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Abstract 

This paper aims to assess fully the spatio-temporal dependence dimensions of inflow across two 

adjacent and parallel basins and among different time steps through Causality. This is addressed from the 

perspective of Causal Reasoning, supported by Bayesian modelling, under a novel framework named 

Bayesian Causal Modelling (BCM). This is applied, through a “concept-proof”, to the Jucar River Basin 

(the second largest basin of Eastern Spain, characterized by long and severe drought conditions). In this 

“concept-proof” a double goal is evaluated; first dedicated to a lumped analysis of dependence and second 

a specific one over dry periods focused on time-horizon of the Jucar basin typical drought (3 years). These 

challenges comprise the development of two fully connected Bayesian Networks (BNs), one for each 

challenge populated/trained from historical-inflow records. BNs were designed at a season-scale and 

consequently, time was upscaled and grouped into Irrigation and Non-Irrigation periods, according to Jucar 

River Basin Authority operational practices. Results achieved showed that BCM framework satisfactorily 

captured the spatio-temporal dependencies of systems. Furthermore, BCM is able to answer to some key 

questions over interdependencies between adjacent and parallel subbasins. Those questions may comprise, 

the amount of spatial dependences among time series, the temporarily conditionality among subbasins and 

the spatio-temporal dependence among basins. This provides a relevant insight on the intrinsic spatio-

temporal dependence structure of inflow time series in complex basins systems. This approach could be 

very valuable for water resources planning and management, due to its application power for predicting 

extreme events (e.g. droughts) as well as improving and optimizing the reservoirs operation rules. 

Keywords: Causality, Causal reasoning, Bayesian spatio-temporal dependence, Stochastic hydrology, 

Jucar river basin, Historical inflow time series. 
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1. Introduction 

The inherent nonlinear nature of hydrologic series and their associated processes is 

widely known (Wei et al., 2012; Molina et al., 2016; Peng et al., 2017). Furthermore, the 

nonstationarity of records (annual or even larger time scale) is rapidly growing worldwide 

over the last years due to modifications/alterations in the climatic patterns (Allan and 

Soden 2008; Trenberth 2011; Kalra et al., 2013; Chang et al., 2015; Wasko and Sharma, 

2015; Donat et al., 2016;) as result of the influence of climate change into small-scale 

meteorological processes (Marotzke et al., 2017; Pfahl et al., 2017). This global situation 

is materialized in the increasing occurrence, intensity and persistence of extreme events 

(Jyrkama and Sykes, 2007; Marcos-Garcia et al., 2017; Molina and Zazo, 2018) including 

droughts, which can produce significant economic losses (Gil et al., 2011; Kahil et al., 

2015; Freire-González et al. 2017; Lopez-Nicolas et al., 2017). In order to reduce these 

negative impacts, it is necessary to better understand the internal structure of 

dependencies that inherently underlies in the runoff time series (Molina et al., 2019). The 

meteorological-hydrological basin response is captured by means of this internal structure 

(Wang et al., 2009; Hao and Singh 2016; Molina and Zazo, 2018; Zazo et al., 2019). 

Furthermore, the spatio-temporal changes in weather patterns are likely to further 

aggravate the appearance and persistence of drought events (Mishra and Singh, 2010). 

Likewise, the dependence of hydrological processes is a traditional studied matter, 

given its importance to assess, model and forecast the behavior and availability of water 

resources, especially in a context of droughts (Mishra and Singh, 2011). Classic ways to 

evaluate these dependences are mainly related to statistical procedures, including 

regression (e.g. Hao and Singh, 2016), time series modeling (e.g. Salas et al., 1980; Hipel 

and McLeod, 1994; Mishra and Desai, 2005), recurrence analysis (e.g. Estrela et al., 

2000), and principal component analysis (e.g. Vicente-Serrano et al., 2004; Vicente-

Serrano and Cuadrat-Prats, 2007). For a deeper explication of these techniques, the reader 

is referred to the work Mishra and Singh (2011). 

Regarding temporal dependence of hydrological time series, this has traditionally 

received a more attention by the scientific community, for example by means of 

Persistence (inherent statistical property of time series), which is strongly related to the 

measure of the time series long-term memory through Hurst coefficient (Hurst, 1951), or 

storage and drought statistics (Salas et al., 1980), which are currently benchmarks; or 



other ones such us Copula applications (De Michele and Salvadori, 2003), the usage of 

multivariate distributions in modeling different dependence structures (Sarabia-Alzaga 

and Gómez-Déniz, 2008), or novel analysis strategies based on Artificial Intelligence 

(AI), such as Artificial neural networks (ANNs; Ochoa-Rivera, 2008), Bayesian 

Networks (BN; Molina and Zazo, 2017; Zazo et al., 2019) or Dynamic Bayesian networks 

(DBNs; Molina et al., 2013). However, spatial and spatio-temporal dependence for 

hydrologic science and engineering is much poorer studied (Holmström et al., 2015) and 

even more through a Bayesian perspective (Wikle et al., 1998; Jona Lasinio et al., 2005). 

This is because of: (a) complexity of characterizing and differentiate water sub-systems, 

(b) scarcity of spatial data availability and (c) difficulties on the application of spatial 

statistical methods, among others.  

On the other side, in the last years, the emergence of AI and Information Theory 

techniques have allowed tackling new ways of approaching, characterizing and 

quantifying dependences (Wang et al., 2009; Hejazi and Cai, 2011; Singh, 2011; Wu et 

al., 2015; Lima et al., 2016; Molina et al., 2016; Kousari et al., 2017; Yang et al., 2016, 

2017a,b). These techniques are useful for exploring the evolution of meteorological and 

hydrological dynamics in order to find suitable drought predictors at different spatio-

temporal scales (Molina et al., 2020).  

