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 11 

Abstract 12 

Satellite images may constitute a useful source of information for coastal monitoring as long as it is 13 

possible to manage them in an efficient way and to derive precise indicators of the state of the beaches. In 14 

the present work, SHOREX system is employed for managing and processing Landsat 8 and Sentinel 2 15 

images to automatically define the instantaneous shoreline position at sub-pixel level. Between the years 16 

2013 and 2017, 91 satellite-derived shorelines (SDS) were assessed by comparing with high-resolution 17 

shorelines obtained simultaneously through video-monitoring. The analysis allowed identifying the 18 

combination of parameters to perform the extraction algorithm with the highest accuracy. Furthermore, an 19 

efficient self-contained workflow is proposed, more robust and independent from inaccuracies in the 20 

approximate input line and from multiple morphological and oceanographic issues that may condition the 21 

radiometric response near the shore. An iterative procedure ensures firstly a suitable kernel of analysis 22 

representing the water-land interface to get, afterward, the definition of the sub-pixel shoreline with high 23 

accuracy (below 3 m RMSE). 24 

Keywords: sub-pixel shoreline mapping, coastal monitoring, beach changes, Landsat 8, Sentinel 2, 25 

video-monitoring, SHOREX. 26 
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1. Introduction 28 

Beaches are spaces of great environmental and recreational importance for coastal societies. The 29 

characterization of their state and morphological changes, such as shoreline monitoring, is of special 30 

interest for the subsequent management of the coast (Mills et al., 2005, Esteves et al., 2009, Addo et al., 31 

2011, Alharbi et al., 2017). In order to meet monitoring and management needs, data collection must offer 32 

enough accuracy and frequency. Among the methods traditionally used, photointerpretation is limited to 33 

provide data at specific times (Ford, 2013; Jones et al., 2009; Morton et al., 2004; Pajak & Leatherman, 34 

2002). Similarly, more modern and continuous video-based techniques are limited to a local scale 35 

(Aarninkhof et al., 2003; Davidson et al., 2007; Taborda & Silva, 2012; Brignone et al., 2012; Simarro et 36 

al., 2017; Sánchez-García et al., 2017), while DGPS requires arduous in-situ data acquisition (Pardo-37 

Pascual et al., 2005; Psuty & Silveira, 2011). 38 

Alternatively, satellite images can provide information of the entire planet with high temporal frequency. 39 

In 2008, NASA released the images of the Landsat platform (16 days of revisit time) free of charge. 40 

Similarly, the European Spatial Agency (ESA) is providing the Sentinel-2 satellite images (5 to 10 days of 41 

revisit time). Nowadays, considering both platforms together, there is a global average revisit interval of 42 

2.9 days (Li & Roy, 2017). Thus, there is a new scenario where the shoreline position may potentially be 43 

defined in tens of different dates throughout the year along broad coastal segments. This type of data may 44 

make it possible to characterize short-term coastal processes such as the effect of storms and their 45 

subsequent recovery over time, as well as the impact of beach nourishments or coastal protection works 46 

(Cabezas-Rabadán et al., 2018; 2019a, b). However, in order to take advantage of these images it is 47 

necessary to: (i) define the shoreline position with enough accuracy for recognizing subtle changes, and 48 

(ii) have a sufficiently efficient and automated system to define the shorelines of all the images acquired 49 

by the satellites in a low time consumption process. 50 

Near and medium infrared bands have been commonly used to detect the interface between water and land 51 

(Frazier & Page, 2000; Ryu et al., 2002; Yamano et al., 2006; Maiti & Bhattacharya, 2009). Similarly, 52 

alternative strategies have been proposed such as combining bands for obtaining indexes (Ouma & 53 



 

 

 

Tateishi, 2006, Choung & Jo, 2015). Among these indexes, the first and most used is the Normalized 54 

Difference Water Index (NDWI) that combines the green band with the near-infrared band using the zero 55 

value as a threshold for the difference between the dry sand and wet ocean surface (McFeeters, 1996). Xu 56 

(2018) proposed the Modified Normalized Difference Water Index (MNDWI), which replaces the near 57 

infrared band with the SWIR 1. Subsequently, new proposals have appeared such as the Automated Water 58 

Extraction Index (AWEI), which combines different bands of the visible and near and medium infrared but 59 

applying different weights to each band (Feyisa et al., 2014). These automatic water classifications have 60 

always encountered problems according to the index employed, as well as to the specific threshold chosen 61 

that varies with the different scenes and places (Ji et al., 2009). On the other hand, these indexes often 62 

confuse water zones with low albedo covers (Feyisa et al., 2014). Therefore, there is no clear consensus on 63 

which index works best as most authors focus on the correct performance of the index in their area of 64 

study. Rokni et al. (2014) evaluated multiple indexes to estimate surface changes in Lake Urmia (Iran) and 65 

found that the best solution came from a new approach based on the main components of NDWI. 66 

Hagenaars et al. (2018) used the NDWI to automate the shoreline definition, although in this case, 67 

grouping the water spots into a single large unit associated with the sea and separating it from the land. 68 

More recently, Viaña-Borja & Ortega-Sánchez (2019) proposed new water indexes to map the shoreline 69 

position using surface reflectance rather than top-of-atmosphere reflectance from blue and SWIR 2 70 

Landsat bands, whereas Vos et al. (2019b) integrated a supervised image classification procedure based on 71 

a particular neural network classifier. 72 

In the attempt to automatically define the shoreline from mid-resolution satellite images using the raw 73 

infrared bands, the strategies appear divided in those working on a pixel scale, and those trying to improve 74 

the precision beyond the pixel size (sub-pixel or super-resolution). In the first case, the location of the 75 

shoreline is determined by an optimal threshold (Aedla et al., 2015; Quang Tuan et al., 2017, Song et al., 76 

2019), as well as by the selection of optimal bands and a subsequent classification (Li & Damen, 2010; 77 

García-Rubio et al., 2015, Vos et al., 2019b). However, detailed coastal analyses would require the 78 

definition of the shoreline at sub-pixel level, improving the excessively coarse spatial resolution of the 79 

input satellite images. A few works have proposed algorithms in order to overcome that restriction (Foody 80 

et al., 2005; Zhang & Chen, 2010; Li & Gong, 2016, Li et al., 2015; Liu et al., 2017a). Nevertheless, most 81 



 

 

