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Abstract

We study the spectrum of operators in the Schwartz space of rapidly de-
creasing functions which associate each function with its composition with a
polynomial. In the case where this operator is mean ergodic we prove that
its spectrum reduces to {0}, while the spectrum of any non mean ergodic
composition operator with a polynomial always contains the closed unit disc
except perhaps the origen. We obtain a complete description of the spec-
trum of the composition operator with a quadratic polynomial or a cubic
polynomial with positive leading coefficient.
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1. Introduction

Composition operators on Fréchet spaces of smooth functions on the reals
have attracted the attention of several authors recently ([7, 5, 8, 9, 10, 11])
but to our knowledge very little is known about the spectra of composition
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operators in this setting. See for instance [3] or [2], where the spectrum of
composition operators and other classical operators on spaces of real smooth
functions is investigated. This contrasts with the large number of existing ar-
ticles studying spectral properties of composition operators in Banach spaces
of analytic functions on the unit disc.

We study the spectrum of composition operators defined in the Schwartz
space S(R) of smooth rapidly decreasing functions, Cϕ : S(R)→ S(R), f 7→
f ◦ ϕ, in the case that ϕ is a non constant polynomial. A smooth function
ϕ : R→ R is said to be a symbol for S(R) if Cϕ maps S(R) continuously into
itself. The symbols for S(R) were completely characterized in [5, Theorem
2.3]. It follows from that characterization that any non constant polynomial ϕ
is a symbol for S(R). The results of the present paper complement our study
in [7] where we investigate dynamics and the spectrum of some particular
composition operators. Concrete examples were given where the spectrum
coincides with the open unit disc, the unit circle or C\{0}. In particular, the
spectrum of translation and dilation operators was analyzed in [7, Examples
5-6]:

Example 1.1. (a) Let ϕ(x) = x+ 1. Then σ (Cϕ) = {λ ∈ C : |λ| = 1}.

(b) Let ϕ(x) = ax where a 6= 0 and |a| 6= 1. Then σ (Cϕ) = C \ {0}.

However, in [7] we did not obtain any result concerning the spectrum of the
composition operator with a polynomial of degree greater than one. This
is precisely the objective of this work. It turns out that some dynamical
properties of the composition operator are characterized by the spectrum of
the operator. For example, the spectrum of a mean ergodic composition op-
erator is always contained in the closed unit disk ([7, Corollary 4.5]). This
result can be improved when the symbol is a polynomial. As we prove in
Theorem 2.5, the spectrum of a composition operator which is mean ergodic
and whose symbol is a polynomial with degree greater than one coincides
with {0} while the behavior of non mean ergodic composition operators with
polynomial symbols is different (Theorem 2.8). For strictly decreasing sym-
bols, not necessarily polynomials, the containment of ∂D in the spectrum of
the operator is equivalent to its mean ergodicity.

In [3] the spectrum of composition operators on A(R), the space of all real
analytic functions, is investigated for the case that the symbol is a quadratic
polynomial. For quadratic polynomials, we have a complete characterization

2



of the spectrum of the corresponding composition operator depending on the
number of fixed points of the polynomial. As expected, the spectrum of the
operator depends on the space where it is considered. To give an example,
when ϕ is a quadratic polynomial without fixed points then σA(R)(Cϕ) = C,
whereas σS(R)(Cϕ) = {0}.

Theorem 4.1 contains a complete description of the spectrum of a com-
position operator with a polynomial of degree three whose leading coefficient
is positive. For polynomials with negative leading coefficient some partial
results are available but we lack a complete characterization.

The final section contains some results concerning the spectra of compo-
sition operators with (non polynomial) monotone symbols.

We recall that given an operator T : X → X on a Fréchet space X,
σ(T ), the spectrum of T, is the set of all λ ∈ C such that T − λI : X → X
does not admit a continuous linear inverse. T is said to be power bounded
if {T n(x) : n ∈ N} is bounded for each x ∈ X. A closely related concept
to power boundedness is that of mean ergodicity. Given T ∈ L(X), the
Cesàro means of T are defined as T[n] =

∑n
k=1 T

k/n. T is said to be mean
ergodic when T[n] converges to an operator P , which is always a projection,
in the strong operator topology, i.e. if (T[n](x)) is convergent to P (x) for each
x ∈ X.

From now on ϕn = ϕ ◦ . . . ◦ ϕ denotes the n-th iteration of ϕ.

The following results will be used in what follows.

Lemma 1.2. [7, 3.10] Let ϕ be a polynomial of even degree without fixed
points. Then there is N ∈ N such that ψ = ϕN has neither zeros nor fixed
points. Moreover, for every K > 0 there is m0 ∈ N such that

|ψm+1(t)| ≥ K (ψm(t))2 ∀m ≥ m0, ∀t ∈ R.

Theorem 1.3. [7, 3.11] Let ϕ be a polynomial with degree greater than or
equal to two. Then, the following are equivalent:

(1) Cϕ is power bounded.

(2) Cϕ is mean ergodic.

(3) The degree of ϕ is even and it has no fixed points.
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2. Polynomial symbols

Two polynomials ϕ, ψ ∈ R[x] are linearly equivalent if there exists `(x) =
ax + b with a, b ∈ R and a 6= 0 such that ψ = `−1 ◦ ϕ ◦ `. Then, for every
λ ∈ C,

Cϕ − λI = C−1` ◦ (Cψ − λI) ◦ C`,

from where it follows that σ (Cψ) = σ (Cϕ) .

The first result follows immediately from this observation and [7, Exam-
ples 5-6] as each polynomial of degree one other than the identity is linearly
equivalent to a translation or to a dilation.

Proposition 2.1. Let ϕ(x) = ax+ b a polynomial with a, b ∈ R and a 6= 0.
Then

(a) For a 6= 1, ϕ is linearly equivalent to ψ(x) = ax. Hence σ (Cϕ) = C\{0}
for a 6= ±1 while σ (Cϕ) = {−1, 1} for a = −1.

(b) For a = 1 and b 6= 0, ϕ is linearly equivalent to ψ(x) = x + 1. Hence
σ (Cϕ) = {λ ∈ C : |λ| = 1} .

From now on we will consider only polynomials of degree greater than
one.

We observe that the following version of the spectral theorem holds in
our setting.

Proposition 2.2. For every symbol ϕ and N ∈ N,

σ(CϕN
) =

{
λN ∈ C : λ ∈ σ(Cϕ)

}
.

Proof: For every µ ∈ C \ {0} let λ1, . . . , λN denote its N -roots. Then

CϕN
− µI = CN

ϕ − µI = (Cϕ − λ1I) · · · (Cϕ − λnI) ,

from where the conclusion follows. �
We also recall the following elementary properties, which will be used in

what follows.

