
applied  
sciences

Article

Using Keystroke Dynamics in a Multi-Agent System
for User Guiding in Online Social Networks

Guillem Aguado * , Vicente Julián , Ana García-Fornes and Agustín Espinosa

Valencian Research Institute for Artificial Intelligence (VRAIn), Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain; vinglada@dsic.upv.es (V.J.); agarcia@dsic.upv.es (A.G.-F.);
aespinos@upvnet.upv.es (A.E.)
* Correspondence: guiagsar@dsic.upv.es

Received: 21 April 2020; Accepted: 25 May 2020; Published: 28 May 2020
����������
�������

Featured Application: The application of this proposal is the detection of the sentiment and stress
levels of users navigating a social network site (SNS) by using the proposed new analyzer agents
that have been integrated into the existing multi-agent system (MAS), for preventing potential
issues that could arise from the interactions and avoiding risks. The MAS uses sentiment and
stress analyzers that process text data, and sentiment and stress analyzers for keystroke dynamics
data; this should allow the system to early prevent future issues caused by social interactions,
since the experiments have shown that the state detected by the analyzers does propagate in the
network through replies to messages.

Abstract: Nowadays there is a strong integration of online social platforms and applications with our
daily life. Such interactions can make risks arise and compromise the information we share, thereby
leading to privacy issues. In this work, a proposal that makes use of a software agent that performs
sentiment analysis and another performing stress analysis on keystroke dynamics data has been
designed and implemented. The proposal consists of a set of new agents that have been integrated into
a multi-agent system (MAS) for guiding users interacting in online social environments, which has
agents for sentiment and stress analysis on text. We propose a combined analysis using the different
agents. The MAS analyzes the states of the users when they are interacting, and warns them if the
messages they write are deemed negative. In this way, we aim to prevent potential negative outcomes
on social network sites (SNSs). We performed experiments in the laboratory with our private SNS
Pesedia over a period of one month, so we gathered data about text messages and keystroke dynamics
data, and used the datasets to train the artificial neural networks (ANNs) of the agents. A set of
experiments was performed for discovering which analysis is able to detect a state of the user that
propagates more in the SNS, so it may be more informative for the MAS. Our study will help develop
future intelligent systems that utilize user data in online social environments for guiding or helping
them in their social experience.

Keywords: multi-agent system; social networks; sentiment analysis; stress analysis; keystroke dynamics

1. Introduction

The presence of online applications in our daily lives has risen recently, and social network
sites (SNSs) are some of the most predominant. In this scenario, it is interesting that the systems
that are managing online sites could also help prevent potential issues that could arise from user
interactions. Two aspects that a system should take into account when dealing with these kinds of
scenarios are the potential risks that can arise from the interactions between users and what factors
influence the likelihood of incurring in one risk or another. Regarding the risks, several risk factors
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have been reported in [1,2]. Between them, there are contact risks or the risk of interacting with
strangers, content risks or the risk of receiving inappropriate content, and commercial risks or the
risk of being asked for personal information. Another factor is the fact that certain social groups
can be more vulnerable to risks. In [3] it is shown that teenagers, who belong to a social group that
uses SNSs frequently [4], have characteristics that make them more vulnerable to risks navigating
SNSs. Concerning the factors that can influence people to incur risks, we focus on the decision making
process in the current work. In [5] authors reviewed the effects of several aspects of the emotional
states of the users on decision making. They show that incidental moods affect decision making by
altering the perception of a person, and that discrete emotions, integral affects, and regret also affect
decision making (with regret acting as anticipated regret, as in thinking of a negative outcome before it
happens). Furthermore, stress has been associated with a concrete emotional state and has been used
to implement software called TensiStrength to detect stress and relaxation magnitude in texts in [6].
For this reason, it may be useful to create a module that specializes in detecting stress apart from the
sentiment analysis module, in a system that guides users in online sites.

Regarding the influence of the emotional state in the decision making process, and following
the general idea of aiding decision making of users in SNSs through analyzing their emotional state
and stress levels, in [7] we built a multi-agent system (MAS) used for analyzing the data of users in a
SNS. The analyses in the MAS are used to detect the emotional states and stress levels of users and
guide them based on this information. In this MAS only sentiment and stress analysis on text data
was being performed. Nevertheless, in the literature, we found that keystroke dynamics have been
used to successfully build models that detect the sentiment state of a person [8]. Keystroke dynamics
are also a non-invasive way of gathering data from users that can be the input to models able to
detect sentiment and stress levels. For these reasons, we consider that it is a way to improve the
system that we presented in [7]. For this purpose, we designed, implemented, and integrated two
new analyzers into a new version of our system, which are used to perform sentiment and stress
analysis with keystroke dynamics data, respectively. The analyses of data that are performed by
the new analyzers use artificial neural networks (ANNs) to improve the classification accuracy of
the system since machine learning techniques have achieved state-of-art accuracies in aspect-based
sentiment analysis tasks [9]. Moreover, a combined version of both sentiment and stress analysis has
been proposed for text data and keystroke dynamics data.