 

of these solutions focus on the algorithm basics, but without proposing any specific method to ensure a 82 

sufficiently robust georeferencing. This is a key issue considering that NASA and ESA images show an 83 

excessive uncertainty in geolocation. Landsat 8 L1T products require an uncertainty lower than 12 m (Iron 84 

et al., 2012) while with regard to the multi-temporal registration, the geolocation accuracy has been 85 

previously established in 1.2 pixels, i.e. 24 m (Clerc, 2017). Hence, automatic co-registration methods 86 

appear as necessary in order to ensure a minimum error. Almonacid-Caballer et al. (2017) proposed 87 

employing the Local Upsampling Fourier Transform, LUFT algorithm (previously described by Guizar-88 

Sicairos et al., 2008 and Wang et al., 2011), as a useful tool for this purpose since it ensures an error below 89 

1/10 of the pixel resolution. 90 

The methodology initially proposed by Pardo-Pascual et al. (2012) and later improved by Almonacid-91 

Caballer (2014), includes both an automatic shoreline extraction algorithm and an automatic co-92 

registration system, both at sub-pixel level. This algorithm, which works on the near- and mid-infrared 93 

spectral band, is a potentially usable methodological solution to automatically extract multiple shorelines 94 

as Pardo-Pascual et al. (2018) assessed. For each image, the method follows three essential steps. First, the 95 

approximate location of the shoreline at pixel level is defined based on threshold techniques. Second, sub-96 

pixel definition is determined automatically based on the location of maximum gradient points.. They are 97 

obtained adjusting a polynomial function to the digital levels of a 7 x 7 kernel (neighborhood of analysis) 98 

around each pixel of the approximate line and subsequently detecting the position where the Laplacian is 99 

null. Lastly, a geometric correction is performed based on LUFT. Previous results on rigid coasts -100 

seawalls- showed accuracies close to 5 m RMSE (Pardo-Pascual et al., 2012), while on microtidal sandy 101 

beaches the values were somewhat higher: 6.6 m for Landsat 8 (L8) and Sentinel 2 (S2) images and 102 

slightly worse for Landsat 7 (Pardo-Pascual et al., 2018), always experiencing a clear bias towards the sea. 103 

This bias was previously detected by comparing the shorelines obtained from Landsat 5 and 7 images 104 

against others derived from more precise systems such as DGPS and LiDAR (Almonacid-Caballer et al., 105 

2016). Pardo-Pascual et al. (2018) and Hagenaars et al. (2018) also found that the accuracy may be 106 

strongly influenced by wave conditions as the foam and the wave period. 107 



 

 

 

It was thought that the persistence of this bias could be minimized by working with smaller kernels. 108 

However, at once, the inaccuracy of the initial approximate shoreline defined by threshold techniques (first 109 

step) required sufficiently large kernels to ensure that the real shoreline was contained in the kernels 110 

analyzed during the sub-pixel extraction (second step). Moreover, the use of threshold techniques impeded 111 

a complete automation of the process. Considering the variability of elements existing in the marine area, 112 

it is very difficult to find a single proper threshold for every image as Liu et al. (2011) and Almonacid-113 

Caballer (2014) previously stated. 114 

Although the methodological basis described in Pardo-Pascual et al. (2018) is a good starting point, it 115 

cannot be considered as an efficient solution for working with large sets of satellite images. For that 116 

purpose, Palomar-Vázquez et al. (2018a, b) proposed to replace the pixel level lines defined by 117 

thresholding techniques by a unique approximate line for  the whole set of images. The approximate line 118 

can be then obtained either from a pre-existing cartographic source or from a coarse photo-interpretation 119 

on an orthophoto close in time to the studied period. It increases the efficiency of the overall process by 120 

excluding the single step that required user intervention. This modification allows designing an automatic 121 

shoreline extraction system, which we have called SHOREX (Shoreline Extraction), able to supply 122 

updated shorelines from the images systematically acquired by the satellites L8 and S2. 123 

The accuracy of the final sub-pixel shoreline is related both to the size of the kernel of analysis and to the 124 

degree of the adjusted polynomial (second step). Although remaining uncertain, the approximate shoreline 125 

obtained according to the new workflow is expected to be more robust and may allow a reduction of the 126 

kernel of analysis. This modification, in turn, would allow changing the degree of the adjusted polynomial, 127 

potentially offering higher accuracies when determining the shoreline position. At this point, it seems also 128 

necessary to re-evaluate the data sources to be used as input for the SHOREX process. The performance of 129 

the Infrared bands (NIR, SWIR1, SWIR2) must obviously be tested but also the NDWI index proposed in 130 

the literature. 131 

The use of a single approximate line to start the process presents certain challenges to be solved. If this 132 

line was excessively displaced with respect to the real shoreline − either because of a wrong delineation or 133 

because there have been significant changes between the acquisition dates of the approximate line and the 134 



 

 

 

satellite image − when using a small analysis kernel the system may not find the real land/water limit. 135 

Therefore, it would be very useful to analyze the effect that an inadequate displacement of the approximate 136 

line can have on the system, as well as to propose possible solutions to provide methodological robustness. 137 

This paper aims to present SHOREX as an automatic shoreline extraction system from mid-resolution 138 

satellite imagery. The optimum combination of parameters of the extraction algorithm (kernel size and 139 

polynomial degree) for achieving the highest accuracy is identified on the microtidal beach of Cala Millor, 140 

as well as an assessment of the results when using as input different bands or indexes. It is also intended to 141 

evaluate whether the position of the approximated line affects the precision of the final sub-pixel shoreline. 142 

Once the optimum parameters and input data have been determined, the aim is to define an operative and 143 

self-reliant shoreline extraction protocol from L8 and S2 images. The method is expected to release the 144 

demands on the initial solution and be more robust against external factors. 145 

 146 

2. Study area 147 

Cala Millor is a semi-embayed microtidal sandy beach, 1.7 km in length, located on the northeastern coast 148 

of Mallorca (Balearic Islands, Western Mediterranean –see Fig. 1). Well-sorted medium to coarse biogenic 149 

carbonate sand characterizes the beach bottom from shoreline to 6 m in depth (Gómez-Pujol et al., 2007). 150 

Seawards from this point, the endemic Posidonia oceanica seagrass meadow carpets the bottom (Infantes 151 

et al., 2012). This is an intermediate beach with a highly dynamic configuration of sinuous-parallel bars 152 

and troughs, presenting intense variation in the bathymetry and shoreline position related to sandbar 153 

movement (Álvarez-Ellacuría et al., 2011; Gómez-Pujol et al., 2011). 154 

Tides are almost negligible with a spring tidal range below 0.25 m, although changes in atmospheric 155 

pressure and wind stress can account for a considerable portion of sea level fluctuations (Gomis et al., 156 

