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Abstract. With advances in genomic sequencing technology, a large amount of 

data is publicly available for the research community to extract meaningful and 

reliable associations among risk genes and the mechanisms of disease. However, 

this exponential growth of data is spread in over thousand heterogeneous 

repositories, represented in multiple formats and with different levels of quality 

what hinders the differentiation of clinically valid relationships from those that 

are less well-sustained and that could lead to wrong diagnosis. This paper 

presents how conceptual models can play a key role to efficiently manage 

genomic data. These data must be accessible, informative and reliable enough to 

extract valuable knowledge in the context of the identification of evidence 

supporting the relationship between DNA variants and disease. The approach 

presented in this paper provides a solution that help researchers to organize, store 

and process information focusing only on the data that is relevant and minimizing 

the impact that the information overload has in clinical and research contexts. A 

case-study (epilepsy) is also presented, to demonstrate its application in a real 

context.  
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Summary key points 

● A huge amount of genomic data is publicly available for the research 

community to extract meaningful and reliable knowledge, while Genomic data 

generation is growing exponentially. 

● Genomic data is heterogeneous, disperse, present a wide range of levels of 

quality and lacks ontological commitment. These hinders the application of 

genomic diagnosis into clinical practice. 

● The use of conceptual models is essential to deal with complexity in terms of 

understanding and communication of relevant data. We present a systematic 

framework -conceptual model-based- to efficiently manage genomic data to 

improve the efficiency and reliability of genomic diagnosis. 

● This framework uses a Conceptual Schema of the Human Genome to give 

structure and context to the data and it is supported by a data quality 

methodology specially designed for genomic information management. 

● The framework proved to increase the efficiency and reliability to determine 

variants that are associated with a higher risk of suffering epilepsy.  
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1 Introduction 

During the last decades, technological advances in the field of genomics have allowed 

techniques like Next Generation Sequencing (NGS) [1] to become a routine research 

tool, improving our understanding on how inherited genetic differences among 

individuals (DNA variants) are involved in the risk of suffering a disease or present a 

particular trait. However, the volume of available information that these techniques 

produce increases in a faster pace than the ability of researchers to connect and analyze 

it.  

The lack of a clear ontological basis to define the key concepts and the continuous 

evolution of the domain knowledge generate too frequently a different and (potentially) 

ambiguous representation for common concepts [2,3]. Furthermore, all the knowledge 

is spread in over thousand heterogeneous databases with different sizes, formats and 

structures. The information may also contain errors caused by the complexity of the 

biological processes, the noisy nature of experimental data and the diversity of 

sequencing technologies, that results in a great variability in the quality of the available 

information [4,5]. These challenges hinder the progress of sound and correct 

approaches such as Precision Medicine (PM) [6], which aim is to provide an accurate 

prevention, diagnosis and treatment of human diseases considering the genetic 

variability, the environment and the lifestyle of each person. 

If we want to integrate the different perspectives of genomic data, a holistic view 

must be provided to facilitate the management of all those different genome 

dimensions, that go from the structural genotype to the functional phenotype. It is at 

this point that the use of Conceptual Modeling (CM) techniques helps to improve the 

understanding and the adequate communication of relevant data [7]. Therefore, the 

development of specific and correct conceptual model-based Information Systems (IS) 

gains significance. These IS allow: 

i. The connection of different “-omic” fields (Genomics, Proteomics, 

Pharmacogenomics, etc.) under a common and structured perspective,  

ii. The support of efficient management of genomic data that ought to be 

accessible, informative and actionable enough to infer valuable knowledge, 

and  

iii. The use of appropriate tools to analyze the data and generate new knowledge 

[8].  

On this basis, the design of a proper IS requires in the first place a sound ontological 

structure to represent and connect the heterogeneous elements of the domain [9,10]. 

Secondly, the system must support the efficient data management by defining a 

systematic process, from the selection of the appropriate data sources and the 

identification of relevant data, to their final load and exploitation to extract valuable 

knowledge. Finally, considering that the reliability of the results is highly dependent on 

the quality of the managed information, the IS must count with mechanisms to ensure 

that the results obtained during the process are of enough quality. 