On the other hand, Causality in hydrological records has not been deeply studied and 

it could be done by means of the joint use of different forms of reasoning patterns. These 

forms are Causal Reasoning (CR), Evidential Reasoning (ER) and Intercausal Reasoning 

(IR) (Koller and Friedman, 2009; Pearl, 2009). CR is used when the approach is done 

from top to bottom. In this sense, the analysis is focused on the cause and the objective 

comprises the prediction of the effect or consequence. Consequently, the queries in form 

of conditional probability, where the “downstream” effects of various factors are 

predicted, are instances of causal reasoning or prediction. Classical Stochastic Hydrology 

has been very focused along several decades on the characterization of temporal behavior 

for runoff or streamflow in different basins worldwide. In this sense, CR approach 

becomes especially useful when hydrological dependence analysis takes place because it 

is about an evaluation of the influence of past events on posterior hydrological processes. 

ER comprises bottom-up reasoning, so the analysis is focused on the consequence (effect) 

and the cause is inferred (Bayesian Inference). This approach would be appropriate to the 

analysis of catastrophic events such as flooding where the most important thing to be 



studied is the consequence. IR is probably the hardest concept to understand. It comprises 

the interaction of different causes for the same effect. This type of reasoning is very useful 

in hydrology, where a consequence can be generated or explained from several causes. 

This approach would be very appropriate for developing Decision Support Systems based 

on Causality and Causal Modelling (Molina et al., 2010) where there is a high 

heterogeneity of variables´ nature and high complexity of causal relationships. 

Furthermore, one of the most exciting prospects in recent years has been the possibility 

of using the theory of BNs to discover causal structures in raw data (historical runoff 

record) (Pearl, 2014). This is done in this research through the usage of historical inflow 

data to train and populate the BN model. Consequently, AI techniques such as CR and 

ER and/or IR provide new horizons for this type of studies. 

Recently, the potential of BNs to find temporal causal structures into raw statistical 

data (Spirtes, 2010) has begun to be applied to discover and characterize the logical and 

non-trivial structure of dependencies that inherently underlies historical records (Zazo, 

2017; Molina and Zazo, 2018; Molina et al., 2019, Zazo et al., 2019). Consequently, there 

is a general clear necessity of strengthen the spatio-temporal dependence studies on water 

systems (Holmström et al., 2015). 

This study has been applied in Jucar River Basin (the second largest basin on 

Mediterranean side of Spain). This river basin is characterized by an irregular hydrology, 

with long drought episodes, an intense irrigation activity and the existence of large 

reservoirs able to provide carryover storage (Marcos et al., 2017). In order to achieve an 

efficient system operation, within a context of sustainable and safe management of water 

resources of a basin, it is necessary to adequately characterize, both in space and time, the 

hydrological discharge to its main reservoirs (Alarcon and Contreras) and their evolution, 

as well as deepening in the knowledge of their spatial-temporal behavior through the 

discovery and analysis of the non-trivial and logical structure of interdependence, which 

intrinsically underlies the historical records and that define of its behavior. 

This paper is mainly aimed to provide a new methodological approach, named 

Bayesian Causal Modelling (BCM). This is done by means of an innovative “concept-

proof”, focused on Causality, here addressed by Causal Reasoning and supported by 

Bayesian modelling. This provides not only temporal dependence behavior but also the 

spatial and spatio-temporal dependencies behavior of inflow across river basins. This 



knowledge is practically unexplored in the field of water engineering and science and that 

is what the novelty is about. In this sense, the application of BCM both to the prediction 

of droughts and to operation rules improvement of reservoirs, by means of this approach 

seems quite straightforward in the case of in parallel interconnected basins. 

On the other side, this work, although addressed through a “concept-proof”, is a further 

step in the research initiated with Molina et al. (2016) and Zazo (2017). This research 

activity is largely characterized by the application of BNs, in a dynamic and stochastically 

way, to increase knowledge over water resources behavior of basins.  

This paper is organized as follows: after this Introduction, next Section 2 covers a 

description of the applied materials and methods for this research. Then, Section 3 is 

devoted to case studies description and available hydrological historical records. General 

methodology is shown and explained in depth in Section 4. After that, Section 5 presents 

the main experimental results drawn for the research. In Section 5, the results are 

discussed in detail. Finally, Section 6 addresses a Discussion and Conclusions from the 

study, where the most important aspects learnt from this research are shown. 

2. Materials and methods 

2.1 Bayesian networks 

Bayesian Networks (BN), also known as Bayesian Belief Networks or Belief 

Networks, belong to the AI methods, such as artificial neural networks, fuzzy logic 

systems and decision trees (Molina et al., 2016). They are Probabilistic Graphical Models 

(PGM) in which a visual representation of a reasoning problem is performed to infer a 

new knowledge into an uncertainty context (Cabañas de Paz, 2017).  

BNs combine probability theory with graph theory (Vogel et al., 2014). In this sense, 

they are based on: 1) a graphical representation comprising nodes and links, of a given 

set of random variables with their conditional interdependencies; and 2) a probabilistic 

model consisting of probabilistic expressions that describe the probability 

distributions/functions of the variables involved and the relationships between them 

depicted in the links (Cain, 2001; Castelletti and Soncini-Sessa, 2007; Sperotto et al., 

2017). Furthermore, BNs aim to model the joint probability distribution of all considered 

variables. This is performed by means of propagation of (in)dependencies between the 

variables throughout the whole graphical structure, which can be seen as a general 



description of the behavior of a system (Vogel et al., 2018). In other words, PGMs offer 

a compact representation of the joint probability distribution over sets of random variables 

(Said, 2006; Castelletti and Soncini-Sessa, 2007). 

On the other side, each node in the network represents a variable. The input variables 

to a BN are graphically represented through the parent nodes (nodes without arriving 

links) and the output variables are computed following the links between the root nodes 

and the leaf nodes (nodes without departing links, which represent the output variables in 

the network). For each link, the probabilistic expressions representing the relationship 

between the departing and arriving nodes are applied. The input variables can be provided 

as single values or as probability functions, while the output variables are obtained as 

probability functions. This probabilistic assessment is the main distinctive feature of a 

BN and enables the possibility of characterizing uncertainty, perform risk analyses and 

support decision-making processes (Castelletti and Soncini-Sessa, 2007; Vogel et al., 

2013, 2012; Sperotto et al., 2017). 