2012). The Balearic Sea, the most western basin of the Mediterranean Sea, is a semi-enclosed and calm sea 157 

with a relatively moderate wave condition. The beach is open to the east and, due to the embayment 158 

configuration; it is well exposed to waves from the NNE to the SE (Enríquez et al., 2017). Significant 159 

wave height (Hs) at deep waters is usually below 0.9 with the peak period (Tp) between 4 and 7 s. 160 



 

 

 

However, frequent storms account for 2% of the time and increase Hs up to 5 m with Tp higher than 10 s, 161 

with a return period of 1.5 years (Tintoré et al., 2009). 162 

This beach is an important tourist resort of the eastern coast of Mallorca with more than 60000 visitors 163 

during the summer period and a long history of sand nourishment and coastal management approaches 164 

(Tintoré et al., 2009). Since November 2010 the Balearic Islands Coastal Observing and Forecasting 165 

System (SOCIB) has been monitoring Cala Millor Beach by means of coastal video-monitoring and 166 

seasonal beach profiling and an annual bathymetry and sediment sampling (Tintoré et al., 2013). 167 

 168 

Fig.1. Location map of the study area in the Balearic Islands (Western Mediterranean). 169 

 170 

3. Materials and methods 171 

The whole set of satellite-derived shorelines (SDS) resulting of applying SHOREX through the different 172 

combination of parameters (kernel size, polynomial degree and input band) were assessed by comparing 173 

them against more accurate shorelines. The latter ones were obtained from images captured by the 174 

SIRENA video-monitoring system (Nieto et al., 2010) and being later, processed and converted to 175 

georectifed images by applying C-Pro (Sánchez-García et al., 2017). The assessment includes shoreline 176 

data of 91 instants registered using both satellite and video sources (from 12 June 2013 to 23 May 2017) 177 

over almost 4 years (Fig. 2), and defined as the time-varying interface between water and dry sand (Boak 178 

and Turner, 2005). 179 



 

 

 

 180 

Fig. 2. Temporal distribution of the 91 satellite images (L8 and S2) and the simultaneous 85 video-camera 181 

images used for the assessment. The discrepancy in the number of data between satellite and video is 182 

because there are 6 days with images of both satellites. 183 

 184 

3.1. Reference data from video-monitoring 185 

The shore-based video system (SIRENA), part of the SOCIB program, is equipped with some CCD 186 

cameras continuously covering and monitoring the whole view of Cala Millor Beach from an elevation of 187 

46.5 m. Fig. 3 presents the field of view covered by the four cameras used for the study. The remote 188 

station stores hourly images with a resolution of 1280 x 960 pixels, with a frequency of 7-5 fps during a 189 

roughly 10-minute span. This way, mean images (widely known as timex images –Holman  190 

& Stanley, 2007– and used for a long-term monitoring of shoreline change –Ruiz de Alegria-Arzaburu 191 

&Masselink, 2010) are generated showing the patterns of high-frequency variability. In this work, 85 192 

timex at 10 am (UTC time) for each camera −closest time to the satellite passage− are selected as reference 193 

data to assess the SDS. 194 

195 

Fig. 3. Timex images of 7/02/2014 at 10 am UTM time and acquired from left to right by C1, C2, C4 and 196 

C5 cameras. 197 

Before georectifying the video-camera images, other pre-processing tasks are required to ensure their 198 

quality such as distortion corrections and the registering between images due to obvious camera 199 



 

 

 

displacements over time. Ten ground control points (GCPs) for each photographic shot were measured by 200 

the SOCIB to have control of the video-monitoring system. 201 

Firstly, the correction of the distortions inherent to each camera device is overcome by using the Camera 202 

Calibration Toolbox (Bouguet et al., 2015), which allows the calibration parameters to undistort the 203 

images that mainly suffered from radial and tangential distortion. The image coordinates of the GCPs also 204 

had to be transformed since they were identified on the distorted image. 205 

Secondly, in order to check the displacement between images over time, a set of stable and recognizable 206 

points available in the two images are identified (buildings, windows, contours of distant mountains, etc.). 207 

Then, the same points located at the control image are found in the rest of the images through a cross-208 

correlation search process. The homologous points are used to derive the affine transformation parameters 209 

through least squares. However, the main part of the correction corresponds to a translation in both x and 210 

y-axis of the image space as figures 4A and 4B evidence. The standard deviation estimator of the least 211 

square adjustment is known for each image and, in average for the whole set of photos and the four 212 

cameras, is 0.56 pixels and 0.65 pixels along the x and y-axis respectively. 213 



 

 

 

 214 

Fig. 4. Displacement occurred in the positioning of the four cameras (C1, C2, C4 and C5) during the study 215 

period along the x-axis in Fig. 4A, and along the y-axis in 4B. The graphic representation scale collects the 216 

most of the results but note that there are extreme values going out of it. 217 

 218 

Most of the measured displacements over the period range in the x-axis within ±3 pixels for the four 219 

cameras as Fig. 4A shows. However, C1 reaches an extreme displacement in the x-axis up to -112.29 220 

pixels in February 2017, and C5 moves in the opposite direction up to 11.82 pixels from September 2016 221 

(see that both data sets disappear from the graph area). Some of these changes have a progressive character 222 

as exemplifies C1 but others are sudden such as those occurred in C2 between January and February 2017 223 

(outside the graphic representation scale). 224 

Regarding the general movement occurred in the y-axis, Fig. 4B describes clear differences regarding the 225 

stability of the four cameras. Again, the ones located at the ends are the most unstable. It is exemplified by 226 



 

 

 

C1 as it reached up to -76 pixels of displacement associated with the episode of February 2017 and until it 227 

was settled in April 2017 (extreme errors that do not appear in Fig. 4B but are shown in Fig. 5). The 228 

overall correction values in y-axis indicate that cameras are clearly experiencing displacements over time. 229 

This pre-processing analysis justifies the georeferencing campaigns carried out by the SOCIB in order to 230 

calibrate the video-monitoring system and allowing its use despite the setbacks. However, in this work, we 231 

bet to overcome the problem of the camera displacements by registering every photo against a control 232 

image that we choose on 11/06/2014 −when the closest georeferencing campaign to the 4-year study 233 

period was done. 234 
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Fig. 5. Displacement occurred in C1 between two dates: top panels represent the images registered on 235 

