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Abstract

We consider weighted algebras of holomorphic functions on a Banach space. We determine condi-
tions on a family of weights that assure that the corresponding weighted space is an algebra or has
polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them
with an analytic structure. We also deal with composition operators and algebra homomorphisms, in
particular to investigate how their induced mappings act on the analytic structure of the spectrum.
Moreover, a Banach-Stone type question is addressed.

Introduction

This work deals with weighted spaces of holomorphic functions on a Banach space. If X is a (finite or
infinite dimensional) complex Banach space and U ⊆ X open and balanced, by a weight we understand
any continuous, bounded function v : U −→ [0,∞[. Weighted spaces of holomorphic functions defined by
countable families of weights were deeply studied by Bierstedt, Bonet and Galbis in [4] for open subsets
of Cn (see also [5, 8, 9, 10, 12]). Garćıa, Maestre and Rueda defined and studied in [20] analogous spaces
of functions defined on Banach spaces. We recall the definition of the weighted space

HV (U) = {f : U → C holomorphic :

‖f‖v = sup
x∈U

v(x)|f(x)| <∞ all v ∈ V }.

We endow HV (U) with the Fréchet topology τV defined by the seminorms (‖ ‖v)v∈V . Since the family
V is countable, we can (and will throughout the article) assume it to be increasing.

One of the most studied topics on weighted spaces of holomorphic functions are the composition
operators between them. These are defined in a very natural way; if ϕ : Ũ → U is a holomorphic mapping
and V , W are two families of weights, the associated composition operator Cϕ : HV (U) → HW (Ũ) is

∗The first author was supported by PIP 5272, UBACyT X108, PICT 05-33042 and PICT 06-00587.
†The second author was supported by the MECD Project MTM2005-08210
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defined as Cϕ(f) = f ◦ϕ. There are a number of papers on this topic, both in the finite dimensional and
infinite dimensional setting [9, 10, 11, 12, 21, 22].

Our aim in this paper is to study the algebra structure of HV (U) whenever it exists. We determine
conditions on the family of weights V that are equivalent to HV (U) being an algebra, and present some
examples. We also consider polynomial decompositions of weighted spaces of holomorphic functions.
We show how the existence of a polynomial ∞-Schauder decomposition and the presence of an algebra
structure are related. This lead us to the consideration of weights with some exponential decay.

Whenever HV (X) is an algebra, we study the structure of its spectrum. For a symmetrically regular
X (see definitions in Section 3), we endow the spectrum of HV (X) with a topology that makes it an
analytic variety over X∗∗, much in the spirit of Aron, Galindo, Garćıa and Maestre’s work [3] for the
space of holomorphic functions of bounded type Hb(X). We show that any function f ∈ HV (X) extends
naturally to an analytic function defined on the spectrum and this extension can be seen to belong, in
some sense, to HV (X).

We also study algebra homomorphisms and composition operators between spacesHV (X) andHV (Y ),
for V a family of exponential weights. Namely, we consider the algebra of holomorphic functions of zero
exponential type. This class of functions has been widely studied in function theory in one or several
variables since the 1930’s [6, 7] and, even nowadays, its interest also arises in areas such as harmonic and
Fourier analysis, operator theory and partial differential equations in complex domains. Given an algebra
homorphism, we investigate how the mapping induced between the spectra acts on the corresponding
analytic structures. We show how in this setting composition operators have a very different behaviour
as that for holomorphic functions of bounded type [14]. The results on algebra homomorphisms allow us
to address a Banach-Stone type question. Some recent articles on this kind of problems are [14, 27]. A
survey on different types of Banach-Stone theorems can be found in [23]. This question can be seen as a
kind of converse of the problem studied, for example, in [17, 25, 13, 15].

We now recall some definitions and fix some notation. We will denote duals by X∗ if X is a Banach
space and E′ if E is a Fréchet space.

Given a weight v, its associated weight is defined as

ṽ(x) =
1

sup{|f(x)| : f ∈ Hv(U), ‖f‖v ≤ 1}
=

1

‖δx‖(Hv(U))′
,

where δx is the evaluation functional. It is a well known fact [5, Proposition 1.2], that ‖f‖v ≤ 1 if and
only if ‖f‖ṽ ≤ 1 (hence Hv(U) = Hṽ(U) isometrically). We also have in [5, Proposition 1.2], that v ≤ ṽ.
However, it is not always true that there exists a constant C for which ṽ ≤ Cv; the weights satisfying
this kind of equivalence with their associated weights are called essential. A weight v is called radial if
v(x) = v(λx) for every λ ∈ C with |λ| = 1 and norm-radial if v(x1) = v(x2) whenever ‖x1‖ = ‖x2‖.

A set A ⊆ U is called U -bounded if it is bounded and d(A,X \ U) > 0. Holomorphic functions of
bounded type on U are those that are bounded on U -bounded subsets. The space of all these functions
is denoted by Hb(U). By H∞(U) we denote the space of holomorphic functions that are bounded in U .
Following [20, Definition 1], we say that a countable family of weights V satisfies Condition I if for every
U -bounded A there is v ∈ V such that infx∈A v(x) > 0. If V satisfies Condition I, then HV (U) ⊆ Hb(U)
and the topology τV is stronger than τb (topology of uniform convergence on the U -bounded sets).

Given a Banach space X, the space of continuous, n-homogeneous polynomials on X is denoted by
P(nX). For a given family of weights V , we write PV (nX) = P(nX) ∩HV (X).

A locally convex algebra will be an algebra A with a locally convex structure so that multiplication
is continuous. The spectrum of A is the space of non-zero continuous multiplicative functionals. In the
sequel, by “algebra” we will mean a locally convex algebra.

We denote the spectrum of Hb(X) by Mb(X). Whenever HV (X) is an algebra, we will denote its
spectrum by MV (X).