Proposition 2.3. Let ϕ be a symbol for S(R).

(a) If ϕ admits fixed points then 1 ∈ σ(Cϕ).
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(b) If a is a fixed point of ϕ then ϕ′(a) ∈ σ(Cϕ).

(c) If ϕ is a polynomial then 0 ∈ σ(Cϕ) if and only if ϕ′ vanishes at some
point.

Proof: (a) All the functions in the range of Cϕ − I vanish at fixed points of
ϕ, hence the conclusion.

(b) In fact, the derivative of any function in the range of Cϕ − ϕ′(a)I
vanishes at point a, hence Cϕ − ϕ′(a)I is not surjective.

(c) If ϕ′ does not vanish then infx∈R |ϕ′(x)| > 0 and Cϕ is surjective by
[5, 4.2]. Moreover Cϕ is injective as ϕ(R) = R. Conversely, if ϕ′(x0) = 0 then
the derivative of any function in the range of Cϕ vanishes at point x0. Hence
0 ∈ σ(Cϕ). �

We observe that an arbitrary symbol ϕ for S(R) satisfies conditions (i)
and (ii) in the next lemma with r = 1 if, and only if, Cϕ is power bounded.
This is the content of [7, Proposition 3.9].

Lemma 2.4. Let ϕ be a polynomial of degree ≥ 2. Assume that for all
r > 1, n ∈ N there exist C > 0, q ∈ N such that the following conditions
hold for each x ∈ R and m ∈ N:

(i) |ϕ(n)
m (x)| ≤ Crm(1 + |ϕm(x)|)q

(ii) |x| ≤ (1 + |ϕm(x)|)q.

Then the series ∑
m

µmf ◦ ϕm

is convergent in S(R) for each |µ| < 1. If in addition we assume that (i)
happens with r = 1 then the series is convergent for each µ ∈ C.

Proof: For each n,m ∈ N0, by Faá de Bruno formula

(f ◦ ϕm)(n)(x) =
n∑
j=1

f (j)(ϕm(x))Bn,j

(
ϕ′m(x) . . . ϕ(n−j+1)

m (x)
)
,
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where Bn,j are the Bell polynomials. Thus, from (i) and (ii), given f ∈ S(R),
n ∈ N0, r > 1 and a polynomial P we find another polynomial P̃ such that

∣∣P (x)(f ◦ ϕm)(n)(x)
∣∣ ≤ rm

∣∣∣P̃ (ϕm(x))
∣∣∣ · n∑

j=1

∣∣f (j)(ϕm(x))
∣∣ . (1)

Since f ∈ S(R) there is M > 0 such that (1) can be estimated by Mrm.
Therefore, given µ ∈ D we choose r > 1 such that |rµ| < 1 and the

convergence in S(R) of
∑
µmf ◦ ϕm follows.

If in addition (i) is satisfied with r = 1 then Cϕ is power bounded [7,
Proposition 3.9] and we have the estimate (1) with r = 1. By [7, Theorem
3.1] ϕ has even degree and lacks fixed points.

First we assume that

(a) |ϕ(x)| > x2 for every x ∈ R
and

(b) inf {|ϕ(x)| : x ∈ R} = a > 1.

This implies that |ϕm(x)| > a2
m−1

and the series∑
m

µm

|ϕm(x)|

converges absolutely and uniformly in R for every µ ∈ C. Using (1) with
r = 1 we immediately have, for every polynomial P and n ∈ N, that

∣∣µmP (x)(f ◦ ϕm)(n)(x)
∣∣ ≤ ∣∣∣∣∣ µm

1 + |ϕm(x)|
(1 + |ϕm(x)|)P̃ (|ϕm(x)|)

n∑
j=1

f (j)(ϕm(x))

∣∣∣∣∣
≤M

|µ|m

1 + |ϕm(x)|

for some M > 0. Consequently∑
m

µmf ◦ ϕm

converges in S(R) for each µ ∈ C and f ∈ S(R).

6



In the general case, we may find N ∈ N such that ϕN satisfies conditions
(a) and (b) ([7, Lemma 3.10]). Hence∑

m

µmf ◦ ϕm =
N−1∑
j=0

µj

(∑
m

(
µN
)m

(f ◦ ϕj) ◦ ϕNm

)
converges in S(R). �

Theorem 2.5. Let ϕ be a polynomial with even degree and without fixed
points. Then σ(Cϕ) = {0}.

Proof: From Lemma 1.2 we find N ∈ N such that if ψ = ϕN ,

min{|ψ(x)| : x ∈ R} = a > 1

and
|ψm+1(x)| ≥ (ψm(x))2 ∀m, ∀x ∈ R.

In particular, this gives
|ψm(x)| > a2

m−1

, (2)

for all x and every m.

Since the range of ϕ is a proper (unbounded) interval then Cϕ is not
injective and 0 ∈ σ(Cϕ). To finish the proof it suffices to show that σ(Cψ) ⊂
{0}.

To this end, we fix λ ∈ C, λ 6= 0, and check that Cψ − λI is a bijection,
hence a topological isomorphism by the open mapping theorem.

(i) Injectivity. Let us assume Cψf = λf for some f ∈ S(R). Then, for
every m ∈ N,

f(x) = λ−mf (ψm(x)) =
ψm(x)f (ψm(x))

λmψm(x).

Since
|λmψm(x)| ≥ |λ|m · a2m−1 →∞

then f(x) = 0 for all x ∈ R.
(ii) Surjectivity. From [7, Theorem 3.11 and Proposition 3.9] Cϕ is power

bounded and the hypothesis in Lemma 2.4 are satisfied with r = 1. Then,
for every g ∈ S(R) and λ 6= 0 the series

f = −
∞∑
k=0

1

λk+1
g ◦ ψk (3)
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converges in S(R) and clearly Cψf − λf = g. �

According to Proposition 2.3 the behavior of composition operators with
polynomials having fixed points is different. In order to obtain more infor-
mation we first we need an auxiliary result.

Lemma 2.6. Let ϕ be a polynomial with degree greater than one. Then,
there is M > 0 such that for each |x| > M,

lim
n

1

λn
f(ϕn(x)) = 0,

for 0 < |λ| ≤ 1 and every f ∈ S(R).

Proof: We fix 2 > p > 1 and take M > 1 such that |ϕ(x)| > |x|p whenever
|x| > M. Then |x| > M implies

|ϕn(x)| > Mpn ∀n ∈ N.

