
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/165903

Liang, Y.; Alharthi, A.; Bucktrout, R.; Elolimy, A.; Lopreiato, V.; Martinez-Cortes, I.; Xu, C....
(2020). Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-
related antioxidant network abundance in subcutaneous adipose tissue of periparturient
Holstein cows. Journal of Dairy Science. 103(7):6439-6453. https://doi.org/10.3168/jds.2019-
17813

https://doi.org/10.3168/jds.2019-17813

American Dairy Science Association



1 
 

Interpretive Summary 1 

Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related 2 

antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein 3 

cows. By Liang et al. We explored periparturient s.c. adipose tissue (SAT) antioxidant 4 

mechanisms in cows with high and low body condition score (BCS) in late-prepartum. Although 5 

overall activation of the antioxidant transcription regulator NFE2L2 was lower and reactive 6 

oxygen species concentrations were greater in SAT from high BCS cows, the greater protein 7 

abundance of glutathione S-transferase mu 1 associated with glutathione (an antioxidant) 8 

metabolism in those cows underscored the importance of antioxidant mechanisms at the tissue 9 

level.  10 
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ABSTRACT 33 

Dairy cows with high body condition score (BCS) in late-prepartum are more susceptible to 34 

oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant 35 

transcription factor. We investigated the effect of pre-calving BCS on blood biomarkers 36 

associated with OS, inflammation, and liver function along with mRNA and protein abundance 37 

of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of 38 

periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified 39 

into a high BCS (HBCS; n = 11, BCS ≥ 3.5) or low BCS (LBCS; n = 11, BCS ≤ 3.17) on d 28 40 

before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration (TMR) 41 

during late-prepartum and a corn silage- and alfalfa hay-based TMR postpartum. Blood samples 42 

obtained at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers 43 

associated with inflammation including albumin, ceruloplasmin, haptoglobin, and 44 

myeloperoxidase, and oxidative stress including ferric-reducing ability of plasma (FRAP), 45 

reactive oxygen species (ROS), and β-carotene. Adipose biopsies harvested at -15, 7, and 30 d 46 

relative to parturition were analyzed for mRNA (RT-PCR) and protein abundance (Western 47 

blotting) of targets associated with the antioxidant transcription regulator nuclear factor, 48 

erythroid 2 like 2 (NFE2L2) and GSH metabolism pathway. In addition, concentrations of GSH, 49 

ROS and malondialdehyde (MDA) were measured. HBCS cows had lower prepartum dry matter 50 

intake (DMI) expressed as a percentage of body weight (BW) along with greater BCS loss 51 

between -4 to 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased 52 

after parturition regardless of treatment. Compared with LBCS, HBCS cows had greater 53 

concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In 54 

addition, LBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while 55 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/corn-silage
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alfalfa
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HBCS cows maintained a constant concentration by d 30 postpartum. Overall ROS 56 

concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of 57 

NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS 58 

cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, 59 

ratio of phosphorylated (p)-NFE2L2-to-total NFE2L2 was lower suggesting a decrease in the 60 

activity of this antioxidant system. Overall mRNA abundance of the GSH metabolism-related 61 

genes: glutathione reductase (GSR), glutathione peroxidase 1 (GPX1) and transaldolase 1 62 

(TALDO1) along with protein abundance of glutathione S-transferase mu 1 (GSTM1) were 63 

greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS 64 

after parturition, while increased abundance of mRNA and protein components of the GSH 65 

metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the 66 

importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT 67 

during the periparturient period via nutrition might help control tissue remodeling while allowing 68 

optimal performance.  69 

  70 

Key words:  body condition score, oxidative stress, NFE2L2, adipose  71 
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INTRODUCTION 72 

Body condition is used to evaluate the degree of apparent adiposity in dairy cows (Roche 73 

et al., 2013). High body condition (BCS ≥ 3.5) at calving is negatively associated with early 74 

lactation DMI and milk yield, and is positively related to the incidence of periparturient 75 

metabolic disorders (Roche et al., 2009). For instance, cows calving at a high BCS (HBCS) are 76 

more likely to experience fatty liver, subclinical ketosis, and chronic oxidative stress (OS) during 77 

the transition period (Reid et al., 1986, Bernabucci et al., 2005, Schulz et al., 2014). Despite 78 

extensive research on the use of BCS as a management tool and its association with important 79 

physiological aspects such as lipid metabolism, insulin resistance and inflammation (De Koster 80 

et al., 2015, Depreester et al., 2018, Newman et al., 2019), molecular mechanisms of oxidative 81 

stress associated with BCS in adipose tissue are not well-known.  82 

Nuclear factor erythroid 2-like 2 (NFE2L2), considered a master antioxidant 83 

transcription factor, plays a critical role against OS damage via regulating a wide-range of 84 

antioxidant response-dependent genes in mammals (Ma, 2013). Changes in transcription of 85 

NFE2L2 in the liver during the transition period were suggested to play a role in regulating tissue 86 

antioxidant response (Gessner et al., 2013). More recent in vitro and in vivo data indicated that 87 

activation of NFE2L2 (and its target genes) could serve as a mechanism to maintain oxidant 88 

status in the mammary gland (Han et al., 2018a, Han et al., 2018b, Ma et al., 2018). Greater 89 

protein abundance of targets associated with the NFE2L2 pathway coupled with elevated plasma 90 

malondialdehyde (MDA) was reported in s.c. adipose tissue (SAT) in cows calving during the 91 

summer compared with winter, suggesting this pathway also might be important in coping with 92 

oxidative stress in SAT (Zachut et al., 2017). Indeed, an essential role of the NFE2L2 pathway in 93 

the antioxidant response in bovine adipose tissue was underscored by a recent in vitro study 94 
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demonstrating that mild OS led to greater abundance of NFE2L2 at both transcription and 95 

translation levels, while severe OS resulted in lower abundance (Sun et al., 2019).  96 

