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Abstract 
 

Sleep is critical to the human body, but sleep disorders bother people frequently in modern daily 

life. To diagnose sleep disorders, the proportion between sleep stage duration as well as the 

content of physiological signals are used. A sleep cycle consists of several stages: wake, rapid 

eye movement (REM), stage 1, stage 2, stage 3, and stage 4. The sleep cycle is repeated several 

times overnight. Recently, Polysomnography (PSG) is widely used in sleep stage analysis and 

further address sleep disorders. It records a wide range of physiological signals at the same time, 

e.g., Electroencephalography (EEG), Electrocardiography (ECG), blood oxygenation, airflow, 

etc. However, multiply measurements in PSG add data redundancy, and features extracted from 

physiological data can be very high dimensional compared to the number of data records. In 

order to tackle this problem, this project has applied dimension reduction methods to high 

dimensional data, thereby reducing data redundancy, saving computational resource and 

preventing overfitting. In addition, the complete procedure for sleep stage analysis, including 

data pre-processing, feature extraction, and downstream classification are implemented as well. 

Experiments demonstrated the effectiveness of the sleep staging procedure and verified the 

necessity and superiority of dimension reduction under the sleep stage analysis scenario. 
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摘要 
 

睡眠对⼈体⾮常重要，但是在现代⽣活中⼈们经常被睡眠障所困扰，⽽不同睡眠阶段

持续时间的⽐例与⽣理信号本⾝可被⽤于诊断睡眠障碍。⼀个睡眠周期包括以下⼏个

阶段：清醒期，快速眼动期（REM），睡眠 1 期（S1），睡眠 2 期（S2），睡眠 3 期

（S3）和睡眠 4 期（S4）。睡眠周期会在⼀晚的睡眠中循环多次。近年来，多导睡眠监

测仪被⼴泛⽤于睡眠分期并进⼀步诊断睡眠障碍。多导睡眠监测仪可以同时记录多种

⽣理信号，例如：脑电图（EEG），⼼电图（ECG），⾎氧饱和度，呼吸⽓流等。但

多导睡眠监测仪中测量的多种信号会增加数据冗余，且相⽐于⽣理信号本⾝从信号中

提取的特征可能有⾮常⾼的维度。该项⽬为解决此问题，将降维⽅法应⽤于⾼维数据，

以减少数据冗余，节省计算资源并防⽌过拟合。此外，该项⽬还实现了完整的睡眠分

期程序，包括数据预处理，特征提取和下游分类。实验证明了睡眠分期程序的有效性，

并验证了在睡眠分期场景中降维的必要性和优越性。 
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Chapter 1: Introduction 

1.1 Motivation 

Sleep is important for the human body. It is a prerequisite for both physical and mental health. 

During sleep, the body will protect the metabolizable energy, mature the neuronal connections, 

and consolidate learning and memory (Faust et al., 2019). However, due to the quickened life 

rhythm and unhealthy lifestyle, sleep disorders become an increasingly frequent problem in 

modern daily life. Demographic research reveals that up to 24% of people are faced with regular 

sleep problems (Willemen et al., 2014), due to sleep apnea, insomnia, hypersomnia, etc. Sleep 

disorders associated with not only disturbances in cognitive and psychological function, but 

also increased morbidity and mortality (Hillman and Lack, 2013). For instance, obstructive 

sleep apnea syndrome (OSAS) has a significant side effect of increased risk of cardiovascular 

diseases (Boostani et al., 2016). In addition, adverse effects of sleep disorders threaten people’s 

safety, productivity, and quality of life. A study shows that drowsy driving is a key factor in 

about 100,000 traffic accidents occurring each year in the United States, resulting in thousands 

of deaths and injuries (Stutts et al., 2003)A French research found that employees with sleep 

problems missed as twice many as workdays in a year compared to normal sleepers (Faust et 

al., 2019). Baldwin et al. found that subjective sleep symptoms are comprehensively associated 

with poorer quality of life (Baldwin et al., 2001).  

Nowadays, overnight Polysomnography (PSG) is considered the gold standard in sleep research 

and allows accurate assessment of sleep. It is widely adopted in sleep stage analysis and further 

sleep disorders diagnosis (Agarwal and Gotman, 2001; Sulistyo et al., 2017). PSG is a multi-

parametric measurement equipment that records a wide range of physiological signals at the 

same time, including Electroencephalography (EEG), Electrocardiography (ECG), 

Electrooculography (EOG), Electromyography (EMG), airflow, blood oxygenation, respiratory 

effort, etc. In conventional systems, PSG sleep stage analysis is carried out manually by experts. 

However, more and more computer automatic sleep stage analysis systems have replaced 

humans to perform this tiring and time-consuming task in recent years. In addition to saving 

the cost of labour, computer systems can help to reduce intra- and inter-observer variability, and 

further improve the quality of the analysis (Faust et al., 2019). Despite the superiorities, 

problems still exist. One of the problems is that multiple measurements add data redundancy, 

i.e., the ECG merely confirms the information already extracted from an EEG signal. Similarly, 
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features extracted from physiological data are redundant as well. Therefore, as Figure 1 shows, 

this project aims to apply dimension reduction methods in computer-based automatic sleep 

stage analysis, in order to reduce data redundancy, save computational resource, and avoids the 

issue of over-fitting. Specifically, this project only focused on EEG and ECG of 

polysomnography data. Finally, obtained data will be used in the downstream classification of 

different sleep stages. 

1.2 Overview 

Figure 2 shows the overview of this project. The project is divided into four parts: pre-

processing, feature extraction, dimension reduction, and classification. 

Data pre-processing is required because a lot of interferences and artefacts could affect the 

record of the raw data. On top of these, signals have to be segmented into regular 30s epochs 

as units of further classification. 

After pre-processing, various features can be extracted for each epoch of obtained cleaned data. 

For instance, powers in the frequency band of different waves and Hjorth parameters are 

estimated from EEG data, so that high dimensional feature vectors are obtained. 

