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Abstract: In this work the effect of partial or total replacement of fishmeal by plant protein
sources and krill and squid meal on growth performance and shelf-life of gilthead sea bream
was evaluated. Plant protein dietswith 50 g kg−1 of krill and 100 g kg−1 of squid were supplemented
with synthetic amino acidsand at the end of the growing period weight showed no significant
differences. The spoilage process of the fish was followed by physicochemical and microbiological
measurements together with a colorimetric sensor array (CSA) specially designed for that purpose.
The changes in the physicochemical parameters and microbial growth showed that shelf-life of
samples were in all cases lower than ninedays. The CSA was not able to show significant differences
between both diets, confirming the physicochemical and microbiological results. The fact that the
type of feed had no effect on the freshness parameters studied demonstrates that total fishmeal
replacement with plant protein blends in the proportions used in this work could be an excellent
alternative for feed formulation in aquaculture.

Keywords: Sparusaurata; giltheadsea bream; fishmeal; plantprotein; shelf-life; colorimetric sensor array

1. Introduction

In aquaculture production, diet is one of the most important factors because of its influence on
metabolic aspects of the fish and its role in the chemical composition of muscle and flesh quality.
Intensive farming depends on the diet composition of the external feed supply, and these can affect the
nutritional quality of aquaculture products. An artificial diet can not include the typical components
of a natural diet, so a feed composition is capable of causing differences in the appearance and the
quality of these products [1].

Fishmeal and fish oil provide the ideal amino acid profile and the essential fatty acids for proper
fish development. However, the continuous increase in the demand for fishmeal and fish oil combined
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with their high price has led to a search for new proteins and energy-rich ingredients to avoid
dependence on expensive marine raw materials for fish feeding.

Currently, gilthead sea bream is one of the most important species in Mediterranean aquaculture [2].
Gilthead sea bream commercial diets use plant proteins to substitute fishmeal, but their optimum
dietary level for growth and nutrient efficiency depends on the raw material [3–5] or the protein
blend [6,7]. Overall, results indicated that up to 40% inclusion of different protein sources, such as
single ingredient, reported good growth rates, but higher inclusions can cause growth problems, due to
the deficiency of essential amino acids and to the presence of anti-nutritional factors in many plant
raw materials, that produce intestinal diseases in fish. However, when a mixture of protein sourcesis
used, fishmeal can be totally replaced, as has been shown in previous studies [8], without having any
negative effects on fish growth. Besides the zootechnical parameters, several other effects of including
plant proteins have been evaluated in gilthead sea bream feeding, such as histological alterations
on the intestine or liver [9], effects on immune response [10,11] and even on sensory attributes [12].
In summary, fishmeal can be replaced at 75% for plant protein mixture without having any negative
effects. Previous trials have demonstrated that high fishmeal substitution for other proteins had slight
effects on the quality traits of commercial-sizegilthead sea bream [3,4,8]. However, the spoilage of
samples has been rarely compared in this type of studies [13,14].

Despite giltheadsea bream being one of the most consumed fish in the Mediterranean, the study
of the post mortem processes and the effect of diet on flesh quality has not been studied in depth.
The effect of diet (specifically the inclusion of vegetal oils) on deterioration has only been described
by Álvarez-Trujillo [15] who concluded that using vegetable oil to replace fish oil had no significant
effects on the shelf-life of giltheadsea bream in cold storage. Matos et al. [14] reported that high
fishmeal and/or fish oil replacement by plant ingredients in diets for gilthead sea bream feeding has
a substantial effect on early post mortem metabolic processes and proteolytic potential on muscle.
Nevertheless, to the best of our knowledge, there is no available information about the effect of dietary
fishmeal substitution by plant proteins on fish muscle shelf-life.

Food quality has been traditionally monitored by sensory analysis [16], chemical and
microbial analysis and mechanical methods [17]. However, some of these methods are tedious,
expensive, time-consuming and require skilled personnel [18]. As an alternative, the development of
rapid non-destructive quality control techniques that can be applied at any stage of the supply chain,
is of much importance [19–21]. In this sense, different authors have been working on the development
of fast and reliable methods to monitor food freshness based on colorimetric sensor arrays (CSA) in
recent years. CSA technology has been furthered by the major progress and cost reduction in recent
years in camera technology and the processing power of computer hardware [20]. Applications using
CSA for detection and identification of volatile organic compounds have been developed in the field
of food quality and safety assessment [10,22–24]. Chromogenic sensor arrays are a powerful tool for
monitoring Sparusaurata freshness [18]. The color changes of this kind of arrays allows fish freshness
monitoring by the combination of the unspecific response of the diverse sensors and statistical analysis
tools. However, as a result of matrix inversion problems, for classification purposes, the high number
of available labels, which in this case were the responses of the six sensing materials used in CSA needs
to be simplified. Principal components analysis (PCA) is a widely used technique in order to reduce
the dimensionality of the data.