Glutathione (GSH) is a well-known antioxidant in cells and contributes to eliminating 97 

H2O2 within the cytosol, hence, preventing oxidative damage and regulating the thiol-redox 98 

status in tissues (Aquilano et al., 2014). A previous study from our group revealed that enhanced 99 

post-ruminal supply of Met, the source of thiol-groups, led to alleviated oxidative stress along 100 

with greater mRNA abundance of glutamate-cysteine ligase modifier subunit (GCLM), 101 

glutathione reductase (GSR), and glutathione peroxidase 1 (GPX1). The greater activity of 102 

various GSH-related antioxidant enzymes in peripartal dairy cow SAT underscored the 103 

importance of GSH metabolism and its responsiveness to changes in physiologic state (Batistel 104 

et al., 2017, Liang et al., 2019).  105 

Our general hypothesis was that low prepartal BCS leads to the activation of the NFE2L2 106 

pathways ensuing greater GSH synthesis in SAT. The main objective of this study was to 107 

investigate changes in mRNA and protein abundance of major components related to the 108 

NFE2L2 and GSH pathways in SAT along with plasma and tissue biomarkers of OS in peripartal 109 

cows calving at a high or low BCS.  110 

MATERIALS AND METHODS 111 

Experiment Design  112 

All procedures were conducted under protocols approved by the University of Illinois 113 

Institutional Animal Care and Use Committee (Urbana; protocol #17168). BCS was monitored 114 

weekly by three individuals from -4 wk to 4 wk relative to expected parturition date, and mean 115 

values were used for classifying cows in the current study. Twenty-two clinically healthy 116 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/glutamate-cysteine-ligase
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/gpx1
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multiparous Holstein cows were retrospectively classified into 2 groups: HBCS (3.75 ± 0.25, 3.5 117 

to 4.0; mean ± SD; n = 11) and LBCS (3.07 ± 0.07, 3.0 to 3.17; mean ± SD; n = 11), at d 28 118 

before parturition based on a 5-point scale (Edmonson et al., 1989). The average (mean ± SD) 119 

BW at -4 wk relative to parturition was 896 ± 51 kg and 786 ± 48 kg in HBCS and LBCS, 120 

respectively. The average for parity (mean ± SD) was 3.5 ± 1.6 in HBCS cows and 3.0 ± 1.1 for 121 

LBCS. Cows were fed a corn silage- and wheat straw-based TMR during late-prepartum period 122 

and a corn silage- and alfalfa hay-based TMR after parturition (Table 1). Cows were fed once 123 

daily (0600 h) with ad libitum access to the diet. Dry cows were housed in a free-stall barn with 124 

an individual Calan gate feeding system (American Calan, Northwood, NH, USA). After 125 

calving, cows were housed in a tie-stall barn and milked 3 times daily at approximately 0600, 126 

1400, and 2200 h. Milk production and feed refusals were recorded daily for each cow. Diets 127 

were formulated to meet predicted requirements for dairy cows according to NRC (2001). 128 

Feed Sample Collection 129 

Individual ingredients and TMR samples were collected once a week to determine the 130 

DM and used to adjust the DM of the TMR accordingly. Weekly samples of ingredients and 131 

TMR were frozen at -20 °C and pooled monthly for nutrient composition analysis, as described 132 

previously (Batistel et al., 2017). The ingredient and nutrient compositions of the diets fed are 133 

reported in Table 1. 134 

Blood Collection and Analyses 135 

Blood was obtained from the coccygeal vein before morning feeding on d -10 (± 1 d), 7, 136 

15, and 30 relative to parturition. Samples were collected into vacutainer tubes containing 137 

lithium heparin (BD Vacutainer, Becton, Dickinson and Co., Franklin Lakes, NJ) and were 138 

https://www.sciencedirect.com/science/article/pii/S0022030218303047#bib23
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/corn-silage
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/alfalfa
https://www.sciencedirect.com/science/article/pii/S0022030217306689#tbl1
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immediately placed on ice. Plasma was harvested by centrifugation at 2,000 × g for 15 min at 139 

4°C and aliquots stored at −80°C until further analysis. Activities of aspartate aminotransferase 140 

(AST), γ-glutamyl transpeptidase (GGT), alkaline phosphatase, myeloperoxidase and 141 

paraoxonase (PON), and concentrations of albumin, total bilirubin, total plasma reactive oxygen 142 

species (ROS), ferric reducing ability of plasma (FRAP), haptoglobin, ceruloplasmin, nitric 143 

oxide and nitric oxide metabolites, β-carotene, retinol, and tocopherol were analyzed as 144 

described by Lopreiato et al. (2019). 145 

Adipose Tissue Biopsies 146 

Cows in HBCS and LBCS averaged 28 ± 3 d in the close up dry period. All (i.e., 147 

11/group) were free of clinical disorders and had the full set of biopsies. Tissue was harvested 148 

from the tail-head (alternating between the right and left tail head region) at −15 (± 2 d), 7, and 149 