EEG

ECG EMG

EOG Airflow

Blood 
Oxygen

…0 1 0 1 0 1

……

Overnight Polysomnography Data Low-Dimensional Vectors

…0 1 0 1 0 1

…0 1 0 1 0 1

……

Figure 1 Dimension Reduction on PSG Data 
 

Feature 
ExtractionPre-processing Dimension 

Reduction Classification

Raw Data Cleaned Data Extracted Feature Reduced Feature Classified Hypnogram

Figure 2 Project Overview 
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Regarding dimension reduction, the key component of this project, high dimensional vectors 

are compressed, reducing the size of vectors but preserving most of the information required. 

The final step of this project adopted machine learning models to classify overnight sleep into 

different stages based on the dimension reduced vectors. According to the classification results, 

overnight hypnograms can be plotted. 

1.3 Achievement 

In general, the achievements of this project are as follow. 

1. Established a pre-processed dataset for sleep stage analysis from raw physiological data. 

2. Implemented the feature extraction and dimension reduction processing step of EEG 

and ECG data. 

3. Implemented the classification processing step for various type of classification with 

multiple classifiers and evaluation matrices. 

4. Verified the necessity and superiority of dimension reduction under the sleep stage 

analysis scenario. 

5. Designed a variable weighted PCA based on mutual information, which outweighs 

conventional PCA in most cases. 

6. Proposed an improved representation of hypnogram which is easier to read compared 

to conventional hypnogram. 
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Chapter 2: Background 

2.1 Polysomnography 

Polysomnography (PSG) data is adopted to analyse the sleep stages of patients in this project. 

PSG is a multi-parametric measurement apparatus that records a wide range of physiological 

signals simultaneously, Electroencephalogram (EEG), Electrocardiogram (ECG), 

Electromyogram (EMG), Electrooculogram (EOG), blood oxygenation, respiratory effort, 

airflow and so on. Despite the variety of data, most of the studies focus on EEG and/or ECG, 

because sleep is caused by significant changes in brain activities (Faust et al., 2019). Therefore, 

this project only focused on sleep stage analysis with EEG and ECG signals. 

2.1.1 Electroencephalography 

Electroencephalography (EEG) signals are recordings of the electrical activity of the human 

brain. The special device called Electroencephalogram records the signals through electrodes 

or leads placed on the scalp. Generally, several electrodes are arranged according to standards, 

but in this project, to simplify the problem, only one channel (C3-A2) of EEG signal is analysed. 

EEG patterns show different characteristics during sleep stages. EEG waveforms are classified 

based on their frequency.  

Delta wave (0.1 – 4 Hz) is the slowest wave but has the highest amplitude. It is related to the 

grey matter in the brain. It can be observed in all sleep stages especially in stage 3 and 4, but 

not in the stages of awake. 

Theta wave (5 – 7 Hz) is associated with subconscious activities. It is found in deep relation 

and meditation. It can increase in sleep stage 1. 

Alpha wave (8 – 12 Hz) is observed in awake but relaxed adults. It represents white matter 

activities of the brain and serves as a bridge between the subconscious and conscious mind. 

Sigma wave ranges from 13 to 15 Hz. Sleep stage 2 is characterized by sleep spindles, i.e., 

transient runs of rhythmic activity in sigma wave. 

Beta wave (16 – 30 Hz) is regarding action and behaviour. It is commonly observed during 

conscious behaviours (e.g., speaking, thinking, and decision making). 

Gamma wave (30 – 100 Hz) occurs during the integration of sensory inputs and hyper-alertness. 

It seldom occurs in normal sleep (Kumar and Bhuvaneswari, 2012). 
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2.1.2 Electrocardiography 

Electrocardiography (ECG) is a recording of the electrical activity of the heart. Similar to EEG 

signal, single-lead ECG is applied. ECG signals of healthy human are highly structured, and 

each signal component can be identified via visual inspection (Noviyanto et al., 2011). ECG 

waveform and its attributes are shown in Figure 3. Sleep stages are also indicated in subtle 

changes in ECG signals. For instance, the absolute voltage for the P, Q, R, S and T points of the 

ECG signal in the stage of awake are greater than the stage of sleep. Additionally, the number 

of samples in the P-QRST interval in the stage of awake is lesser than the stage of sleep. 

Furthermore, the total amount of R peaks in the constant time interval is also distinguishing 

between the two stages (Yücelbaş et al., 2018). These difference in the physiological signal 

provides the foundation of sleep stage analysis in this project. 

2.2 Sleep Stage Analysis 

Sleep specialists analyse sleep stages following well-established guideline (Berry et al., 2015). 

Overnight sleep is scored in 30-second epochs. Each epoch is labelled as either wakefulness, 

rapid eye movement (REM) sleep or one of four stages during non-rapid eye movement (NREM) 

sleep, including stage 1 (S1), stage 2 (S2), stage 3 (S3), and stage (S4). In some scenarios, stage 

1 and stage 2 were merged to Light Sleep (LS), while stage 3 and stage 4 were merged to stage 

3, also known as Slow Wave Sleep (SWS) (Faust et al., 2019). The scoring result plotted in 

temporal consequence is a hypnogram. Figure 4 provides an example of hypnogram (Noviyanto 

et al., 2011). In this project, sleep stage analysis is completed automatically with computer 

programs. 

Figure 3 ECG Waveform Figure 4 Hypnogram 
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Table 1 Signal length of subjects in 30-second epochs 

2.3 Dataset 

This project adopted St. Vincent's University Hospital / University College Dublin Sleep Apnea 

Dataset, which is publicly accessible in PhysioNet (Goldberger et al., 2000). The dataset 

contains twenty-five overnight polysomnograms with synchronised three-channel Holter ECG, 

from adult subjects with suspected sleep-disordered breathing. 