Formally, BN N = (G, P) consists of a Direct Acyclic Graph (DAG; (Lappenschaar et 

al., 2012)) denoted by G = (V, E) and a set of probability distributions P (Molina et al., 

2013), therefore, a BN N = (G, P) defines a joint probability distribution over all the 

analyzed variables. The DAG is defined by a set of nodes (or variables) V and a set of 

links (or edges) E. The edges join the variables and are oriented, indicating the causal 

dependence between the connected variables (A|B indicates A causes B or B is the effect 

of A) (Madsen et al., 2003). The set of probability distributions P includes “a priori” 

probabilities and a set of conditional probabilities (expressed in form of Conditional 

Probabilities Tables; CPTs). Theorem of Bayes is performed as updater of “a priori” 

probabilities adding the observed evidence and providing “a posteriori” probabilities, 

mathematically expressed e as (Bayes, 1763): 

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵) · 𝑃(𝐵)

𝑃(𝐴)
 

where P(B|A) is the conditional probability of B for a given state of variable A; P(B|A) 

the other-way-round conditional probability; P(B) the probability of B; and P(A) the 

probability of A. 



Specifically applied to “concept-proof” over BCM of this research, the nodes in this 

case represent the hydrological space and time variables, which summarize the response 

of a basin to the hydrological cycle (Zazo, 2017) due to the fact that the inflow values 

intrinsically encompasses the influence of key factors such as rainfall-temperature 

variability, orography, fluvial morphodynamics, and anthropic factor (e.g. land-use 

change) as well as river-aquifer interaction that condition of the water flow in a point 

(Molina and Zazo, 2018), in this case inflow at a reservoir. 

On the other hand, BNs present relevant advantages such as: 1) the explicit graphical 

representation, that lets any user see the variables and the relationships analyzed by them; 

and 2) the propagation of uncertainty, something very valuable in risk assessment and 

decision-making. They are also able to quantify the interdependencies existing between 

variables and they allow defining, in an easy and automatically way, relationships into 

complex systems (Molina et al., 2010) and proving more accurate results in the modeling 

of natural processes (See and Openshaw, 2000; Jain and Kumar, 2007). In contrast, their 

data requirements are big, their complexity grows are the systems and processes being 

modeled increase, and the fact that it is difficult to perform a quantitative validation on 

the results (Molina et al., 2010; Sperotto et al., 2017). 

2.2 Spatio-temporal dependence analysis through Causality 

Spatio-temporal dependence analyses in hydrology are mainly related to the use of 

statistics and time series modeling procedures, which require them as a preliminary step 

(Salas et al., 1980; Hipel and McLeod, 1994). A crucial part of these approaches is the 

postulation of the stochastic model to be used (e.g. AR 1, ARMA 1,1, AR 2), and the 

choice of the statistical distribution followed by the variables considered by the model. 

Both decisions constrain the modeling of spatio-temporal dependences, since they assume 

that the analyzed variables are structured in a specific way and that this structure does not 

change over time, or that it changes following a specific pathway. In fact, the goal of 

these choices is to look for a spatio-temporal pattern close enough to the one shown by 

the available data records of the modeled variables. AI models, on the other hand, do not 

need to make assumptions on the data, as they are able to find out the properties and 

spatio-temporal patterns shown by it, even if they could not be identified before the 

analysis (Molina et al., 2016; Molina and Zazo, 2017). Although, AI approaches require 

large amount of data that not always is easy to obtain (Zazo, 2019; Molina et al., 2020). 



At this point, it is worth highlighting that BNs are able to discover, extract and quantify 

the logical and non-trivial time-dependency relationships existing among variables by CR 

(Molina and Zazo, 2018; Molina et al., 2019). This research comprises an advance over 

the previous ones as it is able to discover and extract both spatial and spatio-temporal 

dependencies. Furthermore, once the BN is built, it possible to determine how strong are 

the strength of relationships between variables by modifying the probability distribution 

of one of them and seeing how it affects the probability distributions of the remaining 

ones (Molina et al., 2016). This modification may be successfully addressed by means of 

maximizing its highest interval, and its impact is measured quantifying the change in the 

expected value of the other variables (the average) found when the first one is maximized 

(Molina et al., 2016). Under this approach, small changes mean that the relationship is 

weak, while large modifications refer to strong bonds between the variables represented 

in those nodes. If the BN represents the values of a given variable for different locations 

and time stages, the relationships obtained from the analysis are spatial, temporal and 

spatio-temporal.  

2.3 Potential applications of BN for spatio-temporal analysis 

The use of BNs to perform spatio-temporal analyses shows a main advantage in 

comparison with classic statistics as the spatio-temporal dynamics of these relationships 

can be easily assessed. Their potential applications include: 

1. Situations in which it is desired to explore if two or more variables show a causal 

relationship (e.g. between dry or wet cycles and climatic indicators such as the 

ENSO). 

2. Situations in which the spatio-temporal pattern of the relationship cannot be not 

known in advance or cannot be adequately modelled with traditional statistics 

(because stochastic models able to fit the given pattern would be very complex 

and thus, less parsimonious). 

3. Situations in which fitting a probability distribution to the variables cannot be 

reliably done (because no probability function is found adequate enough or the 

chosen one would be very complex).  

4. Situations in which the spatio-temporal dependencies vary over time (e.g. river 

basins subject to changing climatic patterns). 

 



3. Case study: the Jucar River Basin in Spain  

3.1 Description 

The case study is located at Jucar River Basin, a Mediterranean basin of 22,261 km² 

in Eastern Spain (Fig 1). It flows through 497 Km between the Iberian Mountains and the 

Mediterranean Sea. Following a typical Mediterranean pattern (peaks in autumn and very 

little values during summer), the annual rainfall spans from 309 to 717 mm, with an 

average value of 473 mm. Its mean annual resource is 1,605 Mm3/year, in which 70% 

comes from groundwater outflow through springs and stream-aquifer interaction (CHJ, 

2015). Its main reservoirs are Alarcon (1,088 Mm3 useful capacity), Contreras (429 

Mm3), they are the most one’s capacity of Jucar River Basin. Alarcón and Contreras are 

placed at the outlets of the upper basins of the Jucar and Cabriel rivers, while Tous is 

located at the limit of the Jucar floodplain, in which most urban and agricultural demands 

concentrate. 