In this paper, the objective was to study the effect of partial or total replacement of fishmeal
(FM) by blends of plant protein sources, on growth performance and shelf-life of giltheadsea bream
(Sparusaurata).
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2. Materials and Methods

2.1. Growth Trial

The trial was conducted in 9 cylindrical fibreglass tanks (1750 L, three per treatment) within
a saltwater recirculation system (65 m3 capacity) with a rotary mechanical filter and a gravity biofilter
(approximately 6 m3). All tanks were fitted with aeration equipment. The water was heated by a heat
pump installed in the system, and the water removal per tank and hour was 2.5 times/hour.

During the experiment, the temperature was maintained at 23 ± 1 ◦C, dissolved oxygen was
6 mg L−1, salinity was 37–38 g L−1, pH was 7.5 and ammonium value was 0.0 mg L−1. The photoperiod
was natural throughout the experimental period, and all tanks had similar lighting conditions.

2.2. Diets and Experimental Design

Three isonitrogenous (45% crude protein) and isolipidic diets (20% crude lipid) were formulated
using commercial raw ingredients (Table 1, nutrient levels were similar to a commercial diet).
The fishmeal substitution for a plant protein sources mix (wheat and wheat gluten, faba bean meal,
soybean meal, pea meal, sunflower meal) was used at percentages of 0%, 75%, and 100% (diet FM100 or
control diet, diet FM25, and diet FM0 without fishmeal, respectively). These diets were selected to have
a control diet (FM100), a similar commercial diet (FM25) and an extreme diet (FM0). The plant protein
mix was chosen due to the high protein content of the ingredients and supplemented with a crystalline
amino acid to cover the amino acid requirement of the gilthead sea bream, previously described by
Peres and Oliva-Teles [25]. All diets, except the control diet (FM100), were supplemented with taurine
and calcium phosphate because fishmeal contains taurine and calcium that are not in plant protein
meals and can be detrimental in the FM25 and FM0 diets. Additionally, soybean oil was included
at 66 g kg−1 in all diets following results obtained in a previous study by Martínez-Llorens et al. [26].
In diets FM25 and FM0, krill and squid meal were added (Table 1).

Table 1. Formulation and proximate composition of the experimental diets.

Diets

Ingredients (g kg −1)

FM100 FM25 FM0

Fish meal herring 589 150
Wheat 260 60

Wheat gluten 105 202
Fababean meal 25 40
Soybeanmeal 132 160

Krill meal 50 50
Pea meal 25 25

Sunflowermeal 132 160
Fish oil 65 78 90

Soybean oil 66 66 65
Squid meal 100 100

Mono calcium phosphate 27 38
Soybean lecithin 10 10 10

Taurine 20 20
Methionine a 5 5

Lysine a 5 10
Multivitamin and minerals mix b 10 10 10

Proximate composition (g kg−1 dry weight matter)

Dry matter DM 881 902 928
Crude protein CP 442 445 446

Crude lipid CL 185 201 200
Ash 101 101 88

Carbohydrates c 271 252 265
a 7 L-Methionine and L-Lysine Clh: Guinama S.L.U. b Vitamin and mineral mix (values are g kg−1 except those in
parenthesis): Premix: 25; choline, 10; DL-a-tocopherol, 5; ascorbicacid, 5; (PO4)2Ca3, 5. Premix composition: retinol
acetate, 1,000,000 IU kg−1; calcipherol, 500 IU kg−1; DL-a-tocopherol, 10;menadione sodium bisulphite, 0.8; thiamine
hydrochloride, 2.3;riboflavin, 2.3; pyridoxine hydrochloride, 15; cyanocobalamine, 25;nicotinamide, 15; pantothenic
acid, 6; folic acid, 0.65; biotin, 0.07;ascorbic acid, 75; inositol, 15; betaine, 100; polypeptides 12. c Carbohydrates,
CHO (%) = 100-%CP-%CL-%Ash.
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Diets were prepared using a semi-industrial twin-screw extruder (CLEXTRAL BC 45, St. Etienne,
France). The processing conditions were as follows: screw speed of 100 rpm, a temperature of 110 ◦C,
and pressure of 40–50 atm.