In this paper, we present a framework based on a Conceptual Schema of the Human 

Genome (CSHG) to manage genomic data in an efficient way with the aim of 

developing and populating an IS with high quality data. The framework is supported 

by a data quality methodology specially designed for genomic information. The quality 

of the managed information is ensured by the selection of high-quality repositories, 
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extracting the highest quality information from each one and guaranteeing that the 

results derived from its analysis can be regarded as reliable and accurate. This approach 

can be applied to different parts of the biological domain; in this work we describe its 

application in the context of the identification of relevant genetic and experimental 

evidence supporting the relationship between DNA variants and disease. Given a 

particular phenotype, a well-known current problem is the identification of those 

variants that are relevant for the considered phenotype. This problem is especially 

important in diagnosis clinical contexts. The framework explained in the paper provides 

a sound and methodologically well-grounded solution.  

The paper is structured as follows. Section 2 presents the relevant research in the 

domain regarding the use of conceptual models and data quality, and the need of having 

specific solutions for the genomic domain. Section 3 describes the proposed framework 

using the concepts and methods that are previously introduced. Along Section 4 the 

application of the framework is presented using a case study that ends with a discussion 

about the results that are obtained.  Section 5 concludes the paper and proposes future 

research directions. 

2 Conceptual Modeling and Data Quality in Genomics 

Understanding the genome is probably the most complex scientific human challenge, 

and the complexity of the associated data is overwhelming. To face it, two main aspects 

must be considered: i) the use of conceptual models for the understanding of complex 

domains and ii) the use of data quality techniques to evaluate the accuracy, reliability 

and usefulness of the data to obtain meaningful conclusions from their analysis. These 

aspects provide a solid background to explore effective solutions. Nevertheless, the 

domain of Genomics has evolved so fast that these techniques must be adapted in order 

to extract all the potential benefits that the underlying knowledge has for the 

understanding, prevention and improvement of human health. In the next sections we 

analyze how both a sound conceptual model and a data quality methodology for 

genomics help to find out more adequate solutions.  

 

 

2.1 A Conceptual Model for Genomics 

The understanding of complex systems requires the integration of genomic data under 

well-constructed conceptual structures to describe the relationships between their 

components. However, the integration of different genomic databases is often 

challenging because they differ not only in the scope of the information they represent, 

but also in the way the same information is modeled. This situation hinders the process 

of retrieval, annotation and integration of heterogeneous datasets and consequently the 

quality of the conclusions derived from their analysis.  

We want to emphasize that most of the existing solutions work at the “solution 

space” instead of working at the “problem space”. By working at the solution space, 

we mean that they focus on representing data as they are used in practice, instead of 

focusing on the problem space, that faces the conceptual representation of the relevant 

domain concepts. Working at the solution space makes extremely hard to link data 

whose provenance is diverse, that use different formats and whose semantics is too 
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often too imprecise. In this context, well-known solutions have been proposed by the 

scientific community. One of these solutions is the construction of ontologies. 

Examples of such ontologies are:  

● Gene Ontology [11] describes the knowledge of the biological domain with 

respect to three aspects, i) molecular-level activities performed by gene 

products (molecular function), ii) the locations relative to cellular structures in 

which a gene product performs a function (cellular component) and iii) the 

larger processes accomplished by multiple molecular activities (biological 

process). 

● Sequence Ontology [12] describes the features and attributes of biological 

sequences that are defined by their disposition to be involved in a biological 

process. There are also experimental features which are the result of an 

experiment. 

● Genotype Ontology [13] represents the levels of genetic variation specified in 

genotypes. 

● Variation Ontology [14] describes the effects, consequences and mechanisms 

of variations on DNA, RNA and/or protein level 

● Phenotype ontology [15] describes phenotypic abnormalities encountered in 

human disease by providing an ontology of medically relevant phenotypes, 

disease-phenotype annotations, and the algorithms that operate on these. 