30 d relative to parturition according to previous procedures from our laboratory (Ji et al., 2012). 150 

Upon collection, adipose tissue was immediately placed in screw-capped microcentrifuge tubes, 151 

snap-frozen in liquid nitrogen, and preserved at −80°C until further analysis. Health was 152 

monitored for 7 d after surgery and surgical clips were removed after 7 d post-biopsy. No 153 

antibiotics were administered post-biopsy.  154 

RNA isolation, cDNA Synthesis and Quantitative PCR 155 

Total RNA isolation was exactly as described in our previous study (Liang et al., 2019). 156 

Briefly, total RNA was isolated from 200 mg of adipose tissue using the miRNeasy kit (Qiagen, 157 

Hilden, Germany) according to the manufacturer’s protocols. The RNA samples were digested 158 

with DNaseI and quantification was assessed using a NanoDrop ND-1000 spectrophotometer 159 

(Thermo Fisher Scientific, Waltham, MA). The quality of RNA samples was measured using an 160 
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Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). The quantitative PCR was 161 

performed as described previously (Osorio et al., 2014). The internal controls for adipose tissue 162 

were ribosomal protein S9 (RPS9), GAPDH and actin beta (ACTB). These internal control genes 163 

were previously confirmed as suitable for adipose tissue gene expression analysis (Vailati-Riboni 164 

et al., 2015, Vailati-Riboni et al., 2016, Vailati-Riboni et al., 2017). Gene symbols and names, 165 

quantitative PCR performance, and primer information are reported in Supplemental Table S1. 166 

Western Blot Analysis 167 

Total protein was extracted from 100 mg adipose tissue using a tissue protein extraction 168 

reagent (catalog no. 78510; Thermo Fisher Scientific) containing Halt protease and phosphatase 169 

inhibitor cocktail (100x, catalog no. 78442; Thermo Fisher Scientific). The concentration of total 170 

protein was determined using the Pierce BCA protein assay kit (catalog no. 23227; Thermo 171 

Fisher Scientific). Details of western blot were reported in a previous study from our group 172 

(Liang et al., 2019). Briefly, protein samples were denatured by heating at 95 °C for 5 min before 173 

loading 10 µL protein into each lane of a 4-20% SDS-PAGE gel (catalog no. 4561096; Bio-Rad). 174 

Reactions were run for 10 min at 180 V, and then for 45 to 60 min at 110 V. Then the protein 175 

sample was transferred to the membrane in a Trans-Blot SD Semi-Dry Electrophoretic Transfer 176 

Cell (catalog no. 170-3940, Bio-Rad). Membranes were then blocked in 1× Tris-buffered saline 177 

(1×TBST) containing 5% nonfat milk for 2 h at room temperature. The membranes were then 178 

incubated in TBST containing primary antibodies to glutathione S-transferase mu 1 (GSTM1), 179 

Kelch-like ECH associated protein 1 (KEAP1), extracellular signal-regulated protein kinases 1 180 

and 2 (ERK1/2), phospho-ERK1/2(Thr202/Tyr204), NFE2L2 and phospho-NFE2L2(Ser40) 181 

(catalog # and dilution ratio are included in Supplemental Table S2) overnight at 4 °C. The 182 

membranes were then washed with 1x TBST and incubated with anti-rabbit HRP-conjugated 183 
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secondary antibodies (catalog no. 7074S; Cell Signaling Technology, dilution 1:1000). 184 

Subsequently, the membranes were washed with 1× TBST and then incubated with ECL reagent 185 

(catalog no. 170-5060; Bio-Rad) prior to image acquisition. Actin beta (catalog no. 4967S; Cell 186 

Signaling Technology) was used as the internal control. Images were acquired using the 187 

ChemiDOC MP Imaging System (Bio-Rad). The intensities of the bands were measured with 188 

Image-Pro Plus 6.0 software. Specific target protein band density values were normalized to β-189 

actin density values. Representative blots are included in Supplemental Figure S2. 190 

Biomarker Analysis in Subcutaneous Adipose Tissue  191 

As in our previous study (Liang et al., 2019), the following OS biomarkers in SAT were 192 

determined using commercial kits according to manufacturer’s instructions: ROS (catalog no. 193 

STA-347, Cell Biolabs, San Diego, CA), malondialdehyde (MDA; catalog no. 10009055; 194 

Cayman Chemical), and GSH (catalog no. NWK-GSH01; Northwest Life Science Specialties, 195 

Vancouver, WA). Adipose tissue total protein concentration was measured using the Pierce BCA 196 

assay kit (catalog no. 23227; Thermo Scientific). 197 

Statistical Analysis  198 

The data were analyzed using the MIXED procedure of SAS v.9.4 (SAS Institute Inc., 199 

Cary, NC) according to the following model with repeated measures:  200 

Yjl = μ + Mj + Tl + MTjl + ejl, 201 

where Yjl = dependent, continuous variable, μ = overall mean, Mj = fixed effect of BCS (j = 202 

HBCS vs. LBCS), Tl = fixed effect of Day (for blood biomarkers, -10, 7, 15, and 30 d; for qPCR, 203 

western blot, and oxidative stress biomarker in SAT analysis, -15, 7, and 30 d), MTjl = 204 

interaction between BCS and Day, and ejl = residual error. Cow, nested within BCS, was the 205 

https://www.sciencedirect.com/science/article/pii/S002203021930308X#sec1
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random effect. The Kenward-Roger statement was used for computing the denominator degrees 206 

of freedom. The covariance structure of the repeated measurements was spatial power 207 