Composition of the diets were analysed following AOAC (Association of Official Agricultural
Chemists) [27] procedures: dry matter (105 ◦C to constant weight), ash (combusted at 550 ◦C to
constant weight), crude protein (N × 6.25) by the Kjeldahl method after acid digestion (Kjeltec 2300
Auto Analyser, Tecator Höganas, Sweden) and crude lipid extracted with dichloromethane-methanol
(Soxtec 1043 extraction unit, Tecator AB, Sweden). All analyses were performed in triplicate.

2.3. Fish and Feeding

The gilthead sea bream (Sparusaurata) were brought from a local marine fish farm (Piscimar
S.A., Burriana. Castellón, Spain), transported alive to the Fish Nutrition Laboratory of the
UniversitatPolitècnica de València(Spain) and randomized into experimental tanks (20 per tank).
All fish were weighed every 30 days. Previously, fish were anesthetized with 30 mg L−1 clove oil,
containing 87% eugenol (Guinama®, Valencia, Spain).

The test lasted 154 days (from November to April). The experimental diets were assayed in
triplicate groups. The fish were fed by hand twice a day (09.00 h and 16.00 h) until apparent satiation.
The pellets were distributed slowly to allow all fish to eat.

The experiment ended when the fish reached market weight (between 350 and 400 g). At the
end of the growth trial, all fish were individually weighed, sacrificed by immersion in ice-cold water
and stored at 4 ◦C, and fillets from 54 fish (6 per tank, 18 per treatment) were extracted for shelf-life
evaluation. This experimental procedure was repeated three times at 15 day intervals.

2.4. Shelf-Life Study

2.4.1. Sample Preparation

The two fillets from one single fish were individually placed in plastic trays. A colorimetric sensor
array (CSA) (made of six sensing materials filling a microplate) was placed inside the tray avoiding
contact with the fish samples. In addition, three trays containing CSA were also packed in the absence
of samples and used as controls for each experiment. Petri dishes filled with water were placed in
the control trays to reproduce moisture conditions. All the trays were placed inside plastic bags and
thermo-sealed. Finally, trays were stored at 4 ◦C for 11 days. The physicochemical and microbiological
analyses were performed on days 0, 2, 4, 7, 9, and 11. Photographs of the CSA were also taken on the
same days. This experimental procedure was repeated three times at 15 day intervals.

2.4.2. Chromogenic Array Preparation

Thymol blue, bromothymol blue, bromocresol green, aluminium oxide, and silica gel were
purchased from Sigma–Aldrich (St. Louis, MO, USA). Analytical-grade solvents were acquired
from Scharlab (Barcelona, Spain). All the reagents were used as received with no further
purification. The binuclear rhodium complex with formula [Rh2(C6H4PPh2)2(O2CCH3)2](HO2CCH3)2

was synthesized according to reported procedures [28]. Solutions were prepared according to the
procedure described by Zaragozá et al. [18,29] and six final sensing materials were obtained:

• Preparation of probe 1, dye: thymol blue (40 mg), solvent: ethanol (8 mL), support:
aluminum oxide.

• Preparation of probe 2, dye: bromothymol blue sodium salt (40 mg), solvent: ethanol (7 mL),
support: silica gel.

• Preparation of probe 3, dye: bromocresol green (40 mg), solvent: ethanol (7 mL), support: silica gel.
• Preparation of probe 4, dye: dinuclear rhodium complex (40 mg), solvent: dichloromethane

(6 mL), support: silica gel.
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• Preparation of probe 5, dye: dinuclear rhodium complex (80 mg), solvent: dichloromethane
(6 mL), support: silica gel.

• Preparation of probe 6, dye: dinuclear rhodium complex (140 mg), solvent: dichloromethane
(6 mL), support: silica gel.

2.4.3. Analytical Determinations

On each sampling day, three trays (one per diet) were randomly selected, and physicochemical
and microbial analyses were carried out. All the analyses were performed in triplicate.