 

There are around 244 biomedical ontologies, with over 5,700,000 terms and 27,000 

properties according to the Ontology Lookup Service1. These ontologies are essentially 

large terminological resources that describe the terms used in the domain and the 

connections between these terms. But the use of all these domain ontologies in practice 

becomes a big problem. If we are interested in managing the particular data that one 

ontology describes (what we call a “vertical” data query dimension), everything can 

work reasonably well. But if we are interested in establishing valuable semantic 

connections among data provided not only by one ontology, but by many of them (what 

we refer to as an “horizontal” data query dimension), we have a problem. Imagine that 

we want to know the reason why a specific change in the genome (a DNA variant) 

produces the clinical manifestations of a disease. To solve this task it is required to 

navigate through the different concepts that connect the chromosomal elements affected 

by the variant (the transcripts, the genes, the proteins…), the functions that these 

elements perform (transcription regulation, ion transport, protein degradation…), the 

biological processes and reactions where these functions are involved (immunological 

response, transport of elements through the cellular components such as the plasmatic 

membrane, the normal growth of tissues,..) and the consequences of the malfunction of 

these processes that can be translated into the observable manifestations of a disease 

(recurrent infections, malabsorption, growth retardation, etc.). Navigating through all 

those different concepts to understand the precise semantic connection between 

genotype and phenotype requires to access many different data sources, each one 

normally specialized in a partial genomic dimension. 

To solve the problem, the holistic perspective that only a global conceptual model 

can provide is strongly required. This is the essence of the solution presented in this 

 
1 https://www.ebi.ac.uk/ols/index 
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paper. A conceptual schema of the human genome is acting as a kind of conceptual 

database, that provides an unified perspective of all the relevant data that are in practice 

spread through a set of different data sources (data ontologies, databases, or however 

their creators call them). 

The use of conceptual models proves to be a powerful tool for the understanding and 

communication of complex domains by making a clear definition of the entities 

involved and the relationships among them. The idea of applying conceptual modeling 

to understand the genome has been explored by some authors within which we can 

highlight:  

I. The work presented by Chen et al. facilitated an Object-Protocol Model 

(OPM) [16] intending to bring an example of a combination of protocol and 

object constructions in a framework for the genomic domain, to provide 

modeling of objects and experiments (protocol).  

II. The DNA Databank of Japan (DDBJ2) used conceptual modeling to design 

and develop a new version of their Nucleotide Sequence Databank to facilitate 

a rapid change and growth according to their system requirements [17].  

III. The work presented in [18] introduces a cooperative computing environment 

(called “Imagenetrade mark”) dedicated to the analysis and annotation of 

genomic sequences, which has been developed by applying an object-based 

model. 

IV. The work presented by Paton [19] was focused on describing the genome from 

different perspectives, including the description of the eukaryotic cell genome, 

the interaction between proteins, the transcriptome and other genetic 

components, however, their work did not have a fruitful continuation in the 

domain. 

V. In [20], the principles of conceptual modeling were applied in the context of 

3D protein structures, which includes the consultation of large amounts of data 

and a very complex structure. 

 

But these approaches still focus on specific parts of the domain, they are unconnected 

from each other and do not provide the required global view to understand complex 

biological systems. New attempts to provide a sound, CM-based solution is being 

proposed recently. For instance, in the work presented by Bernasconi et al., a 

conceptual model of genomic metadata is proposed, whose purpose is to consult the 

underlying data sources to locate relevant experimental data sets [21]. Our work 

reinforces these approaches by using the Conceptual Schema of the Human Genome 

(CSHG) [22], developed in a previous work. The CSHG fills the gap providing a unified 

conceptual perspective to the partial ones that each of the above-mentioned solutions 

(ontologies and partial conceptual models) provide. Next, we explain in more detail the 

process that led to the development of a stable version of the CSHG. 