Finally

lim
n

∣∣∣∣ 1

λn
f(ϕn(x))

∣∣∣∣ ≤ lim
n

∣∣∣∣ϕn(x)f(ϕn(x))

λnMpn

∣∣∣∣ = 0. �

Lemma 2.7. Let ϕ be a polynomial with odd degree greater than one such
that lim

x→+∞
ϕ(x) = −∞. Let a be a fixed point of ϕ. If a is the largest fixed

point of ϕ2 then ϕ′(a) ≤ −1.

Proof: We first observe that lim
x→+∞

ϕ2(x) = +∞. From ϕ2(x) > x for every

x > a we get

(ϕ′(a))
2

= ϕ′2(a) = lim
x→a

ϕ2(x)− a
x− a

≥ 1.

Since a is also the largest fixed point of ϕ then ϕ(x) < x for all x > a, from
where it follows

ϕ′(a) = lim
x→a

ϕ(x)− a
x− a

≤ 1.

Consequently ϕ′(a) ≤ −1 or ϕ′(a) = 1. Finally we check that ϕ′(a) ≤ 0.
Otherwise there is δ > 0 such that ϕ is strictly increasing on [a, a+ δ]. Since
a < ϕ(a + δ) ≤ a + δ then ϕ ([a, a+ δ]) ⊂ [a, a + δ]. This is a contradiction.
In fact, for every x > a the sequence (ϕ2n(x))n is increasing and unbounded.
�
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Theorem 2.8. Let ϕ be a polynomial with degree greater than one and
having fixed points. Then,

D \ {0} ⊂ σ(Cϕ).

Proof: (a) First we consider the case that lim
x→+∞

ϕ(x) = +∞. We fix λ ∈

D \ {0} and assume that λ /∈ σ(Cϕ), hence λ 6= 1. Let a ∈ R be given with
the property that ϕ(a) = a and ϕ(x) > x for x > a. Since ϕ′(a) ≥ 1 then ϕ is
strictly increasing in some interval [a, a+ δ]. Let ψ : [a, ϕ(a+ δ)]→ [a, a+ δ]
be the inverse of ϕ : [a, a + δ] → [a, ϕ(a + δ)]. Since ϕ(a + δ) > a + δ then
ψk, the k-th iterate of ψ, is well defined for every k ∈ N.

We fix x0 ∈ (a, a+ δ) and define xk = ψk(x0). Then (xk)k is a decreasing
sequence converging to a. Let J0 be a closed interval contained in (x1, x0)
and take a smooth function g whose support is contained in (x1, x0) and
satisfying g(x) = 1 for all x ∈ J0. Then, there is a unique f ∈ S(R) such that

f (ϕ(x))− λf(x) = g(x), x ∈ R. (4)

After iterating this identity we obtain

f (ϕn(x)) = λnf(x) +
n−1∑
k=0

λn−1−kg (ϕk(x)) . (5)

Let M > 0 be as in Lemma 2.6. For each x > a the sequence (ϕn(x))n
diverges to infinity, so there is m ∈ N with ϕn(x) > M and it easily follows
that

lim
n

1

λn
f(ϕn(x)) = 0.

We conclude

f(x) = −
∞∑
k=0

1

λk+1
g(ϕk(x)) (6)

for all x > a. Finally, we fix y0 ∈ J0 and define yk = ψk(y0) ∈ (xk+1, xk).
We have ϕm(ym) = y0 ∈ J0, while ϕk(ym) = ϕk−m(y0) > x0 for k > m and
ϕk(ym) = ψm−k(y0) < x1 for k < m. Consequently

f(ym) = −λ−m−1 while f(a) = 0.
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The last identity follows from (4) using λ 6= 1. Since

lim
m
|f(ym)| 6= |f(a)|

we get a contradiction.

(b) To deal with the case that lim
x→+∞

ϕ(x) = −∞ we have to consider two

possibilities, depending on whether the degree of the polynomial is even or
odd.

(i) First case: the degree of ϕ is even. Since ϕ is linearly equivalent to
ψ(x) = −ϕ(−x) and lim

x→+∞
ψ(x) = +∞ then

D \ {0} ⊂ σ(Cψ) = σ(Cϕ)

and we are done.
(ii) Second case: the degree of ϕ is odd. Then lim

x→+∞
ϕ2(x) = +∞. As

above, ϕ2 is strictly increasing in some interval [a, a + δ], where a is the
greatest fixed point of ϕ2. Moreover, we can take δ small enough so that
ϕ(x) < a for every x ∈ (a, a + δ]. This is obvious in the case that ϕ(a) < a.
Otherwise, ϕ(a) = a and ϕ′(a) < 0 (Lemma 2.7) and we can take δ so that
ϕ is decreasing on [a, a+ δ], hence ϕ(x) < ϕ(a) = a for every x ∈ (a, a+ δ].
Now, we denote by ψ the inverse of ϕ2 : [a, a+ δ]→ [a, ϕ2(a+ δ)].

Proceeding as in (a), we fix x0 ∈ (a, a + δ) and define xk = ψk(x0).
Let J0 be a closed interval contained in (x1, x0) and take a compactly sup-
ported smooth function g whose support is contained in (x1, x0) and satisfy-
ing g(x) = 1 for all x ∈ J0. As in (a), there is f ∈ S(R) such that equation (6)
holds for x > a. Finally, we fix y0 ∈ J0 and define yk = ψk(y0) ∈ (xk+1, xk).
We have ϕ2m(ym) = y0 ∈ J0, ϕ2k(ym) > x0 for k > m, ϕ2k(ym) < x1 for
k < m. Moreover ϕ2k+1(ym) /∈ (a, a + δ] since otherwise ϕ2k+2(ym) < a,
which is a contradiction. Consequently

f(ym) = −λ−2m−1 while f(a) = 0.

The same argument as in case (a) gives a contradiction. �

Corollary 2.9. Let ϕ be a polynomial of degree greater than one. Then Cϕ
is mean ergodic if and only if σ(Cϕ) = {0}.

Proof: Apply [7, Theorem 3.11] and Theorems 2.5 and 2.8. �

10



Theorem 2.10. Let ϕ be a polynomial of degree greater than one and hav-
ing a fixed point a such that ϕ′(a) > 1 and ϕ(n)(a) ≥ 0 for all n ≥ 2. Then

C \ {0} ⊂ σ (Cϕ) .

Proof: Since

ϕ(x) = a+
∞∑
n=1

ϕ(n)(a)

n!
(x− a)n

then ϕ and all its derivatives are increasing in [a,+∞). An inductive ar-

gument using Faà di Bruno formula implies that also ϕ
(n)
k is increasing in

[a,+∞) for every k, n ∈ N0. We observe that ϕ(x) > a + ϕ′(a)(x − a) > x
for any x > a. Hence a is the largest fixed point of ϕ.

