists in the partial substitution of tungsten species by other transition metals, 

especially by those elements showing a maximum oxidation state lower than 6+ 

(for instance, vanadium,10-13,19 tantalum26 or titanium,27,28 which are stable up to 

500-600 ºC). This way, the incorporation of these elements will help to keep the 

partially reduce nature of the materials, thus increasing the thermal stability of h-

WO3 phase. However, in the latter cases, it is not possible to incorporate high 

amounts of dopant within the structure. Dopant contents exceeding the maximum 

theoretical value for the hexagonal tungsten bronze structure (h-W1-xMxO3; 

x=0.33 and M= V, Ti) give rise to anatase-type TiO2 nanoparticles28 or extra-

framework VOx species.10 

The case of W-Nb-O system is completely different, since niobium is incorporated 

within the crystal framework throughout all the compositional range, giving rise to 

a loss of long-range order in the ab plane of the structure.23 In fact, those 

pseudocrystalline oxides obtained at high niobium contents (Nb content > 50 at. 

%) can no longer be considered as a “hexagonal tungsten bronze” due to the loss 

of periodicity in the ab plane. The way the system has to keep its reduced state 

is, in this case, to favour the phase transition to the pseudocrystalline-like 

structures. 

In summary, the incorporation of relatively low amounts of niobium atoms 

stabilizes the hexagonal tungsten bronze, through the isomorphic substitution of 

W5+ by Nb5+. On the other hand, the further incorporation of Nb5+ leads to the 

stabilisation of W5+ species at higher heat-treatment temperatures (550 ºC), but 

at the expense of losing periodicity along the ab plane of the structure. In addition, 

this stabilisation of W5+ species at higher temperatures can be the consequence 
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of the presence of pentagonal bipyramids NbO7 in the structure, which can share 

its five equatorial edges with five octahedra, leading to MxNbO7+4x motifs (M: Nb 

or W, x≤ 5) (see Fig. 2). These edge-sharing MO6 octahedra in the bipyramid 

show a very different environment comparing with those in h-WO3 or m-WO3 

crystal structures. The partial occupation of these octahedral sites by tungsten 

could be the cause of the relatively high concentration of surface W5+ species 

found in pseudocrystalline materials. Paradigmatic examples of the linkage 

between cation coordination and oxidation states are the formation of the so-

called Magneli phases or the tetragonal tungsten bronze (TTB) structure from 

ReO3-type polymorphs.46-48 The formation of both types of polymorphs can be 

understood as two interrelated processes: i) loss of oxygen (i.e. reduction) and; 

ii) structural modifications (i.e. rotation in the case of TTB formation, or 

condensation, in the case of the formation of Magneli phases) (Fig. S5). In this 

context, both the presence of defects (like O-deficient sites) and the specific 

structural motifs (like the pentagonal bipyramid) are connected with the 

incorporation of reduced metal species within the crystal framework (for instance, 

W5+).   

According to this, the nature of surface oxygen species in W-Nb-O oxides were 

also studied by means of XPS (Fig. 5). O 1s core level spectra display three 

different signals, which are usually interpreted in terms of the nature of surface 

oxygen.49 High intensity O1s XPS peak appearing at low binding energy (BE= 

529.8-530.2 eV) is generally assigned to lattice oxygen.49-51 On the other hand, 

signals appearing at B.E. of ca. 531.6-531.9 and 532.8-533.0 eV. They are 

usually ascribed to defects, such as oxygen species near O2- vacancies or 

surface –OH groups, respectively.49 In addition, an increase in the relative 
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intensity of these signals is observed in Nb-containing materials, suggesting that 

the incorporation of niobium favours the formation of defect sites. 

Since the presence of surface W5+ or Nb5+ can have a great influence on the 

nature of surface acid sites, selected samples were analysed by means of low-

temperature (77 K) FTIR spectroscopy of adsorbed CO. 

 

Fig. 5.  O 1s core-level XPS spectra of W-Nb-O oxides heat-treated at 550 ºC in 

N2: b) WNb29; c) WN62; d) WNb80; e) WNb95; f) Nb100. For comparison, Nb-

free sample (a), i.e. WOx heat-treated at 450ºC, is also included. 