02/08/2015, and bottom panels represent the images on 11/03/2017 (19 months later). Fig. 5A, on the left, 236 

shows the raw images stored by SIRENA. After registering them against the control image on 11/06/2014, 237 

the displacement is quantified in 0.6 and -1.95 pixels in the x and y-axis for the top-left image, and -111.12 238 

and -65.79 pixels in the x and y-axis for the bottom-left image. Fig. 5B, on the right, shows the images 239 

after the registration process (free of displacements), where a certain pixel for the whole set of images will 240 

correspond over time with the same terrain value. 241 



 

 

 

Once the registration process is done, the GCPs, corresponding with non-fixed points identified for their 242 

associated field campaign, can be manually identified only once in the control image −with expected errors 243 

within the pixel level. Thus, the camera intrinsic and extrinsic parameters are determined in one go 244 

(Sánchez-García et al., 2017) and the georectification for the whole set of images over the 4-year study is 245 

carried out using C-Pro tool. 246 

Note that the spatial resolution of the georectified image is a limitation to consider. Despite the proper 247 

elevation of the camera above 40 m sea level, and with a focal length ranging for the four cameras between 248 

5060 to 1332 pixels, the pixel resolution at 1 km would range 0.2 m to 0.7 m in the cross-shore footprint 249 

component and 4.2 m to 15 m in the long-shore component. Large focal lengths lead to better resolutions 250 

and the obtained values are in line with Holman & Stanley (2007). 251 

The photos are projected above a sea level value obtained from the tide gauges closest to Cala Millor (Sa 252 

Rapita, Pollença and Andratx –see ‘http://www.socib.eu/?seccion=observingFacilities&facility=mooring’). 253 

Combining these three tide data gauges and for each particular date, the available sea level data was 254 

averaged out the 10 minutes coincident with the register of the timex image. The accuracy reached for the 255 

resection process was assessed by projecting 43 GCPs over its particular elevation value as Fig. 6 shows, 256 

and getting an RMSE of 1.54 m (promising results similar to those obtained by Sánchez-García et al., 257 

2019b and Taborda & Silva, 2012). 258 

To end the process, the shoreline is digitalized from the georectified timex images as that feature designing 259 

the water-land edge between both interfaces (Fig. 6 exemplifies this procedure). The benefit of using timex 260 

for shoreline detection is proved in several works (Aarninkhof et al., 2003; Álvarez-Ellacuría et al., 2011; 261 

Osorio et al., 2012; Valentini et al., 2017). The resulting 85 video-derived shorelines will act as a reference 262 

to assess the ones obtained from satellite imagery. 263 

 264 
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Fig. 6. Projection map with the georectified photos of 7/02/2014 (corresponding oblique photos of Fig. 3) 265 

for Cala Millor beach shown over an orthophoto taken from 2010 PNOA sources (Spanish National 266 

Program for Aerial Orthophoto). The map shows the digitalized shoreline (red line) and the projection 267 

error calculated on the GCPs. The projection is made above the sea level value as near in time with the 268 

photos as possible. Grid coordinates: GCS_ETRS89 UTM 31. 269 

 270 

3.2. Shoreline definition from Landsat 8 and Sentinel 2 imagery 271 

The definition of the SDS was carried out with SHOREX from mid-resolution satellite images. It is a 272 

shoreline extraction system that includes as its core the algorithmic solution for the extraction with sub-273 

pixel precision proposed in Pardo-Pascual et al. (2012) and Almonacid-Caballer (2014). Surrounding it, a 274 

workflow has been developed in order to integrate and automatize all the necessary operations to 275 

efficiently manage a large volume of raw data: the satellite images of L8 and S2 with a resolution of 30 m 276 

and 20 m respectively. 277 

278 

Fig. 7. The SHOREX workflow consists of three phases: (1) downloading, (2) pre-processing and (3) 279 

processing. 280 



 

 

 

A set of separated tools have been integrated within a single Python framework, following the workflow of 281 

Fig. 7 and previously described in Palomar-Vázquez et al. (2018 a, b) where the efficiency of the 282 

extraction protocol (time consumption) and its limiting factors are analyzed. The entire computational time 283 

to obtain the 91 shorelines of Cala Millor Beach is estimated in 5.05 h, of which 67% of the time 284 

corresponds to the downloading, 8.6% to the pre-processing and 24.4% to the processing. The first phase, 285 

downloading the bands of interest, is carried out free of charge from Amazon Web Services (AWS) for L8 286 

and COPERNICUS server for S2. These servers provide API methods which allow the download of a 287 

massive number of images with a high degree of flexibility and automation. Thus, by means of using a 288 

scripting language like Python, it is possible to individually download the required bands for a specific 289 

project. The second phase, the preprocessing, prepares each band for the analysis. For this purpose, several 290 

tasks are included: image format conversion, clipping each scene in smaller tiles (to improve the storing 291 

and shorten the time processing), TOA (top of atmosphere) reflectance conversion, cloud filtering for 292 

discarding useless images, and band sub-pixel georeferencing according to the method proposed by 293 

Guizar-Sicairos et al. (2008) and modified by Almonacid-Caballer et al. (2017) to work as phase-294 

correlation. The last phase, the processing, consists of the definition of the shoreline position at sub-pixel 295 

level. It needs as input both the pre-processed band to be analyzed and an initial approximate shoreline in 296 

raster format. For every single pixel of the initial shoreline, SHOREX performs an analysis of the kernel 297 

and detects the shoreline position at sub-pixel level. It is important to emphasize that the approximate line 298 

is used to process all bands and dates so decreasing the processing time, instead of using a manual 299 

thresholding process for every band as previous works did (Almonacid-Caballer et al., 2016, Pardo-300 

Pascual et al., 2018). Moreover, a suitable value selection in the parameters controlling the algorithm, such 301 

as the kernel size and the degree of the surface polynomial function, is essential for a correct determination 302 

of the shoreline position. Fig. 8 exemplifies the procedure carried out by the algorithm in the search for the 303 

sub-pixel shoreline in a particular 7x7 kernel and through a fifth-degree polynomial surface. 304 



 

 

 

 305 

Fig. 8. Core algorithm of SHOREX. a) Band SWIR1 of S2 for the study area; b) initial approximate line 306 

(in white color) and a7x7 kernel of analysis (yellow color); c) 3D display of the kernel values; d) 3D 307 

display of the resampled kernel values; e) fifth-degree polynomial surface fitted to the resampled values 308 

with the extracted sub-pixel shoreline. 309 

Once the shoreline points have been obtained as Fig 8e shows, it is possible that several outliers appear 310 