 

Fig 1. Jucar River Basin location 

In lithological terms, Alarcon and Contreras sub-basins are characterized by existing 

of important limestone formations, dolomites, conglomerates, sandstones and Tertiary 

detritus (IGME, 2020a). Hydrogeology speaking, Alarcon sub-basin presents 

impermeable or very low permeability formations, together with extensive, discontinuous 

and local aquifers of moderate permeability and production. In contrast, Contreras sub-



basin is characterized by very permeable aquifers, generally extensive and productive 

with other ones impermeable or very low permeability zones (IGME, 2020b). Moreover, 

both sub-basins show a piezometric gradient towards the coastal area, from West to East 

(CHJ, 2006,2020) (Fig. 2).  

 

Fig 2. Hydrogeological maps of Alarcon and Contreras sub-basin. Source: IGME (2020b) 

The annual consumptive demand of the Jucar river system is 1,557 Mm3 for the 2015-

2021 period (CHJ, 2015). The major consumptive use is agriculture (90%), followed by 

urban (8%) and industrial (2%) uses. The most important urban districts correspond to 

Valencia, Albacete and Sagunto. Surface irrigation demands concentrate on the lower 

basin (Riberas del Jucar and Canal Jucar-Turia), while the main groundwater-irrigated 

area is the Mancha Oriental, in the middle basin. The aquifer overdraft from this demand 

has caused an inversion of the stream-aquifer interaction found between the Mancha 

Oriental aquifer and the Jucar river, moving from gaining to losing river. Furthermore, 

minimum flows are set on 18 streams by environmental reasons (CHJ, 2015). 

The planning and operation of the Jucar River Basin is the main responsibility of the 

Jucar River Basin Authority (in Spanish Confederacion Hidrográfica del Júcar, CHJ). 



Once environmental requirements are met, the current operating rules give priority to 

urban uses over agricultural areas. Among the latter, the users with elder rights from the 

lower basin, gathered together in the users’ union USUJ (Unidad Sindical de Usuarios 

del Júcar), are given the highest surface priority. The remaining demands, with access to 

both surface and ground waters, can only use surface water if the Alarcon storage is higher 

than the limits established by the Alarcon Agreement (CHJ, 2015). 

3.2 Available and processed data 

The BCM analysis of spatio-temporal inflow dependence has been applied to the 

Alarcon and Contreras sub-basins, which correspond to the upper part of the Jucar River 

Basin and are the main contributors to the water discharge that can be regulated through 

the Alarcon and Contreras reservoirs (see Fig 1). The available data consists of monthly 

inflow time series to the reservoirs for the 1940-2012 period (72 hydrological years; 

please note: in Spanish hydrological years the first month is October and the last is 

September of following year), obtained from the Spanish Ministry of Agriculture, 

Fishery, Food and Environment (http://ceh-

flumen64.cedex.es/anuarioaforos/default.asp). They have been naturalized by removing 

the effect of evaporation and seepage losses in Alarcon and Contreras, given that 

anthropic modifications in the upper basins of the Jucar and the Cabriel rivers are 

negligible. Fig. 3 and Table 1 display the monthly time series considered and their main 

statistic parameters respectively, as well as the probability distribution functions of both 

time series and their correlograms are presented in Fig. 4.  

 

Fig 3. Alarcon and Contreras historical monthly series after removing effect of evaporation and 

seepage losses, according to Spanish hydrological years (first month October and the last one is 

September of following year). 

http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
http://ceh-flumen64.cedex.es/anuarioaforos/default.asp


Statistic parameters 
Sub-basins 

Alarcon Contreras 

Monthly mean (Hm³): 33.01 28.51 

Annual mean (Hm³): 396.09 342.12 

Minimum (Hm³): 3.86 5.52 

Maximum (Hm³): 262.14 211.70 

Range (Hm³): 258.28 206.18 

Variance: 1099.39 532.31 

Standard deviation (Hm³): 33.16 23.07 

Variation coefficient (%): 100.5 80.9 

Skewness coefficient (*): 2.78 2.98 

Positive skewness Positive skewness 

Kurtosis: 10.12 14.30 

   

Table 1. Alarcon and Contreras monthly time series. Main statistic parameters. 

 

 
Fig 4. Preliminary assessment of the spatial and temporal dependencies of the Alarcon and Contreras 

sub-basins. Upper: Probability distribution functions (own elaboration). Bottom: Temporal and 

Spatio-temporal correlograms with Anderson probability limits for an independent series (95 and 99 

percent probability level). Please note that the Anderson limits define independence area of a 

correlogram. 

The similarity exposed by their probability distributions is the result of its spatial 

proximity and their resemblance in physical, meteorological and hydrological properties. 

Their correlograms show a strong spatial and spatio-temporal dependence. The temporal 

dependence of Contreras runoff is higher than in Alarcon. On the contrary, the spatio-



temporal correlograms show a higher influence of Alarcon on Contreras inflow values 

than in the opposite. The main reason behind these differences seems to be the role of 

groundwater discharge (CHJ, 2006, 2020). These relationships will be explored more 

deeply with the BCM analysis.  

4. Methodology  

This research was articulated in three consecutive and interrelated sequential steps 

(Fig. 5). Step-1 comprises the treatment and analysis of the raw inflow data, in order to 

adapt it to the subsequent steps and to the goals pursued by the study. After that, Step-2 

corresponds to the building of the BN_PGM models applied to perform the spatio-

temporal BCM analysis; and they models are populated and trained by the treated data 

previously. Finally, Step-3 is fully entirely devoted to calculating and analyzing the causal 

relationships through “concept-proof” BCM. This last step is crucial because of it will 

allow discovering, extracting and quantifying of the logical and non-trivial time-

dependency structure that inherently underlies into hydrological series and that define of 

the behavior of the adjacent sub-basins. 

 

Fig 5. General methodology. 