We already know that D \ {0} ⊂ σ (Cϕ) . We now fix |λ| > 1 and assume
that λ /∈ σ(Cϕ). We fix x0 > a and define xk+1 = ψ(xk), where ψ stands for
the inverse of ϕ : [a,+∞) → [a,+∞). Then (xk)k is a decreasing sequence
converging to a. We put Ik = (xk+1, xk) , so that Ik = ψk(I0), and let J0 be
a closed subinterval of I0 and Jk := ψk(J0). Finally, we consider a compactly
supported smooth function g whose support is contained in I0 and such that
g(x) = x for every x ∈ J0. Then there is f ∈ S(R) satisfying Cϕf − λf = g.
Hence

f (ϕn(x)) = λnf(x) +
n−1∑
k=0

λn−1−kg (ϕk(x)) ∀n ∈ N, x ∈ R.

Since |λ| > 1 and (f(ϕn(x)))n is a bounded sequence then

f(x) = −1

λ

∞∑
j=0

λ−jg (ϕj(x)) ∀x ∈ R.

For every x ∈ Jk we have ϕk(x) ∈ J0 while ϕn(x) /∈ I0 for every n 6= k.
Consequently

f(x) = −λ−k−1g (ϕk(x)) = −ϕk(x)

λk+1
∀x ∈ Jk.

In order to obtain a contradiction we proceed as follows. Our hypothesis and
Faà di Bruno formula permit to conclude

ϕ
(n)
m+1(a) ≥ ϕ(n)

m (a) · ϕ′(a)n. (7)
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We select n0 ∈ N so that ϕ′(a)n0 > |λ|. We can find n > n0 and m ∈ N such

that ϕ
(n)
m (a) 6= 0. Otherwise, every iterate ϕm would have degree less than or

equal n0, which is a contradiction. From (7) we get

ϕ
(n)
k+m(a) ≥ ϕ(n)

m (a) · ϕ′(a)kn ∀k ∈ N.

Finally, for every x ∈ Jk+m we obtain, with C = ϕ
(n)
m (a)
|λ|1+m ,

∣∣f (n)(x)
∣∣ =

ϕ
(n)
k+m(x)

|λ|k+m+1
≥
ϕ
(n)
k+m(a)

|λ|k+m+1

≥ C

(
ϕ′(a)n

|λ|

)k
.

We conclude that f (n) is not a bounded function, which is a contradiction.
�

The following result will be useful in the proof of Proposition 4.2.

Proposition 2.11. Let η be a polynomial with odd degree and negative
leading coefficient such that ϕ = η ◦ η satisfies the hypothesis in Theorem
2.10. Then C \ {0} ⊂ σ(Cη).

Proof: Since η has odd degree then it has fixed points and we can apply
Theorem 2.8 to get D \ {0} ⊂ σ (Cη) . We now fix |λ| > 1 and assume that
λ /∈ σ(Cη). We observe that a is the largest fixed point of ϕ. From Lemma
2.7 we get δ > 0 such that η(x) < a for all x ∈ (a, a + δ). Now we fix
x0 ∈ (a, a + δ) and define g as in the proof of Theorem 2.10. Then there is
f ∈ S(R) such that

f(x) = −1

λ

∞∑
n=0

λ−ng (ηn(x)) ∀x ∈ R.

We observe that η2j = ϕj and g (η2j+1(x)) = 0 for all j ∈ N0 and x ≥ a
(otherwise η2j+1(x) ∈ (a, a + δ) and η2j+2(x) < a, which is a contradiction).
Then

f(x) = −1

λ

∞∑
j=0

λ−2jg (ϕj(x)) ∀x ≥ a.

Now we proceed as in Theorem 2.10 to get a contradiction. �

As an application of Theorem 2.10 and Proposition 2.3 we have the fol-
lowing.
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Example 2.12. Let ϕ(x) = xp, p ≥ 2. Then σ(Cϕ) = C.

Example 2.13. Let ϕ be a polynomial of degree N > 1 with positive leading
coefficient and complex fixed points z1, . . . , zN such that

1. zN ∈ R and the multiplicity of zN as a fixed point is 1.

2. Re(zk) ≤ zN for k < N.

Then C \ {0} ⊂ σ(Cϕ).

In fact, we can apply Theorem 2.10 taking a = zN .

3. Quadratic polynomials

Next we apply the previous results to discuss the spectrum of Cϕ in the
case that ϕ is a quadratic polynomial. Such a polynomial ϕ(x) = a0 + a1x+

a2x
2 (a2 6= 0) is linearly equivalent to ψ(x) = x2 +c where c = a0a2 + a1

2
− a21

4
.

In fact, take `(x) = ax + b where a = a2, b = a1
2
. It is routine to check that

ϕ = `−1 ◦ ψ ◦ `. We observe that 0 ∈ σ(Cψ) = σ(Cϕ) since the range of Cψ
consists of even functions.

c > 1
4

implies that ϕ and ψ lack fixed points, hence σ(Cϕ) = {0} (Theorem
2.5). In the case c < 1

4
we have that ϕ (and also ψ) has two different fixed

points and we can apply Theorem 2.10 (see also Example 2.13) to conclude
that σ(Cϕ) = C.

Our next aim is to discuss the case c = 1
4
.

Lemma 3.1. Let ϕ(x) = x2 + 1
4

be given. Then, for every r > 1 there exist
C > 0 and p ∈ N such that

|ϕ′m(x)| ≤ Crm (1 + ϕm(x))p .

Proof: We first observe that |ϕ′(x)| ≤ 2ϕ(x) with equality for x = ±1
2

and
also

ϕ′m+1(x) = 2ϕm(x)ϕ′m(x). (8)

Proceeding by recurrence we conclude

ϕ′m(x) = 2m
m−1∏
j=0

ϕj(x), (9)
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where ϕ0(x) = x.

Since every ϕm (m ≥ 1) is even and ϕ′m is odd we only need to consider
the case x ≥ 0. Now we proceed in several steps.

(i) For 0 ≤ x ≤ 1
2

we have ϕm(x) ≤ ϕm(1
2
) = 1

2
. An induction argument

gives

ϕ′m(x) ≤ ϕ′m(
1

2
) = 1.

(ii) For x ≥ x0 := 1 +
√
3
2

we have ϕ′(x) ≤ ϕ(x). Since ϕ(x) > x then also
2ϕm(x) ≤ ϕm+1(x) for every m ∈ N. We check that

ϕ′m(x) ≤ ϕ2
m(x) ∀m ∈ N, x ≥ x0.

In fact, this inequality is obvious for m = 1 and assuming that it is true for
m we obtain

ϕ′m+1(x) = 2ϕm(x)ϕ′m(x) ≤ ϕm+1(x)ϕ2
m(x) ≤ ϕ2

m+1(x).