[SP(POW)]. When the interaction was significant, least squares means separation between and 208 

within time points was performed using the PDIFF statement with Tukey adjustment. Normality 209 

of the residuals was checked with normal probability and box plots, and homogeneity of 210 

variances was checked with plots of residuals versus predicted values. Outliers were removed 211 

when the absolute value of studentized residual was greater than 2. Significance was declared at 212 

P ≤ 0.05 and tendencies at P ≤ 0.10. 213 

RESULTS AND DISCUSSION 214 

Body Condition and Animal performance 215 

HBCS cows had greater BCS compared with LBCS cows from -4 to 4 wk relative to 216 

calving date (P < 0.01; Figure 1). Additionally, HBCS cows had greater BCS loss in comparison 217 

with LBCS cows (P < 0.05; Figure 1). Both prepartum and postpartum DMI did not differ 218 

between HBCS and LBCS cows (P = 0.77 and P = 0.89; Figure 2A and C) which is in line with 219 

Alharthi et al. (2018) and Pires et al. (2013). However, when expressed as % of BW, LBCS cows 220 

had greater prepartum DMI (P = 0.04; Figure 2 B), and tended to have greater postpartum DMI 221 

(P = 0.09; Figure 2 D). Feed intake and milk yield might play a role in regulating BCS when 222 

cows are fed and managed under the same conditions (Rocco and McNamara, 2013). Due to the 223 

lack of difference in actual amounts of DMI and milk yield (P = 0.77; Figure 2 E), DMI as % of 224 

BW) seems to be a more reasonable indicator of BCS effects on performance. 225 

Blood Parameters Associated with Inflammation and Oxidative Stress 226 
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Compared with the prepartum, plasma ceruloplasmin and haptoglobin concentrations 227 

increased after parturition in both HBCS and LBCS cows (Day, P < 0.01; Table 2, Figure 3A 228 

and B). However, ceruloplasmin tended to decrease from 7 to 30 d postpartum in LBCS cows, 229 

while HBCS cows had an opposite trend (BCS×Day, P = 0.10; Figure 3A). Overall, plasma 230 

myeloperoxidase activity increased between -10 and 15 d around parturition followed by a 231 

sudden decrease at 30 d after parturition irrespective of BCS (Day, P = 0.01; Figure 3C). 232 

Regardless of BCS, AST activity and bilirubin concentration (indicators of liver function) were 233 

greater after parturition and reached a peak at d 7 (Day, P < 0.01; Figure 5B and C). Similarly, 234 

GGT increased after parturition regardless of BCS (Day, P < 0.01; Figure 5A).  235 

Acute-phase proteins (APP), a critical part of the acute-phase response, include positive 236 

APP (i.e. increase during inflammation) such as haptoglobin, ceruloplasmin, and serum amyloid-237 

A and negative APP (i.e. decrease during inflammation) such as albumin, apolipoproteins, 238 

retinol-binding protein, and also PON (Ceciliani et al., 2012, Trevisi et al., 2013, Tothova et al., 239 

2014). Through its antimicrobial activity, myeloperoxidase is a critical enzyme in regulating 240 

innate immunity (Depreester et al., 2017).  Changes in the various APP along with markers of 241 

liver function are commonly used to study inflammation status of periparturient cows (Bionaz et 242 

al., 2007, Bertoni et al., 2008, Graugnard et al., 2013). Increased ceruloplasmin concentration is 243 

associated with inflammation (Cerón et al., 2005), thus, its sharp increase after parturition in 244 

HBCS and LBCS cows was suggestive of a greater chronic inflammatory response postpartum 245 

(Bionaz et al., 2007, Batistel et al., 2018). However, the subsequent decrease in ceruloplasmin in 246 

LBCS cows suggested they experienced a shorter inflammatory period (Figure 3A). Although 247 

the greater inflammatory status during transition is one adaptive mechanism for dairy cows to 248 

cope with acute metabolic changes that occur, a prolonged inflammatory response exacerbates 249 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/innate-immunity
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the induction of metabolic disorders (Bradford et al., 2015). Thus, as reported previously 250 

(Treacher et al., 1986, Roche et al., 2009), a prolonged inflammatory response in HBCS cows 251 

might contribute to greater susceptibility to metabolic disorders.  252 

The lower concentration of plasma ROS prepartum and the increase postpartum (Figure 4 253 

B) were in agreement with previous studies (Bernabucci et al., 2005, Batistel et al., 2018). The 254 

change in ROS between pre and postpartum might have been due to the well-known increases in 255 

metabolic rate (Reynolds et al., 2003) along with potential direct effects of free fatty acids (FFA) 256 

and β-hydroxybutyrate (BHB) on circulating immune cells (Lacetera et al., 2005) or the liver 257 

(Sun et al., 2019). Overproduction of ROS results in OS and an ensuing inflammatory response 258 

both of which increase the incidence of metabolic disorders (Abuelo et al., 2015). Thus, we 259 

speculate that the relative stability of plasma ROS concentration in HBCS cows after d 7 260 

postpartum (unlike the lower plasma ROS level in LBCS cows) denoted a more prolonged 261 

inflammatory state, which agrees with some of the plasma biomarkers analyzed.  262 

β-carotene, an important cellular antioxidant, is mainly stored in the adipose tissue 263 