4.1 Step-1. Data analysis 

The key factors of this step are the origin of the data (historical records, outputs from 

hydrological modeling, results obtained by stochastic models and so on), its spatial 

coverage (e.g. the entire hydrological basin as a lumped unit, the entire basin divided into 

sub-basins, certain sub-basins, …) and its temporal coverage (period of analysis, time 

scale of the data, etc.). They should be shaped according to the objective of the analysis. 

For example, the evaluation of climate change impacts would require the obtaining of 

future inflow scenarios through hydrological modeling, while analyses based on the 

current hydrology may be done employing historical records. One aspect that should also 

be considered is the data needs of a BN, which may require to extend the available records 

using modelling techniques (e.g. Molina et al., 2016). 

In the case of the Jucar river basin, the analysis has been developed at the seasonal 

scale, dividing the monthly inflows into two different periods per year. This division has 

been made in accordance with the operational practices of the Jucar River Basin Authority 

(CHJ). The Irrigation Period (IP; to May from September) corresponds to the irrigation 

season, in which agricultural demands concentrate and rainfall is reduced, so reservoirs 

are lowered to satisfy them. The Non-Irrigation Period (NIP; to October from April of 

next year) is characterized by low agricultural demands and higher rainfalls than the 

summer one. The Jucar river system operation by the CHJ Operation Office is supported 

by projections on inflows during the irrigation period based on the hydrological discharge 

on the past months (Macian-Sorribes and Pulido-Velazquez, 2017). Based on them, 

deliveries from the reservoirs to the farmers are scheduled for the upcoming irrigation 

season. Consequently, this division aligns the analysis with the practices of the system 

operators. 

4.2 Step-2. Causal model building 

This step involves developing BN-PGM model by means of other four sub-steps:1) 

Preliminary design; 2) training; 3) design refining; and 4) validation and sensitivity 

analysis. At the beginning of the process, a first design of the PGM is proposed. A training 

process on this draft is performed to refine the design of the BN-PGM model and make 

sure it captures the spatio-temporal relationships shown by the data. Once the model is 

set, it is necessary to validate and to perform a sensitivity analysis, based on the 

perspective of the Theory of Information. 



Given the novelty of application of this BCM methodology, there were not previous 

references on how to proceed regarding the application of the PGMs for the triple 

dimension of analysis pursued by this research, so it was built in an iterative way. After 

a period of analysis within the preliminary design phase, an initial draft was developed. 

Once the network design was set, supported by a powerful training through Learning 

Wizard (HUGIN ® version 7.3), a fully connected PGM was built for wholly capturing 

and modelling the double dimension (spatio-temporal) of both sub-basins. This is 

consistent with the strong relationships found in the previous data analysis (please see Fig 

4 bottom, correlograms). Finally, model validation was developed through the calculation 

of some important parameters belonging to Information Theory discipline. In particular, 

it has been used Total Entropy, Conditional Entropy and Mutual information. In the Jucar 

river basin two different BN-PGM models have been built: one describing the average 

and lumped behavior of the upper sub-basins and another specific one used to obtain the 

spatio-temporal relationships during a dry period. 

4.3 Step-3. Bayesian Causal Modelling 

This is a key step in this research and consists in calculating and analyzing the causal 

relationships using the BCM developed in the last step, following the process explained 

in section 2.2. The estimation of the relationships embedded in each BN-PGM consisted 

in alternatively modifying (maximizing) one node of the model and evaluate how the 

remaining nodes change in response (Molina et al., 2016). A remarkable change in one 

particular node associated with a change in another would imply a strong causal 

relationship between them, whereas a little one would mean the absence of a bond. The 

analysis of these relationships consists in comparing and sorting the changes previously 

calculated, considering the type of relationship that each pair of nodes has (e.g. spatial, 

temporal, spatio-temporal). 

This step was also tackled from a triple dimension that comprises spatial, temporal and 

spatio-temporal analysis. Drawn results from these dimensions show important 

differences among them. Furthermore, due to the flexibility of design and the back 

propagation of the probability, the BN-PGM was able to evaluate the influence of both 

sub-basins each other in both ways. This is a relevant characteristic, which is essential for 

developing an accurate and rigorous water rivers basins management. This is highlighted 

through two different analysis. First one dedicated to a lumped analysis of dependence, 



and the second one by means of a specific analysis over dry periods focused on time-

horizon of the Jucar basin typical drought (3 years; (CHJ, 2007)). Both analyses comprise 

the development of two fully connected Bayesian Networks (BNs), designed at a season-

scale and grouped in two different periods, Temporal Irrigation and Non-Irrigation ones, 

according to Jucar River Basin Authority operational practices. Furthermore, it was 

considered a year as dry year if either Alarcon or Contreras runoff during the winter 

season falls below the percentile 33 of the whole historical period. 

A novel variation ratio (VR) has been proposed that allows a dependence analysis 

between the 2 subbasins at the three dimensions (spatial, temporal and spatio-temporal) 

at seasonal scale. This index is obtained as the division between the expected value of the 

probability function after maximization of the probability intervals from designed BN-

PGM models and the one from before. In order to facilitate its compression, the outcomes 

were normalized, in this way that variation ratio had the same physical sense as a classical 

correlation coefficient. That is, the higher the value departs from zero (0), the stronger 

the dependence is. In contrast, values lower than 0 indicate an inverse dependence, and 0 

value displays non-dependence. 

4.4 BCM Concept-proof. Applied conceptual frameworks 

Due to the absence of previous references on this type of application, it is essential to 

describe the applied conceptual frameworks (Fig 6). Each node of the BN represents the 

runoff of an upper Jucar sub-basin for a given season. Alarcon NIP is the runoff of the 

Alarcon sub-basin for the non-irrigation period; Contreras NIP is the runoff of Contreras 

for the non-irrigation period; Alarcon IP corresponds to the runoff from the Alarcon sub-

basin during the irrigation season; and Contreras IP represents the runoff from Contreras 

for the irrigation period.  

On the other side, the data used to populate and train this BN corresponds to the 

available monthly historical records presented in Section 3.2., obtained from the Jucar 

River Basin Authority (CHJ), upscaled to seasonal periods (months from October to April 

added to form the non-irrigation runoff and months from May to September to form the 

irrigation runoff).  