(for instance, due to the presence of buildings or vegetation near to the beach). In order to avoid them, a 311 

point filtering method has been implemented based on the minimum spanning tree algorithm (MST) 312 

(Graham & Hell, 1985). In this way, the MST is computed for the shoreline points and, subsequently, 313 

those of the longest path are selected, as they potentially belong to the shoreline as Fig. 9 shows. The result 314 

is a shapefile with the SDS in either points or polyline format. 315 



 

 

 

 316 

Fig. 9. Example of applying the MST process in the final step of SHOREX algorithm to remove outlier 317 

points from the SDS. The longest path of the MST (A.3 solution) will shape the sub-pixel shoreline. 318 

 319 

3.3. Accuracy tests 320 

At this point, different sets of shorelines were obtained from L8 and S2 imagery by modifying the 321 

parameters of the methodology of extraction. For each combination of parameters, the accuracy of the 91 322 

SDS was defined by comparing their position with the associated reference lines simultaneously obtained 323 

from video-monitoring. For each set of results containing shorelines from different dates, the mean bias, 324 

the standard deviation, and RMSE were calculated, and they were used to assess the accuracy of each 325 

combination of parameters. Positive and negative differences mean that the SDS is displaced seawards and 326 

landwards respectively. 327 

-Test 1: Combination of different kernels, degree of the polynomial and input bands 328 

The first test consists in finding the combination of parameters and inputs to the shoreline extraction 329 

process that offers the highest accuracy. As the position of the final sub-pixel shoreline is related both to 330 

the degree of the adjusted polynomial and to the size of the analyzed kernel, these parameters have been 331 

modified in the extraction process. With this purpose, 84 different combinations were tested over 91 332 

images, 39 for L8 and 52 for S2 images as Table 1 summarizes. 333 



 

 

 

Table 1. Combination of parameters for test 1. 334 

Platform Number of dates Processed bands Degrees Kernels of analysis (pixels) 

L8 39 NIR, SWIR1, SWIR2, NDWI 3, 4, 5 3X3, 5X5, 7X7 

S2 52 NIR, SWIR1, SWIR2, NDWI 3, 4, 5 3X3, 5X5, 7X7, 11X11 

With regard to the kernel, the maximum size used for L8 was 7x7 (210 x 210 m), while the maximum 335 

kernel for S2 images was 11x11 (220 x 220 m). This decision was taken in order to cover an equivalent 336 

surface in both types of images considering the different spatial resolutions. 337 

Similarly, the input data sources were re-evaluated. The infrared bands (NIR, SWIR1, SWIR2) that have 338 

offered the best results in previous studies (Pardo-Pascual et al., 2018) were tested. At the same time, the 339 

performance of the index NDWI was also assessed to know if it could provide good results as it is 340 

presented in the literature as an adequate solution (Rokni et al., 2014; Hagenaars et al., 2018). 341 

-Test 2: Assessing the effects caused by an inaccurate input shoreline 342 

The robustness of the system was checked when employing an approximate pixel level line excessively 343 

displaced from the position of the real shoreline. In order to do this, the approximate line was synthetically 344 

shifted one pixel to each side (landward and seaward), and the positions of the resulting shorelines were 345 

analyzed. 346 

The proposal of an iterative process when facing an eventual inaccurate pixel level shoreline is assessed. 347 

This way, the accuracy of the final shoreline is untied from previous matters. In order to ensure that the 348 

appropriate pixels cover the water-land surface, a larger kernel is initially suggested for the analysis to 349 

proceed afterward with the second extraction process (refining) through a smaller kernel with which to 350 

achieve sub-pixel precision. The shoreline extracted in the first iteration is the one used as input for the 351 

second one. It will be analyzed if the result of this latter iteration is convergent with the solution obtained 352 

when using an appropriate approximate line since the first moment. 353 

 354 

4. Results 355 

4.1. Combination of different kernels, degree of the polynomial and input bands 356 



 

 

 

Test 1 attempts to determine the best combination of parameters to extract the most accurate sub-pixel 357 

shoreline, assuming that the initial approximate line is accurate enough to be contained in the analysis 358 

kernels. Every combination of parameters for each processed band and platform is assessed. Fig. 10A 359 

summarizes the mean and the standard deviation values achieved by working with 39 images of L8, and 52 360 

images of S2. Firstly, it is possible to observe that the NDWI band generally offers worse results than the 361 

pure bands, considering both the mean and the standard deviation. At the same time, when analyzing the 362 

RMSE value resulting from each combination of parameters (Table 2) it is easier to confirm that the best 363 

results for L8 are achieved by using the SWIR1 band, a 3x3 kernel and a third-degree polynomial, 364 

obtaining an RMSE of 3.57 m. Similarly, for S2 the best choice comes from the SWIR1 band and a third-365 

degree polynomial, but using a 5x5 kernel (equivalent solution according to the differences in spatial 366 

resolution), obtaining 3.01 m RMSE. Working with these combinations of parameters, the algorithm is 367 

able to define the shoreline with an error of 0.07±3.57 m for L8 and 1.33±2.7 m for S2 (see Fig. 10A). 368 

Table 2. RMSE values (in meters) resulting from applying SHOREX for the 84 different combinations of 369 

parameters (36 and 48 solutions for L8 and S2 respectively). The values in bold highlight the best 370 

solutions. 371 

  LANDSAT 8 SENTINEL 2 

Bands Degree\kernel 3 5 7 3 5 7 11 

 

NIR 

3 3.82 15.18 19.39 7.26 7.99 7.33 13.05 

4 11.29 17.78 18.07 3.71 8.22 8.27 16.44 

5 12.96 18.52 18.06 3.69 4.57 9.65 29.97 

 

SWIR1 

3 3.57 6.23 11.57 7.13 3.01 10.59 10.96 

4 11.51 8.52 15.84 3.25 3.93 8.57 16.09 

5 13.16 6.20 18.69 3.11 6.84 3.64 23.76 

 

SWIR2 

3 3.69 14.83 12.02 7.14 3.14 10.47 11.73 

4 11.52 8.38 15.59 7.66 4.70 10.54 18.70 

5 13.28 6.40 13.93 9.75 7.25 4.08 25.10 

 

