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Abstract

Perception systems are the groundwork for all systems of self-driving cars. These
need to detect the environment and the driving scene to provide every information
needed to driving systems to solve every situation.
As perception systems, this work focuses on the usage of convolutional neural net-
works to process and analyze camera input data.
This work presents an in-depth scene understanding consisting of object detection
and a lane detection model. The object detection is realized as a semantic segmen-
tation of the input map. A pixel-wise classification returns all information about
the scene.
The lane detection is based on a line detection model. The driving lane is concluded
by detecting the street lines and the road. This part combines the results with the
ones obtained by the segmentation. This returns a comprehensive understanding of
the current traffic scene.
Therefore this work compares different network structures and approaches to solve
this problem. An evaluation presents the best model suited for the usage in au-
tonomous driving vehicles.
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vi ABSTRACT

Resumen

Los sistemas de percepción son la base para todos los sistemas de conducción
autónoma. Estos detectan el ambiente y la escena de conducción para proveer la
información necesaria para tomar decisiones frente a cada situación.
Este trabajo se enfoca en el uso de redes neuronales convolucionales para procesar
y analizar los datos de entrada de la cámara.
El presente trabajo exhibe una compresión profunda de la escena captada, basán-
dose en modelos de detección de objetos y detección de los carriles vehiculares. La
detección de objetos se realiza como una segmentación semántica del mapa de en-
trada, es decir, una clasificación por píxeles la cual devuelve toda la información
sobre la escena.
La detección de carriles vehiculares se basa en un modelo de detección de líneas.
El carrill se calcula detectando las líneas de la calle y la forma de la carretera. Lo
anterior combinado con los resultados obtenidos por la segmentación, devuelve una
comprensión completa de la escena del tráfico actual.
Por otra parte, este trabajo compara diferentes estructuras de redes neuronales con-
volucionales y enfoques para resolver el problema planteado. Finalmente, basado en
las pruebas realizadas, se propone el mejor modelo para la utilización en vehículos
de conducción autónoma.
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Chapter 1

Introduction

1.1 Aim of Work

The development of self-driving systems has been under research and in develop-
ment for lots of years. Now, autonomous vehicles with these functions are already
present in the traffic. Still, most systems require a driver to supervise these systems
because there still exist situations that cannot be solved by a rule-based technical
system. Therefore the institution Society of Automotive Engineers (SAE) defined
five different levels of automation. Above level 3 it usually is called autonomous
driving. The different levels provide more functions and systems that assist the
driver up to full automation. [1]

Key factors for achieving full automation are the interaction design of automated
vehicles and a better scene understanding. Situations that cannot be solved by the
system on its own are often due to insufficient information about the environment.
A better scene understanding returns more information to the different functions
which enable a better driving behavior and fewer driver interventions are required.
Unknown situations can still be solved by providing enough information to the sys-
tem. Therefore the perception part is the building block of the whole system and
all other functions depend on its performance.

By designing the perception system of modern vehicles mainly the following sen-
sor types are used: cameras, radars, or LiDAR. When tied to a computing system,
each sensor can support the Advanced Driver Assistance Systems (ADAS) that al-
low a vehicle to operate autonomously in an environment. Due to modern computer
vision technology cameras are the most promising system for future systems.

1.2 Problem of Work

This work tackles the problem of designing a perception system for self-driving cars.
Therefore camera data is used to detect and provide as much information as possible.

1



2 CHAPTER 1. INTRODUCTION

The understanding of street scenes limits the group of relevant objects which need
to be detected due to the purpose of their interference behavior. In general, there
can be defined the following relevant groups of objects:

• limiting driving area (road, lane, border area)

• traffic participants (different types of vehicles, pedestrians, other dynamic ob-
jects.)

• traffic control objects (traffic signs, traffic lights, etc.)

• obstacles (static objects)

First of all the driving area need to be defined. Therefore the road and especially
the lane need to be detected. These define the Region of Interest (ROI) of these
self-driving systems.
Next all objects which can appear in this area need to be detected. The obstacle is
not only detecting them but also classifying them to estimate their behavior. Some
groups like persons need more attention than others. As well, it is important to
distinguish between cars, bicycles or trains, etc because of their different behavior
in traffic.
Self-driving functions as well need to detect traffic rules indicates by traffic signs or
lights. These are very crucial information to further driving functions.
Least the perception needs to identify the environment apart from the street to know
what is around. In case of problems, this information is needed to solve unexpected
and unknown situations.

All these general groups of information need to be gathered in detail by the percep-
tion system. Furthermore, the environment in vehicles limits the systems in terms of
computing power and runtime. All these special cases need to be taken into account
by designing an appropriate system.

This work will present an in-depth analysis of the current state-of-the-art models
and compares their appropriate use in automotive systems. Therefore these mod-
els get evaluated in terms of performance, runtime, and classification pattern. The
classification pattern returns details on how different situations are handled and if
these allow the use in autonomous cars. The object detection is realized by a scene
segmentation to return as much information as possible. The lane detection gets
trained apart and afterward combined.

1.3 Structure of Work

This work is structured in that the first chapter gives an introduction to the topic
and presents the problem this work is dealing with.
The next chapter describes the mathematical and theoretical background to all the
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methods and techniques applied during this work. As well it separates this task
from other similar techniques.
The following state-of-the-art chapter introduces the best up-to-date investigations
in these fields and presents important models.

The main part of this work is the experimental section to build various seman-
tic segmentation models and evaluate them carefully.
The lane detection part builds the second part of the experimental work done in this
work. This chapter deals with the problem to detect lane markings and includes
these results in the previous ones.

The next chapter brings all results together and the critical discussion about these
systems. Here there are also evaluated against the earlier mentioned state-of-the-art
models.
The final chapter summarizes the results obtained in this work and comes up with
the conclusion of this work.
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Chapter 2

Theoretical Background

This chapter describes all the theoretical and mathematical backgrounds to the
techniques used for the experimental work done in the following chapters.
First it describes the basics of image classification tasks and focuses on segmentation
tasks. Moreover, it explains the importance and uses cases for real-time tasks and
models. The last section presents the metrics used to evaluate the results obtained
in this work.

2.1 Basics in Image Understanding tasks

Scene understanding tasks with image inputs can be treated very differently. This
section introduces the different problems which can be derived from this task. The
different problems refer to how the complexity of the scenes is identified. This can
contain simple classifications up to more advanced object detection and localization
tasks.

The following part with table 2.1 presents the three main tasks for image-based
scene understanding and their differences.

Image Classification Object Detection Semantic Segmentation

• class level • instance/class level • instance/class level
• correct class • class and position • pixelwise classification
• output vector • output structure • output map

Table 2.1: Comparison of different image based scene understanding tasks

Basically the further left the more details these tasks provide which as well makes
the tasks more complex.

The input always is an image which can be defined as an three dimensional (three
color spaces) with 256 intensity values like

I : U −→ [0, 255]3 (2.1)

5



6 CHAPTER 2. THEORETICAL BACKGROUND

where U = [[0;m − 1] × [0;n − 1]] are the pixel, m and n are the number of rows
and columns and 3 is the number of input channels. I(i) is the ith pixel value of
the image I, where i ∈ U .

Like shown in table 2.1, image classification tasks classify the input images in one
of a known set of possible classes. Therefor the output is a vector LC of the number
of possible classes C and can be denoted as

LC : V −→ [0, C] (2.2)

The output space V defines the vector from which one element is chosen to represent
the image. This makes the image to be classified as a whole. The disadvantage is
that this kind of classification is just applicable to just a few images. Normally an
image contains more than just one object. In this case, it can classify the scene
shown in the image. But this is still a very limited way of interpreting an image.

Another technique to identify where in the detected object is object localization.
It returns the position and size of the detected object. This provides much more
information than just classifying an image.
In the case of multiple objects which need to be localized the task is called ob-
ject detection. This makes object localization a branch of object detection. Object
detection can localize multiple and different objects in an image. This includes mul-
tiple objects of the same class as well as objects of other classes. The output of an
object detection LD contains two parts LD,C and LD,C as the prediction of the class
of the detected object i and its corresponding position.

LD,i :

{
LD,C : VC −→ [0, C]

LD,P : VP −→ [mi, ni, wi, hi]
∀ i ∈ N (2.3)

N is the number of all detected objects and VC the classification output space and
VP the one for its positions. VC is the same as for the classification problem and
VP models its positions where mi and ni are the x/y coordinates and wi and hi the
width and height of the detected object.
This model returns much more information about the image and like that it can be
used for many applications. It is like looking for specific objects in an image. This
type can classify the detected objects into their classes as well as differences between
different objects of the same class. This is called instance detection because it clas-
sifies different instances of the same class separately. The problem is that this task
detects the object still very vague. It just indicates their position with bounding
boxes which are rectangles around the complete object.

The semantic segmentation tackles this problem and classifies the input image pixel-
wisely. This creates an end-to-end architecture where the output space is an image
as well. Every pixel on the output map denotes the class of the specific pixel. This
makes a model predict the positions of an object much more detailed and further-
more, it provides information on the specific shape of the detected object of its
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corresponding class. Here the label LS is defined as

LS : V −→ [0, C] (2.4)

over V = [[0;m−1]×[0;n−1]] where m and n are the same spatial image dimensions
as for the input image I. Note that the input space U and the output space V equal
just in the spatial dimension.
Segmentation problems as well can be broken down onto the instance level. Here
it can provide more information as it assigns every object a different id. This does
not make sense for all classes. In the case of traffic scenes normally just objects
like vehicles or pedestrians are classified on an instance level but not so background
classes like trees or buildings. Technically it is possible but not purposeful. This
means that the instance segmentation splits a few classes down to the instance level
but classifies background classes as a whole.

The characteristic that the output is an image-sized feature map requires a unique
type of network for semantic segmentation models. Where classification models
mostly are some kind of simple encoder structure segmentation models need some
kind of decoder as well. The encoder produces high-level features using convolutions,
while the decoder upsamples the feature map to its required shape and helps in in-
terpreting these high-level features using classes. These types of models are called
end-to-end models. Figure 2.1 shows the architecture of a basic encoder-decoder
network [32].

Figure 2.1: Encoder-Decoder Network

The left part describes the encoder which consists normally of convolutional and
pooling layers to downsample the spatial size and extend the depth step by step.
The red marked layers are the one which downsamples the feature maps and the
green ones apply some upsampling techniques.
The decoder network does not have to look exactly like the encoder. There are lots
of approaches with smaller decoders and different ways of upsampling.
Basically the models extract all information in the encoder part. The decoder just
structures the information into a suitable output map. Segmentation tasks are
mostly treated as classification problems so the output map classifies each pixel.
Therefore the network defines the classes through the output map.
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2.2 Perception Systems in Self Driving Cars

In order to develop intelligent systems for Self Driving Cars (SDC) an extensive
perception of the environment has to be done. This is typically made by radar/lidar
sensors or camera systems. Because the camera returns much more detailed infor-
mation about the environment it will be mainly used for future systems. Figure
2.2 [33] presents the basic principle of perception systems used for autonomous or
automated driving.

Figure 2.2: Perception system of Bosch with radar and camera

The image presents a combination of radar sensors which are illustrated by the blue
waves and two cameras illustrated by the light cones. These are a near range and
a common front camera. The near range camera is mainly used for line detection
and parking systems and the normal front camera for object detection tasks (also
including line detection).

With line and object detection, the image presents two use cases for this perception
system. Line detection tasks are used for Lane Departure Warning (LDW) systems
that warn the driver before unintentionally leaving the traffic lane. These systems
typically use a camera to detect the lane markings on the road in front of the vehicle
using computer vision algorithms or neural networks. By detecting the lane mark-
ings the driving lane is estimated so that the LDW warns the driver if he passes the
line. Another use case is the lane-keeping assistant.

Furthermore the front camera identifies objects in front of the ego car. This enables
functions like the Adaptive Cruise Control (ACC) and Forward Collision Warning
(FCW). These control the speed depending on the object in front. To do this the
exact position, movement, speed, etc. of the vehicle ahead need to be identified.
The advantage of the camera is that it can classify the detected objects in very
detail what gets very important for example driving in cities. Differentiate between
cars, bicycles or pedestrian returns lots of information which can be used for motion
control systems. Every object has its own characteristics but detailed classifications
enable for example better safety protection systems towards pedestrians or bicycles.
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Other functions using object detection are for example traffic sign recognition sys-
tems. These typically use the front camera and CNNs for classification. These
systems are used to alert the driver if he is driving too fast.

2.3 Scheduling for Real Time Systems

Due to safety reasons and higher predictability autonomous cars use static schedul-
ing for running their tasks. Static scheduling means that every task has its fixed
priority and it is predefined when and for how long these tasks will run. Fixed
priority scheduling also means that tasks with higher priorities can interrupt tasks
of lower priorities. This is called preemptive scheduling. The task then runs in the
order defined by the priority in the defined cycle. This cycle is designed depending
on the maximum execution time of every task. Current automotive developments
support cycles around 5ms, 20ms, and 50ms.

Figure 2.3 shows an example task cycle around the perception tasks in the cycle
t. This cycle contains tasks and threads with lower priorities these are called just
every n run of the cycle. The first task is the sensor task with threads like reading
the camera or sensors.

Figure 2.3: Task flow of perception system for autonomous vehicles

This data is loaded by the environment understanding task. Here the perception
part takes place with threads like line detection or object detection. The traffic sign
recognition is shown in the dashed frame because it will probably run in another
cycle because of its lower priority. Just the most important tasks and threads are
called in the fastest cycle. After running the detection models the data is fused with
the sensor output and the data of the ego vehicle.
This information is then fed into the task where the functions like FCW, LDW or
ACC run. These use the generated information and need to run after the envi-
ronment understanding tasks. This flow needs to run one after another because if
the detection models take too long and the radar already returns new values the
information in the sensor fusion thread will be mixed up.
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Finally some other tasks can run, maybe on another cycle due to their lower priority
compared with the essential security and driving tasks.

For real-time systems, a distinction is made between hard and soft real-time systems.
Hard real-time systems are designed to always respond in their defined execution
time and have to meet their deadlines. Like mentioned before in automotive fields
static preemptive scheduling is used. This makes this scheduling predictable and
guarantees safety. Every state of the system is predictable and precalculated. This
assigns every task a fixed execution time where it has to complete its execution.
For embedded systems used in cars, hard real-time systems are used. The following
table presents a few important functions and their usual frame rate.

Driving function frames per second (fps)

Parking function 10
Traffic sign detection 10
Traffic jam pilot 10
Lane keeping assists 50 - 200
emergency braking 50 - 200

Table 2.2: Frame rate requirements depending on different functions

Table 2.2 shows that for basic driving functions a frame rate of 10fps is completely
sufficient. Especially parking functions or traffic jam assists operate at very low
velocities why no higher frame rate is required.
On the other hand, lane-keeping assists or emergency braking functions are also
active on velocities up to 200km/h. The rapidly changing environment makes them
require much more data. Also, lane-keeping functions are very sensitive tasks and
need smooth control to feel comfortable for the driver. Due to this, the detection
tasks need to run much more often.
As well safety regulations are an important point and require more runs of calculat-
ing how accidents can be prevented. This leads to clearly higher frame rates.

2.4 Losses and Metrics to assess Segmentation Qual-
ity

This section introduces the most important loss functions and error metrics used
especially in segmentation tasks.
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Loss Functions

This part presents the most important loss functions used for this work. The basic
metric for classification problems is the cross entropy loss which is defined as

Lce = −
C∑
i

ti log(si) (2.5)

where si denotes the predicted probability of class ti out of classes C. It just sums
up the pixelwise probablistic error for every class. Because of this, this metric is
useful for binary as well as for mulitclass classification.
In the binary case when the number of classes C ′ = 2, the cross entropy changes to

Lbce = −
C′=2∑
i=1

ti log(si) = −t1 log(s1)− (1− t1) log(1− s1) (2.6)

Often it is useful to apply external weights for different classes while calculating the
loss. The following equation shows this calculation including the weights wi

Lwce = −
C∑
i

witi log(si) (2.7)

Weighting classes makes the model train more sensitive on different classes. This
can help to compensate bigger imbalance in the dataset or just put a bigger focus
on certain classes.

Metrics

The confusion matrix is an error matrix used to evaluate statistical classification
problems. It provides a detailed visualization of the predictions made by any model
compared with their labels.
The correct labels are listed as the rows of the table and the predictions over the
columns. This creates a structure where the correct classifications are located on the
main diagonal. The big advantage of this graphic is that it shows which errors the
system is making. The elements of the confusion matrix are called True Positives
(TP) for the correct classification of positive values, False Negatives (FN) for the
false classification of positive labels, False Positives (FP) for the false classification
of negative values and True Negatives (TN) for the correct classification of negative
values. This creates the typical representation which is shown in table 2.3.
As well as for the binary case the confusion matrix can be computed for multi-class
problems. The positive respective negative classifications are now represented by the
name of the class. The correct classifications are still located on the main diagonal
of the matrix.
This presentation and all the information enable the usage of more adequate metrics
than the accuracy. The accuracy measures the percentage of how many pixels are
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Prediction
positive negative

La
be

l positive TP FN
negative FP TN

Table 2.3: Confusion Matrix

Predictions
Class 0 Class 1 ... Class n

La
be

ls

Class 0 true false ... false
Class 1 false true ... false

... ...
... ...

Class n false false ... true

Table 2.4: Multi-Class Confusion Matrix

classified correctly. This is a very basic evaluation that misses important informa-
tion regarding the different classes.

The recall is a metric that returns the performance on every true class separately.
This is effective for small classes which tend to hardly be classified correctly. It is
defined as

Recall =
TP

TP + FN
(2.8)

To measure the correct classifications out of all positive predictions the precision
metric is used. This indicates if the model suffers from lots of False Positivess.