Considering that the conceptual background of the genomic domain is under a 

constant evolution, it is important to highlight that to reach this holistic representation 

of the human genome, different versions of the model were generated, through a 

process where the ontological foundations of the relevant concepts were under 

continuous discussion. This was strongly required to facilitate the understanding and 

 
2 The DNA Data Bank of Japan 
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allowed to extend and integrate all the new concepts according to the evolution of the 

domain and the well-grounded knowledge. Below is a brief detail of each of the 

generated versions of the CSHG, that have made possible to reach a stable state: 

● CSHG version 1: It is characterized by being the first attempt to address the 

holistic description of the genomic domain, and as such it uses a vision of the 

genome that is focused on its most basic concepts, ignoring some more 

complex aspects. CSHG version 1 focuses on the analysis of individual genes, 

their mutations, and their phenotypic aspects. In the modeling stages, four 

iterations were developed to reach the final version 1 of the CSHG (which can 

be consulted in [23]). This first version was classified into three main views: 

a) Gene-Mutation View; b) Genome View; and c) Transcription View [24] 

● CSHG version 1.1: It is the natural evolution of CSHG version 1. This 

comprises the inclusion of the phenotypic view in the model. The "phenotypic" 

vision is very important because it provides consistency to the model. The fact 

of offering a “genotypic” vision (genetic information that an organism has), 

linked to a “phenotypic” vision (expression of genotype depending on a certain 

environment), offers a significant research value and it increases the semantic 

completeness of the model. As the introduction of the phenotype dimension 

did not change the essential semantics of the CM, a release change was 

considered enough. 

● CSHG version 2: This version changes its central nucleus and goes from 

representing a "genecentristic" vision to a vision centered on the concept of 

"chromosome". This is why a version change was performed. Any relevant 

part of the genome is easily characterized as a particular chromosome part. 

This structural change of vision in the model represents the main difference 

concerning the previous versions of the model (v1 and v1.1). The full 

development phases that led to this evolution of the conceptual scheme can be 

consulted in detail in [22]. We decided to organize it in five mains “views” 

(see for instance [22]): 

○ Structural: it describes the genome structure. 

○ Transcription: it shows the components and concepts related to 

protein synthesis. 

○ Variation: it describes the changes in the sequence of reference. 

○ Pathways: it describes information about metabolic pathways. 

○ Bibliography and data bank: it describes the sources of relevant data.  

 

Currently, this stable version (CSHG version 2) of the model is being applied in 

practice, while continuous evaluation is in progress in order to be ready to generate any 

updated version that could better suit the needs of the domain. One of the practical cases 

of application of the model consists of studies on haplotypes and population genetics 

(which includes the integration of statistical -biological- patterns) resulting in the 

research work reported in [25].  

Without renouncing at all to the holistic purpose of the CSHG, in practical terms we 

need to focus on a particular dimension of interest. Analyzing all the conceptual 

connections that are represented in the whole model is not possible in one paper. To 

make the problem treatable, we will focus on this work only on the Variation view data, 

that is especially relevant for facilitating a successful Medicine of Precision practice.  
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2.2 A Data Quality Methodology for Genomics 

Once the conceptual structure is clear, the next step is to define a process to ensure that 

the information managed has enough quality to be used in the clinical practice. The 

information to be managed is complex because i) data sources can contain errors, and 

ii) these errors can be propagated to other data sources that use the original one, 

increasing the noise and the efforts required for their analysis [26].  

The data quality connection is immediate. Even though data quality has been studied 

for decades, research on the quality of genomic data has just started and there are not 

sound results yet [27]. Most of the problems to face can be grouped into the assessment 

of six main categories or dimensions [4]:  

● Accessibility issues: even though most of the data stored in the genomic 

repositories are publicly available, there are some issues that can hinder the 

access, such as the lack of mechanisms to automatically query and download 

the results of a search.  

● Completeness issues: due to the extensive and ever-growing amount of 

available data, the process of manually marking specific features in a DNA 

sequence with descriptive information about its structure or its function is a 

time-consuming task. Therefore, some tools for automated processing and 

analysis of text are being developed to assist researchers in evaluating the 

scientific literature [28]. Although these tools speed up the annotation process, 

the heterogeneous nature of written resources and the difficulties of extracting 

knowledge embedded in free text (inconsistent gene nomenclature, domain-

specific languages and restricted access to full text articles,...) mean that the 

information annotated with these tools can contain missing values, affecting 

the completeness of the databases. 