 

At low temperatures carbon monoxide (CO) can act as a basic probe molecule, 

by interacting with both surface Brönsted (via H-bond) and Lewis (i.e. 

coordinatively unsaturated sites; CUS) acid sites. These interactions lead to 

frequency shifts of the gas-phase ν(CO) stretching mode (ca. 2143 cm-1). Also, 

due to the interaction via H-bond with O-H and/or N-H groups, ν(O-H) and ν(N-

H) stretching modes (3800-3200 cm-1) shift to lower frequencies (due to the 

formation of weaker O-H or N-H bonds), what allows to study the nature of 

Brönsted acid sites.52,53 

Figure 6 shows the low-temperature FTIR spectra of adsorbed CO in the C-O 

(Fig. 6; A to C) and O-H/N-H (Fig. 6; D to F) stretching regions, at CO equilibrium 

pressures (PCOeq) in the range 0-5.5 mbar, for selected heat-treated W-Nb-O 

materials with different Nb content.  Depending on Nb-content, two main trends 

are observed along the series. Considering C-O stretching region (Fig. 6; A to 

C), and more specifically, at low CO equilibrium pressures (ca. PCOeq= 0.02 mbar, 

green lines in Fig. 6), it can be observed that the pseudocrystalline WNb62 
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sample presents the highest amount of CO adsorbed (i.e. higher coverages) (Fig. 

6, C). Focusing on O-H stretching region (Fig. 6, D to F), these materials also 

show different OC…H-O interaction, due to the presence of Brönsted acid sites. 

We must inform that Nb-free tungsten oxide, i.e. WOx sample, displays some 

extra features in this O-H/N-H stretching region, at ca. 3400-3300 cm-1 (Fig. 6, 

D), which can be related to the presence of ammonium cations in the channels 

of the hexagonal tungsten bronze.10 

 

 

Fig. 6.  Low temperature (77K) FTIR spectra of adsorbed CO in the C-O (A-C) 

and O-H (D-F) stretching regions for selected W-Nb-O oxides heat-treated at  450 

(WOX) or 550 ºC. Samples: WOx (A,D); WNb29 (B,E); and WNb62 (C,F). 

 

Firstly, we have analysed C-O stretching region of the spectra. Taking into 

consideration the wide variation of the physicochemical features depending on 

Nb-content, i.e. particle size and crystal structure (as suggested from Fig. 1 and 

Fig. S2, respectively), CO adsorbed spectra for W-Nb-O materials were 

compared at the same CO-coverage (Figs. 7 and 8). In this case, CO-coverage 

(θ) can be calculated from background-subtracted spectra in the C-O stretching 

region. CO-coverages (θ) were estimated from integrated areas of the C-O 

stretching region, considering a coverage θ=1 when the area of the C-O 

stretching modes does not vary significantly at increasing pressures (i.e. when 

the rotational modes of CO in the gas-phase are observed in the spectra). The 



20 
 

variation of CO-coverage with equilibrium pressure (adsorption isotherm) for 

selected samples are shown in Figure S6. 

 

Fig. 7. CO-adsorption FTIR spectra (background-subtracted) and the 

corresponding deconvoluted spectra recorded at low temperature (77 K) at a CO-

coverage of θ=0.25 (A) and θ=0.65 (B) for selected samples: (a) WOx; b) WNb29; 

c) WNb62. Fitted peaks are assigned to C-O stretching vibrational modes of 

physisorbed CO (red), or CO bonded to Brönsted (blue) or Lewis (green) acid 

sites. 

 

Figure 7 displays background-subtracted FTIR spectra in the C-O region at low 

(θ= 0.25, Fig. 7A) and high CO-coverage (ca. θ= 0.65, Fig. 7B) collected at 77 

K. The materials show bands in three different frequency regimes: 2135-2145, 

2150-2170 and 2175-2200 cm-1; which are typically assigned to physisorbed CO, 

and CO interacting with Brönsted and Lewis surface acid sites, respectively.52  

To deal with intensity changes in the O-H and N-H stretching region during CO-

adsorption, background-subtracted spectra have been used, especially to 

analyse CO…NH interactions. Figure 8 displays background-subtracted FTIR 

spectra of adsorbed CO in the O-H and N-H stretching region for WOx (heat-

treated at 450ºC), and for WNb29 and WNb62 samples heat-treated at 550°C.  

 

 

Fig. 8. Background-subtracted FTIR spectra of adsorbed CO in the OH/NH 

stretching region for selected W-Nb-O oxides: A) WOx; B) WNb29; C) WNb62. 
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All the materials show CO…HO interactions, leading to a shift in O-H stretching 

modes to higher frequencies (see negative and positive FTIR bands at 3592-

3674 cm-1 and 3465-3492 cm-1, respectively, in Fig. 8). In addition, Nb-free WOx 

oxide (with an h-WO3 structure) presents an extra feature in the spectra during 

CO-adsorption (Fig. 8A).  