The contributions of the present work are, then, the design and implementation of agents capable
of recognizing sentiment and stress in keystroke dynamics data, and their integration into a MAS
that uses this information for guiding users in SNSs. This process has the goal of achieving better
recognition of negative states that could produce negative outcomes on SNSs, so the system can
better prevent them. For being able to validate our proposal and to check whether there is a better
recognition of negative states that propagate in the network, we performed experiments with data
from our private SNS Pesedia [10]. In these experiments, we checked whether the analyzers are able to
detect a state that is also found in replies to messages where it is detected (which we call propagation of
the state in the network). We compare the propagation of the state detected with keystroke dynamics
analyzers to the state detected by the other analyzers that use text data. Finally, we compare different
combined analyses to the analyses that use only one data analysis. Pesedia is a SNS used by young
people, both male and female, with ages compressed in the 12–15 years old range; it is used in our
laboratory experiments and to gather data. It is a SNS made using the social networking engine
Elgg (https://elgg.org/). This SNS is built using plug-ins that add functionalities to a base generic
networking site, which is provided by the Elgg engine.

Employing the analyzers implemented, the system is able to help prevent contact risks by warning
the user before posting a message with negative sentiment polarity or high-stress level that could
attract unwanted and harmful interactions. The system could also avoid getting publications with
negative polarity or high-stress level, which could appear as an effect of the user posting while having
negative sentiment or high-stress level. Finally, since the system aims to prevent publications with
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either negative polarity or high-stress level, it could prevent users from sharing personal information,
thereby helping prevent the commercial risk. For the sake of example, this could happen if a user that
is feeling stressed gets asked for personal information, and due to their high level of stress, they post
the information without thinking it over.

The rest of the paper is structured as follows. Section 2 reviews state-of-art work related to
the topic of this paper. Section 3 describes our proposed MAS for user guiding in online social
environments. Section 4 describes the experiments performed with our SNS Pesedia and the new
analyzers. Finally, Section 5 exposes conclusions extracted and future lines of work.

2. Related Work

In this section, a review is performed on state-of-art work related to keystroke dynamics analysis
for building models for sentiment and stress detection, and the influence of emotion and stress on
keystroke dynamics, to assess whether it is suitable to add to our system analyzers that use keystroke
dynamics as input to detect sentiment and stress. We will also review works about multi-modal
sentiment state detection, where various inputs are used for the detection of the user sentiment,
which goes in line with our new MAS. Moreover, to the best of our knowledge, there is no such a
system that uses a combination of sentiment and stress analysis from text and keystroke dynamics for
discovering whether a message could generate a negative repercussion in a SNS and warns the user in
the moment of posting a message.

Keystroke dynamics data has been used in the literature to predict the sentiment of the person
writing a text. In [11] a group of subjects was asked to type numbers after hearing each of the
International Affective Digitized Sounds 2nd edition (IADS-2) [12] and the keystroke dynamics were
recorded. They found evidence through statistical analysis that supports that keystroke duration and
latency are influenced by arousal. Keystroke dynamics have been studied for discovering the effect of
emotion on keystroke data, but they have also been used to build different emotion detection models.
In [8] a group of people was asked to type and label the text typed with their emotional state. Then,
classifiers for different emotional states that use keystroke dynamics data as input were successfully
built, reaching an accuracy of 77.4% to 87.8% for the confidence, hesitance, nervousness, relaxation,
sadness, and tiredness classifiers.

In regard to the relation with keystroke dynamics and stress levels, in [13] authors gathered
keystroke dynamics data from a group of people in two separate scenarios (with normal conditions
and under stress). They discovered that about half the keystroke parameters change significantly (after
performing the corresponding t-test) from the data of the scenario of normal conditions to the one
wherein the subjects were influenced by stress. Additionally, in [14], authors successfully built different
machine learning models that detected cognitive and physical stress using keystroke dynamics features
(decision tree, support vector machines, artificial neural networks, k-nearest neighbor, and AdaBoost).