Headspace gas measurement. The gas composition of tray headspace was measured using an O2

and CO2-meter (Checkmate 9900, PBI Dansensor A/S, Ringsted, Denmark). Gas sampling was carried
out with a needle connected to the gas analyzer.

pH, total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA) index. pH measurements
were carried out using a digital pH-meter micro pH 2001 (Crison Instruments, S.A., Barcelona, Spain)
with a puncture electrode (Crison 5231). The measurements were taken in five different locations of
each fillet along the dorsal muscle, approximately 1–2 cm apart. The rest of physicochemical analyses
were performed on the minced fillets. The contents of TVB-N were determined by steam distillation
according to the method described by Malleand Tao [29] and expressed as mg N/100 g of muscle.
The TBA index was used to evaluate the extent of lipid oxidation. This parameter was determined using
a spectrophotometric method [30] and the results were expressed as mg malondialdehyde (MDA)/kg
of muscle.

ATP-related compounds and K1-value.The ATP-related compounds, consisting of
inosine-5′-monophosphate (IMP), inosine (Ino), and hypoxanthine (Hx), were assayed by HPLC
following the method described by Barat et al. [31] with minor modifications [19]. K1-values were
calculated as described elsewhere [32].

All the chemical reagents were provided by Sigma–Aldrich (St. Louis, MO, USA).
Microbial analyses. Mesophilic counts were performed according to the method provided in the

ISO 4833:2003 standard [33]. All the culture media were provided by ScharlauChemie S.A. (Barcelona,
Spain). The results are expressed as log cfu g−1.

2.5. Digital Imaging and Data Collection

Photographs of the colorimetric arrays were also taken on days 0, 2, 4, 7, 9, and 11. Images of the
optical sensing array samples were captured using a polyurethane lightbox, with constant lighting
conditions. Colorimetric array data were extracted from the images using Photoshop Pro 5 software
to isolate CIELab coordinates. L* is lightness, a* deviation towards red (positive values) or green
(negative values) and b* deviation towards yellow (positive values) or blue (negative values).

2.6. Statistical Analysis

The data obtained from the physicochemical and microbial analyses were analyzed with
a multifactor ANOVA, considering the interactions among factors (diet and time of storage), with the
variables being the parameters. The method used for multiple comparisons was the LSD test (least
significant difference) with a significance level of α = 0.05. Statistical data processing was performed
with the Statgraphics Centurion software (Statpoint Technologies, Inc., Warrenton, VA, USA).

Color data were analyzed using a principal component analysis (PCA). The main feature of a PCA
is the coordination of the data in the new base (scores plot) and the contribution to each component of
the sensors (loads plot). PCA decomposes the primary data matrix by projecting the multi-dimensional
data set onto a new coordinate base formed by the orthogonal directions with maximum data variance.
The eigenvectors of the data matrix are called principal components (PCs). PCs are ordered based on
the amount of variance (PC1, PC2, etc.).

CIELabcolor data were used to perform the PCA analysis using MATLAB R2017a (The Mathworks).
The original variables, in this case, were the responses of the six sensing materials used in CSA. The mean
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centering pre-processing technique was applied to a dataset of 18 measurements (color features i.e.,
six L∗, a∗ and b∗ coordinates) on seven different days, in the three experiments (i.e., 9 initial samples ×
3 types of diet × 3 experiments).

3. Results and Discussion

3.1. Effect of Fishmeal on Fish Growth

The diets formulation was made from a variety of feed ingredients to satisfy the nutrient
requirements of gilthead sea bream. For this study, a protein sources mixture, supplemented with
synthetic amino acids [25], as a substitute for fishmeal in gilthead sea bream diets, was selected.
The most common alternatives for FM as a protein source are different kinds of plant protein meals
that vary in content of available nutrients, but by using a mixture of different ingredients [34] and
supplementing the diet with indispensable amino acids [34] the formulation of nutritionally complete
diets with an inclusion level of FM as low as 10% can be obtained.

Survival rates were 86%–88% and did not differ significantly among treatment groups. At the
end of the growth period, weight, and specific growth rate (SGR) showed no significant differences
(Table 2).

Table 2. Survival and growth of gilthead sea bream fed experimental diets.