(Tourniaire et al., 2009), and not only is the major dietary precursor of vitamin A in dairy cattle 264 

but is also a precursor for the synthesis of retinoic acid, a metabolite of vitamin A (LeBlanc et 265 

al., 2004, Frey and Vogel, 2011). β-carotene supplementation contributes to reduced risk of 266 

mastitis and retained placenta, a response associated with its antioxidant properties (Spears and 267 

Weiss, 2008). In humans, obesity is associated with lower β-carotene concentrations in 268 

adipocytes (Östh et al., 2014). Although we are unaware if adipose tissue mobilization 269 

contributes to the circulating β-carotene level during the transition period, the fact that all-trans 270 

retinoic acid supplementation inhibited inflammation in bovine adipocytes challenged with 271 

lipopolysaccharide suggests a potentially important indirect effect of this vitamin (Xu et al., 272 
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2019). We speculate that maintaining higher concentrations of β-carotene in the circulation, 273 

either through supplementation or optimizing DMI, might directly or indirectly contribute to 274 

antioxidant status in SAT during the transition period.  275 

Insulin supplementation in culture medium increased β-carotene content in bovine 276 

adipose explants while epinephrine decreased it, which suggested that hormones related to lipid 277 

metabolism influence β-carotene mobilization from adipose tissue (Arias, 2009). However, BCS 278 

does not necessarily impact plasma insulin concentrations (e.g. Alharthi et al., 2018). It is well-279 

recognized that dairy cows experience increased lipolysis during the transition period especially 280 

after parturition (Contreras et al., 2018). Intense lipolysis is linked to oxidative stress and 281 

uncontrolled inflammatory responses (Sordillo and Raphael, 2013). In the current study, the 282 

postpartal decrease in plasma concentration of β-carotene regardless of BCS was consistent with 283 

previous results (Osorio et al., 2014, Batistel et al., 2018). These responses suggest that increased 284 

lipolysis along with oxidative stress and enhanced inflammatory response might contribute to 285 

lower levels of circulating β-carotene. Thus, without differences in DMI, we speculate that 286 

HBCS cows are likely to utilize more circulating β-carotene due to their greater BCS loss. Taken 287 

together, the greater overall plasma β-carotene concentrations in LBCS cows might contribute to 288 

their reduced inflammatory response.  289 

Similar to concentrations of ROS, FRAP increased after parturition regardless of BCS, 290 

and there was a BCS×Day effect (P < 0.01) due to a greater response in plasma FRAP on d 7 291 

postpartum in HBCS cows followed by a decrease until 30 d postpartum (Figure 4A). These 292 

results are consistent with plasma ROS and β-carotene data and support the view that HBCS 293 

cows might have experienced greater OS status especially after parturition (Abuelo et al., 2013, 294 
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Bernabucci et al., 2005). Whether the lipolysis rate in bovine adipose tissue affects β-carotene 295 

metabolism and utilization merits further study. 296 

Oxidative Stress Biomarkers in Adipose Tissue  297 

Main effects of BCS, Day, and their interaction on oxidative stress biomarkers are 298 

reported in Table 3, Figure 6, Figure 7, and Figure 8. HBCS cows had lower overall abundance 299 

of NFE2L2 (P = 0.03; Table 3). In rodents, NFE2L2 plays a critical role in liver in regulating OS 300 

via increasing mRNA abundance of key antioxidant enzymes (Ma, 2013). In dairy cows, mRNA 301 

abundance of NFE2L2 was first reported in liver during the periparturient period (Loor, 2010) 302 

and recent studies revealed that NFE2L2 is also expressed in mammary gland and SAT (Zachut 303 

et al., 2017, Han et al., 2018b, Liang et al., 2019). In vitro, enhanced activity of NFE2L2 and its 304 

target heme oxygenase-1 (HMOX1) contributed partly to controlling oxidant status in bovine 305 

mammary epithelial cells (BMEC) (Ma et al., 2019).  306 

Overall, the concentration of ROS in SAT was greater in HBCS than LBCS cows (P < 307 

0.01; Figure 6A). Free radicals are essential for normal cellular metabolism, but overproduction 308 

without sufficient antioxidant capacity often results in DNA and protein damage and apoptosis 309 

(Valko et al., 2007). Reactive oxygen species can activate NFE2L2 to protect cells from OS 310 

damage (Ray et al., 2012). A recent in vitro study reported that an increase in H2O2 concentration 311 

from 0 to 100 μM upregulated mRNA abundance of NFE2L2 in bovine adipocytes; however, 312 

mRNA abundance of NFE2L2 decreased when the concentration of H2O2 reached 200 μM (Sun 313 

et al., 2019). We speculate that the lower overall abundance of NFE2L2 in HBCS cows (Table 3) 314 

coupled with greater ROS in SAT were suggestive of diminished capacity of the tissue to mount 315 

an antioxidant response.  316 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/epithelial-cells
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Studies in rodents have demonstrated that NFE2L2 function is not only important in 317 

regulating OS, but also for adipose development and insulin sensitivity (Schneider and Chan, 318 