Multimodal sentiment analysis has started gaining more attention from researchers recently.
There are three main approaches for assessing multimodal sentiment analysis, which are early,
intermediate, and late fusion [15]. Early fusion combines different data sources into a single feature
vector. As an example of early fusion, in [16] authors extracted features from audio, video, and text,
and later fused them with a multiple kernel learning classifier. Intermediate fusion is performed fusing
the data in the intermediate layers of the model itself (e.g., in the intermediate layers of an ANN).
Finally late fusion is the process of combining the outputs of different sentiment classifiers, trained with
different modalities of data for giving a final decision on sentiment classification. In [15], three different
models are presented—two unimodal models for sentiment classification, using deep convolutional
neural networks (CNN) and image data, and other that employs a long-short term memory network
(LSTM) and text data, respectively. The third model combines the output visual features from the
CNNs and text features from the LSTM before feeding a fully connected layer with the combination for
giving a sentiment classification, which is an example of intermediate fusion. The authors also created
a framework for late fusion, where they take into account the outputs of the three models presented
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for giving a final sentiment classification. As has been shown, different strategies with unimodal and
multimodal data have been employed in the literature for sentiment analysis. Nevertheless, to the
best of our knowledge, there is not an approximation that performs sentiment and stress classification
using late fusion of text analysis and keystroke dynamics analysis, which are two non-intrusive data
modalities. In this work, we propose this form of late fusion, which will be more extensively detailed
in the next section.

3. System Description

In this section, the new analyzers capable of performing sentiment and stress analysis on keystroke
dynamics data will be presented, and also their implementation and evaluation will be shown.
Moreover, we show the final architecture of our enhanced MAS after the integration of the new
agents and explain the process of user guiding, which employs the advisor agent.

We designed agents that can perform sentiment analysis and stress analysis on keystroke dynamics
data, and we implemented and integrated them into a MAS that contains agents capable of performing
sentiment and stress analysis on text data, initially presented in [7]. This MAS guides users by
analyzing their data when they post a message in a SNS and generating feedback when necessary to
prevent potential negative outcomes. The MAS was built using the SPADE Multi-Agent platform [17],
and every agent performs a different role in the system. There are agents that retrieve data from users
in a SNS and also give back the feedback of the MAS to the users, other agents are in charge of the
analyses and feedback generation. Finally, there is an agent in charge of data storage and retrieval in
the MAS. A general view of the proposed extended MAS architecture can be seen in Figure 1.

Figure 1. Architecture of the multi-agent system (MAS).

There are four analyzer agents in the MAS, which are the text sentiment analyzer agent, the text
stress analyzer agent, the keystroke dynamics sentiment analyzer agent, and finally, the keystroke
dynamics stress analyzer agent. The four agents have similarities and differences, but they all take
either text messages or keystroke dynamics data as input and give a sentiment polarity or stress level
class label as output. The classes for sentiment polarity are “positive” and ’negative”, and those for
stress levels are “stressed” or “no stressed”. We built the different analyzers using a feed-forward
ANN trained with Tensorflow (https://www.tensorflow.org) version 1.8.0 and Keras (https://keras.io)
version 2.2.0 in the language Python, in its version 3.5.2. For training the ANNs for the analyzers,
two datasets were constructed, made with short text messages and with keystroke dynamics samples
of users typing messages, respectively. The samples in the datasets were labeled with an emotion
label from a set of five emotions inspired in the PAD temperament model [18] (happy, bored, relaxed,

https://www.tensorflow.org
https://keras.io


Appl. Sci. 2020, 10, 3754 5 of 20

anxious, and angry), and also labeled with a label of “stress” or “no stress”. The dataset was built by
users of our SNS Pesedia, who as stated before were both male and female, and had ages compressed
in the 12–15 years old range. It was made using self-reporting of the users that wrote text messages in
the SNS. This labeling process was not mandatory; thus, only the messages that were labeled were
inserted into the dataset. Moreover, for being able to train ANNs that consider only two sentiment
classes, a mapping was made from five emotions with “negative sentiments” and “positive sentiments”,
based on the values of pleasure, arousal, and dominance of these five emotions in the PAD temperament
model. The mapping is the following:

1. Happy: Mapped as positive sentiment.
2. Bored: Mapped as negative sentiment.
3. Relaxed: Mapped as positive sentiment.
4. Anxious: Mapped as negative sentiment.
5. Angry: Mapped as negative sentiment.

The functionality of the individual agents in the MAS is the following:

• Presentation agent: This agent receives data from users navigating in a SNS through certain
widgets that are used by users to interact with the system. Then the agent sends this data of text
and keystroke dynamics to the analyzer agents. It also receives the feedback generated by the
advisor agent and sends it back to users navigating the SNS.

• Sentiment analyzer (text data): This agent computes a sentiment polarity (positive or negative),
using text data.