Precision =
TP

TP + FP
(2.9)

Models with a high recall can still have a low precision or vice versa. Therefore the
F1-Score represents the combination of these two metrics. It is defined as

F1 =
2 · Precision ·Recall

Precision+Recall
(2.10)

This score combines both metrics using a harmonic instead of arithmetic mean by
stronger pushing the extreme values.

Another metric based on these logical groups is the Intersection over Union (IoU).
This is a common evaluation metric for object detection tasks where it evaluates
the performance of the localization sub-problem. This makes this metric also very
useful for segmentation tasks. It is also often called the Jaccard index and uses the
different logical groups calculated by a confusion matrix. The IoU is defined as

IoU =
| p ∩ gt |
| p ∪ gt |

=
| TP |

| TP + FP + FN |
(2.11)
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where p is the prediction and gt the ground truth label which are areas. The IoU is
the overlap of these two areas.
Normally the mean IoU is used to describe the performance of a model. Here the
IoU is computed over all classes and then averaged

mean IoU =
1

N

N∑
i=1

IoUi (2.12)

Here the influence of every class is equal. This means that bigger classes do not
have a bigger influence on the performance.
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Chapter 3

State of the Art

This chapter presents the relevant developments in the respective fields of investi-
gation. It first presents the published literature for semantic segmentation models
and then the currently leading models in lane recognition.

3.1 State of the Art in Semantic Segmentation in
Real Time

Semantic Segmentation is a quite new approach to analyze and classify images. It
uses a pixel-wise end-to-end classification to classify every pixel individually.
To do this, there are presented several approaches from the last few years but not
everyone is suited for semantic segmentation in real-time. Some are very expen-
sive in terms of calculation time and memory size. This makes them not suited for
real-time systems used for autonomous driving but still provides good investigations.

The very first known approach for semantic segmentation is made by Long et al.
[12] who proposed a Fully Convolutional Network (FCN) adjusted to semantic seg-
mentation. They adapted leading classification networks like AlexNet [?] or VGG
[?] into fully convolutional networks and apply fine-tuning to adjust the network to
the tasks of semantic segmentation. In general, this model uses a usual contracting
neural network and instead of classifying in the last step, it keeps the spatial size
of the coarse outputs and upsamples them again. Therefore the final classification
layers are removed and the Fully Connected (FC) layers are converted to convolu-
tional layers. Through 1x1 convolutions and deconvolutions, the coarse output is
upsampled to the original size for pixel-wise predictions. As well skip connections
are used to recover spatial details from encoding structure.
The good results on the PASCAL VOC 2011 dataset [?] (mean Intersection over
Union (IoU) of 62.7) have proven the advantages of FCN for semantic segmentation.

Based on this approach Ronneberger et al. [13] developed the U-net which sur-
passes the performance of the FCN. This approach mirrors the contracting part and
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applies successive upsampling to obtain the same coarse outputs. Therefore it re-
places the MaxPooling layer with upsample layers. So the whole network results in a
U-structure. They found that concatenating output maps of the same size increases
the performance. Also, the successive upsampling increases the resolution of the
coarse outputs, which assembles to effectively combine high-level features with low
lever features. Every time the spatial size of the outputs is reduced, the depth is
doubled to propagate context information through the network.

The SegNet of Badrinarayanan et al. [21] is another architecture derived from the
FCN and the U-net. It proves that successively upsampling of the output map in-
creases accuracy. More importantly, it introduced a connection of the max-pooling
indices received from the corresponding encoder to perform non-linear upsampling
of the decoder input feature maps. The efficiency of this network comes from its
extensive reduction of layers.

Another improvement of this encoder-decoder structure is presented by Paszke et
al. as the ENet [14]. Instead of just stacking convolutional and pooling layers onto
another in the encoder structure, they introduced the effect of residual bottleneck
blocks. ResNets have proven their big effects on image classification and enable
building bigger networks more efficiently. Fast downsampling in the initial layers
reduces drastically the network size and makes the filters extract more context. On
the other hand, by downsampling the images, important spatial information is lost.
This downsampling is done by concatenating a 3x3 convolution and a 3x3 max pool-
ing. More context can also be gathered by the use of dilated convolutions, which
increases the receptive field, but does not increase the size of the output maps. Here
it is shown that the use of big decoders is quite small and the network focuses on the
encoding (like in classification tasks). The decoding part is just used for upsampling
and fine-tuning the details. To not have to downsample the feature maps any fur-
ther and still gather more context information dilated convolutions (various dilation
ratios) at the smallest feature map size are applied. These results are obtained by
alternating dilated and normal bottleneck blocks.
Evaluated on the, for autonomous driving relevant cityscapes dataset, an accuracy
of 58.3 with real-time performance of 21.6 frames per second (fps) on an input im-
age size of 1920x1080 on an NVIDIA Titan X GPU is achieved. Compared to usual
ResNets this network sacrificed the accuracy by removing layers to gain efficiency.

The DeepLab from Chen et al. reaches state-of-the-art performance by extensively
using dilated convolutions to control the resolution at which feature responses are
computed. For better localization of segments of little feature maps a CRF is ap-
plied, which highly increases the network’s computational overload. Although the
dilation increases the performance, it is due to their larger receptive fields com-
putationally more expensive. Moreover, they introduce the advantages of pyramid
pooling to be more robust against objects at different scales.
Despite its new introductions and good performance this architecture is not suitable
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for real-time systems.

Zhao et al. proposed in the Pyramid Scene Parsing (PSP) Network [16] the Pyramid
Pooling Module (PPM) which turns out to increase the accuracy because it com-
bines features at different levels. These different pooling outputs are concatenated
to build the final feature map. Due to the PPM it is capable of connecting the global
information of different regions based on context aggregation.

Zhao et al. propose an Image Cascade Network (ICNet) that processes the in-
put at different resolution scales at different branches. These different branches get
aggregated by the cascade feature fusion which enables high-quality segmentation.
Basically in this module the feature maps get upsampled to the same size, dilated
convolutions are applied and the feature maps are summed up.

The encoder-decoder structure for semantic segmentation was further developed
by Romero et al. who proposed the ConvNet architecture [7]. Due to the big ad-
vantages to avoid the degradation of ResNets, also for semantic segmentation the
residual structure plays a big role in ConvNets. Because deeper networks are too
inefficient to work as real-time systems the type of residual blocks to non-bottleneck
blocks are changed. Although the bottleneck version is known to be more efficient
because it reduces the computed feature maps to reduce computation time, there
is no big difference for shallow networks like the here presented architecture due to
their increased feature dimensions. Non-bottleneck blocks are made up of stacked
1x3, 3x1, 1x3, and 3x1 convolutions and the addition of the shortcut. This results
in faster execution, a reduced number of parameters, and better regularization. It is
claimed that through this bigger width, predictions can be improved at the cost of
efficiency. At the smallest output size again dilated convolutions are used to allow
exponential expansion of the receptive field without loss of resolution or coverage.
Like the ENet, this structure downsamples the input image right at the beginning
just a few times to not sacrifice too much pixel accuracy.

Mazzini et al. proposed a Guided Upsamplin Module (GUN) [17] which introduces
a new way to upsample feature maps efficiently. It is based on two branches with
input images at different spatial sizes and with shared weights to extract fine and
coarse features. Before decoding, these branches get fused and the novel guided
upsampling module is applied. This module takes into account the high-resolution
features from the earliest layers with bigger resolutions as well as complex features
from the deepest ones. Due to the efficiency of this module, this network is also
recognized as a real-time system with state-of-the-art accuracy an IoU of 70.4.

The presented approaches are all dealing with the trade-off between downsampling
the image to capture more context information at low calculation cost and better
pixel accuracy through more detailed information with high-resolution maps.
Poudel et al. defined with the ContextNet [8] a different approach to the com-
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mon encoder-decoder architecture. They defined a two-branch network that focuses
on both parts separately and adds them together before the decoding starts. As
demonstrated in [22], the combination of context information from maps of different
resolutions improves the performance. So for the high-resolution branch according
to runtime speed, a shallow network is applied to capture detailed spatial features.
Whereas the low-resolution branch is deep enough, to capture semantically rich fea-
tures.
In detail, the shallow network applies directly depth-wise separable convolutions on
the original input which reduces the execution time a lot due to fewer parameters
and floating-point operations. Depth-wise separable convolutions are introduced by
MobileNet [18] and describe a 1x1 pointwise convolution applied directly after a
depth-wise convolution.
The low-resolution sub-network applies various bottleneck residual blocks on spatial
decreased input images. These bottleneck blocks apply two 1x1 convolutions with
a depth-wise separable convolution in between. The first convolution expands the
number of channels by a predefined factor to run the depth-wise separable convo-
lution on the bigger feature map. The last convolution restores the output depth.
This extension of the feature map makes the network learn more complex features
and increases the accuracy.
This work presents an effective model to combine global and local context to archive
leading results in real-time segmentation. On the cityscapes dataset, a mean IoU of
66.1 is obtained with 18.3 fps on an NVIDIA Titan X.

Based on the introduction of two branch models and skip connections of general
encoder-decoder structures Poudel came up with the Fast-Segmentation Convolu-
tional Neural Network (SCNN) [9]. Just like in encoder-decoder structures there are
applied a few layers to downsample the input to extract low-level features and then
split it into two branches. This model sticks to the efficiency of depth-wise separa-
ble convolutions which are used in the initial layers as well as in the global feature
extracting branch. It applies various bottleneck blocks which also apply the depth
extension inside these blocks. Successively the feature map depth gets expanded
between the bottleneck blocks. At the end of this branch, it is stated that a PPM
increase performance by aggregating different region-based context information.
The other branch gets not further processed for recovering the spatial details. In
consequence of efficiency, both branches are summed up and apply just three more
layers to upsample the output map.
The Fast-SCNN presents an above real-time application that outperforms every
other one in fields of runtime. Furthermore, the mean IoU of 69.15, is very high
compared to other real-time networks.

Another different structure which is based on encoder-decoder is the recently pre-
sented ShelfNet [11] by Zhuang. This structure is described by a stacked encoder-
decoder with multiple skip connections. The first part of it is a very shallow back-
bone network like the ResNet18 which reduces the spatial size several times. Now
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there is applied a decoder branch with a residual convolutional block and an up-
sampling layer at every level of the backbone network (for every spatial size). This
structure is applied two times more to generate a downsampling encoder and an
upsampling decoder. Skip connections feed the output maps of the last block of the
same size into the residual blocks. The residual blocks consist of two convolutional
layers which are sharing their weights what reduces the parameters drastically.
As a backbone network, there can be used different CNN architectures to compute
the different levels of output maps.
Due to the many skip connections and residual connections the ShelfNet provides
multiple paths of information flow. Like a ResNet it ensembles information from a
variety of deep and shallow levels. The publishers found that increasing the number
of information paths instead of increasing parameters can improve accuracy.
Dilated convolutions on a little spatial size with increasing dilation ratios have the
same effect as stacking various encoder-decoders together but it is limited to the
information in the feature maps.
The results (IoU of 74.8) obtained by this model surpass every other real-time seg-
mentation model.

In 2016 Iandola et al [23] presented with the SqueezeNet another very efficient
approach to object detection through the introduction of a brand new fire module.
This paper mainly threatens the goal of reducing parameters by obtaining the same
level of accuracy. This is made by the fire module which makes extended use of 1x1
convolutions instead of 3x3 convolutions and of reducing the size of input channels
fed into a bigger 3x3 convolution. The mentioned fire module contains a squeezing
and an expanding part. It is constructed by a 1x1 convolution to reduce the depth
of the feature maps and followed by two expanding convolutions (1x1 and 3x3 con-
volution) which get concatenated to form the output feature map.
Their architecture contains 9 fire modules which increase the depth and reduce the
spatial size of the feature maps. Furthermore, it is stated that delayed downsam-
pling of the model architecture leads to better classification accuracy.
Nanfack et al adjusted this approach to the segmentation task by creating the
Squeeze-SegNet [24]. The downsampling part stays completely the same as in the
original SqueezeNet architecture and they just add an upsampling part. Therefore
they simply create an u-net-like architecture where reverse fire modules are applied
to upsample the feature maps. This reverse fire module is designed as a series of
concatenations of expanding modules followed by a squeezing module.
Here it is difficult to evaluate their results because this architecture is not tested
on the cityscapes dataset why the results cannot be used as a reference. Further-
more, as metrics, they used the accuracy instead of the mainly used mean IoU for
segmentation tasks. Due to the extremely efficient model and its fewer parameters
this architecture is also considered as state of the art for this work.
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3.2 State of the Art in Lane Recognition

The task of lane recognition is a specific task in the fields of semantic segmentation.
This task performs a semantic segmentation with the two objects - lines and back-
ground. Sometimes lines get separated to correctly identify which line (traffic lane
marking, centerline marking, road limiting line) it is.
This means for this task there can be used every model suited for general segmen-
tation tasks too.
In the following, there are presented some important papers which highlight differ-
ent well-proven architectures and approaches.

First line detection approaches are mainly based on preprocessing steps like apply-
ing filters to reduce mean, noise or Finite Impulse Response (FIR) filters, detection
of ROI, thresholded segmentation/binarization or color space transformations. The
feature extraction part was realized through edge filters and hough transformations
to predict the lines in the image.

Through the introduction and great success of Convolutional Neural Network (CNN)s,
these were also applied to the task of lane detection. In 2014, J Kim and M Lee [26]
proposed a CNN consisting of multiple convolutional layers for encoding and some
fully connected layers to generate the output map. The FC layers return the list of
output nodes (lane or no lane) which are then reshaped to generate the final output
map. This model also requires preprocessing steps like ROI selection as well as edge
detection filters.
Next architectures based on object detection tasks transfer these models to the task
of line detection. The approach of the Overfeat approach is to predict the lines
by returning the starting and endpoints a vector [27]. The idea is to estimate the
structural or geometric information by the CNN like for object detection tasks.

The introduction of end-to-end architectures like segmentation models enabled many
new approaches. Applying deep CNNs to semantic segmentation to detect lines can
be difficult because of the narrow sizes of the lines. For example, excessive pooling
layers can delete lots of information. By 5 2x2 max-pooling layers the line needs
to contain more than 32 pixels to be reconstructed. Due to that, it is important to
use learnable layers to shrink the spatial sizes. Dilated convolutions help to gather
a bigger spatial context without the need for pooling layers but are very expensive
in terms of real-time performance.
In 2018 Shao-Yuan Lo et al. proposed Lane Marking Detection (LMD) based on
the VGG architecture. They implemented dilated convolutions between the encoder
and decoder parts. The decoder outputs the original-sized feature map indicating
the lines as class 1 and does not require any preprocessing steps.

While driving the lanes change continuously and linearly. By combining multi-
ple frames the information of previous frames can be used to add the temporal
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correlations to the spatial or geometric features. This prior knowledge can boost
performance as shown by Qin et al. in 2019 by proposing a CNN-LSTM combination
network [29]. The temporal information is fused between the encoder and decoder
where 2 LSTM layers are added. This LSTM runs on a sequence of 5 encoded frames
and returns the same number of frames to the decoder. Although its benefits this
algorithm is resource consuming and less efficient.

The Spatial CNN proposed by X. Pan et al. introduced in 2017 a new approach to
increase performance by integrating a new convolutional module for the high-level
features which is applied after the encoding CNN. As well they stated the benefits of
using multiple loss metrics. Besides the spatial cross-entropy loss for pixel-wise clas-
sification, they also use for every class a sigmoid classification loss which indicates
if this specific line appears in the image. This enables a more stable and accurate
prediction model for detecting various lines.

Due to the most precise predictions the end-to-end architectures turned out to work
best for line segmentation tasks, as well as for other image segmentation problems.
Especially by dropping the need for pre- and post-processing, the image makes this
architecture that powerful. Object detection algorithms always need to create lines
out of the detected markings.
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Chapter 4

Experimental Work - Semantic
Segmentation

This chapter describes the experimental part done in this work. The main part is
the development and evaluation of various models to reproduce and exceed state-of-
the-art performances.
The first section presents the data sets used in this chapter and explains how these
are used in this work.
The next section presents the different models implemented and developed, their
advantages, and the potential to surpass its performance.
Next, there are shown various approaches to control and improve the training of
the different models like using data augmentation techniques, clustering of classes
for classification pretraining the model on different data, or adjusting the resolution
size of the input images.
Finally the results of this work are shown and compared among all models. Also,
the results are evaluated with the state of the art references to evaluate the overall
performance.

4.1 Data Set

This section presents the data sets for semantic segmentation used for this work.
These are the dataset cityscapes and mapillary vistas.

4.1.1 Cityscapes

The main dataset, on which the model is built and trained is the cityscapes dataset
[19] published by Daimler and an association of German universities. It contains
large-scale images and videos annotated on pixel or instance level for semantic label-
ing. Moreover, the publisher provides coarse annotated labels for additional data.
This works exclusively with the pixel-level semantic labels and without the coarse
annotated data.
In general the data contains 5000 images from 50 different German cities and are
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split into sets for training with 2975 samples, for validation with 500 samples, and
testing 1525 samples. For the testing set, only the images are open to the public.
The different sets split up the images by cities. All images have originally the size
of 1024x2048. The dataset contains 34 classes of relevant objects for autonomous
driving.
This dataset is also the most common dataset to compare results to the state of the
art.

For training and evaluation there are just used 19 of these classes and the other
ones are joint to a class of other objects. This generalization of its classes is used to
focus on objects which are relevant for the task of autonomous driving and to filter
small classes with lower occurrences in the dataset. The way of joining the classes
into bigger ones is shown in table 4.2 on page 26.
Here the first column shows the real object id which classifies the objects into the
34 specific classes. The second column called Idtrain describes the 19 more general
classes. Here all objects which do not belong to one of the important classes are
assigned the Id 19. The important classes are selected by attributes such as im-
portance for autonomous driving and frequency of occurrence of its objects in the
dataset. The third column just keeps the name of the class.
For now the fourth column is not relevant and just gets relevant when this dataset
will be combined with another one.