● Consistency issues: genomic databases are very diverse, making extremely 

laborious to perform even simple queries across databases. As there is no 

standard format for genome data storage and no universally accepted 

vocabulary, consistency problems are especially significant when dealing with 

the terminology used to represent biological concepts. An example of these 

consistency problems is the classification of the type of DNA variants, which 

number ranges from 8 types (according to the HGVS3 recommendations) to 

31 (according to the ClinVar4 database). 

● Currency issues: as the underlying concepts are imperfectly defined, and 

scientific understanding of them is changing over time, the annotation of most 

genomes becomes outdated. There are also databases that do not have the 

required technological maintenance or do not review the information stored so 

they become obsolete too quickly. Consequently, most genome annotations 

remain static for years or have never been changed since their initial 

publication [29]. 

 
3 https://varnomen.hgvs.org/ 
4 https://www.ncbi.nlm.nih.gov/variation/docs/glossary/ 
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● Redundancy issues: the lack of a precise ontological commitment tends to 

increase the redundancy in the collected data. The same entity can be 

submitted by different research groups to a database with different names, 

multiple times, or to different databases without a traceable cross-reference 

[30]. A high level of redundancy leads to an increase in the amount of data to 

be processed internally by the database and externally by the users. It also 

hinders the annotation process creating confusion and requiring additional 

time and effort to resolve missing, duplicate or inconsistent fields. 

● Reliability issues: all the above-mentioned problems decrease the reliability of 

the stored information. To minimize these issues, some databases are 

supported by external experts that manually review the information and 

correct the errors found. Nevertheless, this is a laborious process that, together 

with the lack of well-constructed information systems, explains why the use 

of these repositories is not an extended practice yet, hindering the exploitation 

of the full potential that these databases can offer. 

 

To address these problems and assure the veracity and value of the information, a 

Data Quality Methodology (DQM) must be defined. A DQM consists in a set of 

guidelines and techniques to define specific metrics in order to get a quantitative 

measure that represents the quality of the data. The methodology is divided into four 

main phases:  

● Dimension description: the interesting dimensions to be measured are 

described together with their scope. For example, to determine the quality of 

a genomic repository, one of the dimensions to be measured can be Currency. 

● Metric description: it describes the metrics associated to each dimension. For 

example, the currency of a database can be measured by its last update 

● Requirements description: its objective is to define the minimum levels of 

quality that must be fulfilled by assigning concrete acceptance criteria to each 

metric. For example, the requirement for the last update metric is less than one 

year, which means that a database must have been updated less than one year 

ago. 

● Data Quality Assessment: Once the dimensions, metrics and minimum 

requirements are established, a sound data quality assessment can be made by 

comparing the collected information and the minimum acceptance criteria that 

have been defined in the previous phase. For example, if the selected database 

has been updated less than one year ago, it can be considered as current. 

 

These phases are mostly application-dependent so they can be adapted to any 

possible given scenario. Using the artifacts resulting from each phase, the quality 

assessment can be performed allowing the selection of the data that accomplish the 

levels of quality established by the user. 
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3 A Framework for the Efficient Management of Genomic 

Information 

The framework presented in this paper uses the CSHG and the DQM described in the 

previous section and provides support to the four main tasks required to develop and 

populate an IS with relevant data:  

● The selection of the most adequate and reliable data repositories.  

● The identification and management of the relevant information. 

● The transformation of the subsequent data into a queryable format using the 

adequate technology, making them persistent. 

● The analysis and extraction of the underlying knowledge.  