1 Weighted algebras of holomorphic functions

Next proposition determines conditions on the weights that make HV (X) an algebra. We thank our
friend José Bonet for helping us fixing the proof, the final form of which is due to him.
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Proposition 1.1. Let U be an open and balanced subset of X and V be a family of radial, bounded
weights satisfying Condition I. Then HV (U) is an algebra if and only if for every v there exist w ∈ V
and C > 0 so that

v(x) ≤ Cw̃(x)2 for all x ∈ U. (1)

Proof. Let us begin by assuming that HV (U) is an algebra. Given v ∈ V there are C > 0 and w1, w2

so that ‖fg‖v ≤ C‖f‖w1
‖g‖w2

. Since V is increasing, we can assume w1 = w2 = w. Let us fix x0 ∈ U ,
and choose f ∈ Hw(X) with ‖f‖w ≤ 1 such that f(x0) = 1/w̃(x0) (see [5, Proposition 1.2]). Taking the
Cesàro means of f (see [4, Section 1], or [20, Proposition 4]) we have a sequence (hj)j ⊆ HV (U) such
that ‖hj‖w ≤ 1 and |hj(x0)| −→ 1/w̃(x0) as j →∞. We can assume that hj(x0) 6= 0 for j large enough
and we get

v(x0) = v(x0)|hj(x0)2| 1

|hj(x0)2|
≤ ‖h2j‖v

1

|hj(x0)2|

≤ C‖hj‖2w
1

|hj(x0)|2
≤ C 1

|hj(x0)|2
.

Letting j → ∞ we finally obtain (1). Conversely, if (1) holds, the fact that ‖f‖w = ‖f‖w̃ for every f
easily gives that HV (U) is an algebra.

The problem of establishing if a weighted space of functions is an algebra was considered by L. Oubbi
in [26] for weighted spaces of continuous functions. In that setting, CV (X) is an algebra if and only if
for every v ∈ V there are C > 0 and w ∈ V so that, for every x ∈ X

v(x) ≤ Cw(x)2. (2)

Let us note that for holomorphic functions, since w ≤ w̃, if (2) holds then HV (U) is an algebra. On
the other hand, if the family V consists of essential weights, then HV (U) is an algebra if and only if (2)
holds.

Examples of families generating algebras can be constructed by taking a weight v and considering the
family V = {v1/n}∞n=1. Since in the sequel we will want that these families satisfy Condition I, we have
to impose v to be strictly positive.

Not every weighted algebra can be constructed with “1/n” powers of a strictly positive weight. In
[20, Example 14], a family of weights W = {wn}n satisfying Condition I so that Hb(U) = HW (U) is
defined. If Un is a fundamental system of U -bounded sets, each wn is defined to be 1 on Un and 0 outside
Un+1 and such that 0 ≤ wn ≤ 1. Let us see that there is no positive weight v such that Hb(U) = HV (U)
(where V is defined as before). We can view the identity id : HW (U) −→ HV (U) as a composition
operator id = CidU ; then by [22, Proposition 11] (see also [11, Proposition 4.1]) for each n ∈ N there
exists m so that CidU : Hwm(U) −→ Hv1/n(U) is continuous. Then [21, Proposition 2.3] (see also [10,
Proposition 2.5]) gives that v(x)1/n ≤ Kw̃m(x) for all x. Choose x0 6∈ Um+1 and we have v(x0) = 0, so
v is not strictly positive.

Now we present some concrete examples of weighted algebras.

Example 1.2. Let v be the weight on BX given by v(x) = (1 − ‖x‖)β and let us define V = {v1/n}n.
Then, H∞(BX)  HV (BX)  Hb(BX).

The first inclusion and the second strict inclusion are clear. To see that the first one is also strict, we
choose x∗ ∈ X∗ and x0 ∈ X so that ‖x∗‖ = |x∗(x0)| = ‖x0‖ = 1 and f(x) = log(1 − x∗(x)). Clearly f
is holomorphic and not bounded on the open unit ball BX . On the other hand, there exists a constant
C > 0 for which

(1− ‖x‖)β | log(1− x∗(x))| ≤ (1− ‖x‖)β log |1− x∗(x)|+ C.

Now, if |1−x∗(x)| > 1, then log |1−x∗(x)| ≤ 2. If |1−x∗(x)| < 1, then |1−x∗(x)| ≥
∣∣1−|x∗(x)|

∣∣ ≥ 1−‖x‖
and

(1− ‖x‖)β log |1− x∗(x)| ≤ (1− ‖x‖)β log(1− ‖x‖).

Since the mapping t ∈]0, 1] (tβ log t) goes to 0 as t does, we have f ∈ HV (BX) \H∞(BX).
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Example 1.3. Let v be the weight on X given by v(x) = e−‖x‖ and V = {v1/n}n. When X = Cn, this
weighted space HV (Cn) is the very well known algebra of entire functions of zero exponential type (see,
for example, [6], [7]). We have H∞(X)  HV (X)  Hb(X). To see that the second inclusion is strict,

take x∗ ∈ X∗ and define f(x) = ex
∗(x)2 . It is immediate that f is a holomorphic function of bounded

type that is not in HV (X). On the other hand, HV (X) cannot be H∞(X).

We end this section by showing another example of a family that gives an algebra but is not given by
{v1/n}. We thank our friend Manolo Maestre for providing us with it.

Example 1.4. Let us consider a positive, decreasing function η defined on X and define vn(x) =
n

√
log
(
n(1 + ‖x‖)

)
η(‖x‖). This clearly satisfies that vn(x) ≤ v2n(x)2 for all x but there is no v such that

vn = v1/n.

2 Schauder decomposition and weighted algebras

In this section, we consider two natural families of weights obtained from a decreasing continuous function
η : [0,∞[−→]0,∞[ such that limt→∞ tkη(t) = 0 for every k ∈ N. Let us define two different families of

weights, vn(x) = η(‖x‖)1/n and wn(x) = η(‖x‖n ), n ∈ N. Our aim is to study some properties of the
weighted spaces HV (X) and HW (X), where V = {vn}n and W = {wn}n. From what has already been
said in the previous section, HV (X) is always an algebra. Note that v1(x) = w1(x) = η(‖x‖). For
simplicity, we will write v = v1 and w = w1.

Following standard notation the real function η can be radially extended to a weight on C by η(z) =
η(|z|) for z ∈ C and its associated weight is given by

η̃(t) =
1

sup{|g(z)| : g ∈ H(C) |g| ≤ 1/η on C}
.

The following proposition, showed to us by José Bonet, shows how the associated weights are related.

Proposition 2.1. Let X be a Banach space and v a weight defined by v(x) = η(‖x‖) for x ∈ X. Then
ṽ(x) = η̃(‖x‖) for all x ∈ X.