This dataset can also be evaluated because of its object groups. Therefore some
classes are usefully grouped for evaluation (not for training). This helps to better
analyze the behavior of the model. Some classes are closer to some classes than to
others. E.g. the classes person and rider are very similar or bicycle and motorcycle
or truck, bus, caravan, and trailer. The groups are defined by the publisher of this
dataset and are shown in table 4.1.

Flat Construction Object Nature Sky Human Vehicle

road building pole vegetation sky person car
sidewalk wall traffic light terrain rider truck

fence traffic sign bus
caravan
trailer
train

motorcycle
bicycle

Table 4.1: Groups to evaluate category accuracy

This table shows the logical groups of classes for better evaluation. Every but the
last group contains two to three classes. The vehicle group includes all vehicles,
whether two-wheeled or four-wheeled. Not listed is the group which contains all
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the other classes which are labeled with 19 during training. These are lots of little
classes which cannot be defined very well because of their big variance.

4.1.2 Mapillary Vistas

Another very important dataset in this work is the mapillary vistas dataset [20]. It is
still not that common as the cityscapes set yet, but it has its advantages. It contains
25000 large-scale street-level images so it is five times larger than the cityscapes set.
Furthermore, it classifies the objects in 66 instead of 34 semantic classes. Moreover,
the images are taken from all continents which makes it way more complex and
increases its variance. Where cityscapes just contain different German cities the
mapillary includes more information. On the other hand, it got a stronger diversity
of the weather conditions containing rain, fog, snow, and changing daylight. This
richness of details extends the information significantly compared to all other data
sets. All these elements make this dataset more realistic and should be used for
training autonomous driving tasks.
Due to its less spreading it is mainly used for pretraining because the results cannot
be compared to other models.

4.1.3 Converting mapillary Vistas labels to labels of cityscapes

The mapillary vistas dataset will be used to pretrain the models for the main training
on the cityscapes dataset. As described in section 4.1.2 the images of the mapillary
dataset are classified into 66 classes. To convert them into the 34 respectively 19
classes, the assignments shown in table 4.2 on page 26 are used.
The previous section already introduced the first part of the table which describes
the ids of the labels of the cityscapes dataset. Now the 66 classes of the mapillary
dataset are allocated into these classes. Not just into the 34 detailed classes but
also into the 19 classes to train on.
This assignment enables a way to pretrain on this more complex and highly different
dataset.

4.2 Presentation of used models

This section presents the used models and their developments applied to them.
These are strongly connected to the ones presented in the section ??.
The models focused on are the Fast-SCNN, the ShelfNet, the Squeeze-Seg-Net, and
the ConvNet.

4.2.1 Fast-SCNN

This section presents the Fast-Segmentation Convolutional Neural Network (SCNN)
which is an advancement of a typical two branch model. Multiple branches which
can also be seen as skip connections are used to connect global context with detailed
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Id Idtrain Label Cityscapes Label Mapillary Vistas

0 19 unlabeled unlabeled
1 19 ego vehicle ego vehicle
4 19 static mountain, bench, billboard, fire hydrant,

junction box, mailbox, phone booth,
trash can, car mount, banner,
cctv camera

5 19 dynamic ground animal, bird, wheeled slow,
boat, other vehicle

6 19 ground water, pedestrian area
7 0 road bike lane, service lane, crosswalk (plain),

road, lane marking (crosswalk), catch basin,
lane marking (general), manhole, pothole

8 1 sidewalk curb, curb cut, sidewalk
9 19 parking parking
10 19 rail track rail track
11 2 building building
12 3 wall wall
13 4 fence fence, bike rack
14 19 guard rail guard rail, barrier
15 19 bridge bridge
16 19 tunnel tunnel
17 5 pole pole, traffic sign frame, traffic sign (back),

utility pole, street light
18 19 pole group
19 6 traffic light traffic light
20 7 traffic sign traffic sign (front)
21 8 vegetation vegetation
22 9 terrain terrain, sand, snow
23 10 sky sky
24 11 person person
25 12 rider bicyclist, motorcyclist, other rider
26 13 car car
27 14 truck truck
28 15 bus bus
29 19 caravan caravan
30 19 trailer trailer
31 16 train train
32 17 motorcycle motorcycle
33 18 bicycle bicycle

Table 4.2: Transfer mapillary labels into cityscapes labels
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boundaries. Therefore the shallow part learns the boundary information on a bigger
resolution size and the deeper branch learns the global context on a much smaller
resolution.
This structure of the Fast-SCNN network which can be divided into four parts is
graphically shown in figure 4.1. The network is a general encoder-decoder structure
with one skip connection after the first three convolutions. Furthermore, it makes
use of depthwise separable convolutions to reduce runtime.

Figure 4.1: Fast SCNN network with explication of different layers

The first part describes the downsampling using normal convolutions and separable
convolutional operations. Due to efficiency reasons the network mainly uses separa-
ble convolutions. However, because of the just three input channels of the first map,
there is applied a basic convolutional filter to not waste important information and
to extend the number of channels very early in the network. The first three convo-
lutions are used to downsample early in the network to reduce spatial size while its
depth increases.

The next part is called the Global Feature Extractor part and uses a specific bot-
tleneck structure called bottleneck residual block introduced by MobileNet-V2 [18].
These expand the feature channels inside this structure to apply the main convolu-
tion on a bigger tensor. Due to efficiency, this structure uses depthwise convolutions
as convolutions with bigger kernel sizes. This bottleneck structure is shown in table
4.3.

Input Operator Kernel stride Activation Output

h x w x c Conv2D 1x1 1 ReLu h x w x tc
h x w x tc DWConv 3x3 s ReLu h

s
x w

s
x tc

h
s
x w

s
x tc Conv2D 1x1 1 - h

s
x w

s
x c’

Table 4.3: Specific bottleneck structure of Fast SCNN

Here h, w and c represents the height, width and the channel number of the feature
map, t the expansion factor which temporarily expands the feature map and s de-
fines the stride for the corresponding convolution.
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This means the first Convolution extends the channel number of the feature map by
an extension factor with an efficient 1x1 Convolution. Then the depthwise convolu-
tion with the bigger kernel size of 3x3 gets applied on the extended feature map to
capture more information at once.
The effect of the depthwise convolution was also empirically proven by MobileNet-
V2. They state that the accuracy just drops a very little bit but with around 8 times
smaller computational cost. The computational cost of a depthwise convolution is
shown in calculation 4.1.

cost = hi · wi · di
(
k2 + dj

)
(4.1)

where hi is the height, wi the width and di the depth of feature map i, k is the
kernel of the applied convolution and dj the output depth.
In comparison a normal convolution multiplies also the output depth and results in
much higher computationally costs.

cost = hi · wi · di · dj · k · k (4.2)

The last operation in the bottleneck structure is a normal convolution to restore the
output depth c′ of the feature map.
This bottleneck block gets applied three times to gather global features on the small
spatial size. Here the network downsamples a lot slower by applying the same block
several times. Table 4.4 describes the exact parameters used in the different layers.
t defines the expansion factor used for the bottleneck blocks, c the depth, n the
number of repetitions, and s the stride of the convolutions.

Input Block t c n s

256 x 512 x 3 Conv2D - 32 1 2
128 x 256 x 32 DSConv - 48 1 2
64 x 128 x 48 DSConv - 64 1 2

32 x 64 x 64 Bottleneck 6 64 3 2
16 x 32 x 64 Bottleneck 6 96 3 2
8 x 16 x 96 Bottleneck 6 128 3 1
8 x 16 x 128 PPM - 128 - -

8 x 16 x 128 FFM - 128 - -

32 x 64 x 128 DSConv - 128 2 1
32 x 64 x 128 Conv2D - 19 1 1

Table 4.4: Customized Fast SCNN network with slower upsampling part

The next part is called the Feature Fusion Module because it connects the two
branches. One branch is a skip connection from the early downsampling part and
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the other one is the output feature map of the bottleneck structure. On the skip
connection, the Feature Fusion Module (FFM) applies just a 1x1 convolution while
on the other branch it needs to apply an upsampling layer. Furthermore, it applies
a 3x3 depthwise convolution and a 1x1 convolution.
Due to efficiency reasons the two branches just get added instead of fusing them
more sophisticated. This addition is followed by a ReLU activation.

The last part, the upsampling in figure 4.1 is called the Classifier. Here two ef-
ficient depthwise convolutions and a normal convolution are applied to create an
output that spatially matches the input and consists of the expected 19 output
classes. As shown in figure 4.1 and specified in table 4.4 it applies a fast upsampling
by just upsampling and a few convolutional layers.

Results Fast SCNN

The model is trained on the cross-entropy metric and for evaluation, the pixel ac-
curacy and the mean Intersection over Union (IoU) are used. The mean IoU is the
most common and representative metric for image segmentation tasks. The results
are shown in table 4.5.

Metric Result

Pixel accuracy 0.9055
Mean Intersection over Union 66.42
Runtime [s] 0.2524

Table 4.5: Segmentation results of Fast SCNN

The accuracy used to be much higher than the mean IoU. The IoU is a very critical
measure for segmentation tasks because it averages the performance overall classes.
So small classes can have a bigger influence on the results which makes this metric
way more representative than the accuracy. State-of-the-art results for segmentation
on the cityscapes dataset reach values between 65% and 70%.

This network is trained with the adam optimizer and with batches of 4. Due to
the big image resolution, this is the limit of the available machines. The batches
are generated by a data generator applying different data augmentation techniques
on random examples of the shuffled dataset. For data augmentation, random flip-
ping, resizing between 0.5 to 2, translation of up to 20%, channel shifts up to 20,
and brightness noise from 0.5 to 2 are applied. These techniques are justified and
explained later on in section 4.3.2 Compare data augmentation techniques.

Figure 4.2 shows the evolution of accuracy and loss during training. The left figure
shows the accuracy while the right one shows the loss of the training over 1000
epochs.



30 CHAPTER 4. SEMANTIC SEGMENTATION

Figure 4.2: Accuracy and loss of training of Fast SCNN over 1000 epochs

First thing to observe is that the model is trained very well but still tends to slightly
overfit because the validation loss is raising while the loss on the training data still
decreases. However the validation accuracy still increases, so there is no need to
stop the training earlier. Just after 1000 epochs the accuracy stagnates and does
not increase any further. For semantic segmentation tasks, this is common training
progress. The good tuning of this model also shows the fact that the accuracy of
training data (0.9102) and validation data (0.9055) are very close.

4.2.2 ShelfNet

The ShelfNet is a new network structure that is strongly based on the principle of
encoder-decoder networks. As shown in figure 4.3 it is separated into two main parts
- the backbone network and the segmentation shelf.
As backbone network, every encoder structure can be used. Here skip connections
feed the feature maps of different spatial sizes into the segmentation shelf. The
segmentation shelf adds multiple encoder-decoder structures to the model to add
more depth to the network. Because of the better information flow through a bigger
number of paths created by the skip connections, segmentation accuracy can be
improved with just a few runtime increases.
Figure 4.3 shows the shelfnet structure divided into two parts. As a backbone net-
work there can be used every encoding CNN which reduces the spatial size of input
tensors at least four times. In this network a ResNet18 is used which downsamples
the feature maps on levels A to D to spatial sizes of 1

4
, 1

8
, 1

16
and 1

32
with depths of

64, 128, 256 and 512 respectively. The backbone network serves as the first encoding
step applied to the network.
Due to efficiency reasons these feature maps are reduced in depth by the green blocks
when introducing them into the segmentation shelf.
Following calculation of the computational cost show the effect of this depth reduc-
tion. H and W are spatial sizes, K is the kernel size, and Cin are Cout are the
channel number of input and output respectively.

cost = H ·W ·K2 · Cin · Cout (4.3)
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Figure 4.3: Network structure of ShelfNet which introduces the segmentation shelf
as multiple encoder-decoder pairs

The reduction of the input and output channels to its half reduces the computational
cost quadratically. With this, it is possible to add more encoder-decoder pairs to
the segmentation shelf without surpassing the original computation cost.
The depth created in each block defines the depth levels for the complete segmen-
tation shelf. The green blocks are formed by a sequence of a 1x1 convolution, batch
normalization, and a ReLU activation.
Here the segmentation shelf applies in column two the first decoder structure by
continuously upsampling the smallest feature map. Therefore the shelfnet uses spe-
cific structures called s-blocks. Before every s-block in the segmentation shelf there
are added skip connections (shown in figure 4.3) before applying the convolutional
operations in the s-block.
Figure 4.4 described all the operations applied inside the s-block. First, there are
added the skip connections of the previous column (encoder/decoder), then two 3x3
convolutions with shared weights are applied. Both are followed by batch normal-
ization layers and the first one got an ReLU activation. Between both convolutions,
a dropout layer is applied to avoid too fast overfitting inside this block. At least the
residual shortcut gets added and a ReLU activation is applied on the output.
To make the network suitable for real-time applications level A of the segmentation
shelf is skipped and the second encoder starts again at level B in column 3. The
process inside the segmentation shelf stays the same.
In column 4 the decoder upsamples the output feature map up to the final resolu-
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Figure 4.4: S-Block: Residual block with shared weights used in segmentation shelf

tion. A last 1x1 convolution creates the 19 output classes with a softmax activation.

The skip connections between the encoder and decoders generate lots of different
paths for information flow which increases segmentation accuracy. These different
paths create an ensemble of different FCN networks. Andreas et al. [?] has proven
that ResNets because of their residual connections improve performance because
they work as an ensemble of different FCNs. This principle got archived in the
ShelfNet by its skip connections.

Results ShelfNet

This model is also trained on the cross-entropy metric and for evaluation, the pixel
accuracy and the mean IoU are used. The following table shows the results in cate-
gories of accuracy, mean IoU, and runtime.

Metric Result

Pixel accuracy 0.9390
Mean IoU 73.47
Runtime [s] 0.3123

Table 4.6: Segmentation results if ShelfNet

The performance results in the table show that this network exceeds the results of
the earlier presented model in terms of accuracy as well as mean IoU. The accuracy
is just a little higher but especially the mean IoU metric shows with 73.47% the big
difference in performance.
This good performance comes in the cost of runtime like it is shown in table 4.6.
This network got with 13.420.063 parameters, more than 7 times more parameters
than the efficient fastscnn. But that many parameters do not harm runtime that
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much due to the effective channel reduction and by creating a shallow segmentation
shelf. The different paths for information flow in the segmentation shelf lead to high
accuracy.

Figure 4.5 shows the training over 1000 epochs where the best model is saved.
On the left, it shows the progress of accuracy, and on the right the loss value.

Figure 4.5: Accuracy and loss of training with ShelfNet over 1000 epochs

The learning progress shows that the model is designed very well because the per-
formance on training and validation data is close and the model is not overfitting.
The accuracy on validation data is a little lower than on the training set during
the whole training and reaches just after 400 epochs a level of saturation where the
performance just improves very little. From there on the loss value does stay nearly
the same but keeps oscillating.

4.2.3 ConvNet

The ConvNet describes a typical encoder-decoder network (presented in figure 4.6)
which bases on redesigned bottleneck blocks including residual connections. Unlike
many ResNets which add more depth to their network to achieve better performance,
this model proposes a wider architecture that makes extremely efficient use of its
minimized amount of layers.
To generate this width the ConvNet uses a different bottleneck structure called
non bottleneck 1D explained in figure 4.7a. Key factors are the convolutions with
factorized 1D kernels which lead to fewer parameters and faster execution. These
consist of four stacked one-dimensional convolutions with a specified width w with
a residual connection. As shown by calculation 4.4, these convolutions (left) just
have 2

3
of the parameters that a normal bottleneck block (right) consisting of two

3x3 convolutions would have.

H ·W · 2 ·K · 1 · Cin · Cout < H ·W ·K2 · Cin · Cout (4.4)

Every convolution is followed by a batch normalization and a ReLU activation.
The other important structure used in this network is called a downsampler block
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Figure 4.6: Encoder - decoder structure created by ConvNet

which is also explained in figure 4.7b. This type of downsampling was introduced by
the ENet [14]. This block concatenates the feature maps of a 3x3 convolution and
a max-pooling layer in parallel. It divides the spatial size by half what is applied in
the whole network three times.

(a) Specific non-bottleneck structure
(b) Downsampler block with parallel
pooling and convolutional layer

Figure 4.7: Types of blocks used in ConvNet

Table 4.7 shows the complete network with its layers and their output maps. This
model uses an early downsampling of the spatial size of the feature maps to make
efficient use of its layers. The depth of the feature map changes every time and
just then when the spatial size gets changed. So this model just operates on three
different sizes of the feature map.
The main part applies eight non-bottleneck blocks with different dilation ratios. The
dilated convolutions in this network replace further downsampling of the feature map
to gather more context. Through the bigger receptive field of its convolutions, this
model learns global context without decreasing the spatial size.
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Layer Type out-C out-Res

1 Downsampler block 16 128x256

2 Downsampler block 64 64x128
3-7 5 x Non bottleneck 1D 64 64x128

8 Downsampler block 128 32x64
9 Non bottleneck 1D (dilated 2) 128 32x64
10 Non bottleneck 1D (dilated 4) 128 32x64
11 Non bottleneck 1D (dilated 8) 128 32x64
12 Non bottleneck 1D (dilated 16) 128 32x64
13 Non bottleneck 1D (dilated 2) 128 32x64
14 Non bottleneck 1D (dilated 4) 128 32x64
15 Non bottleneck 1D (dilated 8) 128 32x64
16 Non bottleneck 1D (dilated 16) 128 32x64

17 Deconvolution (upsampling) 64 64x128
18-19 2 x Non bottleneck 1D 64 64x128

20 Deconvolution (upsampling) 64 128x256
21-22 2 x Non bottleneck 1D 64 128x256

23 Deconvolution (upsampling) 19 256x512

Table 4.7: Layer disposal of ConvNet

Instead of the commonly used fast upsampling this network proposes a quite slower
upsampling compared to the little number of layers used for this network. Further-
more, it does not use simple upsampling but the computationally more complex
deconvolution with stride 2.