 

The schema of the framework (see Fig. 1) is divided into three sections that represent 

the main concepts that have been explained along this work. At the top of the figure, 

the different stages that conform the data quality methodology are represented 

(Dimension Description, Metric Description, Requirements Description and Data 

Quality Assessment). At the bottom of the figure, the ontological support is defined as 

i) a Conceptualization Process that must be carried out to precisely define the concepts 

of the domain, and ii) a formalization of this conceptualization that results in the 

conceptual model. Finally, at the center of the figure, the four main sequential tasks that 

must be performed to populate an IS with relevant data can be found (Repository 

Selection, Information Identification, Information Persistence and Knowledge 

Extraction). The data quality methodology and the ontological support interact with the 

three first tasks providing a set of input elements:   

● The CSHG is the core of the ontological support and provides a unified 

structure to the information that comes from the different repositories. A set 

of mapping and transformation rules help to consistently represent the external 

data according to the structure defined by the CSHG. It also provides the 

association and constraint rules required to define the structure of the target 

database that will store the information. This process requires a 

conceptualization of the relevant information and its precise representation 

using the appropriate languages such as the diagrams provided by the Unified 

Modeling Language (UML, https://www.uml.org/). 

● The DQM supports the process of data repository selection and relevant data 

identification by providing the different sets of quality criteria to be applied 

on each stage.  

 

Finally, once the information is appropriately stored, a set of tools can be used to 

analyze and visualize the data in order to extract valuable knowledge. 

In the next section, we are going to present the application of the framework in the 

context of a case study: the systematic identification of relevant genetic and 

experimental evidence supporting the relationship between DNA variants and epilepsy. 
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4 Presentation of the Framework through a Case Study 

In order to explain the application of the framework, this section is structured as 

follows: first we explain how to prepare the conceptual and technological support to 

build the IS that will support the process (Section 4.1 to 4.4) and then we describe its 

execution to extract the required results (Section 4.5). These results have been 

positively validated by a group of experts in genetic diagnosis.  

 

 

4.1 Defining the Ontological Structure 

As it has been explained in previous sections, the key to build a sound IS is to ground 

it on a solid ontological commitment. In this example, we are focusing on solving a 

concrete task -the identification of relevant variants that are clinically related to the 

phenotype under study (epilepsy)-. This task requires to manage data about a specific 

part of the genomic domain. Using the holistic perspective provided by the CSHG as a 

basis, we can determine the parts of the model that provide the required structure to the 

data that is going to be managed. The resulting conceptual schema can be seen in Fig. 

2. 

The main entities of the conceptual schema are Variation and Gene. The Variation 

entity represents the changes in the DNA that are the cause of the Phenotype (disease) 

of interest. There are different types of variants, depending on i) the frequency of 

appearance in a certain Population (Mutant, Polymorphism, CNV and SNP) and ii) the 

precision of the information associated to them. If the location of the variant is known 

it is classified as Insertion, Deletion, Indel or Inversion. If the location of the variant is 

unknown, it is classified as Imprecise. 

The Gene entity represents the elements whose alteration derives in a malfunction 

that leads to the development of the disease. As the traceability of the data must be 

ensured, the schema also considers the information associated to the databases where 

the genomic data have been extracted from, represented by the classes 

Bibliography_DB, Databank and Population_DB. This helps to keep the information 

continuously updated. 

 

 

4.2 Selecting Relevant Sources 

Once the conceptual schema is specified, the next step is the selection of the most 

adequate data sources to populate it. This process is based on the application of a set of 

data quality criteria in order to reduce the noise produced by the great number of 

publicly accessible repositories (over 1,500 according to a report of 2019 Molecular 

Biology Database Collection in the journal Nucleic Acids Research [31]). The selection 

of the adequate repositories is based on a set of quality criteria that considers the 

assessment of 3 dimensions and 5 metrics with their corresponding criteria of 

acceptance (see Table 1). 

In addition, the transformation and integration processes require following a 

sequence of steps:  
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● Data Processing: it involves cleaning the extracted data as well as 

converting all the values to the required data types. 

● Data Transformation: this step refers to the implementation of the 

transformation rules required to represent the information coming from the 

different repositories into a common structure. 

● Data Integration: it consolidates the data under a single unified view. 

● Data Deduplication: this step involves removing duplicate copies of 

repeating data. 

 

After this process, the data is prepared to be filtered with the aim of reducing the 

noise and the negative consequences of analyzing low quality data. 