• Stress analyzer (text data): This agent computes a stress level (low or high), using text data.
• Sentiment analyzer (keystroke dynamics data): This agent computes a sentiment polarity (positive

or negative), using keystroke dynamics data.
• Stress analyzer (keystroke dynamics data): This agent computes a stress level (low or high), using

keystroke dynamics data.
• Advisor agent: The advisor agent calculates the combined analysis from the outputs of the four

analyzer agents, and generates feedback for the users if the message is deemed negative. The final
definition of the process used for generating the feedback is extracted after the conclusions reached
in the experiments with data from our SNS Pesedia, which are both shown in the next section.

• Persistence agent: This agent receives data from the analyzer agents and feedback generated and
stores it in the database of the MAS.

The process of the MAS starts when a message is being written in the SNS, so the data of the
text and keystroke dynamics are sent to the MAS, which calculates the values of sentiment and stress
level using both sources of data. When those analyses are performed, the information of predicted
sentiment polarity and stress level is sent to the advisor agent, which performs two tasks: the first
task is to perform the combined analysis using sentiment and stress levels from the analysis on text
data, and on keystroke dynamics data. The other task is the generation of a warning for the user in
case the message is deemed as negative by the information generated in the analyses. If the warning
is generated, then it is sent to the presentation agent, in charge of sending it as feedback to the SNS,
and it is also sent to the persistence agent to store it in the database.

Keystroke Dynamics Analyzer Agents

In this section the two new agents that perform sentiment and stress analysis on keystroke
dynamics data will be presented, and their design and implementation explained, with information
about the training of the machine learning models used. Regarding the keystroke dynamics sentiment
analyzer agent, it was trained using keystroke dynamics data from the keystroke dynamics Pesedia
self-reported dataset mentioned in this section, and the sentiment labels in the dataset were used



Appl. Sci. 2020, 10, 3754 6 of 20

during the training of the ANN. The architecture of this neural network can be seen in Figure 2.
The collected keystroke dynamics data contains information about the text typing patterns of users,
which include text typing speed and character frequency. Text typing speed features included averaged
latency for different features, which are listed in Table 1. For the case of character frequency features,
the selected ones are the frequencies of pulsation for certain keys, which are listed in Table 1 as well.
Several of the features selected are commonly used in keystroke dynamics analysis (e.g., the interval of
time between releasing a key and pressing another, the interval for typing a key sequence, the interval
between subsequent key presses, dwell time), and digraph and trigraph features apply these concepts
to two-key and three-key sequences [13]. The selected typing speed features are the following:

• Key press: Measures the average key press time of users or dwell time (the time a key is pressed),
which is included for being able to detect variations on general key dwelling speed that might be
caused by sentiment polarities or stress level variations.

• Key release and press interval: Measures the average interval of time which takes a user to release
a key and press another one. It serves the purpose of detecting variations of key input speed
on a different action that the key press—in this case, the interval between releasing a key and
pressing another, which denotes the time in which the user starts inputting different information
after finishing one.

• Key press and second press interval: Similar to the previous one, this time the average interval
between two key presses is measured. This interval measures the time that the user uses from
starting to input one piece of information to inputting another.

• Key release and second release interval: Measures the average interval between two key releases,
which represents the time that the user spends from some information being inputted to more
getting input as well.

• Key press related to digraphs: Since digraph features are timing characteristics for two-key
sequences, this feature measures the key press timing related to sequences of two keys; that is,
the average key press timing in the digraphs detected at the text, using a list of common
digraphs for detecting them. This feature captures timing information which is associated with
commonly typed digraphs, which might offer useful information in addition to the previously
presented features.

• Key release and press interval related to digraphs: The feature that measures average release and
press interval for common digraphs.

• Key press related to trigraphs: Average key press timing for common trigraphs.
• Key release and press interval related to digraphs: Average release and press interval for

common trigraphs.
• Digraph typing: Averaged value of total time for inputting a digraph.
• Trigraph typing: Analog to the previous feature but for the case of trigraphs.
• General typing speed: The feature that represents average typing speed.

The selected character frequency features do not describe or represent keystroke timing
information, but instead aim to represent user behaviors such as corrections (delete, backspace)
and moving between parts of the webpage (page up, page down, home, end, key up, key down,
key left, key right), which might be affected by the sentiment polarity or stress levels. Four commonly
used keys are also used as frequency of pulsation features, completing the set of frequency features,
which are enter, space bar, shift, and caps lock. Since they are commonly used keys, the differences
in the frequency of pulsation might be informative for the machine learning model for predicting
sentiment polarities and stress levels, since these states of the user could affect the frequency in which
they are used.