(iii) Take m0 ∈ N such that ϕm0(
r
2
) ≥ x0. Then, for every x ≥ r

2
and

m ≥ m0 we put
ϕm(x) = ϕm−m0 (ϕm0(x)) ,

where ϕm0(x) ≥ x0. Hence

ϕ′m(x) = ϕ′m−m0
(ϕm0(x)) · ϕ′m0

(x) ≤ (1 + ϕm−m0 (ϕm0(x)))2 · ϕ′m0
(x).

From (9) we obtain ϕ′m0
(x) ≤ 2m0 (1 + ϕm(x))m0 . Finally, for p = m0 + 2 we

conclude
ϕ′m(x) ≤ 2m0 (1 + ϕm(x))p ∀m ≥ m0, x ≥

r

2
.

Hence we can find C > 0 such that

ϕ′m(x) ≤ C (1 + ϕm(x))p ∀m ∈ N, x ≥ r

2
.

(iv) We now consider 1
2
≤ x < r

2
and select nx ≥ 1 with the property that

ϕj(x) ≥ r
2

whenever j ≥ nx while ϕj(x) < r
2

for 0 ≤ j < nx.

If m < nx+1 then, from (9), we get ϕ′m(x) ≤ rm. Otherwise we decompose

ϕ′m(x) =
nx−1∏
j=0

(2ϕj(x)) ·
m−1∏
j=nx

(2ϕj(x))

14



The first factor is dominated by rnx ≤ rm, while the second one coincides
with

2m−nx

m−1−nx∏
k=0

ϕk (ϕnx(x)) = ϕ′m−nx
(ϕnx(x)) .

Since ϕnx(x) ≥ r
2

we can use the estimates in (iii) to conclude

ϕ′m(x) ≤ Crm (1 + ϕm−nx (ϕnx(x)))p = Crm (1 + ϕm(x))p .

�

Lemma 3.2. Let ϕ(x) = x2 + 1
4

be given. Then, for every r > 1 and n ∈ N
there exist C > 0 and p ∈ N such that∣∣ϕ(n)

m (x)
∣∣ ≤ Crm (1 + ϕm(x))p .

Proof: It is enough to consider x ≥ 0. The case n = 1 is the content of the
previous Lemma. Let us now consider n = 2. From (9) we obtain, for every
x ≥ 1

2
,

ϕ′′m(x) =
m−1∑
j=0

2ϕ′j(x)
∏
i 6=j

2ϕi(x) = ϕ′m(x)
m−1∑
j=0

ϕ′j(x)

ϕj(x)
. (10)

Hence

ϕ′′m(x) ≤ ϕ′m(x)
m−1∑
j=0

2ϕ′j(x).

We now fix r > 1 and take C > 0 and p ∈ N such that∣∣ϕ′j(x)
∣∣ ≤ Crj (1 + ϕj(x))p ∀j ∈ N0, x ∈ R.

Then, for every x ≥ 1
2
,

|ϕ′′m(x)| ≤ 2C2rm (1 + ϕm(x))2p
m−1∑
j=0

rj

≤ 2
C2

r − 1
r2m (1 + ϕm(x))2p .

Since r > 1 is arbitrary we conclude that for every r > 1 there exist C > 0
and q ∈ N such that |ϕ′′m(x)| ≤ Crm (1 + ϕm(x))q whenever x ≥ 1

2
.
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For n > 2 we apply (10) to get∣∣ϕ(n)
m (x)

∣∣ =
∣∣∣(ϕ′′m)

(n−2)
(x)
∣∣∣ ≤ n−2∑

k=0

(
n− 2

k

) ∣∣ϕ(k+1)
m (x)

∣∣m−1∑
j=0

∣∣∣∣∣
(
ϕ′j
ϕj

)(n−2−k)

(x)

∣∣∣∣∣ .
Now, an application of Leibnitz rule and Faà di Bruno formula permits to
proceed by induction in order to prove the desired result for x ≥ 1

2
.

On the other hand, as ϕ
(n)
m is increasing in [0,+∞) then for all x ∈ [0, 1

2
]

we have

0 ≤ ϕ(n)
m (x) ≤ ϕ(n)

m (
1

2
) ≤ Crm

(
1 + ϕm(

1

2
)

)p
for some p and C > 0 which only depend on n. Since ϕm(1

2
) = 1

2
we are done.

�

Theorem 3.3. Let ϕ(x) = x2 + 1
4

be given. Then σ (Cϕ) = D.

Proof: Since ϕ admits a fixed point and Cϕ is not injective then D is con-
tained in σ (Cϕ) by Theorem 2.8. To finish we show that Cϕ−λI is invertible
for every |λ| > 1.

(a) Cϕ − λI is injective for |λ| > 1. In fact, Cϕ(f) = λf implies
f (ϕn(x)) = λnf(x) for every x ∈ R and n ∈ N. Since the left hand side
is bounded and |λ| > 1 then f(x) = 0 for every x ∈ R.

(b) Cϕ − λI is surjective for |λ| > 1. It suffices to show that

∞∑
m=0

f ◦ ϕm
λm

converges in S(R) for every f ∈ S(R) and λ ∈ C with |λ| > 1. Obviously
|x| ≤ 1 +ϕm(x) for all x ∈ R and m ∈ N. By Lemmas 3.1 and 3.2, ϕ satisfies
the hypothesis in Lemma 2.4 and we conclude. �

Summarizing, we get the following.

Theorem 3.4. Let ϕ(x) = a0 + a1x+ a2x
2 be a quadratic polynomial with

real coefficients and take c = a0a2 + a1
2
− a21

4
.

(a) c > 1
4

implies σ (Cϕ) = {0} .

(b) c = 1
4

implies σ (Cϕ) = D.

(c) c < 1
4

implies σ (Cϕ) = C.
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4. Cubic polynomials

Let us now consider polynomials ϕ of degree 3 with lim
x→+∞

ϕ(x) = +∞.

Theorem 4.1. Let ϕ be a polynomial of degree 3 with positive leading co-
efficient. Then C \ {0} ⊂ σ(Cϕ) unless ϕ has a fixed point of multiplicity 3
in which case σ(Cϕ) = D \ {0}.

Proof: According to its fixed points the following cases can occur:

(i) ϕ has three different real fixed points,

(ii) ϕ has two different real fixed points, one with multiplicity two and the
other is simple,

(iii) ϕ has only one real fixed point, the other two being complex conjugate
numbers,

(iv) ϕ has one real fixed point of multiplicity 3.

In the first three cases, using that ϕ is linearly equivalent to ψ(x) =
−ϕ(−x) if necessary, we may apply Theorem 2.10 (see Example 2.13) to
conclude that C \ {0} ⊂ σ(Cϕ). In the forth case, ϕ is linearly equivalent to
ψ(x) = x+ x3.