FM100 FM25 FM0 SEM

Initial weight (g) 129.5 130 125.5 3.54
Final weight (g) 393.7 423.7 383 10.86

Survival (%) 88.33 88.33 86.66 5.53
SGR (% day−1) a 0.73 0.77 0.71 0.02

Means of triplicate groups. SEM: pooled standard error of the mean. Initial weight was considered as covariable for
final weight and SGR. Newman–Keuls test. a Specific growth rate (% day−1) SGR = 100 × ln(final weight/initial
weight)/days.

In the present study, gilthead sea bream fed a diet in which fishmeal was totally replaced by
a plant protein sources mix grew the same as fish fed on a fishmeal control diet, without any effects
on growth performance and fish survival. The success of the diets was not only attributed to its
adequate amino acid profile, but also to the addition of krill and squid meal, with a high protein quality,
leading to good acceptance of the FM25 and FM0 diets.

3.2. Shelf-Life Studies

3.2.1. Physicochemical Study

Regarding the shelf-life of gilthead sea bream, different physicochemical and microbial parameters
were studied.

Headspace gas composition. Changes in CO2 and O2 contents in the headspace of the trays during
cold storage of gilthead sea bream are shown in Figure 1a. The initial CO2 content was about 1% in
the three formulations, increasing the concentration throughout storage until a level of 6.9% on day
11 of study in the feed FM25. On the contrary, the initial content of O2 was about 21% although this
decreased during storage, especially in gilthead sea bream fed with FM25 (13% of O2). These results
are mainly due to the aerobic microbial growth. Significant differences were found in both gases over
time (Table 3). With regards to the feed type, a higher value of CO2 was only observed for the FM25
diet on the last day of study.
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Figure 1. Changes in O2 and CO2 contents (a), pH (b), TVB-N (c), and TBA index (d) in samples
of gilthead sea bream during 11 days of storage at 4 ◦C. (Means and standard deviations, n = 3).
(FM0, FM25 and FM100: diets detailed in Table 1). MDA: malonaldehyde.

Table 3. Results of the study of the effect of diets, storage time and their interaction on the
physicochemical and microbial parameters.

Diets Storage Time DietsxStorage Time

F-Ratio F-Ratio F-Ratio

O2 1.39 ns 12.97 *** 1.14 ns
CO2 1.97 ns 12.10 *** 1.00 ns
pH 0.04 ns 1.81 ns 1.30 ns

TVB-N 1.09 ns 7.85 *** 0.60 ns
TBA index 0.30 ns 77.40 *** 0.73 ns
K1-value 0.87 ns 33.26 *** 0.45 ns

Mesophilic 1.63 ns 26.12 *** 0.44 ns

ns: non significant; *** p < 0.001.

pH, total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA) index. The evolution of pH,
TVB-N and TBA index is shown in Figure 1b–d, respectively. The obtained pH values (between 6.04
and 6.26) agree with other studies on the same fish species [31,35]. This parameter did not significantly
change during the storage time. It is important to note that the main changes in pH take place in the
first hours after slaughter [36]. However, in this study, the changes in pH during the rigor mortis were
not monitored. The type of feed did not affect the behaviour of pH.

The TVB-N values did not show an important variation during storage, only a slight increase was
observed between days 0 and 2, and also at the end of the study (day 11) (Figure 1c). Regarding the
effect of feed, no differences were observed (p > 0.05) (Table 3). The TVB-N contents ranged between
12–20 mg N/100 g for gilthead sea bream fed with FM0, 13–21 mg N/100 g for FM25 and 13–18 mg
N/100 g for FM100. The evolution reported for this parameter was similar to that found in other studies
on gilthead sea bream [35,37]. According to Dalgaard [38] acceptability limits of 25, 30 and 35 mg
N/100 g have been established for different fish species. In this study, the highest value reached at the
end of the storage was 21 mg N/100 g, which is lower than the limits mentioned above.