Proof. Let us fix x ∈ X and choose x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖. If h ∈ H(C) is such
that |h| ≤ 1/η then, for any y ∈ X,

|(h ◦ x∗)(y)| = |h(x∗(y))| ≤ 1

η(x∗(y))
≤ 1

η(‖y‖)
=

1

v(y)
.

So we have ‖h ◦ x∗‖v ≤ 1 and hence

1

η̃(‖x‖)
= sup{|h(‖x‖)| : h ∈ H(C), |h| ≤ 1/η}

≤ sup{|f(x)| : f ∈ Hv(X), ‖h‖v ≤ 1} =
1

ṽ(x)
.

Let us suppose now that ṽ(x) < η̃(‖x‖) for some x 6= 0. Then there exists f ∈ H(X) with ‖f‖v ≤ 1
such that |f(x)| > 1/η̃(‖x‖). Let us define now g : C → C by g(λ) = f(λx/‖x‖); clearly g ∈ H(C)
and |g(λ)| ≤ 1/η(λ) for all λ ∈ C. Therefore |g(‖x‖)| ≤ 1/η̃(‖x‖), but this contradicts the fact that
g(‖x‖) = f(x). This gives that ṽ(x) = η̃(‖x‖) for every x 6= 0. Both ṽ and η̃ are continuous since η is so,
then we also have ṽ(0) = η̃(0)

As an immediate consequence of this result we have that v is essential if and only if η is so. Also note:

Remark 2.2. Proceeding as in the previous Proposition it can be easily shown that w̃n(x) = η̃(‖x‖/n).
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Our familyW was already defined and studied in [20, Example 16]. By [20, Theorem 11],
(
PW (nX)

)
n

is an S -absolute, γ-complete decomposition of HV (X) (see [18, Definition 3.32] and [24, Definition
3.1]). Let us see that, furthermore, it is an ∞-Schauder decomposition. Let us recall that a Schauder
decomposition (Fn)n of a Fréchet space F is an R-Schauder decomposition ([19, Theorem 1]), whenever,
for any (xn)n with xn ∈ Fn,

∑
n xn converges in F if and only if lim supn ‖xn‖1/n ≤ 1/R. It is well

known [19, Lemma 6] that any ∞-Schauder decomposition is S -absolute.
By [20, Example 16], PW (nX) = Pw(nX) topologically for every n. Since ∞-Schauder decompo-

sitions are sequences of Banach spaces, we will always consider PW (nX) as a Banach space with the
norm ‖ · ‖w.

Proposition 2.3.
(
PW (nX)

)
n

is an ∞-Schauder decomposition of HW (X).

Proof. We want to show that
∑
m Pm converges in τW if and only if limm ‖Pm‖1/mw = 0. Let us suppose

first that
∑
m Pm converges in τW . Taking a sequence αm = 1 for all m, since it is an S -Schauder

decomposition, ‖
∑
m Pm‖α =

∑
m ‖Pm‖w converges. Then, given any R > 0, we can take n > R and

sup
x∈X
|Pm(x)| η(‖x‖)Rm ≤ sup

x∈X
|Pm(x)| η(‖x‖)nm

= sup
x∈X
|Pm(nx)| η(‖y‖) = sup

y∈X
|Pm(y)| η(

‖x‖
n

) = ‖Pm‖wn .
(3)

Hence
∑
m

(
supx∈X |Pm(x)| η(‖x‖)

)
Rm <∞ for all R > 0 and this implies limm ‖Pm‖1/nw = 0.

Now, if limm ‖Pm‖1/nw = 0, then
∑
m

(
supx∈X |Pm(x)| η(‖x‖)

)
Rm < ∞ for all R > 0. Using (3),∑

m ‖Pm‖wn converges for all n and this completes the proof.

The space HW (X) is not necessarily an algebra. We want to find now conditions on the weight that
make HW (X) an algebra and to study how is HW (X) related to HV (X) in this case.

Proposition 2.4. HW (X) is an algebra if and only if there exist k > 1 and C > 0 so that, for all t,

η(kt) ≤ Cη̃(t)2. (4)

If, furthermore, η is essential, then HW (X) is an algebra if and only if there exist k > 1 and C > 0 so
that, for all t,

η(kt) ≤ Cη(t)2. (5)

In this case, HW (X) ↪→ HV (X) continuously and there exist positive constants a, b and α so that
η(t) ≤ ae−btα for all t.

Proof. By Proposition 1.1 and Proposition 2.1, if HW (X) is an algebra, given n = 1 there exist C > 0
and m such η(t) ≤ Cη̃( tm )2 for all t. This clearly implies (4). On the other hand, if (4) holds, given n we
can choose mn so that mn > kn and the fact that η̃ is decreasing (because η is decreasing [10]), together
with Proposition 1.1 and Remark 2.2, give that HW (X) is an algebra.

Now, if η is essential, condition (4) is equivalent to (5). In this case, η(t) ≤ C2n−1η(t/kn)2
n

for all t
and n. Hence, given m let us take n such that 2n > m, then since η is decreasing,(

η(t)

η(0)

)1/m

≤
(
η(t)

η(0)

)1/2n

≤ C1−1/2n η(t/kn)

η(0)1/2n
.

This gives η(t)1/m ≤ C1−1/2nη(0)1/m−1/2
n

η(t/kn). Therefore, HW (X) ↪→ HV (X) continuously.
Moreover, since η(t) → 0 as t → ∞, we can choose r such that Cη(r) < 1. We have η(knr) ≤

C2n−1η(r)2
n ≤ (Cη(r))2

n

for all n. Now, for any t > 0, let n be such that knr ≤ t < kn+1r. We have

η(t) ≤ η(knr) ≤ (Cη(r))2
n

≤ (Cη(r))
1
2 (t/r)

logk 2

which is bounded by ae−bt
α

for a proper choice of positive constants a, b and α.
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We have given conditions for HW (X) to be an algebra. We also had that
(
PW (nX)

)
n

is an ∞-
Schauder decomposition of HW (X). The fact that the polynomials form a Schauder decomposition of
a space of holomorphic functions allows to derive some properties of the space of holomorphic functions
from the properties of the spaces of homogeneous polynomials. Let us check when the polynomials are
such a decomposition for HV (X).