The feature vectors, which are fed to the ANN shown in Figure 2, are vectors of floating-point
numbers, corresponding to the presented text typing speed features, followed by the key frequency
features, in the order in which they are shown in Table 1.
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Figure 2. Architecture of the ANN for the sentiment analyzer agent with keystroke dynamic data.

Table 1. Text typing speed and key frequency features used to train the models.

Text Typing Speed Features Key Frequency Features

key press enter
key release and press interval space bar

key press and second press interval back space
key release and second release interval delete

key press related to digraphs key up
key release and press interval related to digraphs key down

key press related to trigraphs key left
key release and press interval related to trigraphs key right

digraph typing shift
trigraph typing home

general typing speed end
page up

page down
caps lock

These data were collected in our SNS Pesedia during a period of one month, and the users were
able to self-report on their emotional states and stress levels, adding finally to the dataset only the
samples in which the reports of the user states were actually done. These data were later processed
with a Python script to generate a file that could be used to conveniently feed the ANNs with arrays
with the data on the different characteristics, and for eliminating any potential missing data to ensure
correctness before starting the training and validation process of the models. The file contains a total
of 12,313 data samples. For training the models used in the final system, 10% of the data samples were
used for training and 90% for the validation of the models.

In the architecture of this ANN, the array containing the keystroke dynamics data in the form
of floating-point numbers is fed directly to the first dense layer. In Figure 2 we can see that there are
three dense layers in the architecture of the ANN, with two dropout layers placed between the dense
layers acting as a regularization mechanism. The dropout rate of 0.25 in both dropout layers and the
architecture of the network were both adjusted experimentally aiming for better accuracy, and for
a confusion matrix that showed an equilibrated distribution between the two classes. Several other
parameters of the ANN were also adjusted experimentally, which were the sigmoid activation function
being used in the dense layers, the inputs, outputs, and neurons of each layer, using binary crossentropy
as the loss function for training, and using an Adam optimizer [19]. The inputs in the dense layers
are in order: 25, 64, and 64—with outputs and neurons 64 in all three except in the final dense layer,
which is 2. The input vector is the array with the selected features explained in this section; the output
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2 in the final dense layer represents the two possible classes (negative and positive sentiment polarity);
and finally, the rest were adjusted experimentally as explained before. The dropout layers have the
same input, output, and neurons of 64 since they are connected between dense layers, acting as a
regularization mechanism. In the validation process, 61% accuracy was reached, which is lower
than the accuracy achieved in state-of-art aspect-based sentiment analysis using supervised machine
learning (68.0% to 77.2%) [9], and is on the low side of the accuracies of techniques for discriminating
between different affective or valence states using keystroke dynamics (57% to 95.6%) [20]. This could
be caused by the dataset of keystroke dynamics data, as it is not a very big dataset and was made
using self-reporting by young people.

In the case of the keystroke dynamics stress analyzer agent, we used the same ANN architecture
as the previous agent, as it was found experimentally to be the best for model accuracy. Again,
the keystroke data in the dataset was used for the training, but this time using the stress labels to
train the model. Finally, in the validation process, 64% accuracy was reached this time; that is better
than the case of the keystroke dynamics sentiment analyzer agent, and is higher than the accuracies
found by using different machine learning methods for stress strength detection as shown in [6], but is
lower than the accuracy of 75% reported by [14] when detecting stress via a combination of keystroke
dynamics and linguistic analysis. There were machine learning methods employed for detecting stress
using keystroke dynamics with user personalized models (detection of stress with models trained
to identify stress in a concrete user), which reached nearly 90% accuracy [20], and 96.76% to 99.5%
accuracy detecting stress states based on the time of the day [21]. However, since these methods
are based on user personalized models, they are not comparable to our approach, which is based
in user-independent models (we use the same models to predict stress in all the users instead of
personalized models).

4. Experiments with Data from the SNS Pesedia

We conducted experiments with our SNS Pesedia during a period of one month. During that
time, we gathered the text and keystroke dynamics data of the user when he or she made a post
on Pesedia, so we could analyze these two sources of information in later experiments. As stated
previously, Pesedia was used by children with ages ranging from twelve to fifteen years old. In Pesedia,
the users can perform several actions related to social interaction in SNSs. These actions include:
posting messages on their walls or other peoples’ walls; sending private messages; creating groups and
inviting people; making friends; sharing content with certain people; making lists of people. In our
experiments, we make use of the messages posted on walls and groups and their replies. We also use
the concept of propagation. By propagation, we refer to the fact that a detected state by an analyzer
on a message is also found in the majority of the replies to the message in which the state is detected.
Only direct replies are considered, not replies to replies. This design decision was taken to be able to
study the effect of the emotional state detected in a message on its replies; in future works the effect in
multiple levels of replies or other messages might be tested.