Results ConvNet

This part presents the results of training the convnet on the cityscapes dataset. As
before this model is also trained on the cross-entropy loss and with the accuracy and
mean IoU metric. The adam optimizer controls the learning process and the model
is trained over 1000 epochs with a batch size of 2.

Metric Result

Pixel accuracy 0.9151
Mean IoU 63.68
Runtime [s] 0.3388

Table 4.8: Segmentation results if ConvNet

Table 4.8 show an accuracy of 91.51% and an mean IoU of 63.68%. Here it happens
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that the accuracy is higher than with the Fast-SCNN but the mean IoU is lower.
This states an less consistent recognition of the different classes in this model. As
well the runtime is higher than the other models. This is an effect of the compu-
tationally expensive dilated convolutions used in this model. Generally this model
reaches also very good results for real-time models.

Figure 4.8 shows the training process of the convnet over the 1000 trained epochs.
The figure shows on the left the accuracy and on the right the loss value.

Figure 4.8: Accuracy and loss of training with ConvNet over 1000 epochs

Especially the loss function shows that the model tends to overfit on the training
data. Where the loss on the training set rises continuously it starts to increase again
after 300 epochs on the validation data. Moreover, it contains a high variance in its
results because both curves are oscillating.
On the other hand the accuracy is raising during the complete training although
the loss begins early to increase again. The final accuracy on both sets is very close
and reaches nearly 92%.

4.2.4 Custom SCNN

This part presents a new model which surpasses the others in terms of accuracy
and runtime. This customized model is mainly based on the Fast-SCNN presented
in section 4.2.1. The Fast SCNN is extremely efficient and still achieves very good
results. Due to its performance which is faster than real-time, there are applied
little changes to increase performance at little costs of runtime.

The first change is made not due to the increase of performance or runtime but
just to make the model better accessible. The original one uses for the Pyramid
Pooling Module (PPM) a lambda layer to call an external resizing function inside a
network. This function cannot be loaded, so the model cannot be either. It could
be used by constructing the model and loading its weights but this change makes it
possible to save and load the model on its own.
Therefore an upsample layer is used instead of the resize function in the original
network. These to do the same by just resizing the different tensors to the final
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output shape. The only difference applied is found in the pooling sizes. The orig-
inal network uses a MaxPooling operation followed by a convolution to reduce the
shape from 32x64 to spatial sizes of [1,2,3,4]. Every but the third can be restored
by a pooling layer to the original size of 32x64. The feature map of 3x3 cannot be
extended to the output map of 32x64 by any upsampling layer. That is why the
custom version uses pooling steps to spatial sizes of [1,2,2,4] which can be easily
extended to the original shape by an upsampling layer because these do not support
decimal numbers. Moreover, this operation is more efficient than loading an external
function.
Another performance improvement can be made in the upsampling path. Here the
original network just uses an 8x8 upsample layer which does not contain any weights
to upsample the image from the solution 128x256 up to 1024x2048. Here the new
model uses two transposed convolutions to upsample the feature map step by step
while applying weights to the upsampling. These help to sharpen the predictions
and learn the boundary context. The depth of the feature map gets downsampled
in three steps than just in one. These steps increase performance further at cost of
more parameters which leads to longer runtime.
As well as the upsample part the downsampling part can be adjusted as well. Here
the original model uses separable convolutions due to efficiency reasons. While nor-
mal convolutions have been proven useful in the first few layers these separable
convolutions are changed by normal ones. These as well increase the runtime a little
due to more parameters. The comparison of both models regarding their number of
parameters and their runtime is shown in table 4.10.
The added convolutions bring a few more weights to train what makes this model
more susceptible to overfitting. To avoid that there are implemented some dropout
layers before the convolutional operations. These are especially important in the
new down- and upsample branches.

The following table 4.9 presents the different improvement steps and their effects.
First, every change gets evaluated separately and after that, the results of the com-
bined changes are presented.
The default model reaches an accuracy of 0.9055 on test data and shows a balanced
training, were training and test accuracy are very close. Here the model reaches his
limits because accuracy does not increase any further by training over more epochs.
The training of this model is tested for 1000 epochs because more training will not
improve performance any further. However the model does not suffer from overfit-
ting on this stage.
As experiment 1 shows, just adding dropout layers does not push the network perfor-
mance. It is used a dropout of 0.3 before the convolutional blocks. The experiments
show that the accuracy of test data does not increase compared to the default net-
work. Nevertheless, it improves on training data. These experiments state the
expectations that the model does not overfit on the training data but it cannot en-
hance the results. This technique will get more useful when applied together with
other adjustments.
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No. Dropout Downsample Upsample PPM Train Test

- no DSConv Upsample Lambda .9102 .9055

1 yes DSConv Upsample Lambda .9242 .9047
2 no Conv Upsample Upsample .9276 .9061
3 no DSConv Conv Lambda .9369 .9100
4 no DSConv Upsample Upsample .9080 .9049
5 no DSConv Upsample Upsample* .9019 .9074

6 yes DSConv Conv Lambda .9254 .9042
7 no DSConv Conv Upsample* .9316 .9098
8 no Conv Conv Upsample* .9465 .9109
9 yes Conv Conv Upsample* .9260 .9043

Table 4.9: Improvements applied to create custom SCNN

The usage of normal convolutions instead of depthwise ones increases the perfor-
mance a very little bit. Furthermore, the model does start to slightly overfit after
around 800 epochs. Further training here will just increase performance on the
training data.
On the other hand the influence of slower upsampling by transposed convolutions
increases the results very much. In experiment 3 the accuracy on both sets rises
significantly. This states that slower upsampling by convolutions is beneficial for
this model. Here the model reaches the overfitting part earlier but as well the per-
formance on test data does not stagnate too early.
As expected the experiments of using upsample layers instead of a resize function
in the lambda layer do not change the results significantly. Two experiments no.4
and no.5 define different interpolation methods in the upsampling layer. The one
marked with the * uses nearest neighbor upsampling and the other one a bilinear in-
terpolation. The bilinear upsampling approximately reaches the same results as the
default model which as well uses bilinear upsampling in the resize function. With
the nearest neighbor method, these results are surpassed on the test data. This
means the change of the pyramid pooling steps does not influence performance as
strong as the interpolation method.

The next part describes the results of new models with the combination of the
changes presented in table 4.9. The best model is the one with slower upsampling
which still suffers from overfitting. To prevent this some dropout layers are applied
before the convolutions in the upsampling part. Experiment 6 shows that dropout
in the upsampling part harm performance on both data sets instead of slowing down
convergence towards the training data and better generalization on test data.
Combining the upsampling by convolutions with the different PPM results stay equal
to the ones with the default PPM. Here the upsampling layer with nearest-neighbor
interpolation does not bring an improvement. At least it reaches less convergence
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towards the training data.
By also adjusting the downsampling part by changing the depthwise convolutions
to normal convolutions the performance of the model can be improved again. Here
the accuracy of test data exceeds all the other models. As well on the training data
the accuracy rises. Due to the new parameters, the model can learn more complex
and can improve the performance of the dataset. Similarly, the overfitting increases
which leads to a bigger difference between the results on training and test data.
To prevent this the usage of overfitting gets evaluated again. Every convolution
to downsample the feature maps, in the beginning, follows a dropout layer with a
dropout ratio of 0.3. Experiment 9 shows that the dropout again harms the results
and cannot prevent overfitting.

The training progress is shown in figure 4.9. It shows the progress of the accu-
racy metric on the left as well as the loss on the right.

Figure 4.9: Accuracy and loss of training of SCNN over 1000 epochs

This model is clearly facing the overfitting problem. Where the accuracy on training
data monotonously rises stagnates the accuracy on the validation data and just in-
creases a very little bit. The loss looks similar and stagnates at 0.4 on the validation
data.
Compared to the training progress of the original fastscnn shown in figure 4.2 this
new network faces more problems of overfitting where the original network reaches
its limits. Here the accuracy on the training data increases higher than on the vali-
dation set (like shown in table 4.9).

The next part evaluates the runtime performance of the original Fast SCNN and the
two most influential improvements made to it. Fast SCNN * describes the model
in table 4.9 referred to as experiment 3 and Fast SCNN ** describes the model in
experiment 8.
Due to the changes applied above the runtime increases a little bit. The runtime is
evaluated by averaging the prediction time of 100 random examples of the test set.
The model runs on a Titan Xp with 2GPU.
The results show that for the Fast-SCNN the runtime increases proportionally to
increasing parameters. The original one is the most efficient but also runs faster
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Parameters Runtime Accuracy Mean IoU

Fast SCNN 1.817.162 0.2524 0.9100 66.42
Fast SCNN * 1.883.700 0.2744 0.9137 69.66
Fast SCNN ** 1.920.772 0.2984 0.9109 68.76

Table 4.10: Runtime evaluation of Fast SCNN and its improved version

than real-time. BY just give up a little runtime an improvement of nearly 5% of
mean IoU can be made. This resumes that the Fast-SCNN* from experiment 3 in
table 4.9 is the best model of these three.

As mentioned before the most effective metric to evaluate an model for the segmen-
tation problem is the IoU or the mean IoU. The next part evaluates the difference
in IoU of both models which is presented in figure 4.10. It shows the IoU for every
class for the Fast-SCNN 4.2.1 in blue and the SCNN 4.2.4 in orange.

Figure 4.10: Comparison of SCNN and original Fast-SCNN regarding IoU

Like indicated in the evaluation of the SCNN the performance of both models is
very close. This also gets proven for the IoU by figure 4.10.
In general the distribution shows a little difference between classes that are detected
well and others that are less often classified correctly. The good classes are the road,
the sidewalk, buildings, vegetation, sky, and cars. Classes that are hard to classify
are for example poles, traffic lights riders, and motorcycles. Noticeable, that these
classes are all very small objects and do not appear in big pixel groups. The other
objects like the sky, the road, buildings, or vegetation are contradictory and ap-
pear mostly in bigger pixel groups. This leads to the conclusion that bigger objects
and classes are most likely easier to detect. This gets proven by the point that the
boundaries of objects are the most difficult part to classify correctly. Smaller objects
naturally contain more pixels of area boundaries.

The Fast-SCNN surpasses the SCNN on two classes (wall and fence) where the
SCNN performs better on the other classes. The biggest differences can be detected
for the classes terrain, persons, and riders. This does not show any trend towards
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smaller classes or smaller objects which might be detected worse with worse models.
The classes with the biggest difference in IoU seem to be arbitrary and can be justi-
fied with the variable training behavior of neural networks. The class with the best
results are for both networks the road and cars. Lowest IoU accuracy is detected
for motorcycles.

4.3 Evaluate Training methods

This section describes the different experiments made in the training phase. Ex-
periments are made regarding the number of training classes, data augmentation
techniques, pretraining, and image resolutions. All the effects are shown on the
customized Fast-SCNN from section 4.2.4.

4.3.1 Compare with training on more specific classes

This part compares the results trained on different segmentation classes. The orig-
inal dataset specifies these images much more specific than it is useful to train on
because little classes have fewer appearances. Because of this, it is better to group
them. Moreover to mix different data sets their classes must match.

Figure 4.11 shows the training progress of the SCNN trained on the cityscapes
set with 34 classes. The figure shows on the left the progress in accuracy and on the
right the change of the loss value. For this example, there is no data augmentation
applied.

Figure 4.11: Accuracy and loss of training of SCNN with 34 classes over 500 epochs

It shows that it tackles the problem with overfitting much stronger than the models
trained over the 20 classes. The loss begins to increase again just after 200 epochs.
The accuracy as well starts to drop over time. It reaches its maximum after 200
epochs. As well, the training progress is not that smooth and contains some out-
liers where the performance drops a lot for just one epoch. The performance on the
training set is very good and reaches 96% of accuracy. This indicates that the model
is sure capable of learning to classify the scenes in more classes but it suffers under
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big overfitting towards the training data.

Table 4.11 compares the accuracy and mean IoU of the model trained on all 34
and on the recommended 20 classes. The election of these classes was introduced in
chapter 4.1.1.

34 classes (original) 20 classes (recommended)

Pixel accuracy 0.8983 0.9137
Mean IoU 41.91 69.66

Table 4.11: Evaluation of different number of segmentation classes

It shows that the accuracy reached with all 34 classes is very high and close to the
one trained on just 20 classes. It nearly reaches 90% accuracy. The mean IoU shows
the downside of training on that many classes. The IoU just reaches 41.91% To be
able to compare them better the average over the 20 recommended classes is taken
for this value. Here the results indicate that there are lots of classes which are just
very barely classified correctly. These are mainly the small classes. This leads to
the high accuracy but lower IoU.

Figure 4.12 evaluates the IoU on the 20 recommended classes. It shows the con-
sequences of training on more detailed classes and the effects of usefully grouping
them. The performance with all 34 classes is represented by the blue bars and the
orange bars represent the results obtained with the model trained just on 20 classes.

Figure 4.12: Comparison of mean IoU of training on 19 or 34 classes

The figure shows that the model trained on all classes compared to the one trained
on 20 classes results in very uneven distribution. Some classes are classified very
well but others are classified very badly as well. This difference is also there for
the 20 classes model but with 34 classes it is far bigger. Wherewith 20 classes ev-
ery class except motorcycles are classified with at least 45% with 34 output classes
there are 8 out of 20 classes which are detected with equal or less than 20% of IoU.
These mainly are classes that do not appear very often like trucks, buses, trains, or
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motorcycles. As well there are the main classes like the road, sidewalks buildings,
vegetation, sky, or cars that are classified nearly as good as with the other model
trained on just 20 classes.
This classification pattern underlines the results shown in table 4.12 that the accu-
racy is close but there is a bigger difference in IoU between the models. Due to the
classes with low IoUs the mean IoU is also low.

The following part evaluated the three class groups separated with the model trained
on 34. It compares the IoU to analyze the sense of purpose of grouping these rec-
ommended classes together. The IoU over all classes, as well as the IoU over the 15
classes which are ignored by the grouping step, is shown in table 4.12.

Classes all (34) recommended (20) ignored (15)

Mean IoU 32.30 41.91 20.11

Table 4.12: Evaluation of mean IoU on different classes

Table 4.12 shows that on the 20 recommended classes the iou is with 41.91% far
higher than on all classes where it only reaches 32.30%. The classes which are ig-
nored in the training just reach an average of 20% IoU. This can be misleading
because also the ignored classes contain labels that are very well classified. These
are for example the ego vehicle or the rectification border. These are the outer pixels
with which every image is padded. All input images contain a 3 pixel frame around
the real image.
The IoU for all 34 classes is presented in figure 4.13. The red marked bars are the
labels that should be ignored during training and the blue bars are the classes to
normally train on.

Figure 4.13: Evaluation of IoU on all 34 classes

Noticeable, that besides the three big ignored classes (ego vehicle, rectification bor-
der, out of ROI) which are detected very well, the other ignored classes return very
bad results. These are indeed classes that firstly do not appear very often in the
dataset and second do not have any specific characteristics for autonomous driving.
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For example, analyzing the vehicles there are cars which is the main group, trucks
which are bigger and slower, buses which are important because these might are
allowed to drive on specific lanes, trains which ride on rails and the two-wheelers.
On the other hand caravans and trailers do not have any specific characteristics why
these need to be classified especially.

4.3.2 Compare data augmentation techniques

The experiments in this part focus on various data augmentation techniques. These
are used to increment the variety of training data and make the model generalize
better. For the segmentation task, there cannot be used any augmentation tech-
nique to improve results. Some techniques work better where others are completely
unsuitable.
The data augmentation techniques are just applied to the training data and the
validation data is not touched during this process.

The most common and basic one is randomly flipping the image. For the neu-
ral network, the image changes completely and creates a new training example. For
this task of urban street scenes, vertical flips do not make sense so just horizontal
flips are applied. It is not helpful to learn images upside down because e.g. cars,
trees, or buildings are mainly located on the bottom half of the image and look
completely different upside down. Furthermore, they do not appear in the test set
upside down so the vertical flipping is not applied. On the other hand, horizontal
flips are a very useful technique because they do not change the scene and the images
do not get more dissimilar to the test set. If the image is flipped the corresponding
label needs to be flipped too.

A very useful technique for segmentation tasks is every sort of noise applied to
the original image. Changing randomly selected pixels is a good way to avoid over-
fitting although it is not that effective as other techniques like flipping. Because the
labels are feature maps these techniques must not be applied to the labels. Changing
values of the labels leads to inconsistent training because the same object now gets
assigned, different classes.
Most natural types of noise are brightness changes and channel shifts. Brightness
changes are defined by an interval and for every image, in the training batch, there
is randomly selected one different value to change the brightness of the data. A
brightness value of 1 means the original image. While augmentation there can be
used values smaller than 1 as well as values bigger than 1. This makes the image
look brighter or darker.
As well as brightness changes, channel shifts are used to randomly change the pixel
values of the input images. In this case there randomly are added values inside
the specified interval to every image channel. These values which get added can be
positive as well as negative and are the same for every pixel and every channel.
Pixelchanges like Gaussian noise, blur, contrast changes, saturation changes are not
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supported by Keras. Also in the state-of-the-art networks, nothing different than
the two mentioned are used. For this reason, this work focuses on these two pixel-
wise augmentation methods.