Let us first note that PV (nX) = PW (nX) = Pv(nX). We consider in PV (nX) the norm ‖ · ‖v.
Then if

(
PV (nX)

)
n

is an ∞-Schauder decomposition of HV (X), by [19, Theorem 9], we get HV (X) =
HW (X). Since we know that HW (X) always admits such a decomposition, we have that the spaces of
weighted polynomials form an ∞-Schauder decomposition of HV (X) if and only if HV (X) = HW (X).
Moreover, we have

Proposition 2.5. If η is essential,
(
PV (nX)

)
n

is an ∞-Schauder decomposition of HV (X) if and only
if HV (X) = HW (X).

In this case, there exist positive constants a1, a1, b1, b2, α1 and α2 such that a1e
−b1tα1 ≤ η(t) ≤

a2e
−b2tα2

for all t.

Proof. We only need to show the inequalities. If HV (X) = HW (X), then HW (X) is an algebra and
the second inequality follows from Proposition 2.4. On the other hand, if HV (X) = HW (X) there must
exist m ∈ N and C > 0 such that w2(x) ≤ Cvm(x) for all x ∈ X. This means that

η(t/2) ≤ Cη(t)1/m

for all t. Now we can proceed as in the last part of the proof of Proposition 2.4 to obtain the desired
inequality.

Remark 2.6. There is a whole class of functions η for which HV (X) and HW (X) coincide (and, then,
they are algebras with a polynomial ∞-Schauder decomposition). Indeed, for any b, α > 0 we can

define η(t) = e−bt
α

. Since η(t/n) ≤ η(t)1/n
[α]

and η(t)1/n ≤ η(t/n1/[α]), we have HV (X) = HW (X)
topologically.

On the other hand, Proposition 2.5 shows that any η satisfying HV (X) = HW (X) must be bounded
below and above by functions of this type.

If we want HV (X) to have a polynomial decomposition without being HW (X), we must then weaken
our expectation on the type of decomposition. The polynomials form an S -Schauder, γ-complete decom-
position of the weighted space of holomorphic functions whenever the family is formed by norm radial
weights satisfying Conditions I and II’ (see [20, Theorem 11]). Condition I was already introduced. We
say that a family of weights satisfies Condition II’ if for every v in the family there exist C > 0, R > 1
and w in the family so that v(x) ≤ Cw(Rx) for all x [20, Proposition 8]. We can characterise Condition
II’ in terms of the function η. Note that this condition also imposes a relationship between HV (X) and
HW (X)

Proposition 2.7. The family V satisfies Condition II’ if and only if there exist R > 1, and α,C > 0 so
that, for all t,

η(t)α ≤ Cη(Rt). (6)

In this case, HV (X) ↪→ HW (X) continuously.

Proof. First of all, if V satisfies Condition II’, clearly given any n there exist m, R and C so that
η(t)m/n ≤ Cη(Rt) for all t. On the other hand, if (6) holds, for any n let us choose m ≥ αn. Then

η(t)1/n

η(0)1/(αn)
≤ C

(
η(Rt)

η(0)

)1/(αn)

≤ C
(
η(Rt)

η(0)

)1/m

and this gives that Condition II’ holds.

Now, if V satisfies Condition II’ then for any given n and k we have η(t/n) ≤ η(Rkt/n)α
k

. Let k be
such that Rk > n and m such that m− 1 ≤ 1/αk ≤ m. The set A = {t : η(t) ≥ 1} is compact; let then

K = supA η(t)
1

1/αk /η(t)1/m and we have

η(t/n) ≤ η(
Rk

n
t)α

k

≤ η(t)
1

1/αk ≤ Kη(t)1/m.

This completes the proof.
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3 The spectrum

Our aim is now to study the structure of the spectrum of HV (X). This is well known for the space of
holomorphic functions of bounded type, Hb(X), when X is symmetrically regular. A complex Banach
space X is said to be (symmetrically) regular if every continuous (symmetric) linear mapping T : X → X∗

is weakly compact. Recall that T is symmetric if Tx1(x2) = Tx2(x1) for all x1, x2 ∈ X. The first steps
towards the description of the spectrum Mb(X) of Hb(X) were taken by Aron, Cole and Gamelin in their
influential article [2]. In [3, Corollary 2.2] Aron, Galindo, Garćıa and Maestre gave Mb(U) a structure of
Riemann analytic manifold modeled on X∗∗, for U an open subset of X. For the case U = X, Mb(X) can
be viewed as the disjoint union of analytic copies of X∗∗, these copies being the connected components of
Mb(X)). In [18, Section 6.3], there is an elegant exposition of all these results. The study of the spectrum
of the algebra of the space of holomorphic functions of bounded type was continued in [14]. We continue
in this trend by studying here MV (X). In this section we present the analytic structure of MV (X), in
the spirit of the above mentioned results.

If f is a holomorphic function defined on a Banach space X, we denote by f̄ or AB(f) the Aron-Berner
extension of f to X∗∗ (see [1] and [18] for definitions and properties).

The copies of X∗∗ are constructed in the following way: given an element φ in the spectrum, we lay
a copy of X∗∗ around φ considering, for each z ∈ X∗∗, the homomorphism that on f ∈ HV (X) takes
the value φ

(
x ∈ X  f̄(x + z)

)
. If we let z move in X∗∗, we obtain a subset of the spectrum that is

isomorphic to X∗∗. But this works only if φ can act on the function x ∈ X  f̄(x + z), that is, if this
function belongs to HV (X).

Lemma 3.1. Let V be a family of weights satisfying Conditions I and II’ such that every v is decreasing
and norm radial; then the mapping HV (X) −→ HV (X) given by f  f(· + x) is well defined and
continuous for every fixed x ∈ X.

Proof. The mapping in the statement can be viewed as a composition operator Cϕx , where ϕx : X −→ X
is given by ϕx(y) = x + y. We use [22, Proposition 11] (see also [11, Proposition 4.1]) to see that it is
continuous.

Since V satisfies Condition II’, given v ∈ V , we can take R > 1 and w1 so that v(y) ≤ w1(Ry) for all
y. Hence, if ‖y‖ > 1

R−1‖x‖, then ‖x + y‖ ≤ R‖y‖ and v(y) ≤ w1(Ry) ≤ w1(x+ y). Let now w2 be so
that inf‖y‖≤ 1

R−1‖x‖
w2(y) = c1 > 0; then,

sup
‖y‖≤ 1

R−1‖x‖

v(y)

w2(y + x)
<∞.