Our aims in the experimentation are two-fold: to discover whether the new analyzers integrated
into the system predict a state that propagates more in the network, and to know which analyzer
achieves the best propagation in general. In this way, we would be able to know which analyses can
be more helpful for the feedback generation to the user, aiming to prevent a negative repercussion on
the social network. On the other hand, to be able to know whether the combined analysis is able to
detect a state of the user that propagates more in the network than the analyses using only text or only
keystroke dynamics data.

4.1. Metric for the Experiments

In this section, the metric that is used in the experiments will be explained using a formula.
This metric is propagation of detected value (PDV). The following terms are later used for the formula
of the metric:
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• messages_with_replies: Total amount of messages that generated replies.
• messages_with_propagated_state: Aggregated value of messages with the propagated state,

which are messages with the same detected state as is present in most replies.

The following formula describes the calculation of the metric used in the experiments conducted:

PDV =
messages_with_propagated_state

messages_with_replies

For the sake of example, we propose the following scenario: There are three messages posted in
the social network, two of them with replies and one without. All the messages and their replies have
been analyzed and a state associated with them by the system. This can be seen in Figure 3. As can be
seen, the first message generated three replies and two of them were positive (making the most present
value in the replies positive), so there has been propagation from the original message to the replies
since this original message also resulted in positive state. For the case of the third message, there is no
propagation since there are three replies detected as positive and only one negative, and the original
message was detected as negative. In this scenario, messages_with_replies would be computed as two,
since only two messages have replies. For computing Messages_with_propagated_state, we summed
the number of messages that generated replies and propagated the state detected in them to those
replies. As has been said, only one of the messages propagated the state to the replies; therefore,
the value of Messages_with_propagated_state in this example is one. Finally, the value of PDV for this
example would be computed as 0.5.

Figure 3. Example of messages posted and replies with different polarities.

4.2. Plan of the Experiments

We used the messages that had or generated replies in the network for our experiment and
used the text data and keystroke dynamics data of the user writing those messages. The goal of
the experimentation was to compute the propagation of the detected value in the messages in the
network, by comparing this value to the most present value detected in the replies of the messages.
This propagation was measured for the different analyses that we had available, which were sentiment,
stress, and combined analysis using text, and then again sentiment, stress, and combined but using
keystroke dynamics data. We also computed the propagation for a combined analysis that used both
combined sentiment and stress analysis on text data, and combined sentiment and stress analysis on
keystroke dynamics data.
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We performed the training of the ANNs that would conduct the different analyses using different
partitions of the training dataset mentioned in Section 3 each time. We performed five different
partitions of the dataset. In this way, we obtained five ANNs trained to detect sentiment and five
trained to detect stress levels on text data, and again five ANNs to detect sentiment and five to detect
stress levels with keystroke dynamics data, using different partitions of the data for training each one.
This process was done for being able to analyze not only differences between analyzers, but also for
exploring the differences of ANNs trained with different data. For this purpose, we proceeded to
perform experiments with the data not used for training (we separated the messages that were used
for training from the dataset for conducting these experiments), comparing the ANNs that detected
sentiments with the ones that detected stress labels on text data, and the same with the ones that
operate with keystroke dynamics data. That resulted in a total of 25 experiments on text and 25 on
keystroke dynamics data, since we compared every pair of text ANNs and every pair of keystroke
dynamics ANNs.

Finally, we launched several experiments with the setup presented in this section, changing
the threshold of class inference in the ANNs from 0.5 to 0.9. This means that if the probability of
a class given as output by the ANN model is greater or equal than the threshold, the result of the
analysis is this concrete class; otherwise, it is the other class. We show in Figure 4 the results of
propagation for the analyses on text data, and the combined analyses of text and keystroke dynamics
data with thresholds for class detection unaltered. Figure 5 shows the results of propagation of
analyses on keystroke dynamics data and the combined analyses with thresholds unaltered again.
Then, for analyzing the effect of altering the threshold on the ANNs, we show the following figures,
where the threshold is set to 0.7 (we do not show the other possibilities such as threshold 0.9 since 0.7
was shown experimentally to be the only case where there are bigger differences with the base case
with no changes). We show in Figure 6 the results of the analyses on text data and combined analyses
(text and keystroke), while changing the threshold of the ANNs that work with keystroke dynamics
data to 0.7. We show the results for the analyses on keystroke dynamics data and the combined
analyses applying this same process in Figure 7. Altering the threshold in ANNs that work with text
data to 0.7, we repeated this process and obtained the Figures 8 and 9. Finally, we show in Figures 10
and 11 the results altering the threshold to 0.7 in the ANNs that perform sentiment analysis, and in
Figures 12 and 13 the results altering the threshold to 0.7 in the ANNs that perform stress analysis.