Consequently, in order to propagate the Bayes’ Theorem in both space and time the 

Fig. 6 summarizes the applied conceptual frameworks both for lumped analysis and 

specific ones focused on dry cycle analysis. 

 

 
 

Fig 6. BCMs conceptual frameworks to upper Jucar river sub-basins. Direct Acyclic Graph 

considered between one season and the subsequent one. Upper lumped analysis. Bottom specific 

analysis over dry cycle. Abbreviations used: Non-irrigation period (NIP). Irrigation period (IP). 

Contreras reservoir (Con). Alarcon reservoir (Ala). Please note that the numbers indicate the year 

of the dry cycle analyzed. 

The BCM was built using the Learning Wizard of HUGIN Expert ® (V 7.3), which 

generated probabilistic distributions of the variables associated with each node, as well 

as a logic structure according to the internal dependences and relationships detected. The 

Learning Wizard result was a fully connected network (each node interacts with the 

remaining three), which is in accordance to the strong dependences shown by the 

statistical analysis performed before (please see Fig 4 bottom, correlograms). Therefore, 

each node of the network shows a causal relationship with the remaining three. Another 

reason for this fully connected design is that it is the best way for assuring the complete 

capture of the runoff dependence for the double dimension: space and time. 

Finally, although this conceptual frameworks, by itself could be understood as results 

of the research, it has been considered appropriate to show them as part of the 

methodological section, given the novelty of these approaches, in this way the reader is 

facilitated to understand of the developed process. 



4.5 Concept-proof. Sensitivity Analysis and Validation of results 

Sensitivity analysis and validation of results is addressed through the development of 

an Entropy approach, based on the perspective of the Theory of Information. In this sense, 

Conditional Entropy, Mutual information is calculated for the Bayesian causal models. 

Sensitivity analysis can be performed using two types of measures; entropy and 

Shannon’s measure of mutual information (Pearl, 1988). The entropy measure assumes 

that the uncertainty or randomness of a variable X, characterized by probability 

distribution P(x), can be represented by the entropy function H(X) (Molina et al., 2016): 

𝐻(𝑋) =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥)

𝑥∉𝑋

 

Entropy of a probability distribution can be defined as a measure of the associated 

uncertainty to that random process that this distribution describes. Consequently, a score 

of uncertainty/certainty level of events can be made attending to this entropy, H(X). 

Reducing H(X) by collecting information in addition to the current knowledge about 

variable X is interpreted as reducing the uncertainty about the true state of X (Molina et 

al., 2016; Zazo, 2017). The entropy measure therefore enables an assessment of the 

additional information required to specify a particular alternative. Shannon’s measure of 

mutual information is used to assess the effect of collecting information about one 

variable (Y) in reducing the total uncertainty about variable X using: 

𝐼(𝑌. 𝑋) = 𝐻(𝑌) − 𝐻(𝑌 ∣ X) 

where I(Y.X) is the mutual information between variables. This measure reports the 

expected degree to which the joint probability of X and Y diverges from what it would be 

if X were independent of Y. If I(Y.X) = 0, X and Y are mutually independent. H(Y∣X) is 

conditional entropy which means the uncertainty that remains about Y when X is known 

to be x. 

According to the entropy approach presented, mutual information values higher than 

0 would imply some dependence between the variables analyzed, while the opposite 

would mean that they are independent from each other (Pearl, 1988). Therefore, this 

analysis represents an alternative way to characterize the dependences between variables. 



In this research, this validation is useful because its results can be compared with the 

temporal dependence analysis carried out. 

Assessments of the entropy associated to each variable, the conditional entropy and 

mutual information for each variable and connection were performed supported by 

HUGIN Expert ® software.  

5. Results  

5.1 Average spatio-temporal dependences 

The average spatio-temporal dependence analysis has been done by maximizing the 

probability distribution of one variable of the BN each time and measuring how this 

perturbation affects the probability distributions of the rest of the network. This 

dependence has been evaluated using a novel and normalized developed variation ratio, 

for each remaining node of the network, as the division between the expected value of the 

probability function after the perturbation and the one from before (Fig 7). Moreover, the 

dependences obtained have been divided into spatial (same season, different sub-basin), 

temporal (different season, same sub-basin) and spatio-temporal (different season, 

different sub-basin). The considered seasons are non-irrigation (NIP) and irrigation (IP); 

while the sub-basins correspond to Alarcon (A) and Contreras (C). 

 

Fig 7. Average spatio-temporal dependences for the upper Jucar river basin 

 



It can be observed that spatial dependences (blue bars) are the strongest ones, with 

values distinctly higher than 0 and higher than the temporal and the spatio-temporal 

dependences. This bond is in accordance with the geographical proximity of both sub-

basins. Furthermore, dependences are higher for the non-irrigation season than during 

irrigation. This may be caused by the higher rainfalls in the non-irrigation season, since 

its geographic proximity drives similar rainfall events, strengthening the bond between 

them. Another interesting aspect (also noticed in the correlograms, see Fig 4 bottom) is 

the fact that the influence of Alarcon subbasin on Contreras’ inflows is higher than in the 

opposite way, for both seasons. This asymmetry in their dependences may be caused by 

groundwater flows (please see Fig 2), which show an underground discharge from 

Alarcon sub-basin to Contreras sub-basin, according to piezometric levels as it is shown 

CHJ (2006,2020). 

Considering the temporal dependences, Contreras shows a higher bond than Alarcon, 

given the higher variation ratio noticed in Contreras. This agrees with the correlograms, 

in which this influence is clearly shown by the significant statistical evidence (see Fig. 4 

bottom; Alarcon & Contreras correlogram displays higher correlation coefficients, rk, 

than Contreras & Alarcon correlogram in all analyzed monthly time lags). The reason 

behind this may be the geological differences found between both sub-basins, which can 

be explored using the information provided by the Geological Survey of Spain (Instituto 

Geológico y Minero de España, IGME, http://www.igme.es/default.asp). In this sense, 

the groundwater bodies under the Alarcon sub-basin present a significant portion of 

detrital sedimentary rocks, while the aquifers related with the Contreras sub-basin are 

mainly chemical sedimentary rocks. Given that detrital rocks are associated with quicker 

hydrological responses than chemical ones, the geological differences noticed may cause 

a slower hydrological response (and thus with longer time spans) in Contreras. 