NDWI 

3 12.62 8.81 9.71 7.07 7.90 7.70 11.37 

4 15.67 15.05 17.45 8.83 12.24 13.62 16.50 

5 15.23 16.42 16.15 8.36 9.60 10.60 17.00 

 372 

4.2. Synthetic displacement of the approximate line 373 

The previous test determines the best combination of parameters assuming an initial approximate line 374 

properly located in space. Nevertheless, it is essential to define to which extent a displacement of the initial 375 

line affects the resultant shoreline. Therefore, test 2 consists on repeating test 1 but synthetically shifting 376 

the initial approximate line one pixel to each side of its original position −meaning 30 m of displacement 377 



 

 

 

in L8 and 20 m in S2. Figures 10 and 11 represent the accuracy results when applying a displacement both 378 

landwards and seawards. 379 

 380 

Fig. 10. Mean and standard deviations values (in meters) for all the 84 different combinations analyzed 381 

changing the kernel size (K), polynomial degree (D) and input sensor band. The experiment considers 39 382 

images of L8 and 52 images of S2. Results are obtained by using as input shoreline: (A) an accurate one, 383 

(B) synthetically displacing it seawards, and (C) displacing it landwards. The magnitude of the errors are 384 

represented by a color scale. 385 

 386 

The displacement of the initial approximate line, both seawards and landwards (Fig. 10B and 10C 387 

respectively), affects the accuracy of the extracted shoreline increasing the errors considerably. That is 388 

especially remarkable for L8 with the displacement seawards (red tones in Fig. 10B) showing higher errors 389 

−for almost all the combinations− that even exceed the pixel size. The spatial resolution of these images 390 



 

 

 

along with an excessive displacement causes that most of the pixels contained in the analyzed kernel are 391 

water, which prevents the algorithm from properly detect the shoreline. On the other hand, also for S2 but 392 

especially for L8, it is observed that the landward displacement tends to cause higher values of dispersion. 393 

In this case, that is due to the presence of other elements apart from the beach surface, as vegetation or 394 

buildings, which produce a high level of heterogeneity affecting the sensitivity of the algorithm. 395 

Looking at the solutions obtained in figures 10B and 10C for the combination of parameters previously 396 

stablished as the best one in section 4.1 (SWIR1 band, a third-degree for the polynomial adjustment and a 397 

kernel size of 3 and 5 for L8 and S2 respectively), it seems clear that conversely, with a displaced initial 398 

line, this choice would be completely unsuitable. When considering an initial line displaced seawards the 399 

extracted shorelines show errors of 16.82±7.78 m for L8 and -0.21±19.82 m for S2, and likewise, when the 400 

approximate line is displaced landward, the errors reach 3.47 ±17.13 m for L8 and 5.04±14.09 m for S2. 401 

These results confirm that the goodness of the initial line directly affects the quality of the extracted 402 

shorelines being necessary to find a strategy which minimizes this effect. 403 

 404 

4.3. Iterative extraction procedure 405 

According to the previous results, working with large kernels seems an adequate strategy to avoid effects 406 

of eventual displacements and inaccuracies of the approximate line (refer to columns with large kernels in 407 

Fig. 10B and 10C). On the contrary, when the kernel of analysis is properly located, smaller kernels allow 408 

to obtain shorelines with the highest possible accuracy (Fig 10A). 409 

An iterative strategy is proposed in order to combine the advantages of both approaches. First the 410 

algorithm runs using a large kernel following an initial approximate line. Subsequently, the resulting 411 

shoreline is taken as input for a second extraction process, in which a smaller kernel is employed. 412 

Proceeding this way, it is expected to minimize the effects that an inaccurate initial line could have on the 413 

definition of the sub-pixel shoreline. 414 

At this point, the first question is about how to decide the optimum values of the kernel and the polynomial 415 

degree to carry out each iteration. Table 2 shows the best combination of parameters when the accuracy of 416 

the initial shoreline is sufficient being this the one to follow in the second iteration of the refining process. 417 



 

 

 

Figure 11 compiles the RMSE values of the resulting SDS obtained by using the three different starting 418 

lines and for each of the 84 combinations analyzed (36 for L8 and 48 for S2 carried out in Test 1 and Test 419 

2). 420 

 421 

Fig. 11. Accuracy expressed in RMSE values for each combination of parameters in the x-axis (results of 422 

Test 1 and 2). B-D-K initials mean: input Band, polynomial Degree and Kernel size. Red circles identify 423 

the combination with best global behavior for all series despite the accuracy of the initial line, whereas 424 

blue circles identify the best combination in absolute terms (best sub-pixel solution). 425 

In this sense, for L8, the combination of SWIR1 band, K=5 and D=5 presents the best results regardless 426 

the inaccuracy of the initial shoreline (red circle) assuring that the algorithm locates the shoreline in its 427 

correct position. In fact, the three solutions almost converge in the same value. Then, once this is correctly 428 

approximated, the combination of SWIR1 band, K=3 and D=3 achieves to define the shoreline with the 429 

maximum accuracy (blue circle) as Table 2 also exposed. Equivalent solutions were obtained from the 430 

images of S2 where their higher spatial resolution leads to the use of a larger but equivalent kernel. 431 

Therefore, the best global combination is SWIR1 band, K=7 and D=5 and the very best of the three series 432 

is SWIR1 band, K=5 and D=3. In this sense, these combinations are the ones proposed to be used in the 433 

iterative strategy as shown in Fig 12. 434 



 

 

 

 435 

Fig. 12. Results for the iteration strategy performed for 12/06/2013 and 30/07/2015 in figures 12A and B 436 

respectively. 437 

From the analysis of all this data, we can observe in Fig. 12 that the iterative procedure works properly in 438 

this area and the results converge with very similar RMSE values regardless of the approximate line used 439 

as input. The accuracies of the final sub-pixel shorelines reached in second iteration (orange boxes) are 440 

almost the same indifferently from working with an accurate initial shoreline or a displaced one 441 

(differences between solutions of 17 cm for 12/06/2013 in Fig 12A, and up to 13 cm for 30/07/2015 in Fig 442 

12B). However, it is relevant to notice that stopping after the first iteration (blue boxes), the found 443 

shorelines would be wrongly detected with errors around the 5 m when the initial shore is displaced 444 

landward or seaward. Additionally, it is also important to remark that even working with an accurate 445 

approximate line, the location of the resulting shorelines is improved by about 50 cm after the second 446 

iteration (refer to left results of figures 12A and B). 447 

Finally, in order to analyze the behavior of the algorithm when running the first iteration with a kernel 448 

even larger, another experiment was performed changing the initial conditions only for the first iteration to 449 