The values of TBA were low in the first days of study (ranged from 0 mg malonaldehyde/kg at
the beginning of the study to 0.5 mg malonaldehyde/kg at day 7), which show that no lipid oxidation
took place at the beginning of storage (Figure 1d). Although this parameter progressively increased,
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the values at the end of the study did not reach 1.5 mg malonaldehyde/kg. According to Connell [39],
fish with values higher than 2 mg malonaldehyde/kg would be rejected due to unpleasant flavors.
In this study the TBA index stood below this value in all samples, which means that lipid oxidation
was limited during the study period. No significant differences were found in this parameter between
the different feeds. The soybean oil and protein sources used in the three formulations contain large
amounts of tocopherols [40] and phenolic compounds [41,42], which are antioxidants. Soybean oil is
reportedly stable and also rich in natural antioxidants. In the present study, muscle lipid oxidation
was not significantly altered by partial or total fishmeal replacement for vegetable ingredients. This is
according to the results obtained in other studies, which have reported that plant meal or plant oil
dietary inclusion showed lower TBARS values in fish muscle [43,44]. Different studies have shown
that the presence of tocopherols from vegetal oils in diets could decrease lipid oxidation in the fish
muscle [45–47]. Therefore, in this study, the use of soybean oil as a partial lipidic source in the feeds
may perhaps enhance the oxidative stability of fish.

ATP-related compounds and K1-value. Figure 2 shows the changes in IMP, Ino, and Hx,
in the samples. IMP values decreased throughout the storage period, while Inoand Hx contents
increased slightly.

Fishes 2020, 5, x FOR PEER REVIEW 8 of 14 

 

between 12–20 mg N/100 g for gilthead sea bream fed with FM0, 13–21 mg N/100 g for FM25 and 
13–18 mg N/100 g for FM100. The evolution reported for this parameter was similar to that found in 
other studies on gilthead sea bream [35,37]. According to Dalgaard [38] acceptability limits of 25, 30 
and 35 mg N/100 g have been established for different fish species. In this study, the highest value 
reached at the end of the storage was 21 mg N/100 g, which is lower than the limits mentioned 
above.  

The values of TBA were low in the first days of study (ranged from 0 mg malonaldehyde/kg at 
the beginning of the study to 0.5 mg malonaldehyde/kg at day 7), which show that no lipid oxidation 
took place at the beginning of storage (Figure 1d). Although this parameter progressively increased, 
the values at the end of the study did not reach 1.5 mg malonaldehyde/kg. According to Connell 
[39], fish with values higher than 2 mg malonaldehyde/kg would be rejected due to unpleasant 
flavors. In this study the TBA index stood below this value in all samples, which means that lipid 
oxidation was limited during the study period. No significant differences were found in this 
parameter between the different feeds. The soybean oil and protein sources used in the three 
formulations contain large amounts of tocopherols [40] and phenolic compounds [41,42], which are 
antioxidants. Soybean oil is reportedly stable and also rich in natural antioxidants. In the present 
study, muscle lipid oxidation was not significantly altered by partial or total fishmeal replacement 
for vegetable ingredients. This is according to the results obtained in other studies, which have 
reported that plant meal or plant oil dietary inclusion showed lower TBARS values in fish muscle 
[43,44]. Different studies have shown that the presence of tocopherols from vegetal oils in diets could 
decrease lipid oxidation in the fish muscle [45–47]. Therefore, in this study, the use of soybean oil as 
a partial lipidic source in the feeds may perhaps enhance the oxidative stability of fish. 

ATP-related compounds and K1-value. Figure 2 shows the changes in IMP, Ino, and Hx, in the 
samples. IMP values decreased throughout the storage period, while Inoand Hx contents increased 
slightly. 

 
Figure 2. Changes in inosine-5’-monophosphate (IMP) (a), inosine (Ino), (b), hypoxanthine (Hx), (c), 
and K1-value (d) in samples of gilthead sea bream during 11 days of storage at 4 °C. (Means and 
standard deviations, n = 3). (FM0, FM25, and FM100: diets detailed in Table 1). 

The IMP levels were higher than 10 µmol/g at the beginning of the study (Figure 2a). These high 
levels could be due to the fact that the conversion of ATP to IMPby partial dephosphorylation and 
deamination, is usually completed in one day and it might be totally autolytic. IMP levels of this 

Figure 2. Changes in inosine-5’-monophosphate (IMP) (a), inosine (Ino), (b), hypoxanthine (Hx),
(c), and K1-value (d) in samples of gilthead sea bream during 11 days of storage at 4 ◦C. (Means and
standard deviations, n = 3). (FM0, FM25, and FM100: diets detailed in Table 1).