2013, Seo and Lee, 2013). The latter is particularly important because periparturient cows 319 

experience insulin resistance especially early postpartum (Bell and Bauman, 1997, Holtenius et 320 

al., 2003, De Koster et al., 2018a), while recent studies demonstrated that AT insulin resistance, 321 

especially in over-conditioned cows, develops prepartum (Jaakson et al., 2018). Over-322 

conditioned cows have larger adipocytes in both SAT and omental AT; furthermore, larger 323 

adipocytes are more sensitive to lipolytic signals (De Koster et al., 2016). A recent study 324 

revealed that BCS loss is positively associated with macrophage infiltration in SAT during early-325 

lactation (De Koster et al., 2018b). The fact that macrophage infiltration leads to overproduction 326 

of ROS and inflammatory cytokines in human and rodent AT (Surmi and Hasty, 2010). In the 327 

present study, greater ROS concentration in SAT along with greater BCS loss in HBCS cows led 328 

us to speculate that macrophage infiltration might play a role in controlling oxidant status in 329 

cows calving at HBCS. The link between NFE2L2 and macrophage infiltration in regulating 330 

insulin resistance and adipocyte differentiation as it relates to calving BCS merits further study.  331 

The decrease in plasma ROS after 7 and 15 d postpartum in LBCS and HBCS cows, 332 

respectively (Figure 4B), is noteworthy because ROS concentration in SAT was relatively steady 333 

from -15 d prepartum to 30 d postpartum regardless of BCS (Figure 6A). Thus, these data 334 

suggest that SAT might take a longer time to recover from OS. Compared with LBCS, HBCS 335 

cows had greater overall abundance of cullin 3 (CUL3; P = 0.03; Table 3). Both KEAP1 and 336 

CUL3 are inhibitors of NFE2L2 (Suzuki and Yamamoto, 2017), hence, greater abundance of 337 

CUL3 explains at least in part the lower abundance of NFE2L2 in HBCS cows.  338 
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 In contrast to mRNA abundance, greater overall protein abundance of NFE2L2 and lower 339 

p-NFE2L2/NFE2L2 ratio was observed in HBCS cows (P < 0.01 and P < 0.01; Figure 7A and 340 

Figure 7C). The difference between mRNA and protein abundance of NFE2L2 suggests that the 341 

activity of NFE2L2 is not regulated at the transcription level. In the present study, there was a 342 

BCS×Day effect for p-NFE2L2 (P < 0.01) due to a decrease in abundance in HBCS cows and an 343 

increase in LBCS cows from 7 to 30 d after parturition (Figure 7 B). These data provide 344 

additional support for the idea that OS status increases with time in HBCS cows during the 345 

transition period.  346 

Glutathione Metabolism 347 

Main effects of BCS, Day, and their interaction related to GSH metabolism are reported 348 

in Table 3 and Figure 8. The greater overall abundance of genes associated with GSH 349 

metabolism including GXP1, GSR and transaldolase 1 (TALDO1) in HBCS cows (P = 0.02; P < 350 

0.01; P = 0.04; Table 3) was surprising in part because those cows had lower abundance of 351 

NFE2L2 (P = 0.03; Table 3). Cows in HBCS also had greater overall protein abundance of 352 

GSTM1 (P = 0.03; Figure 8A). Despite these differences at the transcription and translation 353 

levels of GSH metabolism components, there was no difference in tissue GSH concentration 354 

(P > 0.05; Figure 6B).  355 

Glutathione is a crucial antioxidant in mammalian cells (Aquilano et al., 2014), and the 356 

GSH metabolism pathway is one target regulated by NFE2L2 (Harvey et al., 2009). Although 357 

GSH metabolism is closely regulated by OS status in non-ruminants (Dickinson and Forman, 358 

2002), other factors such as NF-kB activity (Buelna-Chontal and Zazueta, 2013) and availability 359 

of substrates such as Cys, Gly, and Ser impact the pathway (Wu et al., 2004, Lu, 2009). It could 360 

be possible that differences in the rate of mobilization of body protein and differences in DMI to 361 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/transaldolase
http://cebp.aacrjournals.org/content/4/6/589.short
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satisfy energy needs is one determinant of the availability of AA and other intermediates of the 362 

GSH pathway in SAT (Pires et al., 2013, Batistel et al., 2018, Liang et al., 2019). If that is true, 363 

lower availability of AA would lead to decreased mRNA and protein abundance of targets in the 364 

GSH metabolism pathway. This idea is partly supported by data from cows fed rumen-protected 365 

Met in which a greater DMI was associated with greater mRNA abundance of GCLM, GSR, and 366 

GPX1 in SAT (Liang et al., 2019). Due to the lack of difference in DMI, we speculate that in the 367 

present study GSH metabolism was partly regulated by protein mobilization.  368 

Glutathione peroxidases play a crucial role in scavenging and inactivating hydrogen and 369 

lipid peroxides in mammalian cells (Cohen and Hochstein, 1963, Drevet, 2006), and also in 370 

controlling the inflammatory response (Bozinovski et al., 2012). Thus, it is commonly accepted 371 

that greater GPX activity is a positive indicator of health. However, a study in mice 372 

demonstrated that overexpression of GPX promotes inflammation in lung (Bozinovski et al., 373 

2012). Additionally, decreased GPX activity in mouse adipocytes led to the accumulation of 374 

GSH and reduced insulin sensitivity (Kobayashi et al., 2009). Thus, the difference in gene 375 

expression of GPX1 between HBCS and LBCS cows might be associated with inflammatory 376 

response and insulin resistance in SAT. Although there are no available data in bovine 377 

demonstrating a direct link between GSTM1 and oxidative stress in adipose tissue, dairy cows 378 

calving in summer exhibited signs of oxidative stress along with lower s.c. abundance of GSTM1 379 