In the figures, the legend represents the following forms of the metric presented in Section 4.1:

• PCOMB_or_text: PDV of the “or” version of combined sentiment and stress analyzers on text.
• PSEN_text: PDV of the sentiment analyzer on text.
• PSTR_text: PDV of the stress analyzer on text.
• PCOMB_and_text: PDV of the “and” version of combined sentiment and stress analyzers on text.
• PCOMB_or_ksd: PDV of the “or” version of combined sentiment and stress analyzers on

keystroke dynamics.
• PSEN_ksd: PDV of the sentiment analyzer on keystroke dynamics.
• PSTR_ksd: PDV of the stress analyzer on keystroke dynamics.
• PCOMB_and_ksd: PDV of the “and” version of combined sentiment and stress analyzers on

keystroke dynamics.
• PCOMB_TEXT_OR_KSD_or: “or” version of combined analysis, using the values resulting from

the output of PCOMB_or_text and PCOMB_or_ksd.
• PCOMB_TEXT_OR_KSD_and: “and” version of combined analysis, using the values resulting

from the output of PCOMB_or_text and PCOMB_or_ksd.
• PCOMB_TEXT_AND_KSD_or: “or” version of combined analysis, using the values resulting

from the output of PCOMB_and_text and PCOMB_and_ksd.
• PCOMB_TEXT_AND_KSD_and: “and” version of combined analysis, using the values resulting

from the output of PCOMB_and_text and PCOMB_and_ksd.
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Figure 4. Results of the experiments with the sentiment, stress, and combined analyses on text, and with
the combined analyses on text and keystroke data with thresholds unaltered.

Figure 5. Results of the experiments with the sentiment, stress, and combined analyses on keystroke
data, and with the combined analyses on text and keystroke data with thresholds unaltered.
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Figure 6. Results of the experiments with the sentiment, stress, and combined analyses on text, and with
the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs that work with
keystroke data.

Figure 7. Results of the experiments with the sentiment, stress, and combined analyses on keystroke
data, and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs
that work with keystroke data.
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Figure 8. Results of the experiments with the sentiment, stress, and combined analyses on text, and with
the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs that work with
text data.

Figure 9. Results of the experiments with the sentiment, stress, and combined analyses on keystroke
data, and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs
that work with text data.
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Figure 10. Results of the experiments with the sentiment, stress, and combined analyses on text,
and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs that
perform sentiment analysis.

Figure 11. Results of the experiments with the sentiment, stress, and combined analyses on keystroke
data, and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs
that perform sentiment analysis.
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Figure 12. Results of the experiments with the sentiment, stress, and combined analyses on text,
and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs that
perform stress analysis.

Figure 13. Results of the experiments with the sentiment, stress, and combined analyses on keystroke
data, and with the combined analyses on text and keystroke data with threshold set to 0.7 in the ANNs
that perform stress analysis.

4.3. Results

As Table 2 shows, in the experiments with both the ANNs trained with text data (embeddings of
texts) and the ones trained with data of keystroke dynamics, there is a propagation of the detected
state of the user to the replies of the message being analyzed. We can appreciate that there are several
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differences between experiments with different partitions of the data used on the training and in the
experimentation, even when the general trend is to find a propagation of the state. There were cases
that provided a network that was very likely to give as output one of the two classes (negative or
positive sentiment for sentiment analysis, or in the case of stress analysis high or low stress level).
This was because the data in the partition of the dataset used for the experiment were unbalanced in
favor of one of the classes, which resulted in high propagation in the later experiment (since the ANN
was very likely to output one of the two classes, the comparison between the analyses of the messages
and the replies matched most of the time). Additionally, some cases give poor propagation, since the
data in that partition could not provide an ANN that would give satisfying results of accuracy.