Specifically, a negative band appears at 3375 cm-1, which is shifted to higher 

frequencies at increasing CO pressures, up to 3340 and 3307 cm-1. We can 

assign this extra feature to CO…HN interactions, which provoke a weakening of 

N-H bonds of ammonium cations in this material. This fact indicates a 

considerable Brönsted acidity of ammonium species in the Nb-free hexagonal 

tungsten bronze, which are present due to the lower heat-treatment temperature 

applied (450 ºC). A similar effect has been reported for an ammonium exchanged 

ferrierite zeolite.54 

After CO-adsorption, samples were outgassed at low temperature (77 K) and 

FTIR spectra were collected during the process (Fig. 9). Figure 9A displays 

background-subtracted FTIR spectra recorded at decreasing equilibrium 

pressures in the C-O stretching region. Evacuation at low temperatures leads to 

a progressive decrease of  C-O stretching IR bands assigned to CO interacting 

with both Brönsted and Lewis surface acid sites, and physisorbed CO.  

Interestingly, WNb29 sample, with a hexagonal tungsten bronze structure, 

presents no signals in the C-O stretching region when it is treated at high vacuum 

(ca. 10-6 mbar) (Fig. 9A, spectra in b). On the other hand, both WOx and WNb62 

samples show a remaining signal at 2195 and 2197 cm-1, respectively, at such 

low pressures (i.e. 10-6 mbar). This signal can be ascribed to the presence of 
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strong surface Lewis acid sites, most likely associated with the presence of W5+ 

species according to XPS results (Fig. 4, spectra a-c).  

O-H stretching region was also analysed during evacuation (Fig. 9B). Decreasing 

the pressure in the IR-cell leads to the recovery of the original spectra for Nb-

containing samples, as it can be deduced from the flat profile of background-

subtracted FTIR spectra of WNb29 and WNb62 oxides (Fig. 9B, spectra in b and 

in c). On the contrary, the background-subtracted spectra collected at 10-6 mbar 

for Nb-free sample, i.e. WOx oxide, shows a group of negative signals (Figure 

9B, spectra in a).  

 

 

Fig. 9. Background-subtracted FTIR spectra during CO evacuation at equilibrium 

pressures of ca. 0.05 mbar (dotted blue spectra), 10-2 mbar (green spectra) and 

10-6 mbar (red spectra) recorded at 77 K for selected W-Nb-O oxides: A) C-O 

stretching region; B) O-H stretching region. Samples: a) WOx; b) WN29; c) 

WNb62. 

 

This fact indicates changes in the surface nature of the hexagonal tungsten 

bronze during the experiment. Specifically, the sample presents a series of 

negative bands centred at ca. 3592, 3373, 3200, 3047 and 2812 cm-1 (Fig. 9B, 

spectra a). The high frequency negative signal at 3592 cm-1 can be assigned to 

the loss of surface O-H groups during desorption. Interestingly, the rest of 

negative bands in the spectra recorded at 10-6 mbar are consistent with the 

elimination of ammonium cations from the channels. In fact, the band at 3373 cm-

1 corresponds to the N-H stretching vibration of NH4+ cations, while signals at ca. 
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3200, 3047 and 2812 cm-1 can be assigned to H-bonded NH groups of 

ammonium ions.54, 55  

To illustrate this, the catalytic performance in the gas-phase dehydration of 

glycerol to acrolein for some selected W-Nb-O oxides, heat-treated at 550 ºC, is 

shown in Table 2. It is well known that the transformation of glycerol to acrolein 

by a dehydration mechanism takes place via a two-step process (starting with an 

intramolecular dehydration of the internal hydroxyl group of glycerol and, followed 

by tautomerisation and subsequent dehydration of the terminal hydroxyl group)56 

by using solid acid catalysts with appropriate nature and distribution of acid 

sites.11,13,23,57,58 For this system, the selectivity profiles observed are highly 

dependent on the Brönsted/Lewis nature of the acid sites. 