(Zachut et al., 2017). In human lymphocytes, the absence of GSTM1 did not lead to abnormal 380 

susceptibility to an oxidant challenge in vitro (Onaran et al., 2001). We speculate that increased 381 

mRNA and protein abundance of targets associated with GSH metabolism in SAT were adaptive 382 

responses in HBCS cows in order to counteract the negative effect caused by increased ROS 383 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/gpx1
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concentration. Overall, these data seem to underscore the need for further studies to better 384 

understand the mechanistic role of GSH metabolism in bovine adipose tissue.  385 

CONCLUSIONS 386 

Although both HBCS and LBCS cows experience OS and inflammation during the 387 

periparturient period, these events are likely more pronounced in cows with HBCS, e.g. they had 388 

greater overall plasma β-carotene and ROS concentrations in SAT especially after parturition. 389 

Activation of NFE2L2 in SAT might partly explain the reduced inflammatory response in dairy 390 

cows with LBCS. The role of GSH metabolism in bovine adipose tissue merits further study. 391 
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Table 1.  Ingredient and nutrient composition of diets fed to Holsten cows with prepartum high 
(HBCS, BCS ≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17) during the close-up (−28  
d  to  calving) dry period and early lactation (calving to 30 d). 

Item Close-up Lactation 
Ingredient (% of DM)   
Corn silage 37.45 41.18 
Ground shelled corn 11.10 23.40 
Wheat straw 21.80 2.30 
Canola meal 11.66 3.20 
Soybean meal 6.30 13.00 
Alfalfa hay - 8.60 
Soychlor1 3.37 - 
Corn gluten  2.80 2.50 
ProvAAL2 AADvantage2 0.47 0.72 
Biotin3 0.10 0.08 
Rumensin4 0.19 0.02 
Calcium sulfate 0.53 0.12 
Magnesium oxide 0.10 0.12 
Ca 0.66 1.00 
P  0.33 0.35 
Salt  0.10 0.25 
Na 0.12 0.45 
Cl  0.78 0.68 
Mg  0.45 0.38 
K  1.36 1.45 
S  0.33 0.20 
Nutrient composition   
CP, % of DM 14.50 17.00 
NDF, % of DM 43.30 21.50 
ADF, % of DM 33.80 16.76 
aNDFom, % of DM 49.21 27.01 
NFC, % of DM 28.22 46.83 
NEL, Mcal/kg of DM 1.37 1.65 
NEL allowable milk, kg/d - 25.85 
MP allowable milk, kg/d - 28.66 
RDP, % of DM 8.45 11.00 
RUP, % of DM 6.05 6.00 
RDP required, g/d 1,165 1,873 
RDP supplied, g/d 1,152 1,995 
RDP balance, g/d -18 122 
RUP required, g/ 158 1,510 
RUP supplied, g/d 821 1,088 
RUP balance, g/d 662 -421 
MP required, g/d 821 2,404 
MP supplied, g/d 1,360 2,041 
MP balance, g/d 539 -362 

1West Central Soy. 
2Perdue AgriBusiness (Salisbury, MD). 
3ADM Animal Nutrition (Quincy, IL).  
4Rumensin, Elanco Animal Health (Greenfield, IN). 
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Table 2.  Least square means (n = 11) ± pooled SEMs for plasma biomarkers of 

inflammation and oxidative stress in Holstein cows with prepartum high (HBCS, BCS ≥ 

3.5) or low body condition score (LBCS, BCS ≤ 3.17).  

 Group   P-value  
Item HBCS LBCS SEM BCS Day BCS×Day 
Inflammation       
Albumin, g/L 36.4 35.3 0.59 0.22 0.40 0.42 
Ceruloplasmin, μmol/L 3.21 3.11 0.14 0.59 <0.01 0.10 
Haptoglobin, g/L 0.35 0.35 0.03 0.92 <0.01 0.68 
Myeloperoxidase, U/L 526 518 15.2 0.71 0.01 0.63 

Oxidative stress       
FRAP1, μmol/L 123 120 3.99 0.66 <0.01 0.02 
ROS2, H2O2/100 mL 16.0 15.2 0.50 0.28 <0.01 0.06 
NO, μmol/L 26.3 26.4 0.33 0.74 <0.01 0.55 
NO2-, μmol/L 3.86 3.57 0.21 0.31 <0.01 0.26 
NO3-, μmol/L 21.9 22.5 0.35 0.23 <0.01 0.92 
β-Carotene, mg/100 mL 0.17 0.23 0.02 0.08 <0.01 0.29 
Retinol, μg/mL 24.9 26.5 2.01 0.58 <0.01 0.64 
Tocopherol, μg/mL 2.85 3.18 0.18 0.21 <0.01 0.96 

Liver function       
Alkaline phosphatase, U/L 43.9 52.8 4.42 0.13 0.22 0.04 
AST3 ,U/L 102 103 5.85 0.96 <0.01 0.20 
GGT4,U/L 23.5 20.6 1.58 0.18 <0.01 0.26 
Paraoxonase, U/L 74.1 69.9 4.06 0.47 <0.01 0.44 
Bilirubin, μmol/L 5.03 4.06 0.49 0.13 <0.01 0.22 

1 FRAP= Ferric-reducing ability of plasma.  
2 ROS= Reactive oxygen species.  

3 AST = Aspartate aminotransferase. 
4 GGT = γ-glutamyl transpeptidase. 
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Table 3.  Least square means (n = 11) ± pooled SEMs for mRNA abundance related to NFE2L2 pathway and 

glutathione metabolism in Holstein cows with prepartum high (HBCS, BCS ≥ 3.5) or low body condition score 

(LBCS, BCS ≤ 3.17).  