Regarding the spatio-temporal dependences, the prevalence pattern observed for the 

spatial ones (more influence on Alarcon in Contreras than the opposite) is maintained 

from the non-irrigation to the irrigation season. In fact, Contreras runoff on non-irrigation 

does not seem to play any influence on the Alarcon runoff during irrigation, as the 

variation ratio is approximately 0. The reason behind this behavior may be the 

maintenance across time of the bond observed in the spatial analysis. The lack of 

influence of Contreras on Alarcon seems to be caused by the limited groundwater flow 

from the Contreras sub-basin to the Alarcon one. It is also interesting notice that the 

http://www.igme.es/default.asp


spatio-temporal dependence from Alarcon to Contreras (A (NIP) & C (IP)) is similar to 

the temporal dependence of Contreras (C (NIP) & C (IP)). 

Overall, results show a relevant asymmetry on the spatial and spatio-temporal 

influence of both basins each other. This may be due to the fact that Alarcon sub-basin 

plays more influence on Contreras than the opposite, probably by the existence of 

groundwater flows following mainly the Alarcon-Contreras direction (piezometric 

gradient towards the coastal area, from West to East (CHJ, 2006,2020)). 

5.2 Spatio-temporal dependence on dry years 

Given that dry spells in the Jucar river basin last more than one year, a new BCM has 

been developed extending its temporal-horizon up to 3 years (6 seasons, see Fig. 6 

Bottom). According to dry year definition a set of 27 years were considered. In the most 

of them, both Alarcon and Contreras inflow during winter fall below the threshold, as 

well as during the summer season.  

Fig 8 shows the results of the causal relationship analysis done for dry periods, starting 

at a dry year and spanning to 2 years after a dry one. Most of the years after a dry year 

were dry too, but a 3-year dry spell was only found for the case of an extreme drought. 



 

Fig 8. Spatio-temporal dependence in the upper Jucar river basin during dry periods 

 



The main difference between the average dependences and the ones in a dry year is 

the absence of significant spatial relationships during the non-irrigation season, as the 

variation ratios are similar to 0 (please see Fig. 8 upper; A (NIP) & C (NIP) and C (NIP 

& A (NIP)). This may be caused by the absence of rainfall and the lowering of 

groundwater tables. The decrease in heads is steeper in the Alarcon sub-basin due to 

having more detrital rock areas than Contreras, causing the interruption of the 

groundwater flow from Alarcon to Contreras. During irrigation, on the other hand, spatial 

dependences are similar to the average ones. This seems to be caused by the fact that 

rainfall during the irrigation season is low even during wet years, so the differences 

among years are less relevant than the ones found for the non-irrigation season. Another 

change between normal and dry years is that Contreras plays more influence on Alarcon 

than Alarcon on Contreras during dry years (C (IP) & A (IP) is greater than A (IP) & C 

(IP)). This inversion is also shown in the spatio-temporal relationships (C (NIP) & A (IP) 

is greater than A (NIP) & C (IP)). The temporal relationships do not suffer significant 

modifications, although Contreras does not show higher temporal dependences than 

Alarcon. 

The causal relationships observed after a dry year (which in most cases corresponds to 

a dry year) present a remarkable increase in temporal and spatio-temporal relationships 

with respect to the average dependences. This increase in the relationships with temporal 

component may be caused by groundwater discharge, since its importance grows during 

long periods without rainfall. Spatial relationships show higher levels than the ones found 

for the first dry year, but do not reach the levels shown on average. This seems to point 

that groundwater exchanges between sub-basins increase after a dry year, may be because 

the geological differences between both sub-basins cause an unbalance between 

piezometric heads again (due to different hydrological response times). 

Two years after the start of the dry spell (which except for the most severe droughts 

found, is not dry) the temporal and spatio-temporal dependences are, on a broader view, 

similar to the average. This is consistent with the ending of a dry period. However, spatial 

dependences are lower than the average while showing similar levels regardless of the 

sub-basin and season. This may be caused by a rise in precipitations, since its influence 

in the bond between sub-basins is the same regardless of the direction of the relationship 

(from Alarcon to Contreras or from Contreras to Alarcon). 



5.3 Sensitivity and Validation Analysis  

Calibration of causal reasoning process is done through a comparative analysis with 

traditional techniques such as correlation. In this sense, the results obtained from the 

causal reasoning analysis for the average BN-PGM model resemble the ones provided by 

correlation (please see Fig 4 Bottom), as explained previously.  

On the other side, assessments of the entropy associated to each variable, the 

conditional entropy and mutual information for each variable and connection were done 

for the average BN-PGM model (please see Fig 6 Upper, BCM conceptual framework 

for lumped analysis). In this sense, Fig 9 summarizes the main achieved results. These 

outcomes of the entropy analysis agree with the causal relationship analysis (see Fig 7). 

In particular, the same prevalence pattern is observed: spatial dependences show the 

highest values of mutual information, then temporal and finally spatio-temporal 

dependences, whose values are the lowest.  

Regarding the mutual information values of the spatial dependences are higher in the 

non-irrigation period, as the causal relationships. Similarly, mutual information values on 

the temporal dependences of Contreras are higher than the ones in Alarcon. Regarding 

the spatio-temporal dependences, the one between A (NIP) and C (IP) has the highest 

mutual information value, in accordance with the strongest causal relationship found 

between both nodes in comparison to the rest of spatio-temporal dependences. In spite of 

the similarity between them, there exist some differences. The most important is that the 

results of the mutual information between two nodes are the same regardless of the 

direction considered (e.g. A (NIP) & C (NIP) has the same value than C (NIP) & A (NIP)), 

while the causal relationship analysis is sensitive to it. Moreover, the remarkable 

differences found between the spatial and the remaining causal relationships do not 

appear in the entropy analysis, in which only slight modifications are found. 