So, to complete the proof we discuss the spectrum of ϕ(x) = x+x3. From
Theorem 2.8 and Proposition 2.3 we already know that σ(Cϕ) ⊃ D \ {0} and
that 0 /∈ σ(Cϕ).

We will show that given n ≥ 1 and R > 1 there are C > 0 and q ∈ R
such that

|ϕ(n)
m (x)| ≤ CRm(1 + ϕm(x))q (11)

for each x ∈ R and each m ∈ N. Since ϕ is an odd function, it suffices to
consider x ≥ 0. First, we check the inequality (11) for the first derivative.
Observe that ϕ′m+1(x) = ϕ′m(x)ϕ′(ϕm(x)). Then,

ϕ′m(x) =
m−1∏
k=0

ϕ′(ϕk(x)).

For x = 0 we have the inequality with q = C = 1. We will proceed by
induction on m. For m = 1 we clearly have the inequality for some C > 0

17



and q = 1. Also, we have ϕ′(x) = 1 + 3x2 ≥ 1. We take x0 > 0 such that
for x ≥ x0, we have ϕ′(x) < ϕ(x). Observe that this implies x0 > 1 therefore
1 + 3x2 < (1 + x2)2. As ϕ(x) > x for x > 0, we also have

1 + 3ϕm(x)2 <
(
1 + ϕm(x)2

)2
for x ≥ x0. Hence, if we assume that for x ≥ x0 we have ϕ′m(x) ≤ (ϕm(x))2,
we obtain

ϕ′m+1(x)

(ϕm+1(x))2
=

ϕ′m(x)

(ϕm(x))2
· 1 + 3ϕm(x)2

(1 + ϕm(x)2)2
≤ 1.

Consequently
ϕ′m(x) ≤ (ϕm(x))2 ∀m ∈ N, x ≥ x0.

We now claim that for each K > 0 there is q ∈ N such that

ϕ′m(x) ≤ (1 + ϕm(x))q,

whenever x > K. In fact, for each K > 0 we take ` ∈ N such that ϕ`(K) > x0.
Then, for x ≥ K and m > ` we have

ϕ′m(x) = ϕ′m−` (ϕ`(x)) · ϕ′`(x)

≤ (ϕm−` (ϕ`(x)))2 ·
`−1∏
j=0

(
1 + 3ϕj(x)2

)
≤ 3` (ϕm(x))2 · (1 + ϕm(x))2` .

We take p ∈ N such that 3` ≤ (1 + ϕ(K))p and put q = 2`+ p+ 2. Then

ϕ′m(x) ≤ (1 + ϕm(x))q

for all x > K. The claim is proved. To finish the proof of (11) for n = 1 we
fix R > 0 and take K > 0 such that x > 0 and ϕ′(x) > R imply x > K. For
any x > 0 let nx ∈ N be the first n ∈ N with the property that ϕn(x) > K.
Then m ≤ nx implies

ϕ′m(x) =
m−1∏
j=0

ϕ′ (ϕj(x)) ≤ Rm,
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while for m > nx we have

ϕ′m(x) =
nx−1∏
j=0

ϕ′ (ϕj(x)) ·
m−1∏
j=nx

ϕ′ (ϕj(x))

≤ Rnx

m−1−nx∏
j=0

ϕ′ (ϕj(ϕnx(x)))

= Rnxϕ′m−nx
(ϕnx(x)) ≤ Rm (1 + ϕm(x))q .

For the second derivative we have,

ϕ′′m(x) =
m−1∑
k=0

6ϕk(x)2ϕ′(x)
∏
j 6=k

ϕ′(ϕj(x)) = ϕ′m(x)
∑
k

ϕ′k(x)
6ϕk(x)2

1 + 3ϕk(x)2
.

From here, we argue as in the case of p(x) = x2 + 1
4

to conclude. �

We observe that each polynomial ϕ of degree 3 is linearly equivalent to
some polynomial of the form

ψ(x) = ± x3 + Ax+B.

For ϕ(x) = x3 + Ax + B the spectrum of Cϕ is already discussed in
Theorem 4.1. Next we include some partial results concerning the spectrum
of Cϕ for ϕ(x) = −x3 + Ax + B. In the special case that B = 0 we have a
complete characterization.

Proposition 4.2. Let η(x) = −x3 + Ax be given. Then

(a) A = −1 implies σ(Cη) = D \ {0}.

(b) A < 0, A 6= −1, implies σ(Cη) = C \ {0}.

(c) A ≥ 0 implies σ(Cη) = C.

Proof: Since η has fixed points we can apply Theorem 2.8 to conclude that
D \ {0} ⊂ σ(Cη). From the fact that η is an odd function we have η2 = ω2

where ω(x) = −η(x) = x3 − Ax.
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(a) In the case A = −1 we have ω(x) = x3 + x and

σ(Cη2) = σ(Cω2) = D \ {0}.

The last identity follows from Theorem 4.1 and spectral theorem. Conse-
quently σ(Cη) ⊂ D \ {0}.

By Proposition 2.3, in order to show (b) and (c) it suffices to check that
C \ {0} ⊂ σ(Cη) for A 6= −1. We first consider the case A > −1. Then
ω admits a fixed point a > 0 such that ω′(a) > 1 and ω(n)(a) ≥ 0. Hence,
ϕ = η◦η = ω◦ω satisfies the hypothesis of Theorem 2.10. Since η(x) < 0 < a
for all x ≥ a we can apply Proposition 2.11 to conclude C \ {0} ⊂ σ(Cη).

In the case A < −1 the fixed point a = 0 satisfies ω′(a) > 1 and ω(n)(a) ≥
0. Hence we can proceed as before. �

For polynomials ϕ(x) = −x3 + Ax+B with B 6= 0 we can provide some
examples.

Proposition 4.3. Let ψ(x) = x3+Ax+B be given with B 6= 0 and consider
ϕ(x) = −x3−Ax−B. We assume the ψ has three different (real) fixed points.
Then

C \ {0} ⊂ σ (Cϕ) .

Proof: We first assume that B > 0. We have ϕ2(x) = ψ2(x)− 2B for every
x ∈ R. Let x = α be the greatest fixed point of ψ. Then ψ′(α) > 1 and
ψ′′(x) ≥ 0 for every x ≥ α. Then x = α is a fixed point of ψ2 and it satisfies

ψ′2(α) > 1 and ψ
(n)
2 (x) ≥ 0 for every x ≥ α. Since B > 0 then the equation

ϕ2(x) = x, equivalently ψ2(x) = x+ 2B

admits a solution β > α. Then

ϕ′2(β) = ψ′2(β) ≥ ψ′2(α) > 1,

while
ϕ
(n)
2 (x) = ψ

(n)
2 (x) ≥ 0 ∀x ≥ β.