Subjects were arbitrarily selected over 6 months (from Sept. 2nd to Feb. 3rd) from patients 

referred to the Sleep Disorders Clinic at St Vincent's University Hospital, Dublin, for potential 

diagnosis of central sleep apnea, obstructive sleep apnea, or primary snoring. Subjects had to 

be over 18 years of age, without known autonomic dysfunction and cardiac disease, and not on 

medication known to interfere with heart rate. Twenty-five subjects (twenty-one males and four 

females) were selected (age: 50 ± 10 years, range 28 - 68 years; AHI: 24.1 ± 20.3, range 1.7 - 

90.9; BMI: 31.6 ± 4.0 kg/m², range 25.1 - 42.5 kg/m²). The signal length of each subject in 30-

Subject Epoch Subject Epoch Subject Epoch Subject Epoch Subject Epoch 

1 748 6 768 11 811 16 852 21 908 

2 882 7 925 12 774 17 752 22 711 

3 826 8 907 13 916 18 913 23 838 

4 808 9 900 14 789 19 787 24 893 

5 813 10 864 15 822 20 861 25 721 

Figure 5 A 30-second sample of the PSG dataset 
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second epochs is shown in Table 1. 

Polysomnograms were acquired with the Jaeger-Toennies system (Erich Jaeger GmbH, 

Germany). Figure 5 shows a piece of the dataset. Signals recorded were EEG (C4-A1), EEG 

(C3-A2), left and right EOG, submental EMG, ECG (modified lead V2), oronasal airflow 

(thermistor), ribcage movements, abdomen movements (uncalibrated strain gauges), oxygen 

saturation (finger pulse oximeter), snoring (tracheal microphone) and body position. The files 

are stored in EDF format. In this project, only EEG (C3-A2) and ECG signal are used, and the 

labels were scored by a skilled sleep technologist according to standard Rechtschaffen and 

Kales rules. The original dataset is open access at https://doi.org/10.13026/C26C7D. 

2.4 Related Work 

This project aims at computer-based sleep stage analysis, which stages the sleep with 

physiological data automatically. In recent years, numerous researches and experiments have 

published on this task. For instance, Hassan and Bhuiyan have decomposed EEG signals and 

built a sleep classification system using the RUSBoost classifier (Hassan and Bhuiyan, 2017). 

The accuracy has been improved in (Bajaj and Pachori, 2013) with an alternative SVM classifier, 

and Mousavi et al. proposed a model to classify sleep stages further enhanced the performance 

with the introduction of deep learning (Michielli et al., 2019). Although most of the works were 

concerning with EEG signals for the reason that changes in brain activities are the origin of 

sleep and sleep stages, ECG signals are also widely adopted by many researchers because they 

pick up sleep-related changes in the automatic nervous system and relatively easy to collect 

compared to EEG signals (Faust et al., 2019). Yücelbaş et al. applied ECG signals to score the 

sleep (Yücelbaş et al., 2018). Mendez et al. have implemented sleep stage analysis based on 

heart rate variability (HRV), which is even simpler and cheaper to access (Mendez et al., 2010). 

In addition to EEG and ECG signals, other signals, e.g., EOG and respiratory effort, are adopted 

in sleep stage analysis as well (Long et al., 2014; Rahman et al., 2018). Some researchers use 

multiple types of data at the same time. Phan et al. used multi-modal learning on both EEG and 

EOG data for sleep staging (Phan et al., 2019). However, most of these works have not focused 

on dimension reduction. 
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Chapter 3: Design and Implementation 

 

The program in this project is implemented in MATLAB R2021a under macOS Big Sur, with 

Statistics and Machine Learning Toolbox, Bioinformatics Toolbox, Signal Processing Toolbox, 

Wavelet Toolbox and DSP System Toolbox. The code is available at 

https://github.com/kayzliu/DRSleep. 

3.1 Pre-processing 

Electroencephalogram (EEG) and electrocardiogram (ECG) are recorded by sensitive 

electrodes. Due to the complication of the sensing environment, artefacts are inevitable. 

Basically, there are two types of artefacts, biological artefacts, and environmental artefacts. As 

the EEG electrodes are placed on the scalp, it will not only record brain neuron electrical 

activities but also those from eyes (ocular artefacts), muscles (muscle artefacts), even heart 

(ECG artefacts). These are called biological artefacts. On the other hand, environmental 

artefacts refer to the artefacts that originated outside of the body, e.g., body movement, 50 or 

60 Hz artefacts from the power supply, etc. These artefacts may lead to significant variation to 

the signal (Motamedi-Fakhr et al., 2014). To reduce the influence of artefacts, three methods 

can be used in pre-processing of the raw data, rejecting bad data, filtering, and Independent 

Component Analysis (ICA). In addition to the pre-processing stated above, other commonly 

used pre-processing steps are also performed, including normalisation, calibration, etc. 

Furthermore, the signals are required to be divided into uniform 30-second epochs for the later 

procedure. In this project, EEGLAB (a toolbox developed by UCSD) is applied to implemented 

part of pre-processing, including selecting channels, removing DC offset, filtering, rejecting 

bad segment, etc (Delorme and Makeig, 2004). 

3.1.1 Removing Bad Data 

Due to various artefacts, there could be short-time bursts in the recorded signals. For instance, 

as Figure 6 (a) Left shows, there is an abnormally large value between 1221 second and 1222 

second in the EEG channel. To prevent the negative effect on the later procedure, the standard 

deviation within a 0.5-second window is estimated. When the estimated result exceeds the 

threshold (20 in this case), the corresponding signal segment will be considered as a bad 

segment and removed from all channels. As Figure 6 (a) Right shows, the segment is removed 
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and replaced with a red vertical line in its original position. Similarly, flatlines, noise and low-

frequency drifts can also be removed by this mean. 