Choosing w ≥ max(w1, w2) we finally obtain for some K > 0,

sup
y∈X

v(y)|f(x+ y)| ≤ sup
y∈X

v(y)

w(x+ y)
sup
y∈X

w(x+ y)|f(x+ y)| ≤ K‖f‖w.

Since v is a function of the norm, we can consider it defined both on X and X∗∗. Davie and Gamelin
showed that the Aron-Berner extension is an isometry for polynomials with the usual norm. They first
prove a more general version of this fact: if z ∈ X∗∗, there is (xα)α ⊆ X such that ‖xα‖ ≤ ‖z‖ for all α
and P (xα)→ P̄ (z) as α→∞, for all polynomial P on X [16, Theorem 1]. By using their result we show
now that the Aron Berner extension is also an isometry from PV (nX) into PV (nX∗∗).

If P ∈Pv(nX), clearly ‖P‖v ≤ ‖P̄‖v. Also we can choose xα in such a way that ‖xα‖ ≤ ‖z‖ and

v(z)|P̄ (z)| ≤ lim
α
v(z)|P (xα)| ≤ sup

α
v(xα)|P (xα)| ≤ ‖P‖v.

Therefore,
‖P‖v = ‖P̄‖v. (7)

This implies that the Aron-Berner extension is a continuous homomorphism from HV (X) in HV (X∗∗).
This was showed to us by M. Maestre in a more general setting, namely if v is continuous on straight
lines or w∗-continuous on spheres.
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In what follows we consider a positive decreasing function η such that there is C > 0 with

η(s)η(t) ≤ Cη(s+ t). (8)

A simple example of such a function is η(t) = e−t. We consider the family of weights vn(x) = η(‖x‖)1/n,
defined analogously on X∗∗. The space HV (X) is an algebra and, since (6) holds, V satisfies Condition
II’ and the weighted polynomials form a Schauder decomposition of HV (X). Also, by [20, Example 16] it
contains all the homogeneous polynomials. In order to study MV (X) we follow the notation and trends
of [18, Section 6.3] for Mb(X). We reproduce the construction for the sake of completeness.

Linear functionals belong to HV (X), so we can define an onto mapping π : MV (X) −→ X∗∗ by
π(φ) = φ|X∗ . Since the Aron-Berner extension is continuous, we can also define δ : X∗∗ −→ MV (X)
given by δ(z)(f) = f̄(z). For any given f ∈ HV (X) there is an associated mapping f ′′ : MV (X) −→ C
defined by f ′′(φ) = φ(f). The canonical embedding of X into X∗∗ is denoted by JX .

For a fixed z ∈ X∗∗, we consider τz(x) = JXx+z for x ∈ X. Since there is no risk of confusion we also
denote τz : HV (X) −→ HV (X) the mapping given by (τzf)(x) = f̄(JXx + z) = f̄(· + z) = (f̄ ◦ τz)(x).
By Lemma 3.1 and the comments above on the Aron-Berner extension this mapping is well defined. As a
consequence, we get φ ◦ τz ∈MV (X) for every φ ∈MV (X) and z ∈ X∗∗. If X is symmetrically regular,
then τz+wf = (τz ◦ τw)f for all f ∈ Hb(X) [18, Lemma 6.28]. Since V satisfies Condition I, we have
HV (X) ↪→ Hb(X) and τz+w = τz ◦ τw on HV (X).

Also, if x∗ ∈ X∗, we have τz(x
∗) = z(x∗) + x∗, and for φ ∈MV (X), π(φ ◦ τz) = π(φ) + z.

For any pair φ ∈MV (X) and ε > 0 we consider

Vφ,ε = {φ ◦ τz : z ∈ X∗∗ , ‖z‖ < ε}.

As in [18, Section 6.3] we obtain that Vφ = {Vφ,ε}ε>0 is a neighbourhood basis at φ for a Hausdorff
topology on MV (X) whenever X is symmetrically regular. Moreover, π(φ) = π(ψ) if and only if φ = ψ
or Vφ,r ∩ Vψ,s = Ø for all r, s; also MV (X) is a Riemann domain over X∗∗ whose connected components
are “copies” of X∗∗.

As we have already mentioned, Condition I assures that HV (X) ↪→ Hb(X). Moreover, all the poly-
nomials belong to HV (X), so the inclusion has dense range. Hence, we have a one to one identification
Mb(X) ↪→ MV (X). We do not know whether or not they are equal. Note that they both consist of
“copies” of X∗∗.

We have the following commutative diagram

X

X∗∗ MV (X)

C

-

-
?

6

JX

δ

f ′′

f

H
HHH

HHH
HHHHj

f̄

In the case of Hb(X), the function f ′′ is holomorphic on Mb(X) and is, in some sense, of bounded type.
We show now that something analogous happens in our situation. By the Riemann domain structure of
MV (X), “holomorphic” means that f ′′ ◦ (π|Vφ,∞)−1 is holomorphic on X∗∗ for all φ ∈ MV (X), where
Vφ,∞ =

⋃
ε>0 Vφ,ε.

Given a weight v defined on X, we define the corresponding weighted norm for n-linear mappings:

‖A‖v = sup
x1,...,xn∈X

|A(x1, . . . , xn)| v(x1) · · · v(xn).

If P ∈ P(nX), we denote the associated symmetric n-linear mapping by P̌ . For a symmetric n-linear
mapping A, by A(xk, yn−k) we mean the mapping A acting k-times on x and (n − k) times on y. The
following result follows by straightforward application of (8) and the polarization formula [18].
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Lemma 3.2. Let η be a positive, decreasing function satisfying (8) and v(x) = η(‖x‖). Then, for any
P ∈Pv(nX),

‖P̌‖v ≤
Cn

n!
‖P‖v

where C is the constant in (8).

The following result is analogous to [18, Proposition 6.30] and follows the same steps.

Theorem 3.3. Let X be symmetrically regular and η be a positive, decreasing function satisfying (8).
Let V be defined by vn(x) = η(‖x‖)1/n. Then, for every f ∈ HV (X), the associated function f ′′ :
MV (X) −→ C given by f ′′(φ) = φ(f) is holomorphic.