 

 

 

 



 

Fig 9. Sensitivity analysis results for the average behavior of Alarcon (Ala) and Contreras (Con) sub-

basins 

On the other hand, Fig. 10 shows an entropy analysis of the BN-PGM model for a dry 

period, which is also supported through HUGIN Expert ® software. The entropy results 

clearly reflect the temporal mitigation of dependences, since the mutual information 

values decrease when moving forward or backward in time. The mutual information 

values distinctly decrease when moving more than one year apart from the hypothesis 

node. This is in line with the correlograms (see Fig 4), which show dependence for 12 

months. The fact that Contreras has more temporal dependence than Alarcon is also 

shown in the entropy analysis, since mutual information values associated with temporal 

dependences are higher in Contreras than in Alarcon (although with slight increases). 

 

 

 



 

Fig 10. Entropy analysis over dry cycle analysis performed over time-horizon of 3 year (6 seasons).  



On a broader view, the results of the entropy analysis agree with the causal relationship 

analysis. The mutual information values for the first year of a dry cycle are lower than on 

average, in accordance with the causal relationship analysis, as well as the increase 

noticed in the mutual information values after the first year. Similarly, temporal mutual 

information values after a dry year increase, as causal relationships do. However, there 

are also points in which both analyses depart. For example, the mutual information values 

for the third year are in general similar to the second, while the causal relationships 

showed a decrease between those years.  

With respect to the spatio-temporal relationships, the mutual information values for 

the non-irrigation season are higher in Alarcon than in Contreras, while during the 

irrigation season they are similar except for the second year, in which Contreras shows 

higher values. This is consistent with the causal relationship analysis (see Fig 8) except 

for the first dry year, in which they disagree (entropy points at a higher influence from 

Alarcon on Contreras while the causal relationship shows the opposite). In spite of the 

differences found, most of the pattern changes noticed between the average behavior and 

a dry year found by the causal relationship analysis can be drawn from the entropy 

analysis. Given this, the BN-PGM for dry years can be considered valid. 

6. Discussion and conclusions 

Bayesian Causal Modelling, evaluated from Bayesian Networks perspective, has 

demonstrated in this “concept-proof” to be able to identify which relationships between 

variables are important, as well as how they change between an average behavior and a 

dry year. Compared with classic statistical analysis, neither prior knowledge nor 

assumptions on the probability distribution of the variables involved is required. On the 

contrary, Bayesian Networks learn it by themselves, being also able to recursively add 

more information as soon as it is available (Molina et al. 2016). 

The spatio-temporal dependences in the upper Jucar river sub-basins analyzed through 

causal reasoning have been compared with an entropy analysis. Although some 

differences were found, both of them agreed in most of the main patterns found in the 

data, as well as the modifications suffered by these for a dry year. However, CR considers 

the direction of each relationship. This advantage is a distinct feature of causal reasoning, 

making it able to determine which variables are playing the highest influence on the 

spatio-temporal relationships found in the system. If the influence of each variable can be 



assessed and ranked with respect to the others, one can determine where investments in 

reducing uncertainty (e.g. increasing the monitoring or the quality of the measurements) 

would be efficient. 

BN models developed in this research have been populated, trained and validated using 

historical data. This could be done due to the existence of enough records (72 years for 

the whole historical period and 27 dry years). However, they would exist situations in 

which historical records would not reach the minimum size to ensure a safe training. In 

this case, suitable alternatives to extend the available time series would consist in using 

stochastic processes like Monte Carlo simulation or stochastic models, as done by Molina 

et al. (2016). However, these techniques assume a specific spatio-temporal dependence 

structure, so they would influence the analysis of the causal relationship performed, given 

that the generated data would follow a pattern that may not be in line with the one intrinsic 

to the historical records.  

Another alternative to extend the available runoff data would be the use of 

hydrological models, whose assumptions are less tight in terms of spatio-temporal 

dependences. However, these models would require enough historical records of 

meteorological variables (e.g. temperature and rainfall) and information about the 

hydrological properties of the sub-basins to be analyzed. Furthermore, hydrological 

models usually need more time to be set up than stochastic models. 

The changes found out by BCM at the beginning of the dry period open the possibility 

of predicting droughts from examining the evolution of these dependences. In fact, BNs’ 

assessment of dependence is able to determine how each variable depends on previous 

measurements, enabling its use as a predictor (Molina and Zazo 2017b). For the Jucar 

river basin in particular, the absence of spatial dependence between Alarcon and 

Contreras sub-basins can be used to foresee water scarcity periods and start activating 

drought management measures in advance.  

Using the BCM defined in combination with water resource management models, one 

can automatically trigger these measures according to the evolution of the causal 

relationship. These possibilities of predictive potential will be explored in upcoming 

research. 



From the methodology developed in this research and its application to the case study, 

the following conclusions can be drawn: 

• Causal reasoning has been successfully applied to the upper Jucar river basin. 

The BN_PGM model developed has been able to identify the dependences 

existing between runoff variables in both time (in-year seasons) and space 

(sub-basins). These dependences are similar to the ones provided by an entropy 

analysis and agree with the ones found by a previous statistical analysis. 

• Causal reasoning identified how dependences change between average and dry 

years for the upper Jucar river basin. They were also able to characterize how 

these dependences evolve during a dry period. This ability to determine the 

entrance and exit of a drought enables the use of BNs as drought forecasting 

tool or as drought scenarios generation technique. 

Additionally, this research demonstrates the suitability of BCM methodology for 

spatial-temporal analysis of water resource behavior of one or several basins, in a 

dynamic and stochastic way, because of BCM is able to reveal a logical, hidden and non-

trivial structure of interdependence underlying in the hydrological historical records.  

On the other hand, the spatial approach proposed in this “concept-proof” based on 

BCM, and focused on dry periods (droughts), may be a suitable starting point for its 

application to other types of extreme events such as floods, within a context of flood 

damage prediction. 

Finally, this “concept-proof” reinforces that past information will provide prior 

knowledge of the future, particularly useful in water resources planning and management 

of highly dependent basins. 
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