A very helpful technique is zooming into or out of the image to create new samples.
Zooming into the image means cropping any random part and resizing the cropped
image to the original size. This crop keeps the spatial dimension to not change the
proportions of the displayed objects.
An important detail by zooming in is to specify the desired interpolation methods.
The interpolation method for the image can be chosen freely, which one fits the best
for the model (bilinear, cubic, gaussian, etc.) For the label, on the other hand, it
necessarily has to be the nearest neighbor interpolation because every value in the
label feature map describes a specific class. Bad interpolated classes in the label
result in unclear contour in the final predictions.
Zooming in makes every object seem to be bigger but keeps the scene basically as it
is. Otherwise zooming out displays the image smaller and pads the undefined parts
with new values. The interpolation methods to define the new interpolated values
due to zooming stay the same as if zooming in. For the new generated pixels outside
the original image it needs to be chosen one filling method out of nearest, constant
or reflect.
Nearest pads every outside value with the last known image value. Because every
image in the dataset is surrounded by three pixels of 0 the outer pixels theoretically
are be filled with zeros. Due to shifting or zooming these outer pixels can be re-
moved. Because of this case, the images can be padded by any value existing in the
image data. This case appears very often by applying aggressive data augmentation.
This method is very useful for little translations.
By choosing the constant mode the padding value can be chosen and will be con-
stant over every padding. This option is specially designed for images taken over
monochromatic backgrounds but is less useful for natural images.
The last option is to reflect the last values of the image. This method is useful for
continuous or natural backgrounds containing trees, mountains, houses, etc.

Shifting is another affine transformation that can be used to create new image data
out of the original ones. Shifts can be applied horizontally or vertically. For this
work, there are used both because they do not change the scene. As well as zooming
out, shifting creates new values outside of the image. These values are filled by the
same method as for zooming.
The combination of cropping and zooming gives more variety to the generation of
training data instead of just centered zooming. Due to the shifting, it can be zoomed
to any corner too.

Table 4.13 presents the experiments made to evaluate the different augmentation
methods to reach the best results. Applied are the just described methods with var-
ious parameters. This part does not include the combination of data augmentation
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methods and evaluates each one separately. Due to the high training costs, these
methods are evaluated for 100 epochs to identify tendencies and set up the right
combination later on.

Data Augmentation Accuracy
shift bright zoom channel flip train test

- - - - - .9509 .9001
.2* - - - - .9357 .8840
.2** - - - - .9171 .8886
- [.5,2.] - - - .9357 .8892
- [.7,1.5] - - - .9386 .8904
- - 0.5* - - .9246 .8805
- - 0.5** - - .9121 .8868
- - [1.,1.5]** - - .9300 .8804
- - - 20. - .9499 .8965
- - - - x .9413 .9010

Table 4.13: Effect of different data augmentation techniques applied separately

The results without data augmentation seem to be better than the rest. Just with
flipped images better accuracy is reached. But the difference between the known and
unknown data is quite big. Here the model reaches its limits and cannot improve
further.
Figure 4.14 shows the training progress of the presented data augmentation tech-
niques. Without any augmentation, the accuracy on training data is strictly monotonously
increasing and reaches very fast an accuracy of 0.95 while on the test data the ac-
curacy just slightly passes 0.9. Anyway, the accuracy is still increasing on both sets
which means that the model still not has reached its limits.

The results of training with flipped images exceed these results and reach the best
results. Due to the increased training data and variety due to the augmentation the
accuracy on the training data also does not rise that high like without. This leaves
room for further improvements by training over more epochs.
The training progress with flipped images looks nearly the same as without augmen-
tation but reaches over the whole training better results. An important difference is
that the results on the training data do not increase that fast and converges slower.
As consequence, the training can be kept up longer which pushes the overall results.

By applying channel shifts the training reaches good results in accuracy compared
to the other ones. On the other hand are the results on both sets of data worse
than without data augmentation. This indicates that it harms performance on the
test data while not slowing down convergence towards the training data overfitting.
Still, it proves to be a valid method to increase variety in the data and increase
results when it is combined with other methods.
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Figure 4.14: Comparison of training of different data augmentation techniques

The training progress shows that it does not drastically slow down learning but ac-
curacy on the test data increases stronger than with the before presented methods.
This enables effective training over more epochs. Apart from that the results on
test data are less consistent and every once in a while it produces outliers with bad
prediction results.
Applying brightness changes as well does not prevent overfitting on large scale but it
postpones strong convergence towards training data and does not harm performance
on test data very much. This indicates it will be useful for long training but it needs
to be combined with other techniques. On its own as well as channel shifts their
effects are rather small.

To prevent or postpone overfitting shifting the original image in the x and y di-
rection is a very useful method. The accuracy on both data sets does not rise that
fast and strong as without. Also, the performance on the test set increases slower.
These experiments here use a shifting of up to 20% in both directions with either
padding of reflecting pixels or extending the nearest one. Especially with the re-
flecting pattern the accuracy on both data sets is very close which indicates good
training without any tendency to overfit. On the downside, this method slows down
training very much.
The big effect of applying shifts is shown by its training curves which are still very
close to each other and continuously increasing. The model is not even close to
reaching its limits. On the other hand, shifting increases the inconsistency over the
training and produces outlier results.

Zooming is a more aggressive data augmentation method too. The results show
less convergence towards the training data which indicates that the training volume
can be increased further. The same applies to the results on the test data. Here
the results are worse than without augmentation after the same number of training
epochs. The table shows the comparison between randomly zooming out and in
or just zooming in. The results are better by randomly applying in/out zooming
because the accuracy on test data is higher and lower on training data. This lets
room for further training and counteracts overfitting.
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As well it is shown that the reflecting pattern is way more useful than the nearest
respectively the constant mode. The nearest neighbor padding results in a constant
zero padding around the images by zooming out. By zooming in there is not used no
padding. These experiments state the expectations that reflecting the outer pixels
proves useful for natural images like urban street scenes.
The training curves look the same as with shifted images. As well it does not overfit
on the training data and it increases continuously but it also produces outlier re-
sults. But for the performance, these are not important and can be accepted.

Combined these methods influence one another and boost their performances. The
effect of avoiding and postponing overfitting is shown by the number of epochs
trained to reach the limits of the network.

Data Augmentation Accuracy
no. epochs shift bright zoom channel flip train test

0 200 - - - - - .9548 .9012
1 300 - [.5,2.] - 20 x .9555 .9102
2 500 .1* [.7,1.5] .3* 10 x .9486 .9041
3 500 .1** [.7,1.5] .3** 10 x .9437 .9077
4 1000 .2** [.7,1.5] .3** 10 x .9492 .9081
5 1000 .2** [.5,2.] .5** 20 x .9426 .9137
6 1000 .2* [.5,2.] .5* 20 x .9449 .9087

Table 4.14: Effect of joined data augmentation techniques applied

Flipping will be applied in every step because it is the only technique which also
separately improved results. As well it can be naturally combined with every other
technique without harming the effect of another one. In the first step just pixel scal-
ing data augmentation techniques are applied together. This boosts the accuracy
by nearly 1%. There are applied very aggressive values for brightness changes and
channel shifts. The results show that the accuracy on the training data rises slightly
but a lot on the test data. Here it can be concluded that these transformations
does not prevent effectively overfitting on the training data because the accuracy is
still far higher than on the test data. But it converges slower so the model can be
trained over 300 epochs and which improves the performance on the test set.
For experiment 2 there are less aggressive pixel scaling techniques but also shifting
and zooming applied. It uses the nearest neighbor padding (*) for pixels outside the
image. Here the accuracy does not raise that fast and it can be trained over more
epochs. Although the accuracy of the training set is very high, the accuracy of the
test data improves just a little compared to the results without data augmentation.
By changing the padding mode to the reflect model (**) the performance on the test
data increases and decreases on the training data. This confirms more generalization
and also slows down convergence towards the training data. These results do not
reach the ones from experiment 1 but it leaves room for longer training.
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By increasing the maximum shifting factor and training for longer, the results again
improve a little. Especially the performance on the training data increases and the
model reaches stronger overfitting.
Increasing the data augmentations by stronger shifting and zooming this can be
limited. Here the model does not reach that strong overfitting towards the training
data like in the experiment before but also improves the performance on the test
set. This little change leads to the best results with combined data augmentation
techniques.
Compared to them the results with the nearest neighbor padding drop slightly. On
the training data, it is still quite high but on the test data, it lacks performance.
This underlines the assumption that for realistic images the reflecting pattern works
best and outperforms the nearest or the constant mode.

To conclude the effect of data augmentation techniques, for this task is has proven
to be very effective. The main reason is to postpone overfitting on the training data
and enable more training. This effect can especially be shown in table 4.14. Here
the training size is five times larger due to adding different techniques.
Furthermore this section describes the effect of each technique. Methods like shift-
ing or zooming slow down the convergence towards training data very much. The
slower training can particularly be observed in the results in table 4.13. Here the
results seem worse than the others because at this training step it does not reach
results as good as without. With bad parameters, the overall effects are very small
and can lead to local maxima. But used in the correct way it is useful to improve
the overall performance. Especially the padding pattern has a big influence on the
training. This effect gets greater the larger the training size is what gets clear in
table 4.14.
On the other hand the pixel changing techniques not just slow down the training a
little bit but pushes the results on the test set quite well. This is indicated by the
results in table 4.13 and proven by the results in table 4.14.

4.3.3 Evaluate influence of pretraining

Another method applied to increase performance is to pretrain the models with
another dataset. Pretraining can have a good influence on the performance of neural
networks and help to find global maxima. For pretraining, the model is trained
on the mapillary vistas dataset 4.1.2. To present the effects of pretraining the
customized SCNN 4.2.4 is used. It first shows the performance of the model on the
pretraining dataset and afterward the effects of using this as pretraining.

Pretraining on mapillary vistas dataset

First, the model is trained on the mapillary dataset. This one got far more labels
than the cityscapes set so here the labels got converted like shown in section 4.1.2
in table 4.2. This is done to match the classes and got the same labels on the same
objects.
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The balance of both data sets is compared in the following part to identify differ-
ences. Figure 4.15 shows the percentage number of pixels in both data sets. The
blue bars are the number of the pixels in the mapillary set and the orange bars the
ones in the cityscapes set.

Figure 4.15: Pixel occurrence of classes in the cityscapes compared to mapillary
vistas dataset

First the figure shows a similar distribution for all classes on the two data sets. It
also gets clear that the camera angle how the images are taken is steeper for the
cityscapes set. This leads to more pixels belonging to the road and consequently for
the mapillary set to the sky. As well the cityscapes data is limited to cities where
the mapillary set includes scenes outside of cities. This got shown by fewer pixels
of buildings and vegetation. As well the number of pixels of the class persons is
significantly higher in the cityscapes dataset. This might help to especially pretrain
on this class. The other classes are very even.

Another important point is that the dataset is 6 times bigger than the cityscapes
set so the training lasts 6.7 times as long. This makes it difficult to train it over a
long period as 100 epochs run for over 12 days straight. Because of this, the model
has just trained over 100 epochs which are shown in figure 4.16. The left graphic
shows the progress in accuracy and the right one the progress of the loss function
value. This model as well is trained on cross-entropy and uses the adam optimizer
to adapt weights.
The training progress shows that the accuracy of training and validation data are
very close. The one on the validation data is slightly higher but very close. On both
sets, the accuracy is monotonously rising what indicates that it is training very well
without overfitting towards the training data at this point. The training progress
up to this point indicates that the limits of the model are still not reached and it
will be useful to continue training this model.
As well as the accuracy the loss values indicate the same. On the validation set,
it is slightly lower and both are dropping continuously. After 100 epochs the loss
function nearly reaches 0.3.
In general the training process is very constant and is oscillating just a very little
bit with very little amplitude. During the first 100 epochs, there are no outliers in
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Figure 4.16: Accuracy and loss of training on mapillary data with SCNN over 100
epochs

the performance which means that the network adapts the weight very well.

The detailed performance of this trained model is shown in table 4.15. It presents
the results of the loss value, accuracy, and mean IoU (training and validation set)
on the mapillary dataset and compares them with the performance of this model
on the cityscapes dataset. Important to note, that this model is just trained on the
mapillary data and has still not touched the cityscapes set. Due to that the training
set of cityscapes data serves as more validation data and it’s a good way to get a
bigger evaluation.

Mapillary Cityscapes
Metric Training Validation Training Validation

Loss 0.3189 0.2950 0.4863 0.5045
Accuracy 0.8960 0.9000 0.8438 0.8346
Mean IoU 40.90 39.69 33.09 32.78

Table 4.15: Evaluate SCNN trained on mapillary on cityscapes data

The results of this table validate the good training on the mapillary training set
shown in figure 4.16 with an accuracy of 90%. As well it shows that the perfor-
mance for loss and accuracy on the validation set is still better than on the training
data. In general the accuracy is very high which indicates very good results just
after 100 epochs.
The mean IoU is very low compared to the good performance in accuracy and loss.
This indicates that there is a big difference in IoU between the different classes.
By detecting the classes which occur often in the dataset very well and just hardly
detecting smaller classes the results can indeed return a very high accuracy although
not all classes are detected well. This shows the importance of the Intersection over
Union metric.
On the cityscapes data, the performance drops a little. The accuracy just reaches
84% and the loss 0.49. The mean IoU also drops a little and just reaches 33%.
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Because these data belong to a completely different dataset these results still can be
ranked as very good results. These results also must not be compared to the results
presented in section 4.2 because this is pretraining on a different dataset.

Table 4.15 compares the mean IoU of the predictions on mapillary and the cityscapes
date. To get a better understanding of why the accuracy is very high and the mean
IoU is not, figure 4.17 shows the IoU on the mapillary and cityscapes validation sets
for every class separately.

Figure 4.17: Compare IoU on mapillary and cityscapes data

The graphic shows that the model is indeed very good on the bigger classes like the
road, buildings, vegetation, sky, and cars. The dataset contains lots of pixels that
belong to these classes which pushes the accuracy drastically. Here the IoU is higher
than 80% which is a very good value for image segmentation tasks.
On the other hand some classes are very difficult to detect. Examples for these
classes are riders, trucks, buses, trains, motor- and bicycles. These are objects
which do not occur often in the dataset and due to that, it is much harder to clas-
sify them correctly.
Comparing the results of the two data sets the performance on each class is very
close to the other dataset. Mostly the results on the mapillary data are better.
Exceptions to this are the classes building, persons, buses, and bicycles. The classes
which the model detects better in the mapillary data are walls fences, poles, traffic
signs and lights, and the sky.

Using pretraining on mapillary vistas dataset

The following training on the cityscapes dataset is performed over 500 epochs. Ta-
ble 4.16 presents the results obtained without and with pretraining the SCNN on
the mapillary set. It compares the performance without pretraining with the per-
formance directly after pretraining and after pretraining and performing the main
training. As evaluation metrics, the accuracy and mean IoU are used. The results
without pretraining are obtained in the experiments presented in table ?? and the
results after pretraining are shown in table 4.15 in this part. The results after ap-
plying the main training show that the results indeed improve a very little. The
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Training method Accuracy Mean IoU

Without pretraining 0.9137 69.66
After pretraining 0.8346 32.78
Pre + real training 0.9145 69.67

Table 4.16: Improvements with pretraining on mapillary data

accuracy increases by 0.08 and the mean IoU by 0.01. This are very little improve-
ments but it shows that pretraining on the mapillary data has a good effect on
training.

The next part with figure 4.18 presents the training process after pretraining the
model on the mapillary data. It shows the training over 500 epochs and the accuracy
is shown on the left and the loss on the right.

Figure 4.18: Accuracy and loss of training on cityscapes data with SCNN over 500
epochs after pretraining

First of all the values shows a big scattering while training. The values for accuracy
as well as for the loss jump a lot between the following epochs. As well there are a
few outliers down. This is typical behavior for models first trained on a very big,
different dataset.
In general the training progress looks well and does not indicate critical overfitting
towards the training data. The accuracy on the training data rises much faster and
reaches significantly better results but as well on the validation data the accuracy
is rising and performing very well.

4.3.4 Evaluate influence of image resolution

This part demonstrates the influence of the image resolution on the predictions.
Lower resolutions can speed up the network but it needs to be evaluated how the
model performance change.
This section compares three models trained on different resolution sizes. As lower
resolution sizes a half (512x1024) and a quarter (256x512) of the original size
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(1024x2048) are used for evaluation. The following table presents the results of
accuracy, mean IoU and runtime of the three resolutions compared with each other.

256x512 512x1024 1024x2048

Accuracy 0.8610 0.8911 0.9137
Mean IoU 39.16 46.45 69.66
Runtime 0.1134 0.1546 0.2744

Table 4.17: Compare results with smaller image resolution

As expected the results on the original resolution are the best in accuracy and mean
IoU. Where the accuracy of the middle resolution is still good, with the small images
it clearly gets worse.
This gets more obvious by comparing the mean IoU. Here the the performance drops
drastically for the small images. These just reach 39.16%. Here the accuracy results
can be pretty misleading because 86.1% does not look bad. The improvement of
the half images also is small and insufficient because state of the art performance
reaches over 60%. This is just reached by the original image size where also the
accuracy reaches best results.
The runtime results show very big differences. By dividing the image resolution to
the half the runtime as well is nearly just half as long. This is a very big change
and way faster. The gap to the small resolution is not that big but it again drops
significantly to almost a third of the runtime with the original images.

Figure 4.19 shows the predictions for one example image from the test set (never
seen during training respectively validation). It compares the same prediction with
the three models trained on every image resolution.