3.1.2 Filtering 

Although the method used in the last step can remove most of the artefacts, some artefacts 

remain, e.g., alternating current power supply, which has a small volume but continuously exists 
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Figure 6 Signal comparison between before and after pre-processing 
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during the record of the signal. Hence, filtering is used to further reduce the artefacts. As for 

EEG signal, a band-pass filter (0.3 – 35 Hz) is used. As Figure 6 (b) Right shows, the high-

frequency components and direct current component in Figure 6 (b) Left have been removed 

after filtering. Similarly, regarding ECG data, a high-pass filter of 0.3 Hz is applied. 

3.1.3 Independent Component Analysis 

Another approach that can be conducted is Independent Component Analysis (ICA) which uses 

the multi-channel property of signals to decompose the dataset into several components which 

are maximally independent. The electromagnetic property of EEG and ECG signals indicates 

that these signals satisfy the assumptions of the ICA algorithm, i.e., ones based on an 

instantaneous mixture model (Motamedi-Fakhr et al., 2014). In addition, a variant sequential 

independent component analysis, which takes temporal dependence into account can be used 

to improve the performance (Safont et al., 2014). The crucial application of ICA is the 

suppression of other electromagnetic characters (e.g., ECG) from EEG signal. As Figure 6 (c) 

shows, the impulses in red boxes of EEG signal in Figure 6 (c) Left, which are result from ECG 

signal, are diminished in Figure 6 (c) Right after ICA. The red boxes are in the exact same 

position in the two figures. However, the main problem of ICA is the lack of automatic and 

reliable identification of different components, i.e., which component is related to EEG and 

which component is related to ECG. The incorrect identification can result in an inconsistency 

problem of the data. 

3.1.4 Segmentation 

The non-stationary property of PSG signals is not compatible with lots of signal processing 

algorithms, which suppose the processing signals are stationary. This problem is met in plenty 

of applications of signal processing and a widely used solution is to segment the signals into 

small epochs in the time domain such that they can be considered as being nearly stationary (a 

so-called assumption of quasi-stationarity) within each signal (Motamedi-Fakhr et al., 2014). 

In this project, the dataset also labelled the data based on 30-second epochs. Hence, rather more 

practically the study of PSG signals needs to identify the approximate temporal location or time 

range of events, as a result, naturally any processing scheme uses data corresponding to a certain 

finite duration window. 
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3.2 Feature Extraction 

Features are parameters that provide information about the underlying structure of the signal of 

interest. Feature extraction is an important step in the whole procedure, which can significantly 

affect the final classification outcome. There are different methods to extract features from ECG 

and EEG signals respectively. As for the ECG signal, autoregressive (AR) coefficients, Shannon 

entropy, wavelet leader estimates are applied. Regarding the EEG data, both temporal features 

and spectral features are used. Specifically, frequency domain features are the powers in the 

frequency band of delta wave, theta wave, alpha wave, sigma wave, and beta wave. On the top 

of that, Hjorth parameters are estimated in the time domain, including activity, mobility, and 

complexity. 

3.2.1 Autoregressive Coefficient 

Autoregressive coefficients, also known as reflection coefficients, are obtained from the 

autoregressive (AR) model. In an AR model of order p, the output of current is a linear 

combination of the outputs of past p stages plus a white noise input. The weights on the p past 

outputs minimize the mean squared prediction error of the autoregression. Its mathematical 

formula is: 

 𝑦(𝑛) +&𝑎(𝑘)𝑦(𝑛 − 𝑘)
!

"#$

= 𝑥(𝑛) (1) 

where y(n) is the current value of the output; a(k) is autocorrelation coefficient and x(n) is a 

zero-mean white noise input. The reflection coefficients are the partial autocorrelation 

coefficients scaled by -1. They indicate the time dependence between y(n) and y(n – k) after 

subtracting the prediction based on the intervening k – 1 time steps. In this project, the order of 

the AR model is 4, and Burg’s method is used to calculate the coefficients. It estimates the 

reflection coefficients and uses the reflection coefficients to estimate the AR parameters 

recursively (Liang et al., 2012). 

3.2.2 Wavelet Leader 

Discrete Wavelet Transform (DWT) is a linear operator that decomposes the original signal into 

two components: approximation coefficients (ACs, which are the low frequency, high scale 

information of the initial signal) and detail coefficients (DCs, which capture the high frequency, 

low scale information in the original signal). Then, the DCs remain while the ACs are 
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recursively decomposed into new DCs and ACs. Owing to its great time and frequency 

localization ability, DWT can reveal the local characteristics of the input ECG signal. In 

addition, the multi-level decomposition of an ECG signal into different scales by DWT 

generates multi-scale features, each of which represents particular characteristics of the signal 

(Li and Zhou, 2016).  

Wavelet leaders are derived from the critically sampled discrete wavelet transform (DWT) 

coefficients. Wavelet leaders offer significant theoretical advantages over wavelet coefficients 

in the multifractal formalism. Wavelet leaders are time- or space-localized suprema of the 

absolute value of the discrete wavelet coefficients. The time localization of the suprema requires 

that the wavelet coefficients are obtained using a compactly supported wavelet. The Holder 

exponents, which quantify the local regularity, are determined from these suprema. The 

singularity spectrum indicates the size of the set of Holder exponents in the data (Serrano and 

Figliola, 2009; Wendt and Abry, 2007). 

3.2.3 Shannon Entropy 

In this section, Shannon entropies of the wavelet packet coefficients of discrete wavelet packet 

transform (WPT) of the ECG signal are estimated. Instead of DWT, which is used in the last 

section, WPT, an extension of DWT is applied. Since DWT decomposes ACs only at each level, 

it is hard to extract distinctive information from DCs. On the other hand, in the WPT, the 

filtering operations are applied to not only ACs but also DCs. Therefore, the WPT has the same 

frequency bandwidths in each resolution while DWT does not. This property makes WPT not 

increase and lose information compared to original signals, resulting in the features from WPT 

having more discrimination power than those from DWT. The mathematical representation of 

WPT is: 

 

⎩
⎪
⎨

⎪
⎧

𝑑%,%(𝑡) = 𝑦(𝑡),

𝑑',()*$(𝑡) = √2&ℎ(𝑘)𝑑'*$,)(2𝑡 − 𝑘),
"

𝑑',()(𝑡) = √2&𝑔(𝑘)𝑑'*$,)(2𝑡 − 𝑘),
"

 (2) 

where h(k) and g(k) are high-pass and low-pass filter respectively, and 𝑑',)  is the 

reconstruction coefficients of WPT at the ith level for the jth node. 