Proof. For any φ ∈MV (X) and z ∈ X∗∗ we have(
f ′′ ◦ (π|Vφ,∞)−1

)
(π(φ) + z) = f ′′(φ ◦ τz) = (φ ◦ τz)(f) = φ(τzf).

Hence we need to prove that the mapping z ∈ X∗∗  φ(τzf) = φ
(
x 7→ f̄(JXx+ z)

)
is holomorphic.

Let us consider the polynomial expansion at zero: f =
∑
n Pn, where Pn ∈P(nX) for all n. What we

need then is to show that the function z  φ
(
x 7→

∑
n P̄n(z)(x)

)
is holomorphic. To see it, this sum must

converge for the topology τV . We write An = P̌n. For z ∈ X∗∗ and 0 ≤ k ≤ n define Pn,k,z : X −→ C
by Pn,k,z(x) = Ān(JXx

n−k, zk); this is clearly an (n − k)-homogeneous polynomial. Let us see that
Pn,k,z belongs to PV (n−kX). For any v ∈ V , we set w1 = v1/(n−k) and w2 = v1/k. Then, choosing
w ≥ max(w1, w2) we get

‖Pn,k,z‖v ≤ sup
x∈X
|Ān(JXx

n−k, zk)|
(
v(x)1/(n−k)

)n−k 1

v(z)

(
v(z)1/k

)k
≤ ‖Ān‖w

1

v(z)
.

Now we apply Lemma 3.2 to obtain

‖Pn,k,z‖v ≤ ‖Ān‖w
1

v(z)
≤ 1

v(z)

Cn

n!
‖P̄n‖w =

1

v(z)

Cn

n!
‖Pn‖w. (9)

Proceeding as in [18, Section 6.3] we get a pointwise representation

(τzf)(x) = f̄(JXx+ z) =

∞∑
n=0

P̄ (JXx+ z) =

∞∑
n=0

(
n∑
k=0

(
n

k

)
Pn,k,z

)
(x).

This series converges in τV ; indeed if v ∈ V , inequality (9) gives

∞∑
n=0

n∑
k=0

(
n

k

)
sup
x∈X

v(x)|Pn,k,z(x)|

≤
∞∑
n=0

n∑
k=0

(
n

k

)
Cn

n!

1

v(z)
‖Pn‖w ≤ K

1

v(z)

∞∑
n=0

‖Pn‖w.

Since η is strictly positive, so is v and by [20, Lemma 10] the last series converges. Hence, for each z ∈ X∗∗,
the series

∑∞
n=0

∑n
k=0

(
n
k

)
Pn,k,z converges in τV to τzf . Then we can write φ(τzf) =

∑∞
n=0

∑n
k=0

(
n
k

)
φ(Pn,k,z).

Let us consider now the k-homogeneous polynomial Pn,k : z ∈ X∗∗ −→ φ(Pn,k,z) and see that it is
continuous. We fix wφ ∈ V such that |φ(h)| ≤M‖h‖wφ for all h ∈ HV (X). Note that wφ coincides with

η(‖ · ‖)1/r for some r. Let z ∈ BX∗∗ , by (9),

|φ(Pn,k,z)| ≤M‖Pn,k,z‖wφ ≤M
Cn

n!
‖Pn‖wφ

1

wφ(z)
≤M 1

n!
‖Pn‖wφ

1

η(1)1/r
.

This means that Pn,k is bounded and therefore Qn =
∑n
k=0

(
n
k

)
φ(Pn,k,z) ∈ P(nX∗∗). Since φ(τzf) =∑∞

n=0Qn(z), we conclude that φ(τzf) is a holomorphic function of z.
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We have shown that f ′′ ∈ H(MV (X)). We can even get that in some sense it “belongs toHV (MV (X))”.
Let φ ∈ MV (X) and choose wφ as before. For any v ∈ V , if we set u ≥ max(wφ, v) and proceed as in
the previous proof, we obtain

|f ′′(φ ◦ τz)|v(z) ≤MK

∞∑
n=0

‖Pn‖u.

which is a finite constant by [20, Lemma 10]. Therefore, f ′′ belongs to HV of each copy of X∗∗ in the
spectrum.

4 Algebra homomorphisms between weighted algebras

We now consider the weight given by η(t) = e−t, and the associated family V = {v1/n}n. This family
obviously satisfies (8). Moreover, V and W coincide, and consequently the weighted spaces of polynomials
are an ∞-Schauder decomposition of the algebra HV (X) for any Banach space X.

We now study continuous algebra homomorphisms A : HV (X) −→ HV (Y ) and start by considering
composition operators.

First, just a remark: if f is a holomorphic function such that there exist A,B > 0 with |f(y)| ≤
A‖y‖ + B for all y ∈ Y , then by the Cauchy inequalities f is affine: there exist y∗ ∈ Y ∗ and C > 0 so
that f(y) = y∗(y) + C.

Lemma 4.1. Let A : HV (X) −→ HV (Y ) be an algebra homomorphism. Then Ax∗ is a degree 1
polynomial for all x∗ ∈ X∗ (i.e. A maps linear forms on X to affine forms on Y ).

Proof. Since A is continuous, given n, there exist m and C > 0 so that, for every f ∈ HV (X)

sup
y∈Y
|Af(y)| e−

‖y‖
n ≤ C sup

x∈X
|f(x)| e−

‖x‖
m .

Let us take x∗ ∈ X∗ and define f(x) =
∑M
x=0

x∗(x)j

‖x∗‖jmjj! ∈ HV (X). Since A is an algebra homomorphism

sup
y∈Y

∣∣∣∣∣∣
M∑
j=0

(Ax∗)(y)j

‖x∗‖jmjj!

∣∣∣∣∣∣ e− ‖y‖n ≤ C sup
x∈X

∣∣∣∣∣∣
M∑
j=0

x∗(x)j

‖x∗‖jmjj!

∣∣∣∣∣∣ e− ‖x‖m
≤ C sup

x∈X

M∑
j=0

|xj |
mjj!

e−
‖x‖
m ≤ C sup

x∈X
e
‖x‖
m e−

‖x‖
m = C.