K=7 for L8 and K=11 for S2 (Fig. 13). The parameters for the second iteration remain the same. 450 

 451 



 

 

 

Fig. 13. Results for the iteration strategy as in Fig. 12 but running SHOREX with larger kernel size for the 452 

first iteration. 453 

Results show that the improvement of the iterative proposal is even more remarkable when using larger 454 

kernels in the first iteration. This enforces the idea of using the iteration and ensures that regardless the 455 

inaccuracy of the initial shoreline, the algorithm is able to relocate the shoreline to their correct place 456 

through the first iteration and to define it accurately through the second one. Fig. 13 indicates that large 457 

kernels lead to wrong sub-pixel shoreline locations for the three used input lines (blue boxes in figures 458 

13A and B) with RMSE values between 4.33 m and 8.75 m. However, the second iteration with small 459 

kernels is more than capable of obtaining an accurate SDS with an RMSE around 2.6 m (in line with the 460 

results shown in Fig. 12). 461 

 462 

5. Discussion 463 

This paper proposes an efficient protocol for the automatic extraction of sub-pixel shorelines reaching 464 

accuracies close to 3m RMSE on the study area, the microtidal beach of Cala Millor. The work develops 465 

several methodological improvements over previous works (Pardo-Pascual et al., 2012, Almonacid-466 

Caballer, 2014). On the one hand, the use of a single approximate shoreline as input is key for reducing 467 

processing times by avoiding threshold methods. It enables the automation of the process eluding the only 468 

step that required user intervention and that was susceptible to generate discontinuities and uncertainties at 469 

the pixel level. On the other hand, the method presents an improvement in robustness by incorporating an 470 

iterative extraction step, shifting from larger to smaller kernels. This iteration assures high precisions in the 471 

detection of the final shoreline even with an approximate input line eventually displaced. It may occur as 472 

the shoreline position is expected to experience changes along time associated with differences in the tidal 473 

level, energy of the incident waves and their associated excursions, and the morphology of the intertidal 474 

zone. These improvements result in a workflow efficient enough to successfully cope with the definition of 475 

shorelines at the same rate the L8 and S2 images are acquired. 476 

The implementation of the entire workflow within a single integrated system is also essential for gaining 477 

efficiency. SHOREX has been conceived as a complete system that includes all the necessary phases to 478 



 

 

 

obtain the final sub-pixel SDS: image download, subdivision into manageable spatial units and 479 

homogenization of their characteristics, supervision of cloud coverage, sub-pixel georeferencing, sub-pixel 480 

extraction of the shoreline to point format, elimination of outliers and transformation of the result into 481 

linear format. Currently, all these processes can be performed automatically (with the exception of the 482 

optional cloud checking, with a user-friendly visualization tool completely integrated into the process). 483 

The efficiency of the extraction protocol and its limiting factors are in line with previous works (Palomar-484 

Vázquez et al., 2018a, b), in which the downloading was the most time-consuming phase. 485 

The accuracy and precision of the obtained shorelines is a second key aspect in order to determine their 486 

usefulness in coastal change studies. However, to carry out a thorough assessment is not simple and 487 

relatively few studies (e.g. García-Rubio et al., 2015, Liu et al., 2017b, Splinter et al., 2018, Pardo-Pascual 488 

et al., 2018, Hagenaars et al., 2018, Do et al., 2019, Vos et al., 2019a) have made a metric evaluation of the 489 

errors. This is largely due to the difficulty of recording the shoreline position with sufficient precision at 490 

the same instant the image is captured by satellite. 491 

In the present study, video-derived shorelines have been obtained simultaneously to the acquisition of the 492 

satellite images, and processed and converted to georectifed images by applying C-Pro (Sánchez-García et 493 

al., 2017) with a 1.54 m RMSE. However, the accuracy of the digitalized shoreline on these images was 494 

also conditioned by the criterion and audacity of the interpreter, as well as the indeterminacy of the spatial 495 

resolution of the georectified image. At a distance of 650 m and for the worst cases, working with a focal 496 

of 1332 pixels, the cross and long size of the pixel footprint have been 0.45 m and 6.36 m respectively. 497 

Despite these errors, the video-derived shorelines are amply valid to be used as reference data. Pardo-498 

Pascual et al., (2018) already validated these video-derived shorelines obtained with C-Pro in a sector of 499 

the Valencian coast by comparing them against shorelines simultaneously measured by GPS, showing an 500 

encouraging mean error of 0.15 ±1.05 m.  501 

In the present work, the large number of evaluations (91) ensures that different oceanographic conditions 502 

have been considered (relative to a microtidal environment), giving high robustness to the results. Testing 503 

the combination of different extraction parameters have made it possible to identify those that provide the 504 

highest accuracy (Table 2) −reaching values even close to those inherent of the reference/video-derived 505 



 

 

 

data. Moreover, when using more demanding quality indicators such as the 5th and 95th percentiles, 90% of 506 

the errors range between -5.1 to 5.9 m for L8, and between -2.9 to 5.4 m for S2. Likewise, for each 507 

particular date (Fig. 14) in the vast majority of cases it has been observed that the errors were within the 508 

described margins. In fact, the maximum average error was 3.2 m and the minimum was -3.7 m. The 509 

standard deviation was also mainly maintained close to 2.5 m. 510 

 511 

Fig. 14. Range of errors (mean ± standard deviation) of the 91 SDS analyzed over the 4-year study. 512 

Extreme values in the standard deviation (such as 6.7 m for 21/10/2015) appeared on days in which wave 513 

conditions show high run-up. As the instant of the capture of the satellite image and the video-camera did 514 

not completely coincide, a significant error appeared in some parts of the beach. As Fig. 15 shows for this 515 

particular day, it is interesting to observe how at the locations where the SDS is more distant to the video-516 

derived shoreline (greater errors), the S2 shoreline is identifying a clear humidity line, probably because of 517 

getting wet very recently. It was precisely those days the ones that recorded the highest waves (Hs = 518 

1.35 m, Tp = 9.35 sec) of the entire series. However, and despite knowing that higher waves may lead to 519 

errors in the detection of the shoreline (Hagenaars et al., 2018), in the current work it is found a different 520 

effect to the one observed in Pardo-Pascual et al. (2018). That time, with a very similar algorithmic 521 

solution and a 7x7 kernel, the wave conditions directly affected the shoreline bias (especially the 522 

wavelength and wave period). On the contrary, in this study the comparison between the errors of the SDS 523 

and the wave characteristics has shown a practically null relation (r2=0.044 and r2=0.025 with respect to 524 

the wave period and, r2=0.051 and r2=0.046 with respect to the height of the incident waves, respectively 525 

for L8 and S2). This may be due to the fact that Pardo-Pascual et al., 2018 worked with thresholding initial 526 

shorelines which were more easily confused with other wave breaking lines and so the algorithm was not 527 