Consequently
C \ {0} ⊂ σ (Cϕ2) ,

from where the conclusion follows after applying Proposition 2.11.
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We now consider the case that B < 0. We put ϕ̃(x) = −ϕ(−x) and
ψ̃(x) = −ψ(−x). Then ψ̃(x) = x3 +Ax−B and ϕ̃(x) = −ψ̃(x). Since also ψ̃
admits three different fixed points and ψ̃(0) > 0 we conclude

C \ {0} ⊂ σ (Cϕ̃) = σ (Cϕ) . �

Remark 4.4. Let ψ(x) = x3 + Ax + B be given with B > 0. If ψ has a
unique real fixed point then

ψ(x) = x+
(
(x− α)2 + β2

)
(x− c),

where c < 0 < α.

This means that we cannot adapt the previous argument to the case that
there is a unique fixed point. Nor can we adapt the argument in the case
where there is a simple fixed point and a double fixed point (the condition
B > 0 forces that the double fixed point is the greatest).

Remark 4.5. If X is a locally convex space and T ∈ L(X), the Waellbrock
spectrum σ∗(T ) is defined as the smallest set containing σ(T ) such that the
resolvent mapping R(·, T ) : C\σ∗(T )→ Lb(X), z 7→ R(z, T ) = (zI−T )−1 is
holomorphic (see [13]). Here Lb(X) stands for the space of continuous linear
operators onX endowed with the topology of convergence on bounded sets. If
X is a Fréchet space and U ⊂ C is open then F : U → Lb(X) is holomorphic
if and only if the map U → C, z 7→ 〈u, F (z)(x)〉 is holomorphic for every
u ∈ X ′, x ∈ X (see [6, Theorem 1], [4, corollary 10, Remark 11]). Hence,
from Lemma 2.4 we can get easily that the resolvent map z 7→ R(·, Cϕ) is
holomorphic in C \ {0} when ϕ does not have fixed points (Theorem 2.5),
and also in C\D when ϕ is a polynomial of degree 2 or 3 with a unique fixed
point (Theorem 3.4, Theorem 4.1 and Propoposition 4.2 a)). In all cases
then we have σ∗(Cϕ) = σ(Cϕ). Contrary to what happens for operators in
Banach spaces, where the Waellbrock spectrum equals the spectrum which is
always closed, this is not always true for operators defined on Fréchet spaces,
even when the spectrum is bounded as one can check in [1, Remark 3.5 (vi)].

5. Monotone symbols

We recall that the symbols for S(R) were completely characterized in [5,
Theorem 2.3]. The aim of this section is to provide some information regard-
ing the spectrum of composition operators defined by monotone symbols.
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Then, let us assume that the symbol ϕ is strictly monotone and let us de-
note by ψ its inverse and by ψn its n-th iterate. For λ 6= 0, and f, g ∈ S(R),
the relation Cϕf − λf = g implies that (5) holds for every n, that is

f (ϕn(x)) = λnf(x) +
n−1∑
k=0

λn−1−kg (ϕk(x)) ,

which implies

f(x) = λnf (ψn(x)) +
n−1∑
k=0

λn−1−kg (ψn−k(x))

= λnf (ψn(x)) +
n∑
j=1

λj−1g (ψj(x)) .

(12)

Proposition 5.1. Let ϕ be a strictly increasing symbol other than the iden-
tity. Then σ(Cϕ) always contains {λ ∈ C : |λ| = 1}.

Proof: Let λ satisfies |λ| = 1 and assume that λ /∈ σ(Cϕ). Then, for every
g ∈ S(R) there is a unique f ∈ S(R) such that (4), (5) and (12) hold. Now
we discuss the following possibilities, covering all possible cases

(1) ϕ lacks fixed points.

(2) There exist a < b such that ϕ(a) = a, ϕ(b) = b and ϕ(x) 6= x for every
x ∈ (a, b) .

(3) There exists a ∈ R such that ϕ(a) = a and ϕ(x) 6= x for every x ∈
(a,+∞) .

(4) There exists a ∈ R such that ϕ(a) = a and ϕ(x) 6= x for every x ∈
(−∞, a) .

(1) Since, for every x ∈ R, the sequences (ϕn(x))n and (ψn(x))n diverge,
we obtain from (5) and (12),

f(x) = −1

λ

∞∑
k=0

λ−kg (ϕk(x)) =
1

λ

∞∑
k=1

λkg (ψk(x)) .
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This implies that

∞∑
k=0

λ−kg(ϕk(x)) +
∞∑
k=1

λkg(ψk(x)) = 0

for each x ∈ R. This cannot happen if g is a smooth function whose support
contains 0 and is contained in the open interval determined by ϕ(0) and ψ(0).

In the case that the symbol admits some fixed point then 1 ∈ σ(Cϕ), so
we will take in what follows λ 6= 1.

(2) Either

ϕn(x) ↓ a, ψn(x) ↑ b ∀x ∈ (a, b) (if ϕ(x) < x)

or
ϕn(x) ↑ b, ψn(x) ↓ a ∀x ∈ (a, b) (if ϕ(x) > x).

We fix x0 ∈ (a, b) and define xk+1 = ϕ(xk). Let I0 denote the open interval
with extremes (x0, x1) and let J0 be a closed interval contained in I0 and g a
smooth function with support contained in I0 such that g(x) = 1 for x ∈ J0.
The identity (4) implies that f(a) = f(b) = 0. Then (12) gives

f(x) =
∞∑
j=1

λj−1g (ψj(x)) ∀x ∈ (a, b).

Finally we fix y0 ∈ J0, define yk = ϕk(y0) and put c = limk→∞ yk (c = a or
c = b). Then f(yk) = λk−1g (ψk(yk)) = λk−1 and

lim
k→∞
|f(yk)| 6= |f(c)| ,

which is a contradiction.

(3) In the case ϕ(x) < x for every x > a we have ϕn(x) ↓ a ∀x > a and
we can proceed as in (2) to get a contradiction. We will discuss the case that
ϕ(x) > x for every x > a. Then

ψn(x) ↓ a while ϕn(x) ↑ +∞ ∀x > a.

From (5) we obtain

f(x) = −
∞∑
k=0

λ−k−1g (ϕk(x)) ∀x > a.
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We fix x0 > a and define xk+1 = ψ(xk). Let I0 denote the open interval
(x1, x0) and let J0 be a closed interval contained in I0 and g a smooth function
with support contained in I0 such that g(x) = 1 for x ∈ J0. Finally we fix
y0 ∈ J0, define yk = ψk(y0). Then f(yk) = −λ−k−1g (ϕk(yk)) = −λ−k−1 and
we can proceed as in case (2) to get a contradiction.