This holds for every M ; hence supy∈Y

∣∣∣∣eAx∗(y)‖x∗‖m

∣∣∣∣ e− ‖y‖n ≤ C. Then Re( Ax
∗

‖x∗‖ (y)) ≤ K1‖y‖+K2 for all y ∈ Y .

Also, if |λ| = 1 we have Re(λ Ax
∗

‖x∗‖ (y)) = Re(A λx∗

‖x∗‖ (y)) ≤ K1‖y‖+K2. This gives
∣∣∣A x∗

‖x∗‖ (y)
∣∣∣ ≤ K1‖y‖+K2

for all y ∈ Y . But this implies that A x∗

‖x∗‖ is affine on y; hence so is Ax∗.

Corollary 4.2. If the composition operator Cϕ : HV (X) −→ HV (Y ) is continuous, then ϕ is affine.

Proof. By Lemma 4.1, x∗ ◦ ϕ = Cϕ(x∗) is affine. Since weakly affine mappings are affine, we obtain the
conclusion.

It is clear that Lemma 4.1 and Corollary 4.2 are not valid for operators from Hb(X) to Hb(Y ). Indeed,
for any ϕ ∈ Hb(Y,X), the composition operator Cϕ is well defined and continuous from Hb(X) to Hb(Y ).
In some cases, one may even obtain a non-affine bianalytic ϕ. Indeed, if f is any entire function on C,
the Henon mapping h : C2 → C2 given by h(z, u) := (f(z) − cu, z) is bianalytic and, of course, is not
affine unless f is. Henon-type mappings in infinite dimensional Banach spaces were used in [14, Theorem
35] to obtain homomorphisms with particular behaviour. See comments below, after Corollary 4.5.

As an application of the previous results, we obtain a Banach-Stone type theorem for HV .
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Theorem 4.3. If HV (X) ∼= HV (Y ) as topological algebras, then X∗ ∼= Y ∗.
If moreover both X and Y are symmetrically regular or X is regular, then HV (X) ∼= HV (Y ) if and only
if X∗ ∼= Y ∗.

Proof. Let A : HV (X) −→ HV (Y ) be an isomorphism; by Lemma 4.1, Ax∗ is affine for every x∗ ∈ X∗.
Let us define S : X∗ −→ Y ∗ by Sx∗ = Ax∗ − Ax∗(0Y ). Clearly, S is linear and continuous. We
consider also S̃ : Y ∗ −→ X∗ given by S̃y∗ = A−1y∗−A−1y∗(0X). Taking into account that Ax∗(0Y ) and
A−1y∗(0X) are constants and that constants are invariant for both A and A−1, it is easily seen than S
and S̃ are inverse one to each other. So X∗ and Y ∗ are isomorphic.

If X and Y are symmetrically regular and S : X∗ −→ Y ∗ is an isomorphism, by [25, Theorem 4] the
mapping Ŝ : P(nX) −→ P(nY ) given by Ŝ(P ) = P̄ ◦ S∗ ◦ JY is an isomorphism. Since P(nX) and
P(nY ) coincide with Pv(nX) and Pv(nY ), we have that Ŝ is an isomorphism between the weighted
spaces of polynomials. Since v is decreasing, using (7) we have

sup
y∈Y

v(y)|Ŝ(P )(y)| = ‖S‖n sup
y∈Y

v(y)

∣∣∣∣P̄ (S∗(JY (y))

‖S‖

)∣∣∣∣
= ‖S‖n sup

y∈Y
v

(
S∗(JY (y))

‖S‖

) ∣∣∣∣P̄ (S∗(JY (y))

‖S‖

)∣∣∣∣ ≤ ‖S‖n‖P‖v
Hence ‖Ŝ(P )‖v ≤ ‖S‖n‖P‖v and analogously for Ŝ−1. The fact that Pv(nX) and Pv(nY ) are respec-
tively∞-Schauder decompositions of HV (X) and HV (Y ), [19, Theorem 1] and the multiplicative nature
of the Aron-Berner extension give the conclusion.

If either X or Y are regular, we proceed analogously using [13, Theorem 1].

The spectrum of HV (X) is formed by a number of copies of X∗∗ and each one of them is a connected
component of MV (X). This can be viewed as if each copy of X∗∗ were a “sheet” and all those “sheets”
were laying one over the other in such a way that all the points in a vertical line are projected by π on
the same element of X∗∗.

Every algebra homomorphism A : HV (X) −→ HV (Y ) induces a mapping θA : MV (Y ) −→MV (X)
defined by θA(φ) = φ ◦ A. The sheets (copies of Y ∗∗) are the connected components of MV (Y ). By
the analytic structure of MV (Y ), θA is continuous if and only if θA maps sheets into sheets. We want
to characterize the continuity of θA. In order to keep things simple and readable we change slightly our
notation. From now on the elements of the biduals will be denoted by x∗∗ and y∗∗. Also, we will identify
X∗∗ and Y ∗∗ with their images δ(X) and δ(Y ) in the respective spectra.

Theorem 4.4. Let X and Y be symmetrically regular Banach spaces and A : HV (X) −→ HV (Y ) an
algebra homomorphism. Then, the following are equivalent.
(i) There exist φ ∈ MV (X) and T : Y ∗∗ −→ X∗∗ affine and w∗-w∗-continuous so that Af(y) =
φ(f̄(·+ Ty)) for all y ∈ Y .
(ii) θA maps sheets into sheets.
(iii) θA maps Y ∗∗ into a sheet.
In particular, θA is continuous if and only if it is continuous on Y ∗∗

Proof. Let us note first that T : Y ∗∗ −→ X∗∗ is affine and w∗-w∗-continuous if and only if there exist
R : X∗ −→ Y ∗ linear and continuous and x∗∗0 ∈ X∗∗ so that T (y∗∗) = R′(y∗∗) + x∗∗0 .

We begin by assuming that (i) holds. If A has such a representation, let us see that then the Aron-
Berner extension of Af is of the form

Af(y∗∗) = φ(f̄(·+ Ty∗∗)). (10)

Indeed, let h(z) = φ
(
f(· + z)

)
= φ

(
x 7→ f(x + z)

)
for z ∈ X. By [2, Theorem 6.12] its Aron-Berner

extension is given by h̄(x∗∗) = φ
(
f(·+x∗∗)

)
= φ

(
x 7→ f(x+x∗∗)

)
. We define now h̃(y∗∗) = φ

(
f̄(·+Ty∗∗)

)
.