Although the coefficients by DWT or WPT can reveal the local characteristics of an ECG signal, 

the number of such coefficients is usually so huge that it is hard to use them as features for 
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classification directly. Therefore, Shannon entropy, which measures the uncertainty of the 

information contained in given systems, may derive from these coefficients for better 

classification. Mathematically, the Shannon entropy E is represented as: 

 𝐸 = −&𝑑'
( log;𝑑'

(<
'

 (3) 

where 𝑑' is the wavelet packet coefficients, with the convention 0log(0) = 0 (Li and Zhou, 

2016). 

3.2.4 Power in Frequency Band 

Powers in the frequency band of various waves in EEG signal are estimated, including delta 

wave (0-4 Hz), theta wave (5-7 Hz), alpha wave (8-12 Hz), sigma wave (13-15 Hz) and beta 

wave (16-30 Hz). As 2.1.1 illustrated, different waves may have different amplitude, during 

different sleep stages. Thus, their power in the frequency band can reveal the current sleep stage. 

To calculate the power of different waves, Fast Fourier transform (FFT) is first conducted, to 

convert the signal from the time domain to the frequency domain. FFT is a rapid discrete Fourier 

transform algorithm factorizing the transform matrix into a product of sparse factors. Hence, it 

reduced the computational complexity from O(𝑁() to O(𝑁 log𝑁), where N is the size of the 

data. The mathematical formula of discrete Fourier transform is: 

 𝑌" = &𝑦+𝑒*'(,"+/.
.*$

+#%

 (4) 

where k equals to 0 to N-1; 𝑒'(,/. is a primitive Nth root of 1. After the Fourier transform, the 

power of different waves (different frequency range) can be obtained by: 

 𝑃 =
1
𝑇D

|𝑌(𝑓)|(d𝑓
/

0
 (5) 

where T is the time range (30 seconds); a and b are upper bound and lower bound of the wave 

frequency range, respectively. 

3.2.5 Hjorth Parameters 

The interpretation of EEG data, consisting of a sequence of observed electrical potentials, is 

complicated by the lack of a sufficient model to explain how states of the central nervous system 

are reflected in the measured signals. To resolve this problem and effectively represent the EEG 
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data, Hjorth parameters, including activity, mobility, and complexity, are proposed (Hjorth, 

1973). 

Activity parameter is the variance of the signal in the time domain, indicating the surface of the 

power spectrum in the frequency domain, which means the value of activity parameter is 

proportional to the number of high-frequency components. Its mathematical definition is: 

 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑦(𝑡)) (6) 

Mobility parameter is described as the square root of the ratio of the variance of the derivative 

of the signal and that of the signal. It positively proportions to standard deviation of the power 

spectrum. Its formula is: 

 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = P
𝑣𝑎𝑟(𝑦1(𝑡))
𝑣𝑎𝑟(𝑦(𝑡))  (7) 

Complexity parameter is the shape similarity between a signal and a pure sine wave. Its value 

converges to 1 as the shape of the signal becomes more similar to a sine wave. 

 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦1(𝑡))
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))  (8) 

While these three parameters contain information about the frequency spectrum of a signal, 

they also help analyze signals in the time domain. In addition, they have lower computational 

complexity. 

3.3 Dimension Reduction 

Dimension reduction in this project is implemented with principal component analysis (PCA) 

and weighted PCA. 

3.3.1 Principal Component Analysis 

Principal component analysis (PCA) is a common linear dimension reduction algorithm. The 

idea of the PCA is to find the most important components in the data through linear 

transformation and to sort the obtained principal component vectors according to their 

explained variances. Based on the required number of components, the first serval components 

are remained, while other components are discarded. The original high dimensional data is 

finally transformed into a linearly independent representation of each dimension of the group, 

revealing the intrinsic structure behind the high dimensional data. The dimensionality reduction 
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of the data through PCA can achieve the effect of removing noise and redundancy and 

simplifying the model while maintaining the information of the original data to the greatest 

extent. Its optimization goal is maximizing the explained variance of the data in low 

dimensional space. It can be represented in the formula: 

 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤2𝑋2𝑋𝑤
𝑤2𝑤  (9) 

where the 𝑤 is the parameter, and the 𝑋 is the data (Alickovic and Subasi, 2018). 

3.3.2 Weighted Principal Component Analysis 

There are briefly two types of weighted PCA (WPCA), sample-wise weighted PCA and 

variable-wise weighted PCA. In order to adapt to the trend and continuously learn the new 

information, sample-wise weighted PCA adopt moving window, recursing or EWMA 

(Exponentially Weighted Moving Average) filter and so on (Fan et al., 2011). As for variable-

wise weighted PCA, the weightings are determined by a customized formula, with 

consideration given not to over-weight variables. In this project, the variable-wise weighted 

PCA is adopted, and mutual information is used as weights while performing the principal 

components analysis. The weights are defined as: 

 𝑤𝑒𝑖𝑔ℎ𝑡' = 𝐼(𝑋' , 𝑌) =& 𝑃(𝑋' = 𝑥) , 𝑌 = 𝑦") log
𝑃(𝑋' = 𝑥) , 𝑌 = 𝑦")
𝑃;𝑋' = 𝑥)<𝑃(𝑌 = 𝑦")),"

 (10) 

where I is the mutual information of feature variable 𝑋'  and label Y. As the features are 

continuous variables. They are discretized into 256 bins or the number of unique values in the 

variable if it is less than 256. The function finds optimal bivariate bins for each pair of variables 

using the adaptive algorithm (Darbellay and Vajda, 1999). 