(4) is analogous to (3). �

For ϕ(x) = x+ e−x
2
, the composition operator Cϕ is not power bounded

but we do not know whether it is mean ergodic or not (see [7, Remark 1]).
According to Proposition 5.1, the spectrum of Cϕ contains the unit circle.

We recall that a fixed point a of ϕ is said to be attracting if |ϕ′(a)| < 1
and repelling if |ϕ′(a)| > 1.

Proposition 5.2. Let us assume that a is an attracting fixed point of the
strictly increasing symbol ϕ. Then

{λ ∈ C : ϕ′(a) < |λ| < 1} ⊂ σ(Cϕ).

Proof: Let us denote by ψ the inverse of the bijection ϕ : [a,+∞) →
[a,+∞). Given λ ∈ D, and f, g ∈ S(R), the relation Cϕf − λf = g, implies
that

f(x) =
∞∑
j=1

λj−1g (ψj(x)) , ∀x > a. (13)

We take ϕ′(a) < ε < |λ| and choose 0 < δ so that ϕ′(x) < ε on (a, a+ δ). For
every x ∈ (a, a+ δ), by the mean value theorem, we have ϕ(x) < x hence the
sequence (ϕn(x))n decreases to a. In fact,

|ϕn(x)− a| ≤ εn|x− a|. (14)

We fix a < b < a + δ and let J be a closed interval contained in (ϕ(b), b).
We consider a smooth function g whose support is contained in (ϕ(b), b)
and such that g(x) = 1 for every x ∈ J. We check that g cannot be in the
range of Cϕ − λI. We proceed by contradiction and assume that there is is
f ∈ S(R) such that Cϕf − λf = g. We take y0 ∈ J and yk := ϕk(y0). Then
ψj(yk) ∈ (ϕ(b), b) if and only if k = j. Hence, by (13), f(yk) = λk−1. Finally,
using (14), ∣∣∣∣f(yk)− f(a)

yk − a

∣∣∣∣ ≥ |λ|k−1

|y0 − a|εk
,

which goes to ∞ as k →∞. This is a contradiction since (yk)k decreases to
a. �
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Corollary 5.3. Let us assume ϕ(a) = a, ϕ′(a) = 0, ϕ strictly increasing.
Then

{λ ∈ C : |λ| ≤ 1} ⊂ σ(Cϕ).

With obvious modifications, one can show

Proposition 5.4. Let us assume that a is a repelling fixed point of ϕ and
ϕ strictly increasing. Then

{λ ∈ C : 1 ≤ |λ| < |ϕ′(a)|} ⊂ σ(Cϕ).

Proposition 5.5. Let ϕ be a strictly decreasing symbol. Then

{λ ∈ C : |λ| = 1} ⊂ σ(Cϕ)

if and only if ϕ ◦ ϕ 6= I.

Proof: Let us assume ϕ◦ϕ 6= I and let a denote the unique fixed point of ϕ.
We proceed by contradiction, so we assume there is λ /∈ σ(Cϕ) with |λ| = 1.
Several possibilities can occur.

(1) There exist a ≤ b < c such that ϕ2(b) = b, ϕ2(c) = c and ϕ2(x) 6= x
for every x ∈ (b, c). For every smooth function g whose support is contained
in (b, c) there is f ∈ S(R) with f (ϕ(x))− λf(x) = g(x). Then

f(x) = λ2nf (ψ2n(x)) +
2n∑
j=1

λj−1g (ψj(x)) .

Since ψ ([b, c]) ⊂ ψ ([a,+∞)) = (−∞, a] and ψ2k ([b, c]) ⊂ [b, c] we obtain
ψ2k+1 ([b, c]) ⊂ (−∞, a]. Hence

f(x) = λ2nf (ψ2n(x)) +
n∑
j=1

λ2j−1g (ψ2j(x)) ∀x ∈ (b, c).

Now we can argue as in the proof of Proposition 5.1 (case (2)) to get a
contradiction.

(2) There exists b ≥ a such that ϕ2(b) = b and ϕ2(x) 6= x for every x > b.
Since ψ ([b,+∞)) ⊂ ψ ([a,+∞)) ⊂ (−∞, a] and ψ2k ([b,+∞)) ⊂ [b,+∞) we
obtain ψ2k+1 ([b,+∞)) ⊂ (−∞, a]. Hence

f(x) = λ2nf (ψ2n(x)) +
n∑
j=1

λ2j−1g (ψ2j(x)) ∀x > b.
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Now we can argue as in the proof of Proposition 5.1 (case (3)) to get a
contradiction. The other possibilities can be treated as (1) or (2).

Finally, let us assume that the unit circle is contained in σ(Cϕ). Since
σ(C2

ϕ) ⊃ (σ(Cϕ))2 then the unit circle is contained in σ(C2
ϕ), which implies

ϕ ◦ ϕ 6= I. �

If ϕ ◦ϕ = I then σ(Cϕ) = {−1, 1}. According to [7, Proposition 3.7] and
Proposition 5.5, the condition {λ ∈ C : |λ| = 1} ⊂ σ(Cϕ) characterizes the
decreasing symbols ϕ such that Cϕ is mean ergodic.
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[7] C. Fernández, A. Galbis, E. Jordá, Dynamics and spectra of composition
operators on the Schwartz space. J. Funct. Anal. 274 (2018), 3503–3530.

[8] N. Kenessey, J. Wengenroth, Composition operators with closed range
for smooth injective symbols R→ Rd. J. Funct. Anal. 260 (2011), 2997–
3006.

[9] A. Przestacki, Composition operators with closed range for one-
dimensional smooth symbols. J. Math. Anal. Appl. 399 (2013), 225–228.

26



[10] A. Przestacki, Characterization of composition operators with closed
range for one-dimensional smooth symbols. J. Funct. Anal. 266 (2014),
5847–5857.

[11] A. Przestacki, Corrigendum to ”Characterization of composition oper-
ators with closed range for one-dimensional smooth symbols” J. Funct.
Anal. 266 (2014) 5847–5857]. J. Funct. Anal. 269 (2015), 2665–2667.

[12] A. Przestacki, Dynamical properties of weighted composition operators
on the space of smooth functions. J. Math. Anal. Appl. 445 (2017),
1097–1113.

[13] F. H Vasilescu, Analytic functional calculus and spectral decompositions.
Translated from the Romanian. Mathematics and its Applications (East
European Series), 1. D. Reidel Publishing Co., Dordrecht (1982).

27