 

 

4.3 Identifying the Relevant Information 

As not all the information coming from the repositories is reliable enough to perform a 

genetic diagnosis, it is important to measure its quality in order to ensure that only the 

most reliable one is considered. To this aim we have defined and implemented a set of 

quality criteria in agreement with the group of experts in genetic diagnosis that will 

validate the results of the process. These criteria are summarized in Table 2. 

We are aware of the complexity of the domain. Due to this complexity, the definition 

of the quality criteria can be adapted to any context of application by changing the 

default values or defining new criteria. At the end of the process, only the information 

that conforms the established criteria can be prepared to be stored adequately ensuring 

its persistency. 

 

4.4 Information Persistence and Knowledge Extraction 

With the aim of preparing the information for its further exploitation, it must be stored 

in a target database that conforms the structure provided by the CSHG. The selection 

of the adequate technology depends on the volume of the information to be managed 

as well as the further data analysis requirements. In addition, the process of providing 

persistency to the information requires to carry out the needed checks to provide strong 

data typing as well as referential integrity to ensure the accuracy and consistency of the 

data. In our case, we built a relational database because it is a well-known and widely 

accepted technology, with a solid technological background, and it provides an intuitive 

organization based on the table structure that is familiar to most users and close to the 

way the concepts are represented in the CSHG. It also adapts well to the type of queries 

that the problem requires, facilitating an effective data exploitation. These 

characteristics simplify the development and use of the database. In addition, data 

integrity is an essential feature of the relational databases. They provide strong data 

typing and validity checks as well as referential integrity, which ensure the accuracy 

and consistency of the data. Nevertheless, we are aware that other technologies such as 

NoSQL databases could be useful too, but on this case a SQL database fully complies 

with our requirements. 

The final aim of this approach is to extract knowledge from the information stored 

in the database through the use of analytical and graphic tools specifically designed for 

this domain. In our case, we use the information to provide support to the identification 
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of potentially damaging variants in the DNA of a patient, represented in a VCF file (the 

most accepted file format to represent and managing variants). This is a very complex 

and time-consuming task that is mainly performed manually. A tool called 

“GenesLove.Me” [32] has been developed to provide support to this task. Using the 

high-quality information stored in our IS, the tool generates an automatic report with 

the DNA variants present in a patient's sample, what is a valuable help for the 

geneticists/clinicians that only have to validate the results. 

As a proof of concept, we explain in the next subsection the results obtained after 

processing a specific dataset with variants associated with epilepsy. 

 

 

4.5 Results 

We used the IS developed considering the previously explained framework to 

determine the relevant variants that are associated with a higher risk of suffering 

epilepsy. The selected sources to extract the data (according to the stablished quality 

criteria) have been PubMed5, NCBI Assembly6, GWAS Catalog7, ClinVar8, Ensembl9, 

dbSNP10, HGNC11, Entrez Gen12 and 1000 Genomes13. This selection provides a 

reliable coverage of the most relevant genome data sources that is to be considered in 

the analyzed working domain. Using the automated connectors implemented to access 

data from each source, an initial extraction allowed us to integrate data from 11,506 

variants, 1,509 genes and 844 articles [33, pp. 57-58].  

Without the support of an IS, this information must be integrated and analyzed 

manually, which is human-error prone and it implies a waste of time and human 

resources. After applying the criteria defined to identify relevant variants according to 

the requirements of the experts, only 32 variants were considered as relevant to perform 

a genetic diagnosis (see Table 3, that summarizes the most relevant results). Almost 

64% variants were discarded because they do not have a relevant clinical significance 

or associated bibliography to verify the assertion, and about 16% of the variants were 

discarded because the studies performed were not statistically relevant enough 

according to our criteria (presented in Table 2). This gives an idea of the importance of 

managing high-quality, accurate data in genomic contexts.  

The results were validated by a group of experts as clearly relevant, reducing the 

effort required to query, integrate and analyze the information coming from the 

different sources. 