(a) 256x512 (b) 512x1024 (c) 1024x2048

Figure 4.19: Visual comparison of segmentation results on different image resolutions

By having a look on the visual results the predictions on the small images in fig-
ure 4.19a look very blurred compared to the others. It is not able to detect edges
precisely (e.g. pedestrians). With the half of the original size this gets better but
smaller objects still cannot be detected well. Small objects are just detected well on
the predictions of the original images.
Another important critique is that objects of rare classes cannot be detected well.
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For example with the model for small images poles are just not detected at all.
These are too thin to make an impact on this resolution size. The pole here gets
just classified as vegetation due to its background.
An example for classes that do not appear often is the wheelchair pushed by one
person on position 500,650. Wheelchairs belong to the category of dynamic objects
(defined in table 4.2) and should be marked with class 19 (black). These are hardly
ever detected by the models with the smaller image sizes. Here it detects falsely
motorcycles or again just background classes. The accuracy with small images is
still quite high because the big classes (road, buildings, vegetation, sky, etc.) which
occur much more often in the dataset are detected very well.
The model with half images predicts better contours of the recognized objects and
the objects do not just look like stains of different colors. Here the scene can be
imagined and as well small classes like the before mentioned poles are suggested.
This shows a bigger improvement than the small raise of accuracy indicates.
The predictions on the original images show very clear contours and there are all
classes detected very well. Even groups of persons are detected well and look very
realistic. Furthermore, it is the only model where the wheelchair gets classified cor-
rectly.

This example of figure 4.19 proves why the accuracy is not an appropriate met-
ric for image segmentation tasks and the Intersection over Union (IoU) is by far
more representative which returns important details on the classification capacity
of the different classes. The diagram shows the IoU on all 20 classes for the three
resolution sizes. The blue bars represent the small resolution, the orange the half
images, and the green ones the performance on the original images.

Figure 4.20: Comparison of IoU on every class

This graphic shows that the models with higher resolution get better for every class.
The higher resolution got the best performance for every class and the quarter reso-
lution is always the worst. Interesting is that on good detected classes, the difference
of IoU performance gets smaller and the results are closer. As examples for that
the classes road, building, vegetation, and sky are to mention. On these, the IoU is
higher than 80% and for the small models, its results are not more than 5% worse.
Especially the sky class returns nearly the same results on all three models. The



56 CHAPTER 4. SEMANTIC SEGMENTATION

worst class for every model is motorcycles where the IoU is low with every resolution.
Especially with the original resolution, the results on this class are worse than the
other classes. The other classes which get detected badly on the lower resolutions,
like a truck, bus, and train are better detected on the original resolution.
On the other hand on classes which are in general hardly detected the differences
get bigger. The biggest differences are for the classes truck, bus, and train. The
class train got a difference of over 60% IoU between the original to the small and
middle resolution.
The difference between the different classes is less for the model with original image
sizes than for the one with half or quarter image sizes. With the bigger images, the
results on every class are much closer and nearly reach 60% on every class except
motorcycles. With the smallest size, the difference in IoU of the best and the worst
class is over 80%. At this resolution, it happens often that a few classes are very
bad detected where others are detected well. This trend continues on the half-sized
images.

4.4 Evaluation and Results

In this section, an overall evaluation of the described models and their results is
presented. First, the SCNN presented in section 4.2.4 is evaluated in detail. Then
all models are compared with each other and the advantages and disadvantages get
identified.

4.4.1 Evaluate SCNN

As shown in section 4.2.4 the SCNN reaches good results but it still has the prob-
lem to detect a few classes. The following part analyzes the confusion matrix of its
predictions. As introduced in chapter Theoretical Background, a confusion matrix
compares the predicted classes of a model with its true classes. This relation is
shown in figure 4.21. The original classes are presented along the vertical axis and
the prediction along the horizontal axis. Every element indicates the number of
appearances it is classified in a certain class. The values are normalized to every
row so the predicted classes are shown in the relation to their true classes. The color
bar on the right indicates the percentage values of all elements.
First of all the confusion matrix states the results shown in figure 4.10. The good
classes are also here marked with high values. The confusion matrix is based on the
accuracy metric and not on the mean IoU, but the results are still similar.
The most interesting part to observe here is which other classes of objects tend to
be falsely classified. In general, the class is well classified if the diagonal element has
a high value and the corresponding row and column have very low values. These
areas already identify the classes cars, vegetation, and sky.
For example the diagonal element of the class building has a very high value but its
column contains many elements bigger than 0. This means that lots of other classes
are falsely classified as buildings. These are lots of classes and cannot be grouped
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Figure 4.21: Confusion matrix of predictions of SCNN

into any general category. The problem here is that buildings are a background class
where foreground objects sometimes cannot contrast.
The same happens to the class vegetation. This also contains some objects like poles
or traffic lights which are wrongly classified because they might not contrast. It also
shows that the terrain class is often classified as vegetation. Indeed these two classes
have similarities because the terrain describes flat vegetation like grass.
The classes persons and riders show the same problem. Lots of riders are classified
as persons and others as motorcycles. This makes sense because riders and persons
are the same categorical group and riders just appear on two-wheelers.
Another systematic error occurs by classifying the class cars. A few times the classes
truck, bus, and train are falsely classified as cars. This can be explained because
these objects also belong to the same categorical group. These are errors that are
lower ranked and because of the big similarities between its objects.

By evaluating the model regarding its group IoU a better understanding of the
classification behavior can be obtained. This indicates how many critical mistakes
the model makes and which groups are difficult to classify. Table 4.18 compares
the group IoU for the seven different categorical groups introduced in section 4.1.1.
The first line describes the group IoU on the different groups and the second row
describes the averaged IoU of the separated classes.
This combination of the evaluation classes pushed performance very much up to
81%. Important is that the performance on the grouped classes is higher than on
the separated classes. This means that the classification belongs to the same group
and is not completely wrong. In this cases the model has just a classification instead
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Flat Construction Object Nature Sky Human Vehicle Mean

96.04 86.62 55.96 89.19 89.92 70.60 88.71 81.37
87.86 66.01 54.84 74.65 89.92 58.49 72.33 71.99

Table 4.18: Evaluation of group IoU of SCNN

a detection problem because the object is correctly detected but falsely classified.
This behavior can be identified for every class which is a very good classification
pattern.
The object’s class improves just a very little but all other classes rise significantly
in IoU. The group sky is built just out of the class sky so it does not change. The
object group contains the classes poles, traffic signs, and lights. These are very few
objects and often have bigger interference with the background class. This makes
the group IoU do not increase a lot.
The other classes increase a lot by grouping them. Especially the human group with
the classes persons and riders benefit from this. As well the nature class which is
built by vegetation and terrain with just 60%. The confusion matrix has already
shown that terrain tends to be classified as vegetation which is why the nature group
increases IoU a lot.
Finally also the classification difficulty on motorcycles can be fixed by grouping all
vehicles but especially the two-wheelers together. These are often misdetected and
now show very good results.

Like explained earlier, especially in section 4.3.1, bigger classes are classified better
than classes that occur less in the dataset. This part deals with this relation and
compares the IoU with the number of appearances of its class. Figure 4.22 compared
these two features over the 19 recommended classes. The figure is constructed with
two different scales - the blue one (on the left side) indicates the IoU of the different
classes and the red scale (on the right side) shows the number of appearances of
pixel from these classes.
The figure shows that there indeed is a correlation between the number of appear-
ances of a class and its IoU. Say every class which appears with at least 2% in the
dataset got an IoU of over 80%. These are the classes road, sidewalk, building,
vegetation, sky, and car.
The class which appears least in the dataset are motorcycles which as well got the
lowest IoU and do not even reach 20% in IoU. The percentage frequency of occur-
rence for motorcycles is 0.07%.
The other classes state these assumptions without exception although these appear-
ances are very low and close. Their pixel appearances are lower than 2% and the
values for its IoU every between 50% and 57%. Other classes like traffic signs, ter-
rain, persons or bicycles occur with around 2% just slightly more often but achieve
results of over 60% in IoU.
An exception is the class train which archives with a percentage frequency of occur-
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Figure 4.22: Correlation of IoU and number of appearance

rence of just 0.07% very good results.
In general this is a typical pattern for urban street images that classes like the road,
cars, and buildings are the classes with by far the most pixel appearances. Include
highway images could be a solution to get a higher variance of backgrounds but it
cannot solve the problem that there are far fewer trains or motorcycles on the street
than for example cars, not to mention background classes like roads, buildings, or
vegetation.

This part has shown the influence of the pixel occurrence on its detection and clas-
sification performance. Classes that occur with more pixels in the dataset generally
get hit better. As shown by the class of persons compared to the class riders, es-
pecially in the low occurrence ranges more appearances can improve classification
performance significantly.

4.4.2 Compare all models

This part compares the results of the different models (Fast-SCNN, SCNN, ShelfNet,
and ConvNet) with each other. It shows the numerical results as well as the visual
results of their predictions.

Table 4.19 presents the evaluation of the four models. The models are evaluated
regarding their number of parameters, their runtime, their accuracy, their mean IoU,
and group IoU.
Comparing the number of parameters the models are very similar but the ShelfNet
has more than 6.5 times the parameters of the next biggest model. This is an unusu-
ally large number of parameters but is still due to its characteristic shelf structure
very efficient.
This gets proven by the runtime of the models. The runtime was calculated by
averaging the runtime of 100 predictions with a batch size of 1 and measured in
seconds [s]. The experiments are made on a Titan Xp machine with 2 gpus. The
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Model Parameters Runtime [s] Accuracy Mean IoU Group IoU

Fast SCNN 1.761.284 0.2524 0.9055 66.42 71.99
SCNN 1.883.700 0.2744 0.9137 69.66 81.37
ShelfNet 13.420.063 0.3123 0.9390 73.47 86.14
ConvNet 2.024.526 0.3388 0.9151 63.68 80.58

Table 4.19: Performance evaluation of the presented models

Fast-SCNN is slightly faster than the SCNN and after a little gap the next fastest is
the ShelfNet. The ConvNet is the last fastest although it has lots of parameters less
than the ShelfNet. Dilated convolutions, like used in the ConvNet slow the model
down and are computationally expensive although the parameters do not increase.
The accuracy is for the ShelfNet higher than for the other models. The SCNN im-
proves compared to the Fast-SCNN version but still does not surpass the other two
models.
In terms of mean IoU the ShelfNet returns as well the far best results. Here the
results of the SCNN are better than with the ConvNet although it reaches a higher
accuracy. The same goes for the group IoU which is also worst for the ConvNet
although the difference to the others got smaller.
To sum things up, the results obtained by the ShelfNet exceed the others in nearly
every performance category. This performance can be explained by the far bigger
number of parameters of the ShelfNet. The ConvNet reaches good accuracy but
does not perform well on the more important IoU metric.

The most important metric for evaluating segmentation tasks is the mean IoU.
Diagram 4.23 presents the performance based on its mean IoU on every class sepa-
rately.

Figure 4.23: Comparison of IoU of SCNN, ShelfNet and ConvNet

The figure shows that the SCNN classifies the vehicle classes very well compared to
the other two models. The SCNN reaches far better results on the classes truck,
bus, and train which are just hardly classified correctly. On the other hand, the two-
wheelers are classified better by the other two models especially with the ShelfNet.
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In general it is noticeable that on the bigger classes the performance of the different
models is very close. On the other classes, except the three mentioned classes, the
ShelfNet performs best. Especially for the classes of the object category (pole, traffic
lights, and signs) and on fences the ShelfNet is better.
The performance of the ConvNet is very uneven because it got lots of good classes
but as well four classes with a low IoU of around 40%. This happens just very rarely
on the other two models.

4.4.3 Reproduce results on new dataset

To generalize the results of the network another dataset is used for evaluation. This
section presents the results obtained with the SCNN on a new dataset (mapillary
vistas [20]). Therefore the model is trained on this data and evaluated. The results
obtained in this section are based on the ones obtained for pretraining in section
4.3.3. Here the model gets trained further to evaluate the performance on this new
dataset.

The training is shown in the following figure. As shown in figure 4.24 the model is
trained over 200 epochs with the same data augmentation techniques and parame-
ters used as presented in section 4.3.2. Unlike the model trained on the other data,
this model is not trained over that many epochs. The significantly bigger number of
training samples makes the model converge with fewer epochs and finish its training
earlier. The figure shows the progress in accuracy on the left and the progress of
the loss value on the left.

Figure 4.24: Accuracy and loss of training on mapillary data with SCNN over 200
epochs

Like shown in the graphic the accuracy increases monotonously up to 200 epochs.
From there on it is not rising any higher. The progress of the loss functions shows
the same behavior. First, it is decreasing very fast but from 100 epochs on it is
barely falling any further.
The performance on the training and the validation data are very close. From 125
epochs the performance on the training set is surpassing the performance on the
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validation data and continues to improve continuously. On the other hand, the per-
formance on the validation data does not improve and more.
In general the progress of these metrics is very smooth and does not contain a lot
of outliers where it converges towards a minimum.

Table 4.20 presents the results obtained on this new dataset and compares the
results with the ones obtained by training on the cityscapes set. It compares the
loss, accuracy, and mean IoU for both data sets.

Model Mapillary Cityscapes

Loss 0.2373 0.2895 0.3846
Accuracy 91.89 90.46 91.37
Mean IoU 43.39 41.93 69.66

Table 4.20: Evaluate SCNN trained on mapillary

The results of the mapillary model compared to the ones obtained on the cityscapes
dataset are worse on the new dataset. Where the loss value is lower for the mapillary
model the accuracy values and most important the mean IoU values are higher for
the cityscapes model.
The lower loss value comes from the good classification of the big classes which take
up the most space in the images which results in a lower error value. The difference
is that the mapillary dataset contains some very big classes which occupy lots of
pixels that get classified correctly. On the other classes which occur rarely in the
dataset, the performance drops significantly. This gets proven by the good accuracy
but the bad mean IoU for the mapillary model.

The difference in mean IoU is shown in figure 4.25 for both models on the dataset
they are trained on.

Figure 4.25: Compare IoU on new mapillary dataset

The graphic shows that the performance on the bigger reaches the performance of
the cityscapes model. On classes like the road, buildings, traffic signs, vegetation,
sky, and cars the performance is close although slightly worse. On the other hand
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classes like walls persons, riders, buses or two-wheelers are not classified well.
Like already explained in section 4.3.3 this is due to the frequency of the classes.
There are bigger differences because the mapillary data is not exclusively collected
inside cities and contains much more variety. E.g trains just occur that little that
the model never classifies them.

The following part shows predictions made on four samples of the mapillary data.
The first row shows the input images, the second row the ground truth labels, and
the last row the predictions made by the system. The samples contain situations
inside cities with persons and classes with lots of smaller objects and situations out-
side the cities where the bigger classes like road, vegetation, and sky dominate the
image.

Figure 4.26: Predictions made on the mapillary dataset

The first sample shows a situation on the highway with the bigger classes like road,
vegetation, sky, and cars. These classes push the performance of the prediction very
much. Moreover, the sample contains lights and poles which as well are detected
very well.
The same goes for the second sample. Here as well a truck is represented which is
detected well. Its contours at some places seem poorly detected but this is caused
by the shadow in the input image. As well the signs lights and fences are detected
well. Moreover, some buildings in the background get detected very well.
The third sample shows the same pattern. Especially the different layers next to
the road or street signs far away are detected with very high accuracy.
The fourth sample shows a situation inside cities and contains lots of small traffic
lights, signs, and fences. Furthermore, this situation contains many static objects
which are classified into the rest class. These are hardly classified correctly by the
model. The reason, therefore, is that these objects vary very much but do not occur
very often.

All in all, these results show that the performance on this different dataset is also
very good. This is not only stated by the good accuracy but also by the predictions.
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The mean IoU discloses the problems of this new dataset. It contains a very big
variety and more different situations than the other dataset but the smaller classes
are less represented. These few samples make it hard for the model to learn the
small classes.



Chapter 5

Experimental Work - Lane Detection

This chapter describes the experimental part done for the lane detection task. This
part applies and evaluates different models to this task. The line detection task is
as well treated as a segmentation problem. The lines and background form the two
classes for the binary segmentation.
First the different data sets are presented and explained. The next section presents
the different models implemented, developed, and evaluated.
Final part of this chapter is the combination of the lane recognition task with the
results from the segmentation part. It brings these two parts together and forms a
capable perception model for autonomous driving.

5.1 Data Set

This section presents the data sets for the line detection task used in this work. The
data sets are available online and are used to evaluate state-of-the-art performances
in the fields of autonomous driving. The data sets presented in this work are the
TuSimple and the CULane dataset.

5.1.1 TuSimple

This dataset of TuSimple [31] is built out of road images on highways. These images
vary in weather conditions (sunny or rainy) and different daytime. The images also
vary in terms of traffic conditions which guarantee a great variance of situations.
Labeled are up to four different lines to also train the understanding of which line
is detected on which position. The green and the blue lines limit the actual line the
own car is driving on. The line on the left got marked by a red line and the line on
the right by a cyan line.
In general the dataset consists of 3626 annotated images. The labels have to be
created out of .json files. These polylines get transformed into pixel values to create
a label pixel map.
Some images were taken while changing lanes. In this case, one more line is anno-
tated because sometimes it is not clear which lane the actual driving lane is.

65
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The dataset is not divided into training and test sets which has to be done by the
user which makes it hard to compare and evaluate results with the state of the art.

5.1.2 CULane

This dataset [30] is far bigger than the dataset shown above. It contains 88880
training samples and 9675 for testing. This makes it easier to apply it to the traffic
understanding scenes of the data sets for semantic segmentation. Furthermore,
it contains not just images captured on highways but also ones inside cities and
different road types. The variance between the images is increased by driving with
different cars and drivers. All images are taken in and around Beijing.
Unlike in the other dataset, here are labeled the four most interesting lanes with the
same label to not differ which line type it is. Other lane markings like ones on the
oncoming lanes or a fifth lane are not annotated.
The lanes are described by cubic splines and later transformed into pixel maps to
train on.

5.2 General line detection

This section describes the experimental part of the line detection task. For this
section, all lines are treated equally and there is no distinction made between the
different lines (on the right/left). This turns this task into a binary classification
problem with the two classes - line and background. Such a task can be addressed
by using either the binary or the categorical cross-entropy. This part considers both
metrics and evaluates them against each other.
This section is structured into training a model on the two data sets separately and
then evaluating them in overall experiments using other data to identify the better
model.