The IMP levels were higher than 10 µmol/g at the beginning of the study (Figure 2a). These high
levels could be due to the fact that the conversion of ATP to IMPby partial dephosphorylation and
deamination, is usually completed in one day and it might be totally autolytic. IMP levels of this
magnitude have been found in other studies on gilthead sea bream after one day of slaughter [48].
The concentration of this metabolite progressively decreased throughout storage, although at the
end of the study (day 11) the levels were still higher than 5 µmol/g. This agrees with other studies,
where the final contents of IMP at the end of the shelf-life were similar to the levels found in the present
work [48]. The decrease of IMP is due to the degradation of this metabolite, which is converted to Ino
and Hx due to autolytic and microbial enzymes [49].

The initial contents of Ino were very low, although they increased during the storage period,
reaching maximum levels of 1.79 µmol/g (feed FM100 on day 11 of the study) (Figure 2b). The Hx
level was low during the study period (Figure 2c). This means that Ino degradation to Hx was very
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slow, with Ino being the main metabolite of IMP degradation at the end of the storage time. A similar
pattern was observed in other studies on gilthead sea bream [48].

These results show that the degradative changes (autolytic and microbiological) that took place in
the samples during the storage period were limited because IMP turned into Ino, but only a slight
degradation of Ino to Hx was observed at the end of the study.

The initial K1-values were lower than 5% for the three types of feeds (Figure 2d). Gilthead sea
bream with a high degree of freshness has been reported to have K1-values lower than 10% [50].
This parameter significantly increased during storage to values around 25% on day 11. These results
agree with other studies on fresh gilthead sea bream [38]. No significant differences between the
different feeds were found.

3.2.2. Microbial Analyses

Mesophilic growth of samples in cold storage is shown in Figure 3. The microorganism growth
profile was similar for the three types of samples. The initial mesophilic counts were low in all cases,
gradually increasing from day 4 of storage until reaching values higher than 8 log cycles at the end of
the study. These results demonstrate that there was not a good co-relation between the TVB-N and the
microbial spoilage, as in other studies with this fish species [36]. Samples exceeded the acceptability
limits of 106–107 cfu/g as proposed by several authors [51,52] on day 9 of storage. These results
demonstrate that there was not a good co-relation between the TVB-N and the microbial spoilage, as in
other studies with this fish species [36]. Taking into account the microbial quality, a shelf-life shorter
than 9 days should be established for gilthead sea bream, regardless of the type of feed, in the storage
conditions applied in this study.
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3.2.3. Study of the Effect of Diets, Storage Time and Their Interaction on the Physicochemical and
Microbial Parameters

The multifactor ANOVA was carried out taking into consideration the two factors (type of diet
and storage time), as well as the interactions between them. Table 3 shows the F-ratio obtained
in this analysis for each parameter. The F-ratio represents the quotient between variability due
to the considered effect and the residual variance. The effect of feed type was not significant for
any of the parameters studied. The storage time had a significant effect on the parameter changes,
except for pH. The interaction between the two factors was non-significant (p < 0.05) in either case,
which demonstrates that the evolution of the parameters throughout the storage time was not affected
by the type of diet, as mentioned above.
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3.2.4. Changes in the Colorimetric Array

The chromogenic array used in this study consisted of six sensing materials (based on aluminum
oxide and silica gel) containing pH indicators and Lewis acids. In this case, the responses of the
six sensing materials used in CSA (18 color features corresponding to six L∗, a∗, and b∗ coordinates),
need to be simplified. Principal components analysis (PCA) has been used for this purpose, and the
mean centering pre-processing technique was applied.

PCA decomposes the primary data matrix by projecting the multi-dimensional data set onto a new
coordinate base formed by the orthogonal directions with maximum data variance. The eigenvectors
of the data matrix are called principal components (PCs). PCs are ordered based on the amount of
variance (PC1, PC2, etc.). Three PCAs were done for each formulation. Figure 4 shows the percent
variability explained by each principal component for each formulation. The number of PCs needed to
account for 95% of variance were 5, 4, and 4 for FM0, FM25, and FM100, respectively.
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Figure 4. The plot of the percent variability explained by each principal component for (a) FM0,
(b) FM25, and (c) FM100. (FM0, FM25, and FM100: diets detailed in Table 1).

The PCA scores were used for the multivariate ANOVA analysis. Figure 5 shows the plot of
canonical variables cv1 versus cv2. As can be observed at the beginning of the experiment some
biochemical changes occur that influence the array response, then during days 2 and 4 no significant
changes are observed, but for day 7 and especially on day 11 a strong color modulation was produced.
This behavior can be assigned to the generation of reactive metabolites since this kind of array are not
responsive to the concentration of carbon dioxide in the tray headspace.