3.4 Classification 

In the classification stage, the leave-one-out classification based on the 30s epochs is used. First, 

the data splitting is based on leave-one-out, which means in each experiment one subject is used 

as the testing set, while others are used as the training set. For instance, in a dataset of 10 

subjects, the training set is subject 2 to subject 10, while subject 1 is the testing set; in the next 

experiment, subject 2 is specified as the testing set, and others (subject 1 and subject 3 to 10) 

are defined as the training set. Then, according to different classification type, the label of the 

data has to be modified. In this project, three types of classification are investigated, including 
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three classification (Wake, REM, and NREM), four classification (Wake, REM, LS, SWS), and 

full six classification (Wake, REM, S1, S2, S3, and S4). After the specification of the classifier, 

the relabelled training data can be imported into the classifier and start training. Depending on 

the classifier, the computing period may vary. Next, the testing dataset is predicted by the 

trained model. By comparison of predicted values and actual values, evaluation metrics 

(confusion matrix and average accuracy, in this project) can be obtained. A visualisation of 

hypnogram can be obtained by plotting the classification result in temporal sequence (sample 

result can be found in Figure 10 in Chapter 4). 

Despite it is critical to select a suitable classifier to achieve better performance, the emphasis 

of this project is on dimension reduction instead of classification. Therefore, only several 

classical classifiers are used, and delicate deep learning classifiers are not included. 

Classification only serves as a downstream task, which is used to evaluate the result of the 

previous procedure. 

3.4.1 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is an algorithm that finds a linear combination of features 

that characterizes or separates two or more classes of objects. It also frequently used on 

dimension reduction. It is suitable when the data of different classes are Gaussian distributed 

and have similar variances. The model predict classifies so as to minimize the expected 

classification cost: 

 𝑦U = argmin
𝑦=1…𝐾

∑ 𝑃W(𝑘|𝑥)𝐶(𝑦|𝑘)𝐾
𝑘=1 ， (11) 

where 𝑦U is the predicted classification; K is the number of classes; 𝑃X(𝑘|𝑥) is the posterior 

probability of class k for observation x; and 𝐶(𝑦|𝑘) is the cost of classifying an observation as 

y when its true class is k (Singh et al., 2016). 

3.4.2 Quadratic Discriminant Analysis 

Quadratic Discriminant Analysis (QDA) is similar to LDA. It also assumes the data of different 

classes are normally distributed, but QDA can tackle various means and covariances, which is 

more difficult to handle. Unlike LDA, which separates the classes using a linear surface, QDA 

separates the classes using a quadratic surface (i.e., a conic section) (Singh et al., 2016). 
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3.4.3 k-Nearest Neighbour 

k-Nearest Neighbour (kNN) is a non-parametric classification method. The predicted class of 

specific unlabelled sample point is depending on the most common class of its k nearest 

neighbours (k is a positive integer). If k = 1, the sample is simply assigned to the class of the 

nearest neighbour. The nearest neighbour can be measured in multiple distances, but Euclidean 

distance is usually used. It is suitable for classification with multiple labels as well as multi-

modal classification. However, it is simple and low efficient. The selection of optimal 

hyperparameter k is also a problem. The algorithm is sensitive to noise and unstable on 

performance (Singh et al., 2016). 

3.4.4 Naïve Bayes Classifier 

Naïve Bayes (NB) is a classifier based on Bayes’ theorem, assuming strong independence 

between the features. Its mathematical formula is: 

 𝑦U = argmax
"#$…4

𝑃(𝐶")^𝑃(𝑥'|𝐶")
+

'#$

 (12) 

where 𝑦U is the predicted classification; K is the number of classes; 𝐶" is the kth class; and 𝑥' 

is features of the ith sample. Naïve Bayes classifier is highly scalable. It requires a number of 

parameters linear in the number of features in a learning problem, taking less computational 

time (Singh et al., 2016). 

3.4.5 Support Vector Machine 

Support Vector Machine is a sophisticated algorithm, providing high accuracy with an 

appropriate kernel. It maps training samples to points in high dimensional space to maximise 

the gap width between classes and separates different classes with a hyperplane. In the testing 

stage, new samples are mapped into the same space and categorised based on the region they 

located. Unlike some algorithms (e.g., k-NN), the performance of SVM is independent of the 

size of the data as well as feature dimension, but the number of training cycles. It provides a 

high generalisation ability, preventing overfitting problem theoretically. However, it requires 

relatively longer computational time, and its performance also depends on the parameters 

(Singh et al., 2016). 
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Chapter 4: Results and Discussion 

 

To validate the design and implementation described in the last chapter, several comparison 

experiments are conducted. 

4.1 Classifier 

 According to the last chapter, Linear Discriminant Analysis (LDA), Quadratic Discriminant 

Table 2 Comparison result of different classifiers 

LDA Wake REM S1 S2 S3 S4  QDA Wake REM S1 S2 S3 S4 

Wake 1107 134 524 78 1 1  Wake 533 73 221 99 9 15 

REM 216 1322 616 761 11 7  REM 503 1434 969 967 13 13 

S1 311 246 475 286 1 1  S1 668 193 457 176 1 5 

S2 106 210 372 2980 158 125  S2 84 214 358 2727 153 139 

S3 54 67 91 851 224 434  S3 38 51 66 806 195 310 

S4 64 31 62 246 141 950  S4 32 45 69 427 165 1036 

   (a)        (b)    

kNN Wake REM S1 S2 S3 S4  NB Wake REM S1 S2 S3 S4 

Wake 826 218 468 191 6 10  Wake 552 57 191 72 6 4 

REM 228 825 410 455 13 20  REM 421 1367 802 822 2 1 

S1 500 436 566 612 29 52  S1 664 184 511 151 0 0 

S2 267 484 618 3277 274 417  S2 137 331 534 3584 278 254 

S3 15 15 37 266 59 166  S3 35 17 21 129 41 72 

S4 22 32 41 401 155 853  S4 49 54 81 444 209 1187 

   (c)        (d)    