Then
h̃(y∗∗) = (h̄ ◦ T )(y∗∗) = h̄

(
R′(y∗∗) + x∗∗0

)
=
(
τx∗∗0 (h̄) ◦R′

)
(y∗∗).

Since h̄ is the Aron-Berner extension of a function, τx∗∗0 (h̄) is the Aron-Berner extension of some other
function (use, for example, [2, Theorem 6.12]). On the other hand, by [2, Lemma 9.1] the composition of
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an Aron-Berner extension with the transpose of a linear mapping is again the Aron-Berner extension of
some function. Hence h̃ = τx∗∗0 (h̄) ◦ R′ is the Aron-Berner extension of a function; but h̃ coincides with

Af on X, therefore h̃ = Af and (10) holds.
Now, to see that θA maps sheets into sheets it is enough to find S : Y ∗∗ −→ X∗∗ such that θA(ψ ◦

τy∗∗) = (θAψ) ◦ τSy∗∗ . We define Sy∗∗ = Ty∗∗ + x∗∗0 . First we have

θA
(
ψ ◦ τy∗∗

)
(f) =

(
ψ ◦ τy∗∗

)
(Af)

= ψ[y 7→ Af(y + y∗∗)] = ψ[y 7→ φ[x 7→ f̄
(
x+ T (y + y∗∗)

)
]]

= ψ[y 7→ φ[x 7→ f̄
(
x+ Ty + Sy∗∗

)
]].

Let us call g(x) = f̄(x + Sy∗∗). As above, we can check that its Aron-Berner extension is ḡ(x∗∗) =
f̄(x∗∗ + Sy∗∗). With this we obtain(

θAψ ◦ τSy∗∗
)
(f) = θAψ[x 7→ f̄(x+ Sy∗∗)] = ψ(Ag)

= ψ[y 7→ Ag(y)] = ψ[y 7→ φ[x 7→ ḡ(x+ Ty)]]

= ψ[y 7→ φ[x 7→ f̄
(
x+ Ty + Sy∗∗

)
]]

and (ii) holds. Clearly, (ii) implies (iii).
Let us suppose that θA maps Y ∗∗ into a single sheet. Hence, θA(δy∗∗) = θ(δ0)◦τSy∗∗ = φ◦τSy∗∗ for some

Sy∗∗ in X∗∗. This means that δy∗∗(Af) =
(
φ◦τSy∗∗

)
(f) for all f and from this Af(y∗∗) = φ(f̄(·+Sy∗∗)).

Let us see that S is affine.
Let x∗ ∈ X∗, then Ax∗ is a degree one polynomial and so is Ax∗. Also,

Ax∗(y∗∗) = φ[x 7→ AB(x∗)(x+ Sy∗∗)]

= φ[x 7→ x∗(x) + Sy∗∗(x∗)] = φ(x∗) + S(y∗∗)(x∗).

This shows that S is w∗ affine; hence S is affine.
Let us finish by proving that S is w∗-w∗-continuous. Indeed, let (y∗∗α )α be a net w∗-converging to

y∗∗. By Lemma 4.1 we have, for every x∗ ∈ X∗, Ax∗ = y∗x∗ + λx∗ . Then Ax∗(y∗∗α ) = y∗∗α (y∗x∗) + λx∗

and this converges to y∗∗(y∗x∗) + λx∗ = Ax∗(y∗∗). Finally, limα S(y∗∗α ) = limαAx∗(y
∗∗
α ) − φ(x∗) =

Ax∗(y∗∗)− φ(x∗) = S(y∗∗)(x∗) and this completes the proof.

The previous theorem characterizes the homomorphisms A for which θA maps Y ∗∗ into a sheet. A
particular case is when Y ∗∗ is mapped precisely to X∗∗. These are those for which φ = δT1(0) for some
T1. Then

Af(y∗∗) = δT1(0)[x 7→ f̄(x+ Ty∗∗)] = f̄
(
T1(0) + Ty∗∗

)
=
(
f ◦ T2

)
(y∗∗).

Following [14], we say that A : HV (X) → HV (Y ) is an AB-composition homomorphism if there
exists g : Y ∗∗ → X∗∗ such that A(f)(y∗∗) = f(g(y∗∗)) for all f ∈ HV (X) and all y∗∗ ∈ Y ∗∗. By the
proof of the previous theorem, if A is an AB-composition homomorphism, then g must be affine. We can
state the following:

Corollary 4.5. Let X and Y be symmetrically regular Banach spaces and A : HV (X) → HV (Y ) an
algebra homomorphism. Then θA(Y ∗∗) ⊂ X∗∗ if and only if A is the AB-composition homomorphism
associated to an affine mapping.

We feel that some important differences between the weighted algebras studied here and the algebra
of holomorphic functions of bounded type are worthy to be stressed. By Theorem 4.4 and the comments
following it, any AB-composition homomorphism induces a continuous θA. In [14], examples are presented
of composition homomorphisms inducing discontinuous θA. Also, there are examples of homomorphisms
for which the induced mapping θA is continuous on Y ∗∗ but is not continuous on the whole Mb(Y ) (i.e.,
splits some sheet other than Y ∗∗ into many sheets). Note that these homomorphisms are associated to
composition operators given by polynomials of degree strictly greater than one, and would not work for
HV (X).
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A consequence of Corollary 4.5 is that, unless the spectrum of HV (X) coincides with X∗∗, there
are homomorphisms on HV (X) that are not AB-composition ones. Indeed, given any ψ ∈ Mb(X), we
can proceed as in the proof of Theorem 4.4 to obtain a homomorphism that maps Y ∗∗ into the sheet
containing ψ. If ψ does not belong to X∗∗, the homomorphism thus obtained is not an AB-composition
one.

The one to one identification Mb(X) ↪→ MV (X) leaves X∗∗ invariant. If there exists a polynomial
on X that is not weakly sequentially continuous, then Mb(X) properly contains X∗∗ and then so does
MV (X). Therefore, if there are polynomials on X that are not weakly sequentially continuous, then
there are homomorphisms on HV (X) other than AB-composition ones.
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