5.2.1 Training on the TuSimple dataset

The first part describes the training on the TuSimple 5.1.1 dataset. The model used
for this task is the SCNN presented in section 4.2.4 of chapter 4. Because of the
just two output classes, for this task, there are used the binary and the categorical
cross-entropy.

For the binary cross-entropy, the model uses an output layer that returns one class
with a sigmoid activation which is either 0 or 1 for background respectively line. On
the other hand with the categorical cross-entropy, the output layer with a softmax
activation has two output classes.
The results are shown in table 5.1. This table compares the performance of both
models in terms of their mean recall, precision, F1 score, IoU, and accuracy.
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Metric DA Accuracy Recall Precision F1 score IoU

Binary - 98.79 80.24 78.73 79.37 70.62
x 98.86 85.93 77.50 81.45 72.43

Categorical - 98.80 71.06 83.86 76.83 67.28
x 98.86 74.76 83.70 78.90 69.78

Table 5.1: Lane detection results on the TuSimple dataset

The table shows that the model trained with the binary cross-entropy returns bet-
ter results. With the binary cross-entropy, the f1 score reaches more than 80% with
data augmentation and an IoU of 72.43%. The accuracy is a very poor metric for
this evaluation and does just vary a very little. With both metrics, using data aug-
mentation improves the performance. As data augmentation techniques there are
applied the same as presented in the previous chapter in section 4.3.2. The results
obtained with the categorical CE are the same in terms of accuracy but in terms of
its F1 score and IoU, the binary CE returns better results.
An important characteristic of the binary CE is that it tends to predict thicker lines.
This is indicated by the higher recall and lower precision. Higher recall means that it
detects more line pixels correctly and lower precision says that it in general predicts
the line class more often.

The predictions for one example are presented in figure 5.1. It shows the ground
truth label on the left, the prediction of the model with the binary cross-entropy in
the center, and the prediction of the categorical cross-entropy on the right.

Figure 5.1: Compare predictions on TuSimple data of networks trained with binary
and categorical cross-entropy

This shows the classification behavior of both metrics very well. Where the binary
case applies an aggressive classification with values in V −→ [0, 1]. It still detects
lines very well, although sometimes the output values are not very close to 1. As
well, it can be observed that the model predicts thicker lines than they appear in
the label. This is the visual explication of the higher recall and lower precision.
On the other hand the categorical case maximizes the probability for one of the
output classes and because of this, it just returns values v ∈ {0, 1}. Here the predic-
tions are not that thick and similar to the label data. The prediction still contains
parts where the lines are not detected and it shows interrupted lines.
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The next part analyzes the binary prediction behavior in more detail. Figure 5.2
shows a cutout of a line from the prediction of the previous example for the interval
[ 900:905, 250:330 ]. Under the cutout image, the figure shows the color bar which
indicates the prediction values.

Figure 5.2: Binary prediction of lane detection in detail

This figure proves that the prediction values are higher the closer these are to the
ground truth line. The maximum value for this example is slightly bigger than 0.5
and decreases constantly. For other parts the prediction probabilities are higher.

To calculate the mean IoU, precision or recall for this the prediction need to be
converted into the space of v ∈ {0, 1}. This is made by rounding over a threshold t
with the following logic

v =

{
1 if x > t

0 if x ≤ t
(5.1)

Table 5.2 compares the performance based on their mean recall, precision, f1 score,
and IoU for different thresholds. The goal is to find a threshold that does not per-
mit too many values to be marked as a line (high recall) because this makes the
predictions look puffy. To high thresholds cut out important parts of the line and
may interrupt them, so it also needs a high precision value. The f1 score combines
the recall and precision like explained in chapter Theoretical Background 2.4.

Threshold 0.1 0.2 0.25 0.3 0.35 0.4 0.5

Recall 93.53 90.22 87.36 85.93 83.15 80.44 74.26
Precision 68.96 73.49 75.84 77.50 79.16 80.85 83.79
F1 79.36 80.96 81.11 81.45 81.04 80.58 78.67
IoU 67.02 70.63 71.92 72.43 72.37 72.02 69.54

Table 5.2: Compare performance of IoU depending on threshold value

The table shows that the performance gets better up to a threshold of 0.3. From
there on it decreases again. The best performance is obtained with a threshold of
0.3 where both, the IoU and F1 score have a maximum. Especially the negative
correlation between recall and precision gets clear. By evaluating the F1 score the
best trade-off between both is found.

The predictions including these thresholds are shown in figure 5.3. This figure
compares the predictions of four significant thresholds.
It proves that the lines with too low thresholds, like t = 0.1 do not look natural. As
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Figure 5.3: Binary prediction with different thresholds

well, the predictions with too high thresholds like t = 0.4 sometimes cut out parts of
the lane. The graphical analysis proves the results of table 5.2, that with thresholds
around t = 0.3 best results are obtained.

Another technique to improve classification results with an imbalanced dataset like
the line detection problem is to apply weights on the loss value depending on the
true class. The basics are presented in chapter 2 section Losses and Metrics to assess
Segmentation Quality.

The results of training with weighted cross-entropy are shown in table 5.3. This
analysis compares the different weight ratios regarding their accuracy, mean IoU,
recall, precision, and F1 score. The upper part represents the results of the weighted
categorical CE and the lower part the ones of the weighted binary CE.

Weights Accuracy Recall Precision F1 score IoU

[1., 1.] 0.9886 0.7476 0.8370 0.7890 0.6978
[.5, 20.] 0.9863 0.8292 0.7186 0.7699 0.6764
[.5, 2.] 0.9863 0.7851 0.7775 0.7807 0.6945
[.4, 1.] 0.9874 0.8182 0.7935 0.8050 0.7186

[1., 1.] 0.9886 0.8593 0.7750 0.8145 0.7243
[.4, 1.] 0.9877 0.7799 0.8034 0.7908 0.7044

Table 5.3: Results of applying class weights for line detection

The table shows that the accuracy is not rising after training the model with
weighted class losses but instead it is falling a little. More important is the analysis
of recall and precision. The precision is maximum for equal weights and higher than
in the other experiments. This indicates that the model tends to predict fewer lines
and gains performance by not predicting wrong lines. Applying weights pushes the
model to predict more line pixels. This is indicated by the higher recall. Inhomoge-
neous predictions are indicated by a bigger difference between recall and precision.
This mostly ends in parts where the line is detected very well but also other parts
where it is not detected at all. This happens by applying to big weights. In general,
the best results, argued by high F1 score and IoU, are obtained by applying smaller
weights.
Compared to the results obtained by the binary CE the results still do not surpass
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the performance trained with the binary CE. The precision values are nearly even
but especially the recall is better what leads to the higher F1 score and IoU. Weight-
ing the binary CE loss does not improve results. This leads to a decreased recall
but increased precision where the high recall is the advantage of the binary entropy
classification.

The next part visualizes the prediction of the different models shown in table 5.3.
It compares the prediction of the model trained with CE without using weights and
with weights of [.5, 2.] respectively weights of [.4, 1.].

Figure 5.4: Predictions of model trained on weighted categorical cross-entropy re-
garding their class weights

Here the effect of weighting the class loss is visible. The model without weights
does not detect some important parts of the line. The one with the more aggres-
sive weights detects the line better but returns an inhomogeneous prediction. With
smaller weights, the detection is more smooth and without any gaps.

After analyzing the correct detection of class 1 due to the recall and precision this
part evaluates the accuracy on both classes separately. The confusion matrix evalu-
ates in detail how both classes are classified. Table 5.4 shows the confusion matrix
of the models trained with binary CE on the left and the one trained with the cat-
egorical CE and weights of [.4, 1.] on the right.

0 1

0 0.9908 0.0092
1 0.2866 0.7134

(a) Binary cross-entropy

0 1

0 0.9933 0.0067
1 0.4255 0.5745

(b) Weighted categorical cross-entropy

Table 5.4: Confusion matrices on TuSimple regarding their error metric

The confusion matrix evaluates the pixel-wise accuracy and not the metrics like re-
call, precision, or IoU. As known, the accuracy of the background class is very high.
The error of this class seems very low because of the far bigger number of correctly
classified pixels.
More interesting is the performance on class 1. The confusion matrix shows a per-
centage performance of how many pixels of this class are classified correctly. This
shows the big advantage in the performance of the model using the binary CE.
This model classifies over 71% pixels of class line correctly, where the model with
categorical cross-entropy just classifies 57% correctly.
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5.2.2 Training on the CULane dataset

This section describes the results obtained with the CULane dataset of section 5.1.2.
This dataset is used to challenge and verify the results obtained before. As intro-
duced in section 5.1.2 the CULane dataset is far bigger and also contains images
without street lines as negative examples. This makes it more difficult to train on
and the training process more extensive.

The results regarding the different error metrics are presented in table 5.5. It is
evaluated on the same metrics as the other dataset. The models in this section are
trained with data augmentation as well. The table compares the models of both
metrics with equal weights and with weights of [0.4, 1.0].

Metric Accuracy Recall Precision F1 IoU

Binary CE 0.9914 0.6381 0.6817 0.6575 0.6533
Weighted Binary CE 0.9910 0.6006 0.7131 0.6489 0.6525

Categorical CE 0.9910 0.5821 0.7454 0.6493 0.6019
Weighted Categorical CE 0.9901 0.6226 0.6963 0.6545 0.6220

Table 5.5: Lane detection results on the CULane dataset

The results show the same pattern as with the other dataset. The binary model
returns better recall but lower precision. In general, it is still better than with the
categorical CE. For the binary model, weighting the loss does not improve perfor-
mance. As well, the values are very close to the performance on the other dataset.
As with the previous dataset, the categorical model returns a worse recall but a
higher precision. This is not very useful because it detects fewer lines. In general,
the accuracy also does not reach the performance of the binary model.

The following figure visualizes the predictions depending on its error metric. The
predictions made with the binary model already include the threshold of 0.3.

Figure 5.5: Compare predictions on CULane data of networks trained with binary
and categorical cross-entropy

As with the other dataset, the binary model returns very good predictions. The
detected lines are not interrupted but at the lower parts, the performance decreases
a lot. The lower pixels are just very hardly detected. The categorical model shows
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the same pattern. Here as well the lower lines are not detected well. In general, the
performance of the binary model is better.
Analyzing the dataset it gets clear that the labeling is not very consistent because
by changing the lanes the lines are not labeled at all. This context is shown by figure
5.6 which shows a scene while changing the lane where the visible and relevant lines
are not labeled.

Figure 5.6: CULane labeling and predictions while changing the lane

This figure shows the input image as well as its ground-truth label. In the image,
the street lines are visible and for sure relevant but the ego vehicle is located at an
angle of 35 degrees. These images are labeled without lines. The predictions show
that the model tries to generalize and detect the lines so this inconsistency harms
the performance.
The same for the scene shown in the following figure. Here the ego vehicle drives
over a car park with one lane as a one-way street.

Figure 5.7: Street scenes without line labels

These situations are not labeled at all. The models also do not predict any lines on
these situations but this still harms the generalization performance. These exam-
ples greatly influence the learning progress during training. Streets without clearly
marked lines will not be detected by further models.

The next part analyzes the accuracy of both classes separately and shows the con-
fusion matrix for both models.

0 1

0 0.9927 0.0073
1 0.3675 0.6325

(a) With binary cross-entropy

0 1

0 0.9985 0.0015
1 0.523 0.4770

(b) With categorical cross-entropy

Table 5.6: Confusion matrix of predictions on CULane
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The confusion matrices show that the background class is better detected with both
models. Still, the binary model classification contains lots of FP. The value is high
compared to the big number of pixels in this class. A reason for this is examples
like the one shown in figure 5.6 where the line is not labeled but the model still
tries to detect it. The classification accuracy of class 1 is lower what indicates the
difficulties of detecting the lines properly.
The categorical model is better at not detecting missing line labels (FP) but also
detects less often the correct lines (TP). The poor line detection ability is already
indicated by the lower recall. In general, the binary model is better than the cat-
egorical one. Especially if it is considered that some FPs are logically correct but
labeled inconsistently.

5.3 Detailed lane detection

This section treats the topic in a special way where every detected line gets further
classified into which lane this line belongs. This creates a multiclass classification of
the foreground class into up to four different lines. These are the two lines defining
the ego lane and the one on the right and the left. Often there are detected less
because the street does not have that many lanes.

In general this problem is tackled the same as in the experiments described be-
fore. It uses the same model and just changes the classifier in the output layer.
Here it returns 5 output classes and just uses the categorical cross-entropy.
Table 5.7 presents the results of the experiments made for this task. The experi-
ments also use data augmentation but do not mirror the images because this would
confuse the labeled lines. The different experiments are evaluated on their accuracy,
mean IoU, recall precision, and F1 score.
The upper part of the table evaluates the effect of using data augmentation and the
other experiments on how weighted classes benefit training.

Weights Accuracy Recall Precision F1 IoU

[1., 1.] 0.9866 0.4401 0.7305 0.5455 0.4262
[1., 1.] 0.9874 0.4683 0.8008 0.5828 0.4465

[.4, 1.] 0.9856 0.6324 0.6416 0.6346 0.5191
[.5, 2.] 0.9855 0.6241 0.6343 0.6267 0.5011
[.5, 20.] 0.9819 0.6960 0.5891 0.6318 0.4951

Table 5.7: Results of applying class weights for detailed line detection

From the first two lines of the table, the benefit from data augmentation can be
observed. The first experiment shows the results without and the second on the
results with data augmentation. This leads to a significant increase in both metrics
- F1 score and IoU. It can be observed that both the recall as well as the precision
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increase significantly. This means that the model, not just only predicts the line
class more often but it hits the line class better. This is indicated by a noticeable
higher F1 score.

The predictions for these two cases are shown for one example in figure 5.8. The
first image shows the ground-truth label, the second one the prediction of the model
trained without, and the third on trained with data augmentation.

Figure 5.8: Compare predictions of categorical cross-entropy and training with data
augmentation

Figure 5.8 shows that the model faces big problems detecting the lines properly.
First of all both models are not able to detect the complete lines solidly. The pre-
dictions contain a bigger part where the line is not detected. The model trained with
data augmentation is better but the performance is still not sufficient. Furthermore,
it cannot determine the exact labels of which line is detected and the predictions
show multiple lines with the same label. This is observed in the figure on the right
image, where the second and third lines are assigned the same label (color).

As indicated in table 5.7, weighting the classes leads to better performance. The
table compares the three different weight ratios [.5, 20.], [.5, 2.] and [.4, 1.] where
the lowest weights return best results. As observed in experiments in the sections
before, this states that too high weights make the model predict the line class to
aggressive. This is indicated for the model with bigger weights by the high recall
and lower precision. This means that it predicts the line class more often correct
but also contains more wrong predictions on this class. The combined F1 score is
still high, but there is a big difference between recall and precision. Lower weights
lead to smoother training and better predictions. Especially the weights [.4, 1.] re-
turn very good results which surpass the others clearly in terms of F1 score and IoU.

This is proven by their predictions presented in figure 5.9. This figure compares
the predictions of the models trained with these three weight ratios.
Like argued with the numerical results the predictions of the models with more ag-
gressive weights ([.5, 2.]) are worse because they tend to predict too thick lines which
contain lots of FP around the lines. Worse, that these models also often contain
parts where the lines are not detected at all. Generally, a bigger difference between
recall and precision leads to these results.
The models with smaller weights treat this problem way better and do just very
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Figure 5.9: Compare predictions of categorical cross-entropy depending on weights

rarely contain interrupted line predictions. As well, their predictions have a better
precision which leads to more detailed predictions. The capacity of identifying the
exact label of the detected line is equal for both models.

The following will evaluate the performance of every class separately by analyz-
ing the confusion matrix. This is shown in table 5.8. The confusion matrix presents
the results obtained with the model trained on the class weights [.4, 1.]. It shows
the results normalized over the true classes.

Predictions
0 1 2 3 4

La
be

ls

0 0.994 0.002 0.002 0.002 0.
1 0.372 0.568 0.038 0.014 0.008
2 0.496 0.012 0.424 0.056 0.012
3 0.454 0. 0.010 0.520 0.016
4 0.610 0. 0. 0.158 0.228

Table 5.8: Confusion matrix with detailed lane detection

The first thing to observe from this representation is the big difference in classifi-
cation accuracy between the lines and the background class. The accuracy of this
class is that high because of the big imbalance and the majority of the pixels are
always assigned to the background class.
This is also the biggest problem of the model in that it tends to classify line pixels as
background. This is indicated by the high percentages of the predictions for class 0.
This means that the difficulty of this task is the detection and not the classification
into the correct label. As shown in the confusion matrix, the errors in mixing up
the label for the different lines are very small.

Summed up, the detailed line detection does not lose accuracy compared to the
model with the general line detection. The difference in the error metrics is that
the averaging over more classes with lower accuracy reduces the overall accuracy
value significantly. The predictions have shown that there is no need to combine the
different lines to one line class.
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5.4 Cross evaluation of line detection

This section evaluates the results obtained for the line detection model by running it
on the cityscapes data. By including a different dataset an impression of the overall
performance is obtained. First, the results of the different models are compared
among each other. Later the results are combined with the ones of the segmentation
task to obtain an overall model capable of doing both tasks.

5.4.1 Applying the line detection network on the cityscapes
data

Here the different models are applied to the cityscapes data and are compared with
each other. This contains the models trained on the TuSimple and CULane data
and finally the model trained on the detailed line detection.

TuSimple model on cityscapes data

First, the performance of the models trained on the TuSimple data is analyzed.
Therefore as the best models of table 5.3 the binary model with equal weights and
the model with categorical cross-entropy with the weights of [.4, 1.] are chosen. This
also compares the models trained on the binary and categorical CE with each other.
Figure 5.10 presents the performance of both models on four examples. The exam-
ples include images with straight and curved lines, streets with and without road
markings. The first row shows the predictions of the binary model and the second
one the predictions of the categorical model.