WNbO oxides showing a hexagonal tungsten bronze structure (h-WO3) (i.e. WOx, 

WNb29, Table 2), which display a higher proportion of Brönsted acid sites, 

present a relatively high yield to acrolein in the gas phase aerobic dehydration of 

glycerol (ca. 77-78 % yield). On the other hand, W-Nb-O materials, with a higher 

concentration of Nb5+ and W+5 surface species, and presenting pseudocrystalline 

crystal structure (i.e. materials with a higher proportion of surface Lewis acid 

sites), present a lower yield to acrolein (ca. 46-55 %) (Table 2). Concomitantly, 

the yield to heavy compounds increases (i.e. high molecular weight compounds 

that are not eluted in the gas chromatograph, mainly glycerol oligomers and 

condensation products11), up to 19 and 37 %. In all cases, COx yield remains in 

the range 10-17 %, not showing a significant increase at higher concentration of 

Nb5+ and W5+ in the catalysts. In addition, due to the presence of molecular 

oxygen in the feed, minor amounts of oxygented products were detected (mainly 

acetaldehyde, acetic acid and acrylic acid, with a total yield of 5-8 %).  
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Table 2. Catalytic properties in the gas-phase transformation of glycerol of 

selected W-Nb-O oxides heat-treated at 550 ºC in N2. 

Sample Crystal structurea Yield to products (%) b, c 

Acrolein Heavy-compoundsd COx 

WOx h-WO3 77.8   6.0 10.9 

WNb29 h-WO3 78.3   6.3 11.8 

WNb62 Pseudocrystalline 66.5 8.7 16.8 

WNb80 Pseudocrystalline 55.4 19.0 17.5 

Nb100 Pseudocrystalline 46.8 37.9 11.9 

a) Crystal structure, determined by powder X-ray diffraction: hexagonal tungsten 
bronze (h-WO3); and pseudocrystalline phase. 
b) Reaction conditions: T= 313 ºC; Glycerol/O2/H2O/He molar ratio of 2/4/40/54; 
Contact time, W/F, of 81 gcat h (molglycerol)-1; Time= 5h. 
c) Yield to the main reaction products; COx= Carbon oxides (CO + CO2). In 
addition to these, acetaldehyde, acetic acid and acrylic acid were also observed, 
with a total selectivity of 5-8%. 
d) High molecular weight species that are not eluted in the gas chromatograph. 

 

All the above-mentioned findings go in line with previous catalytic results, by 

which W-rich W-Nb-O oxides direct the acid-catalysed reactions towards 

Brönsted-catalysed pathways; meanwhile, Nb-rich materials favour Lewis-

catalysed reactions.23 

 

4.  Conclusions 

In this study, a series of W-Nb-O oxides (Nb at. % = 0-100), with bronze-type 

crystal structures have been prepared by hydrothermal synthesis. Their bulk and 

surface physicochemical properties have been elucidated.  
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The incorporation of Nb5+ has an important influence in the structural features of 

both as-prepared and heat-treated materials. The addition of Nb at.% up to 29 % 

leads to the crystallisation of a hexagonal tungsten bronze structure. On the other 

hand, higher Nb contents favour the formation of the so-called pseudocrystalline 

phases, in which long-range order in the ab plane is lost. XRD analyses of as-

prepared pseudocrystalline materials suggest either the crystallisation, or the 

formation of nascent domains with a Cs0.5[W2.5Nb2.5O14]-type structure, showing 

both six- and seven-membered rings.   

It has been observed that as-synthesized oxide bronzes present a significant 

amount of NH4+ cations in the structural channels. These NH4+ species in Nb-

containing materials can be completely eliminated by thermal treatments (550 ºC 

under N2 flow), retaining the hexagonal bronze structure (h-WO3) for Nb contents 

of up to 30%. In the case of Nb-free sample (WOx), the elimination of NH4+ 

species leads to the phase transition from the hexagonal to the monoclinic phase 

of tungsten trioxide (h-WO3 → m-WO3; T > 450 ºC). Accordingly, the incorporation 

of Nb5+ in samples with Nb/(W+Nb) ratios lower than 0.33: i) stabilizes the 

hexagonal tungsten bronze structure at higher heat-treatment temperatures (T > 

450 ºC) and; ii) favours the elimination ammonium species at lower temperatures 

(as observed by TPO experiments).  

On the other hand, the elimination of these ammonium cations at high 

temperatures (i.e. 550 ºC) produce important structural modifications. Particularly 

the long-range nascent ordering in pseudocrystalline samples is only retained at 

Nb at. % close to 50 % after the heat-treatment (which are in fact those close to 

Cs0.5[W2.5Nb2.5O14] phase stoichiometry). Additionally, further increasing the heat 

treatment temperature up to 800 ºC gives rise to phase transitions towards NbO7 
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containing structural types in the case of Nb-containing pseudocrystalline oxides. 

This fact suggests structural similarities between both pseudocrystalline and 

NbO7-containing phases. 