 

 

 

able to reach a final accurate position. However, the methodology presented in the current paper (starting 528 

with a unique approximate line and following with an iterative process) is being generally less influenced 529 

by these external factors or is otherwise able to overcome them.  530 

The results evidence a substantial improvement in the level of accuracy with respect to previous solutions 531 

described in the bibliography for microtidal and moderately energetic coastal areas where SDS have been 532 

compared with field measurements. For instance, Hagenaars et al. (2018) obtained an average error for L8 533 

and S2 images of 9.5 (±16 m) and 10.5 (±12 m) in a coastal segment of around 1.7 m tide; Liu et al. 534 

(2017b) reported about 10 m RMSE at a beach with 2 m tide; and more recently, Vos et al. (2019a) 535 

reached accuracies ranging from 7.2 m to 11.6 m RMSE on four microtidal beaches of Australia, New 536 

Zealand and USA. 537 

In agreement with Almonacid-Caballer et al. (2016), Liu et al. (2017b) remarked that the shorelines 538 

obtained from Landsat images (using an algorithmic solution different from the one exposed in this work) 539 

were adequate to monitor the average annual behavior of the beaches, but they could be subjected to 540 

excessively large errors (tens of meters). Hagenaars et al. (2018) have recently suggested applying image 541 

composite processing −following Donchyts et al., 2016 technique− to a sequence of images in order to 542 

obtain a single image that minimizes the effect of bias factors. It is shown that even dealing with relatively 543 

high errors (within 15 m RMSE) the study of evolutionary trends over large coastal segments is possible 544 

(Sánchez-García et al., 2015; Almonacid-Caballer et al., 2016; Do et al., 2019, Cabezas-Rabadán et al., 545 

2019b, Vos et al., 2019a) and also on a global scale as proposed by Luijendijk et al. (2018) and Mentaschi 546 

et al. (2018). 547 

SHOREX system, with the methodology and accuracy here shown, resolves the limitation of low 548 

resolution and opens up the possibility of using the SDS in analytical processes that require greater 549 

precision. The methodology makes it possible to offer continuous data throughout the year, with a high 550 

revisited frequency of wide coastal segments allowing to derive useful indicators for coastal management 551 

as the beach width (Cabezas-Rabadán et al., 2019a), to estimate volumetric changes on certain beach 552 

profiles (Do et al., 2019) and to monitor the beach along sub-annual periods (Vos et al., 2019 a) as the 553 

response to nourishment projects or coastal storms (Cabezas-Rabadán et al., 2019b; Pardo-Pascual et al., 554 



 

 

 

2014). Nevertheless, for all these purposes it seems reasonable to relate the defined water/land border with 555 

an elevation value that is strongly influenced by sea-level variations (Boak and Turner, 2005; Kabuth et 556 

al., 2014). Only this way SDS would constitute a valid indicator of shoreline changes. 557 

 558 

Fig. 15. Comparison of the shoreline obtained from S2 (SWIR1 band) using SHOREX and the video-559 

derived shoreline for 21/10/2015, the day in which the highest waves were registered.  560 

The application of the extracted SDS for monitoring purposes is immediate on microtidal beaches as the 561 

wet zone is rarely very wide. However, in beaches with high variations in tide and wave conditions this 562 

solution would need to be re-evaluated as is expected that the interaction with these factors make the 563 

definition of the land-water border and the association with its elevation more difficult. In meso or 564 

macrotidal coasts, the shoreline definition can be compromised due to larger run-up excursions, as well as 565 

in areas with very low slopes and high tidal range, where the intertidal space can be extended to hundreds 566 



 

 

 

of meters. In these cases, and following the iterative procedure here described, the use of an approximate 567 

line could cause that the kernel of 7 x 7 pixels for the first iteration did not include the position of the real 568 

shoreline, making insufficient the proposed iterative protocol. The solution could come from the definition 569 

of different approximate lines associated with different sea levels, the performance of consecutive 570 

iterations starting from larger kernels of analysis, or the synergy with a new image interpolation method 571 

(Sánchez-García et al., 2019a) where the land-water surface is modeled by a piecewise interpolating 572 

polynomial that adapts to the maximum radiometric variations. Anyways, future research is required to 573 

continue testing SHOREX on a wide miscellany of coastal environments and achieve its full automation 574 

on a large spatial scale. 575 

 576 

6. Conclusions 577 

The present work proposes an efficient protocol for shoreline extraction from mid-resolution satellite 578 

images using the SHOREX system. A workflow that integrates all the necessary steps for an automatic 579 

definition of the shoreline position at sub-pixel level has been described, increasing both the efficiency and 580 

the accuracy of the extraction. The protocol allows the massive definition of shorelines at the same rate as 581 

the acquisition of satellite images. This is of great value for the continuous monitoring of beaches and the 582 

decision-making of coastal managers. 583 

The assessment of a large set of SDS (91) over almost 4 years has been carried out in Cala Millor, a 584 

Mediterranean sandy beach. This was possible thanks to the availability of highly accurate shorelines from 585 

a video-monitoring system in the same instant the satellite images were recorded. The evaluation has 586 

allowed analyzing 84 different combinations of parameters for working with SHOREX by merging the 587 

type of input band, the kernel of analysis and adjustment degree. Accordingly, it was possible to establish 588 

that the combination leading to the best solution (an RMSE of 3.57 m for L8 and 3.01 m for S2) was using 589 

the SWIR1 band, a third-degree polynomial, and a 3x3 kernel size for L8 and 5x5 for S2 (equivalent 590 

kernel according to the different spatial resolution). Moreover, the results showed that the accuracy of the 591 

input line strongly affects the final sub-pixel shoreline definition. Therefore, an iterative strategy using 592 



 

 

 

SHOREX was proposed to minimize this effect and ensuring a robust method for shoreline detection 593 

regardless of the reliability of the input line and external factors. 594 

The high availability of satellite-image data worldwide together with the efficiency and accuracy of 595 

SHOREX creates a new scenario and an opportunity to understand the morphodynamics of coastal zones 596 

on different spatio-temporal scales. 597 
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