Figure 5.10: Line detection trained on TuSimple applied to cityscapes data

The first example represents a straight road where on the right side the road mark-
ings are missing. The binary model detects both lines but the road limitation
without a line on the right side is not detected at all. The categorical model just
detects the line in the middle of the road. As well it contains a few false predictions
evoked by traffic signs on the road.
The second example shows a straight road with visible lines on both sides. Both
models detect them very well and without interruptions.
In the third example, there is just one line on the left which is detected by both
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models very well. On the right side where the road is limited by high curbs, the
models do not detect the end of the lane because the lines are missing.
Example four shows a curved road where both models detect just the central line
but not the limits of the street because these are not marked with a line but with
curbs.
Summing up, these models detect the lines very well on a different dataset and in
different situations. The big problem is that it does not detect road borders without
any markings. This happens in an urban environment very often but the TuSimple
data is just trained on highway data.

CULane model on cityscapes data

Next, the models trained on the CULane data are used on the cityscapes dataset.
The performance on the same four examples as in the part before is presented in
figure 5.11. As in the part before the first row shows the predictions of the best
binary model and the second one the predictions with a categorical model (table
5.5).

Figure 5.11: Line detection trained on CULane applied to cityscapes data

The results show a few characteristics of the predictions with these models. First of
all the models have problems detecting the lines in the lower part of the input image.
These parts fail very often whereas the higher parts are detected way better. This
can be observed in all of these four examples and as well on the CULane dataset.
Furthermore the detected lines often are interrupted and detected very sloppy. For
instance, the models have bigger problems to detect curved roads like the one in
the last example. This might result from the inconsistent labeling in the CULane
dataset. But as well straight lines like the ones in the second example are not de-
tected perfectly.
On the other hand this model can detect the end of the road indicated by curbs.
This model is not just looking for street lines but also for lane limitations. The first
and the third example show this very clear. Here the right border is detected with-
out any line. Compared to the other models in figure 5.10, this is a big advantage.
In summary, these models trained on the CULane data perform worse on the
cityscapes data than the ones trained on the TuSimple set. Although the big size of
this dataset is not able to generalize well for new data. The strong points of these
models are the detection of curbs without line-markings.
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Detailed line detection model on cityscapes data

As well the model to detect the exact lines is evaluated on the cityscapes dataset.
The advantage of detailed line detection is that it returns more information about
the context of the detected line. Knowing which line is detected enables more space
for further systems like lane detection functions.

In general this model has the same detection pattern and same problems as the
model trained on the general line detection. Both are trained on the same data
which makes the output performance of both models very similar. Problems which
this model also faces, are especially street borders without lines (like shown in figure
5.10). On roads with existing lines, the model works very well but often it happens
that this is not given.

Figure 5.12 shows two different scenes with the predictions made on them. The
first column shows the normal line detection function where the model marks the
detected lines with their corresponding colors. The middle column filters the two
lines limiting the ego lane by filtering these two classes. The final column highlights
the ego lane by marking the space between these two lines.

Figure 5.12: From line detection to ego lane detection

The line detection results show that the model detects all of the three lines very
well. The lines are completely detected and as well, every line is assigned the cor-
rect label. Only weak point is that the marking of the parking slot on the sidewalk
is marked as another line. As well this line is assigned the wrong class, actually the
class label of the line on the left next to the ego lane. These two images represent
the performance on straight roads where lines are visible.
The middle column filters the two lines limiting the ego lane. This works well be-
cause the lines are classified with unique labels and the predictions do not mix up
classes on the same line.
After filtering the two lines of the ego lane the space between them can be calculated.
For these streets with visible lines, the lines are detected without interruptions. In
the first example, the model classifies a few parts of the Mercedes star as a line
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which interrupts the lane marking for a few pixels.
In general the detailed line detection works as well as the general lane detection and
does not lose performance due to the higher number of classification classes and the
bigger imbalance resulting from this.

5.4.2 Joining line detection and scene segmentation

This section presents possibilities to combine the results obtained in chapter 4 to
classify all objects with the newly developed line detection model. Especially the
combination with street detection enables better detection of the lanes.
In the following figure, there are presented four examples of including the line pre-
dictions into the segmentation task. The line predictions are colored yellow.

Figure 5.13: Including the line predictions into the segmentation task

The images show how much the detected lines improve the scene understanding.
The knowledge of the road increases a lot by monitoring the lines on it. There it
does not matter that the road limiting lanes are not always detected because this is
already indicated by the road labels. This can be observed very well in the examples
one and four in figure 5.13. The road is divided into two lanes by the one detected
line.
The other two examples represent situations where the street contains more than
just two lanes. Here all important lines are detected to mark the different lanes
using the information of the segmentation and the line detection tasks.

This combination of road and line detection makes it possible to detect the dif-
ferent lanes. The following figure 5.14 presents an ego lane detection by combining
these two tasks.
Using the detailed line detection model presented in figure 5.12 to identify the class
of which line is detected, it can be determined both or one of the two lines limiting
the ego lane. For the two lines 1 and 2, the space in-between defines the ego lane
like shown in figure 5.12. This is shown in the second and third example of figure
5.14.
If just one line is detected, this mostly will be the line with label 1 which means
the left line limiting the ego lane. Without a line with label 2, it can be assumed
that there is no lane on the right and the lane is limited by the end of the road. As



80 CHAPTER 5. LANE DETECTION

Figure 5.14: Using line detection and segmentation results for lane detection

shown in examples 1 and 4 in figure 5.14 this unambiguously identifies the ego lane.
It can also happen that neither line 1 or line 2 are detected but line 3. This in-
dicates a situation with at least two lanes but the ego lane cannot be determined.
This situation is described by figure 5.15.

Figure 5.15: Lane detection not possible due to insufficient street lines

Here the road is too wide but no line is defining both lanes. There is just one line
separating the next lane on the left for oncoming traffic. This type of situation
cannot be solved by the information gathered from these two models.

To find a conclusion the models got their characteristics and although the mod-
els trained on CULane can determine the end of the road without markings and the
models trained on the TuSimple data cannot, the models trained on the TuSimple
data prove to be better suited applying them on new data sets. The models trained
on the CULane data have problems with detecting clear lines in the lower part of
the image and are not labeled unique which leads to weaker prediction results.
On the other hand the TuSimple models turn out to work very well also inside of
cities, although they are just trained on highway data. The weak point is that these
models require visible street lines to detect the lines and do not detect curbs. Be-
tween the binary and categorical models, there is no better type and both perform
similarly.
As well the model to detect the exact lines works very well. This gives much more
room for improvements and further functions because it returns very detailed infor-
mation about the whole scene. The evaluation shows that the accuracy does not
drop significantly by splitting the lines up into different labels.
Especially the combination with the segmentation model the missing capacity of not
detecting curbs is covered up by detecting the whole road and like that identifying
the different lanes. But like figure 5.15 shows, there are still situations that cannot
be handled by these models.



Chapter 6

Discussion of Results

This chapter reviews the results obtained in the two chapters before. It deals with
the segmentation and the line detection task one after the other. The results will
be summarized, put into context and an interpretation will be given. Finally, the
limitations are disclosed and future potential is revealed.

6.1 Scene Segmentation

The results obtained in the semantic segmentation task reach state-of-the-art perfor-
mance. Therefore different models are implemented and evaluated on the cityscapes
data. As shown in table 4.19, the performance of all models is close. Best results
return the ShelfNet but on the other hand, its number of parameters and runtime
is far higher. Although it still belongs to real-time networks. Out of the presented
models, the ConvNet is the one with the lowest accuracy and also the least efficient
model. The Fast-SCNN also tackles state-of-the-art performance but faces classifi-
cation problems with smaller classes. By changing the network structure a little bit
to extend the upsampling part, the network performance improves. Especially per-
formance on the smaller objects improves. Due to the more extensive upsampling,
the runtime also increases a little bit. On the other hand, it still is far faster than
the other two models.

Due to the limited dataset of just 3000 examples the training of these models requires
data augmentation. The results presented in table ?? indicate that more aggressive
techniques like shifting, zooming, and flipping greatly effects training. Pixel varying
techniques like brightness changes, applying noise, and channel shifts need to be
combined with other more aggressive techniques to lead to bigger improvements.
By combining them and increasing the training volume the results can be improved
significantly.
Furthermore pretraining influences the performance less. Pretraining on another
segmentation dataset like the mapillary vistas data, increases the performance just
a little bit. On the other hand pretraining on classification data sets like the Ima-
geNet does not improve performance [9] at all.
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Very important knowledge returns the experiments with different image resolutions.
These state that the performance rapidly drops for smaller image resolutions. More
important the mean IoU suffers a lot because especially smaller classes drop lots of
classification accuracy. These results are presented in table 4.17 which compares the
original resolution with a half and a quarter resolution.
The publisher of the dataset recommend grouping smaller classes into a class of rest
labels. Training on all classes leads to a slightly dropping accuracy. The difference
gets obvious analyzing the IoU like shown in table ??. By training on all classes the
smaller classes are just very weakly detected. This leads to a big drop in IoU. But
that are not just the grouped classes that show these poor classification results. As
well, other classes that occur less in the dataset return low IoUs. With the grouped
training classes the performance on these classes rises partly drastically like shown
in figure ??.

Table 6.1 compares the obtained results to the state of the art. It shows the three
models with their performances indicated in their respective publications and the
implementations in this work. The upper part of the table shows the performance
of the models from their publications and the lower part compares the results of the
implementations from this work.

Class IoU Group IoU fps (1024x2048)

ShelfNet 2019 [11] 74.8 - 36.9
Fast-SCNN 2019 [9] 68.0 84.7 62.1
ConvNet 2017 [7] 69.15 86.5 11.4 (1920x1280)

ShelfNet 73.47 86.14
Fast-SCNN 66.42 78.39
SCNN 69.66 81.37
ConvNet 63.68 80.58

Table 6.1: Comparison of class and category IoU, number of parameters and frames
per second (fps) to relevant state of the art results for real time semantic segmenta-
tion

The results show that the original models are still a little better than the here
presented implementations. The biggest difference in performance appears in the
implementations of the ConvNet. The ShelfNet reaches the original performance
very close. The Fast-SCNN as well drops a little performance to the original mod-
els. The redesigned SCNN surpasses the original accuracy of the Fast-SCNN.
Due to the same models and dataset this results from different training parame-
ters. The models here are trained using the adam optimization which adapts the
learning rate and momentum on its own, while training. Self-adjusting the learning
rate depending on the training progress is a promising approach to increase training
results. Using the Stochasitc Gradient Descent (SGD) is another option to manage
the training progress. The SGD often is locally more unstable and more likely to
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converge to the minima at asymmetric valleys, which often have better generaliza-
tion performance. On the other hand, the adam optimizer works great with the
default parameters and is significantly faster.
On the other hand the models in this work are trained on a batch size of just 4.
These are very few examples and the training progress suffers from this too. The
other models are trained on batches of 16 or 32 examples. This leads to weaker
results as well. Promising would be to implement a weighted loss function to pay
more attention to the smaller classes to push these and to balance the classification
performance.
The implementation of the network is similar to the ones of the publications and as
well as data augmentation techniques there are chosen the same ones. Differences
could exist in parameterizing the data augmentation techniques which also can lead
to different results.

The best model obtained in this work is the custom SCNN. This model presents
the best combination of runtime and performance. The evaluation through the
confusion matrix in figure ?? shows that the model still has problems in detecting
smaller objects properly. Separating them from the background causes lots of True
Negatives, where the model predicts a background class (mainly building or vegeta-
tion) instead of for example traffic lights. As well, there occur still often correlations
between similar classes like riders and pedestrians or terrain and vegetation. By an-
alyzing the group IoU like done in table 4.18, lots of classification errors disappear
due to classifications into false classes which still belong to the same groups.

As well it is shown that this model can be transferred to another dataset to reach
good results. The performance is strongly connected to the dataset and the detec-
tion pattern changes a lot. Inner-city objects are better detected when training on
the cityscapes data. On these classes, the model trained on the new dataset lacks
performance. This states the fact that the cityscapes dataset is used for state-of-
the-art performance.

Nowadays, in autonomous systems, most object detection systems consider the de-
tection as a Bounding Box regression problem. However, this compact representation
is not sufficient to explore all the information of the objects. Even if some objects
like bicycles are detected somewhat blurred by the segmentation, this model still
provides more information than an ordinary model via bounding boxes.
Next steps would have been to extend the model to an instance level to separate all
objects of the same class for further information. These need to be done especially
for the foreground classes like persons, vehicles, and traffic lights/signs. This step
is crucial to return this information to fuse it with the information of other sensors
and then base the driving functions on them.
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6.2 Line Detection

The line detection task compares three different models trained on different data sets
and with different error functions. Therefore it uses the TuSimple and the CULane
dataset. The models trained on the TuSimple data return results up to an F1 score
of 81%. These results are obtained with the binary cross-entropy. The best model
using the categorical cross-entropy reaches 80%. These models use a weighted error
training where the binary model is trained without weights. The prediction patterns
are quite different. The binary model reaches a very good recall score where the
categorical models reach better results on the precision score.
The models trained on the CULane data have similar characteristics. Also with this
data, the binary model turns out to be better due to the higher recall score. Still
the results cannot reach the performance obtained with the model trained on the
TuSimple data. With the CULane set, the models reach just 65% with both the
binary and the categorical model. Weighted training improves results just on the
categorical model.
By training on the exact line labels, the performance reaches similar results as with
the grouped line labels. Here the F1 score reaches 63%. The lower value comes from
averaging over the background and the four foreground classes instead of just over
the one back- and one foreground classes.

The goal of the work is to transfer the line detection task to the cityscapes dataset.
These two training sets show lots of bigger differences like the TuSimple dataset
contains highway data from the United States of America, the CULane data con-
tains data from the area around Beijing with inconsistent labeled data, and the
cityscapes set contains images from German cities. These make it difficult to apply
models, trained with one set, to the other data. Still, the models perform very well,
especially the model trained on the TuSimple data. The TuSimple data leads to a
prediction pattern that the model just detects lines but ignores curbs as road limita-
tions. Although the line detection still works very stable on the cityscapes dataset.
Otherwise the CULane data contains images from an urban environment and its
models can detect curbs as road limitations. But the confusing labeling in this
dataset leads to clearly worse results. This dataset contains images from lots of
different scenes in daylight, at night, while raining, etc. but the labeling does not
serve to apply it to the cityscapes data.
Especially the model to detect the detailed lines turns out to be very useful for
further tasks. On its own, it is just able to detect the lines on the street what does
not serve very much to the understanding of traffic scenes. But in combination
with the segmentation task, especially with road detection, the ego driving lane can
be defined. This makes this model very powerful. This detection is not possible
with the general line detection because it has to be defined which line is detected.
When the road limiting lines are not detected, the model has to return more details
about the lines that are detected. This model serves very well for applying it to the
cityscapes dataset. Though it just detects the lines, it works very well on unknown
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data.

The best models are the binary and the weighted categorical model trained on
the TuSimple dataset. The categorical model with weighted classes returns similar
results for the detailed and general line detection. Because of this, the model of
the detailed line detection will be selected as the best one. Comparing it with the
binary model it is more susceptible to False Positives. Sometimes it happens that
it classifies pixels of the street or more often the Mercedes star as street lines. As
well, sometimes the system reacts to arrows that indicate lane changes on the road.
These are FPs as well.
The more important limitation of these models is that they do not detect the road
borders. If these are without lines the system cannot detect them. This is mainly
due to the training on the highway images. On the highway, the road lines always
are uniform and complete. Regarding this point, both systems perform similarly.
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Chapter 7

Conclusion

The perception systems are crucial for the performance of SDC. Therefore it is
important to gather as much relevant information as possible but still meet the re-
quirements in terms of efficiency and runtime of the embedded systems.

This research has shown that more complex architectures like the ShelfNet clearly
surpass basic encoder-decoder networks like the ConvNet. Although these come
with more parameters these are not significantly slower but better in performance.
Otherwise different architectures like the Fast-SCNN prove that by using more effi-
cient convolutional layers the number of parameters decreases a lot without losing
performance.
As well the classification pattern got clear, between which classes occur classification
errors like pedestrians, riders, or different types of vehicles and which classes are just
hard to detect like traffic lights or poles. This is very important because especially
these objects are very important to the goal of driving autonomously.
The classification problems can be corrected by grouping the different classes ap-
propriately into bigger categories. This still returns the needed information about
the situation, regarding where, is the driving space, which area is separated, which
static or dynamic obstacles appear in the scene, and which traffic participants are
there. As well this research shows in detail how the performance would suffer by
classifying the objects even more detailed. This is an important factor for perfor-
mance as well as image resolution. The image resolution weakens performance very
much why it is that important to also develop better cameras to ensure the best
quality while performing in real-time.
The lane detection part adds sufficient information to the scene detection to detect
the road. Although the used data sets do not fit the segmentation dataset perfectly,
the results of the combination of the road and street line detection are very good.
Especially this part already proposed an instance-level detection of the lanes to dif-
fer between the detected lines.
The use of multiple very different data sets and the overall good performance states
that the developed model is very appropriate for these tasks of image segmentation
in real-time.
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This will be the most important part to apply to object detection too. For au-
tonomous vehicles, it is important to distinguish between different objects of the
same class to estimate their exact behavior. This just can be done by detecting
persons, vehicles, or traffic signs on an instance level. Furthermore, more complex
loss functions can be used for training to push performance on the smaller classes.
The effect of this weighted loss is presented in the line detection part and helps to
improve detection performance.

Now it is shown, that the state-of-the-art performance in perception systems al-
ready reaches or even surpasses the human eyes. By designing algorithms that
make decisions based on these data the traffic safety can be improved a lot. Espe-
cially because these systems always decide by taking all information into account.
Eliminating human error in driving situations is a great impact and will change
traffic safety for good. By this work, it is shown what already can be realized and
how much the development depends on the provided data.
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