Surface properties of W-Nb-O samples are also dependant on Nb concentration 

in the materials. The incorporation of relatively low amounts of niobium in the 

hexagonal tungsten bronze structure (at Nb/(W+Nb) ratios up to 0.29) leads to 

the decrease of surface W5+ species, suggesting the isomorphic substitution of 

such species by Nb5+. Conversely, the concentration of surface W5+ species 

increases when further amounts of Nb are incorporated (Nb at. % > 29 at.%), 

concomitantly with the formation of pseudocrystalline materials. Hence, a 

possible consequence of the presence of NbO7 motifs in the pseudocrystalline 

samples would be the stabilisation of such W5+ surface sites (i.e. by the 

incorporation of tungsten in the edge-sharing octahedral sites typical of TTB45-47 

or Cs0.5[W2.5Nb2.5O14]-like36,37 crystal phases). 

The analysis of some selected samples by means of low-temperature (77 K) FTIR 

of adsorbed CO indicates the presence of both Brönsted and Lewis acid sites 

along all the compositional range of W-Nb-O series. Nevertheless, a remarkable 

increase in the Lewis/Brönsted surface acid site ratio is observed at high niobium 

contents. Strong Lewis acid sites are associated with W5+. There exists a good 

correlation between the proportion of Brönsted/Lewis acid sites in the catalysts, 

and the production of acrolein/heavy compounds during the gas-phase 

dehydration of glycerol.  
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Caption to figures 

 

Figure 1. A) XRD patterns in the 2θ region 5-65º of W-Nb-O oxides heat-treated 

at 550°C, except sample WOx, which was heat-treated at 450 ºC. Samples: a) 

WOx; b) WNb29; c) WNb62; d) WNb80; e) WNb95; f) Nb100. B) XRD patterns of 

W-Nb-O oxides in the 3-17º 2θ region. For comparison, the pattern of an 

orthorhombic Cs0.5[W2.5Nb2.5O14]-type phase37 is also included (g). 

Figure 2. XRD patterns of selected W-Nb-O oxides heat-treated at 800 ºC in N2. 

a) WOx; b) WNb29; c) WNb62; d) WNb80; WNb95; f) Nb100. 

Figure 3. FTIR spectra of as-prepared (A) and heat-treated (B) W-Nb-O oxides; 

and temperature-programmed oxidation (TPO) profiles of selected as-prepared 

W-Nb-O samples (C), following the characteristic mass of ammonia (m/z= 15). 

Samples: WOx (a); WNb29 (b); WNb62 (c); Nb100 (d). As indicated in text, 

sample WOx was heated-treated at 450ºC whereas the rest of samples were 

heat-treated at 550ºC. 

Figure 4.  W 4f core-level XPS spectra of W-Nb-O oxides heat-treated at 550 ºC 

in N2: b) WNb29; c) WNb62; d) WNb80; e) WNb95. For comparison, Nb-free 

samples heat-treated at 450ºC, WOx (a), is also included. 

Figure 5.  O 1s core-level XPS spectra of W-Nb-O oxides heat-treated at 550 ºC 

in N2: b) WNb29; c) WN62; d) WNb80; e) WNb95; f) Nb100. For comparison, Nb-

free samples (a), WOx, heat-treated at 450ºC is also included. 

Figure 6.  Low temperature (77K) FTIR spectra of adsorbed CO in the C-O (A-

C) and O-H (D-F) stretching regions for selected W-Nb-O oxides heat-treated at  

450 (WOX) or 550 ºC. Samples: WOx (A,D); WNb29 (B,E); and WNb62 (C,F). 

Figure 7. CO-adsorption FTIR spectra (background-subtracted) and the 

corresponding deconvoluted spectra recorded at low temperature (77 K) at a CO-

coverage of θ=0.25 (A) and θ=0.65 (B) for selected samples: (a) WOx; b) WNb29; 

c) WNb62. Fitted peaks are assigned to C-O stretching vibrational modes of 

physisorbed CO (red), or CO bonded to Brönsted (blue) or Lewis (green) acid 

sites. 
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Figure 8. Background-subtracted FTIR spectra of adsorbed CO in the OH/NH 

stretching region for selected W-Nb-O oxides: A) WOx; B) WNb29; C) WNb62. 

Figure 9. Background-subtracted FTIR spectra during CO evacuation at 

equilibrium pressures of ca. 0.05 mbar (dotted blue spectra), 10-2 mbar (green 

spectra) and 10-6 mbar (red spectra) recorded at 77 K for selected W-Nb-O 

oxides: A) C-O stretching region; B) O-H stretching region. Samples: a) WOx; b) 

WN29; c) WNb62. 
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