    P-value 
Gene1 HBCS LBCS % Difference2 SEM BCS Day BCS×Day 
NFE2L2 pathway        

NFE2L2 0.90 1.05 -13.5 0.04   0.03 <0.01 0.09 
KEAP1 1.22 1.05 16.3 0.08   0.11   0.05 0.49 
CUL3 1.54 1.25 22.7 0.10   0.03 <0.01 0.01 

Glutathione metabolism        
ME1 0.84 0.75 12.3 0.09   0.45 <0.01 0.32 
TALDO1 1.31 1.08 22.0 0.08   0.04 <0.01 0.27 
GSR 0.20 0.14 41.1 0.01 <0.01   0.33 0.10 
GCLM 0.51 0.51 -0.58 0.04   0.96   0.01 0.51 
GPX1 0.79 0.64 22.4 0.05   0.02   0.05 0.23 
GCLC 0.86 0.79 9.66 0.05   0.24   0.08 0.23 

1NFE2L2=Nuclear factor, erythroid 2 like 2; KEAP1=Kelch-like ECH-associated protein1; CUL3=Cullin3; ME1=  
enzyme 1; TALDO1= Transaldolase 1; GSR =Glutathione reductase; GCLM =Glutamate-cysteine ligase modifier s  
GPX1=Glutathione peroxidase 1; GCLC =Glutamate-cysteine ligase catalytic subunit.  
2Difference in mRNA abundance = (HBCS – LBCS)/LBCS × 100. 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.  
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Figure Legends 

Figure 1. Change in body condition score (BCS) and BCS loss between −4 and 4 wk relative to 

parturition in Holstein cows with prepartum (28 d before expected parturition) high (HBCS, BCS 

≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17).  Data are LS means, n = 11 cows per 

group, ± pooled SEMs. abMeans groups differ (P ≤ 0.05).  

Figure 2. Prepartum and postpartum DMI, DMI as % of body weight and milk yield of Holstein 

cows with prepartum (28d   before expected parturition) high (HBCS, BCS ≥3.5) or low body 

condition score (LBCS, BCS≤ 3.17) through -30 to 30 d relative to parturition. Data are LS 

means, n = 11 cows per group, ± pooled SEMs. 

Figure 3. Plasma biomarkers of inflammation in Holstein cows with prepartum (28 d before 

expected parturition) high (HBCS, BCS ≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17) 

(panel A= Ceruloplasmin; panel B= Haptoglobin; panel C= Myeloperoxidase). Data are LS 

means, n = 11 cows per group, ± pooled SEMs. abMeans differ (BCS × Day, P ≤ 0.05).  

Figure 4. Plasma biomarkers of oxidative stress in Holstein cows with prepartum (28d   before 

expected parturition) high (HBCS, BCS ≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17) 

(panel A= FRAP; panel B= ROS; panel C= β-Carotene). FRAP= Ferric-reducing ability of 

plasma; ROS= Reactive oxygen species. Data are LS means, n = 11 cows per group, ± pooled 

SEMs. abMeans differ (BCS × Day, P ≤ 0.05). 

Figure 5. Plasma biomarkers of liver function in Holstein cows with prepartum (28d   before 

expected parturition) high (HBCS, BCS ≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17) 

(panel A= GGT; panel B= AST; panel C= Bilirubin). AST = Aspartate aminotransferase; GGT = 

γ-glutamyl transpeptidase. Data are LS means, n = 11 cows per group, ± pooled SEMs. abMeans 

differ (BCS × Day, P ≤ 0.05). 
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Figure 6. Concentrations of reactive oxygen species (ROS) (panel A), glutathione (GSH) ( panel 

B), and malondialdehyde (MDA) (panel C) in SAT of Holstein cows with prepartum (28d before 

expected parturition) high (HBCS, BCS ≥ 3.5) or low body condition score (LBCS, BCS ≤ 3.17). 

Data are LS means, n = 11 cows per group, ± pooled SEMs. abMeans differ (BCS × Day, P ≤ 

0.05). 

Figure 7. Protein abundance (relative to β-actin) of the NFE2L2 (inactive, panel A), p-NFE2L2 

(active, panel B), ratio of p-NFE2L2/NFE2L2 (panel C), NFE2L2 repressor KEAP1 (panel D) in 

SAT of Holstein cows with prepartum (28d before expected parturition) high (HBCS, BCS ≥ 

3.5) or low body condition score (LBCS, BCS ≤ 3.17). NFE2L2=nuclear factor, erythroid 2 like 

2; KEAP1= kelch like ECH associated protein. Data are LS means, n = 11 cows per group, ± 

pooled SEMs. abMeans differ (BCS × Day, P ≤ 0.05). 

Figure 8. Protein abundance (relative to β-actin) of the GSTM1 (panel A), ERK1/2 (inactive, 

panel B), p-ERK1/2 (active, panel C), ratio of p-ERK1/ERK1/2 (panel D) in SAT of Holstein 

cows with prepartum (28d before expected parturition) high (HBCS, BCS ≥ 3.5) or low body 

condition score (LBCS, BCS ≤ 3.17). GSTM1= glutathione S-transferase mu 1; ERK1/2= 

extracellular signal-regulated protein kinases 1 and 2. Data are LS means, n = 11 cows per group, 

± pooled SEMs. abMeans differ (BCS × Day, P ≤ 0.05). 