Fishes 2020, 5, x FOR PEER REVIEW 11 of 14 

 

produced. This behavior can be assigned to the generation of reactive metabolites since this kind of 
array are not responsive to the concentration of carbon dioxide in the tray headspace. 

 
Figure 5. The plot of principal components of cv1 vs. cv2, using PCA scores for FM25. (FM25 diet 
detailed in Table 1). 

Most importantly, for the purpose of this work is that no significant differences in the response 
of the colorimetric sensing array were observed in the evolution of the fish samples regardless of the 
diet used. 

4. Conclusions 

Diets for gilthead sea bream in the on-growing phase containing different plant proteins 
sources mixture supplemented with synthetic EAA can replace 100% of FM without negatively 
affecting gilthead sea bream performance. Likewise, these results clearly indicate that the use of 
synthetic amino acids to balance diet with high or total FM replacement is a successful approach that 
has no effect on growth performance.  

The use of alternative diets based on plant proteins sources does not have a significant effect on 
the physicochemical parameters of pH, TVB-N, TBA index or K1-value, nor on the growth of 
mesophilic bacteria, compared to diets based on fishmeal. The evolution of these parameters 
throughout the storage time indicates that the loss of quality of gilthead sea bream follows a similar 
pattern in fish fed with diets of 100% fishmeal or in those in which all the fishmeal has been replaced 
by plant proteins sources. The use of one diet or another does not affect the shelf life of the product. 
The CSA designed does not discriminate between the different feeds. It could be stated that there is 
no limitation in the percentage of reduction of fishmeal according to these parameters. Therefore, 
from this point of view, plant protein meals could be an excellent alternative to fishmeal in 
aquaculture. 

Author Contributions: conceptualization, A.T.V., S.M.L. and I.F.S.; methodology, A.T.V., I.F.S and A.F.L.; 
software, J.-L.V.; investigation, P.Z. and A.F.L..; data curation, J.-L.V.; writing—original draft preparation, 
J.-L.V.; writing—review and editing, J.-L.V., R.M.-M., I.F.S and A.T.V.; visualization, J.-L.V.; supervision, 
A.T.V., S.M.L., I.F.S. and A.F.L.; funding acquisition, R.M.-M. and J.M.B.B. 

Compliance with ethical standards: The Sparusaurata study complied with European Union Council Directive 
2010/63/UE which lays down minimum standards for the protection of animals, and also in accordance with the 
Spanish national regulations (Spanish Royal Decree 53/2013) that protect animals used in experimentation and 
for other scientific purposes. The protocol was approved by the UniversitatPolitècnica de València (UPV) Ethics 
Committee. Animals were euthanized by an immersion in ice waterand then dissected. 

Figure 5. The plot of principal components of cv1 vs. cv2, using PCA scores for FM25. (FM25 diet
detailed in Table 1).



Fishes 2020, 5, 15 11 of 14

Most importantly, for the purpose of this work is that no significant differences in the response of
the colorimetric sensing array were observed in the evolution of the fish samples regardless of the
diet used.

4. Conclusions

Diets for gilthead sea bream in the on-growing phase containing different plant proteins sources
mixture supplemented with synthetic EAA can replace 100% of FM without negatively affecting
gilthead sea bream performance. Likewise, these results clearly indicate that the use of synthetic amino
acids to balance diet with high or total FM replacement is a successful approach that has no effect on
growth performance.

The use of alternative diets based on plant proteins sources does not have a significant effect on the
physicochemical parameters of pH, TVB-N, TBA index or K1-value, nor on the growth of mesophilic
bacteria, compared to diets based on fishmeal. The evolution of these parameters throughout the
storage time indicates that the loss of quality of gilthead sea bream follows a similar pattern in fish fed
with diets of 100% fishmeal or in those in which all the fishmeal has been replaced by plant proteins
sources. The use of one diet or another does not affect the shelf life of the product. The CSA designed
does not discriminate between the different feeds. It could be stated that there is no limitation in the
percentage of reduction of fishmeal according to these parameters. Therefore, from this point of view,
plant protein meals could be an excellent alternative to fishmeal in aquaculture.
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