SVM Wake REM S1 S2 S3 S4  ACC WRN WRLS ALL 

Wake 1080 106 474 95 3 5  LDA 74.1 62.5 53.2 

REM 198 1069 427 299 0 3  QDA 68.3 55.7 48.1 

S1 338 273 462 171 2 7  kNN 71.4 60.0 48.3 

S2 223 539 739 4374 364 492  NB 71.0 61.9 54.6 

S3 0 0 0 0 0 0  SVM 77.2 68.4 60.3 

S4 19 23 38 263 167 1011     (f)    

   (e)            
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Analysis (QDA), k-Nearest Neighbour (kNN), Support Vector Machine (SVM), and Naïve 

Bayes Classifier (NB) can be applied in downstream classification. However, different 

classifiers can have diverse performance under various scenarios. The comparison results of 

different classifiers in the same settings (only EEG data, without dimension reduction) is shown 

in Table 2. Sub-table (a) to (e) show the confusion matrixes (summation of all subjects) of 

different classifiers, and sub-table (f) shows the average accuracies (the number of correct 

epochs divided by the number of all epochs) of classifiers in WRN (Wake, REM, and NREM), 

WRLS (Wake, REM, LS, SWS), and ALL (Wake, REM, S1, S2, S3, and S4), respectively. 

Despite SVM cannot distinguish S3, SVM significantly outperforms other classifiers in 

accuracy in all types of classification. Therefore, SVM is selected for follow-up experiments. 

4.2 Pre-processing 

In order to verify the effectiveness of the pre-processing, three variants of the procedure are 

implemented. The first one is the raw data without any pre-processing (RAW). The second one 

is the data with only filtering (FLT). The third one is the data with only removing bad segments 

(RMD). Same settings (SVM classifier, only EEG data, without dimension reduction) are used 

Table 3 Comparison result of different pre-processing 

RAW Wake REM S1 S2 S3 S4  FLT Wake REM S1 S2 S3 S4 

Wake 3097 339 840 323 31 69  Wake 3032 354 829 303 23 76 

REM 415 1172 538 429 6 3  REM 446 1247 547 383 0 0 

S1 269 294 284 169 0 0  S1 288 348 278 184 0 0 

S2 796 1116 1654 5826 543 1360  S2 798 1000 1663 5734 491 867 

S3 0 0 0 0 0 0  S3 0 0 0 0 0 0 

S4 145 95 87 238 93 558  S4 158 67 86 381 159 1047 

   (a)        (b)    

RMD Wake REM S1 S2 S3 S4         

Wake 1164 131 535 121 6 6  ACC WRN WRLS ALL 

REM 208 1347 519 379 8 5  RAW 72.5 61.8 52.6 

S1 370 246 430 179 1 1  FLT 73.0 64.2 54.5 

S2 257 577 762 4258 374 670  RMD 75.4 65.4 57.6 

S3 0 0 0 0 0 0  FULL 77.2 68.4 60.3 

S4 27 35 51 300 147 836     (d)    

   (c)            
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in three variants except for the difference in pre-processing. Table 3 shows the final 

classification results of these variants and fully pre-processed data (FULL). Sub-table (a) to (c) 

show the confusion matrixes of different pre-processing, and sub-table (d) shows a summary of 

the average accuracy of each pre-processing. As the confusion matrix of FULL is the same as 

Table 1 (e), it is not shown in Table 3. According to Table 3, it is obvious that FULL performs 

better than others in all three classification types, indicating that both pre-processing, filtering 

and removing bad segments, are necessary. 

4.3 Dimension Reduction 

In this section, the influence of dimension reduction of different numbers of components is 

investigated. In order to facilitate the experiment, a pre-processed sub-dataset of 10 subjects is 

used in the experiments described in this section. Figure 7 shows how explained variance 

decrease with the reduction of the number of components in three types of data, EEG, ECG and 

COM (linear combination of EEG and ECG). The blue curve shows the change with 

conventional PCA, while the orange curve shows the weighted. Although the explained 

variance monotonically decreases, it changes slightly at the beginning and remains a high value 

after significantly reducing the number of components, which demonstrated the necessity of 

dimension reduction. Moreover, the orange curve is always above the blue curve, proving that 

weighted PCA helps information compact in first serval components better than the 

conventional one. 

Figure 8 describes the relationship between the classification performance and the number of 

components with different data and different classification types. Sub-figure (a) shows the 

results of ALL (six classes full classification), sub-figure (b) shows WRLS (Wake, REM, LS, 

and SWS), and (c) shows WRN (Wake, REM, and NREM). In each sub-figure, the result of 

EEG, ECG, and COM (linear combination of EEG and ECG) data are shown in the Left, Middle, 

and Right, respectively. In the figure, blue curves represent the results of PCA, while orange 
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curves represent WPCA’s, and green horizontal lines show the results before dimension 

reduction. Table 4 shows the comparison optimal results of different data in different 

classification types. 

From Figure 8 and Table 4, several conclusions can be drawn. First, in most curves, the optimal 

result is achieved with a relatively small number of components instead of maximum. The 

decrease in the performance with the increasing number of components could result from the 

noise contained in the latter components. It demonstrates the necessity and superiority of 

dimension reduction in general circumstances. Second, in the cases of relatively poor 

performance (e.g., ECG data shown in Figure 8 Middles and bold accuracy in Table 4), 

dimension reduction helps improve the performance of downstream classification. However, in 

the circumstances that original data has already achieved a high performance, the accuracy can  
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Table 4 Comparison of optimal accuracy of different dimension reduction methods 

drop after dimension reduction. The conclusion further proves the necessity and superiority of 

dimension reduction in specific scenarios. Third, the weighted PCA (WPCA) designed in this 

project has improved the classification accuracy in most cases. However, the performance can 

still decline in the case of both high dimension with many classes (e.g., Middle and Right in 

sub-figure (a)). In general, the effectiveness of weighted PCA has been verified. 