 

 
5 https://www.ncbi.nlm.nih.gov/pubmed/ 
6 https://www.ncbi.nlm.nih.gov/assembly/ 
7 https://www.ebi.ac.uk/gwas/ 
8 https://www.ncbi.nlm.nih.gov/clinvar/ 
9 https://www.ensembl.org/index.html 
10 https://www.ncbi.nlm.nih.gov/snp/ 
11 https://www.genenames.org/ 
12 https://www.ncbi.nlm.nih.gov/gene/ 
13 https://www.internationalgenome.org/ 
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4.6 Final Remarks 

With the ever-increasing volume of information generated for curing or treating 

diseases and cancers, conceptual model-based technologies, tools, and techniques 

should play a critical role in turning data into actionable knowledge to meet unstated 

and unmet medical needs. This is the main objective of the work presented in this paper.  

The case study that has been introduced can be generalized to any phenotype for 

which precise genome data have been registered. This facilitates the jump from 

prototyping to real application of the framework, defining what a sound and validated 

workflow framework means and determining how to balance agility needs in the 

identification of relevant variants while compliance and consistency of requirements 

are preserved. What is more important, this approach provides a sound methodological 

background to deal with potential inconsistencies and uncertainties in 

definitions and meta-data across the multiple datasets that form the basis of the 

complex, big genomic data world. 

5 Conclusion and Future Work 

The management of genome data is a complex and time-consuming task that requires 

a great effort from the researchers if they do not have the support of a systematic process 

and a well-grounded IS. The lack of a consistent process and the usage of non-

standardized data result in sub-optimal identification of relevant (clinically speaking) 

variants and longer periods of time to obtain an accurate information. In this work, the 

non-standardized problem is prevented by using sound conceptual modeling 

background (introduced in Section 2.1), and a data quality methodology (presented in 

Section 2.2) to provide the required consistent process support.   

Through the conceptual framework, we have stated the importance of using 

conceptual models to reduce the bottleneck that researchers must face when managing 

inconsistent, heterogeneous, dispersed and unaffordable huge amounts of biological 

data in continuous growth. The Conceptual Schema of the Human Genome provides a 

solid ontological structure to the data coming from diverse and heterogeneous 

repositories.  

The data quality methodology ensures that the managed information has enough 

quality to support the genetic diagnosis in a clinical context. The application of the 

framework to determine the variants associated with the risk of suffering epilepsy has 

been proved to be useful in reducing the effort and time required to perform the entire 

process. The criteria applied in the case study were adapted to the needs of the experts 

that collaborated in the validation. Nevertheless, we are aware about the complexity of 

the domain and that the characteristics of each disease differ in which criteria must be 

considered and how they should be applied. To address these challenges, we are 

working on a continuous improvement of the CSHG to consider all the new knowledge 

that the community is generating day after day, such the role of haplotypes and 

pathways in the development of complex disease.  

Additionally, we are working on providing an implementation of specific guidelines 

for the classification of DNA variants such as the ones provided by the American 

College of Medical Genetics (ACMG) and the Association for Molecular Pathology 

(AMP) [34], and the evaluations and adaptations performed by research groups like 
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ClinGen [35]. At the same time, we are preparing new case studies to corroborate that 

the results can be considered as accurate in as many scenarios as possible. 

As a conclusion, the use of conceptual models and data quality techniques is the 

basis to build dynamic, scalable and efficient IS that could interoperate with other 

systems. It allows to efficiently manage all the data required to understand the complex 

mechanisms that conform the genomic domain, ensuring a global data structure (key 

for interoperability) and a high-quality data management environment (key for 

generating accurate and reliable knowledge). 
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Figure Legends 
 

Page 10 - Fig. 1. Framework for the management of genomic information. 

Page 12 - Fig. 2. Conceptual schema representing the information used in the case study 

 

Table Legends 
 

Page 13 - Table 1. This table summarizes the dimensions, metrics and criteria of 

acceptance used to select relevant genomic repositories. 

Page 14 - Table 2. This table summarizes the dimensions, metrics and criteria of 

acceptance used to select relevant genomic data from a repository. 

Page 16 - Table 3. This table represents a summary of the results obtained after the 

classification of the variants according to their relevance for the task at hand [33]. 