4.4 Hypnogram 

Hypnogram is a graph that plot the sleep stage results in a temporal consequence, which allows 

the different stages of sleep to be identified during the sleep cycle as was explained in Chapter 

2. Figure 2 provides a sample of conventional hypnogram, an ideal model, which has perfect 

cycles of sleep. However, in reality, the sleep cycle of patients may not that predictable. Figure 

9 shows the hypnogram of a sample in the dataset. The sleep could frequently switch between 

two or more stages within a short period of time, and the sleep cycle may not follow the constant 

sequence. Hence, the hypnogram can be very messy, and hard to extract useful information, 

especially in those periods of irregular stage switching. Fortunately, it is easy to obtain by 

analysis that the vertical lines in the hypnogram are the main reason for the confusion, but they 

seldom contain information related to sleep stages. Therefore, in this project, points, instead of 

 WRN  WRLS  ALL 

 EEG ECG COM  EEG ECG COM  EEG ECG COM 

Original 75.8 59.8 74.1  69.1 48.2 66.0  60.3 36.6 55.2 

PCA 67.4 64.6 64.6  56.6 52.7 52.7  45.2 39.1 39.4 

WPCA 68.6 65.7 66.2  56.8 53.3 54.3  45.9 38.5 39.2 
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lines, are used to represent the sleep stage in a specific time range, and the sample result is 

shown in Figure 10. Sleep stages are more clearly shown in the figure. 

Figure 10 shows the hypnogram of overnight sleep of subject 5. the red points represent the 

classification result (Estimated hypnogram), while the blue points are ground truth results 

labelled by an expert (Real hypnogram). The accuracy reaches 77% in this subject. According 

to the figure, the result is relatively favourable, which is consistent with its accuracy. The 

estimated hypnogram has basically restored the real hypnogram, but approximate stages which 

are too hard to distinguish (e.g., S3 and S4) are sometimes confused. The effectiveness of the 

procedure has been proved. 
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Chapter 5: Conclusion and Further Work 

5.1 Conclusion 

In this project, the complete procedure of sleep stage analysis based on PSG data is investigated, 

including data pre-processing, feature extraction, dimension reduction, and stage classification, 

emphasizing dimension reduction. A series of experiments demonstrate the achievements of the 

project. The pre-processing of the dataset is effective, significantly improving the quality of the 

data and downstream classification performance. The features extracted from the data 

successfully represented the necessary information in both EEG and ECG signals for staging. 

Dimension reduction using PCA and designed weighted PCA has conserved the computational 

resource and facilitate the analysis process, even improved analysis performance in some cases. 

Classification of different models are compared, and the optimal one reaches satisfactory 

matrices. The result of such sleep stage analysis procedure can be used in further assistance for 

clinic diagnosis of sleep disorders (e.g., sleep apnea), reducing inter- and intra-observer 

variability and decreasing the need for interpreting multiple signals. In addition to the sleep 

stage analysis procedure, the pre-processed dataset and extracted feature data of St. Vincent's 

University Hospital / University College Dublin Sleep Apnea Database have established and 

can be used in further study as well. Furthermore, a novel form of hypnogram is proposed. It is 

more straightforward compared to a traditional hypnogram. 

5.2 Further Work 

Although the project is completed to the largest extent since the limitation of project duration 

and other unavoidable factors, further work of the project can be conducted from several aspects. 

1. In this project, only conventional statistic machine learning classifiers are used. 

However, in recent years, deep learning has been applied in plenty of scenarios and 

achieved surprising performance, such as computer vision and natural language 

processing and so on. Introducing deep learning may significantly improve the result of 

the staging. 

2. This project has not considered the temporal relations between the epochs in the signal. 

However, PSG data has a strong temporal dependence. To take information in previous 

epochs into account, Hidden Markov Model (HMM) can be used. Combining with deep 

learning, the neural network model which considered temporal relation (e.g., recurrent 
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neural network, LSTM, etc.) can be attempted as well. 

3. In order to simplify the problem, only EEG and ECG signal in PSG is used in this project. 

However, other signals in PSG, such as EOG, can provide additional information related 

to sleep. The synthesis of these data may also enhance the outcome of the procedure. 

4. Dataset adopted in this project is collected with suspicious patients. However, a normal 

sleeper can have a more typical sleep pattern. Adding normal sleepers’ data can help 

model better learn the physiological signal pattern of each sleep stage. 
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Risk and environmental impact assessment 

 

This project applied the collected open-source PSG dataset in the training period, without 

interaction of human patients. But in the application period, data may have to be collected from 

human patients and assist doctors to diagnose sleep disorders. Therefore, several risks are 

assessed: 

Description of Risk Description of Impact Likelihood 
rating Impact rating Preventative 

actions 

Unreliable dataset 

The performance of the 

classifier could 

significantly decrease 

and provides false 

information to doctors. 

2 (Unlikely) 3 (Very serious) 
Apply only trusted 

dataset. 

Inexperienced doctor 

The automatic sleep 

stage analysis result is 

for reference only. 

Absolutely obedience to 

the result could result in 

a false diagnosis. 

2 (Unlikely) 3 (Very serious) 

Acknowledge 

users of potential 

mistakes.  

Inconsistent software 
environment 

The program may not 

be able to work under 

different software 

environment (e.g., 

operating system, 

library version). 

3 (Moderate) 2 (Serious) 

Configure an 

identical 

environment 

before utilizing the 

program. 

Unfamiliar sleep 
environment 

Patients who are 

sensitive to in-lab sleep 

environment and the 

PSG equipment may be 

diagnosed with more 

severe sleep apnea. 

4 (Likely) 2 (Serious) 

Improve the sleep 

environment and 

assist with drugs. 

 