The average propagated values for the different analyses are shown in Table 2. In the experiments
without altering the thresholds for class detection, the best-performing analyses in terms of propagation
for combined analyses of sentiment and stress that use fusion of text and keystroke data (combining the
output of the respective analyzers) were PCOMB_TEXT_AND_KSD_and (0.8951 average propagation)
and PCOMB_TEXT_AND_KSD_or (0.9153 average propagation), the latter being better than the
former. For combined analyses of sentiment and stress that do not use data fusion, the best-performing
analyses were PCOMB_and_text (0.9196 average propagation) and PCOMB_and_ksd (0.9811 average
propagation), the latter being better than the former again. As shown in Table 2 the non-fusion
analyses also shown higher average propagation than the analyses using text and keystroke
dynamics data. PSEN_ksd and PSTR_ksd are the two non-combined and non-fusion analyses
with the highest propagation (0.9193 and 0.9235 average propagation respectively) and PSTR_ksd
also has higher propagation than PCOMB_and_text but lower than PCOMB_and_ksd. Finally,
PCOMB_or_ksd also shown a high result of propagation, but lower than the best performing analyses
already discussed in this section. The worst performing analyses were PCOMB_TEXT_OR_KSD_or,
PCOMB_TEXT_OR_KSD_and, PCOMB_or_text, and PSEN_text (0.7033, 0.5333, 0.6823, and 0.6868
average propagation respectively), PCOMB_TEXT_OR_KSD_or best.

Table 2. Mean and standard error (in parenthesis) for the different versions of PDV in the experiments:
PSTR_text (1), PCOMB_or_text (2), PSEN_text (3), PCOMB_and_text (4), PSTR_ksd (5), PCOMB_or_ksd (6),
PSEN_ksd (7), PCOMB_and_ksd (8), PCOMB_TEXT_OR_KSD_or (9), PCOMB_TEXT_OR_KSD_and (10),
PCOMB_TEXT_AND_KSD_or (11), PCOMB_TEXT_AND_KSD_and (12). The best-performing results of
PDV are marked in bold for each column.

Version of PDV No Changes Threshold 0.7 in Threshold 0.7 in Threshold 0.7 in Threshold 0.7 in Analyses
in the Thresholds Sentiment Analysis Stress Analysis Analyses on Text on Keystroke Data

1 0.8879 (0.0171) 0.8879 (0.0171) 0.8951 (0.0257) 0.8951 (0.0257) 0.8879 (0.0171)
2 0.6823 (0.0214) 0.7644 (0.0066) 0.6743 (0.0203) 0.7633 (0.0110) 0.6823 (0.0214)
3 0.6868 (0.0238) 0.8093 (0.0074) 0.6868 (0.0238) 0.8093 (0.0074) 0.6868 (0.0238)
4 0.9196 (0.0237) 0.9567 (0.0117) 0.9293 (0.0244) 0.9634 (0.0113) 0.9196 (0.0237)
5 0.9235 (0.0219) 0.9235 (0.0219) 0.9963 (0.0015) 0.9235 (0.0219) 0.9963 (0.0015)
6 0.8700 (0.0285) 0.9186 (0.0221) 0.9314 (0.0229) 0.8700 (0.0285) 0.9907 (0.0027)
7 0.9193 (0.0244) 0.9928 (0.0022) 0.9193 (0.0244) 0.9193 (0.0244) 0.9928 (0.0022)
8 0.9811 (0.0126) 0.9976 (0.0013) 0.9843 (0.0127) 0.9811 (0.0126) 0.9984 (0.0012)
9 0.7033 (0.0337) 0.7676 (0.0270) 0.7354 (0.0330) 0.7551 (0.0293) 0.7236 (0.0335)

10 0.5333 (0.0432) 0.6763 (0.0191) 0.5541 (0.0405) 0.6220 (0.0233) 0.5826 (0.0407)
11 0.9153 (0.0242) 0.9559 (0.0116) 0.9278 (0.0251) 0.9484 (0.0173) 0.9196 (0.0235)
12 0.8951 (0.0350) 0.9523 (0.0129) 0.9092 (0.0352) 0.9441 (0.0195) 0.9026 (0.0323)

Regarding the experimentation altering the threshold for class detection for the ANNs, it can be
seen that as a general trend, every analysis affected obtains a better propagation of the state detected
upon setting the threshold to a more strict point (e.g., 0.7 like in the results shown on Figures 6–13).
On the one hand, when altering the threshold of the ANNs that work with keystroke dynamics data,
setting it to 0.7, it is shown that PCOMB_TEXT_AND_KSD_or (best performing fusion analysis) is
able to perform with a very similar propagation than PCOMB_and_text (which is the best analysis
using only text data, while analyses using keystroke data were close to total propagation because of
making the threshold strict for this data). Moreover, when doing more strict detection with the ANNs



Appl. Sci. 2020, 10, 3754 17 of 20

that perform sentiment analysis, we obtained a similar case to the one wherein the thresholds on
ANNs that work with keystroke data were altered. PCOMB_TEXT_AND_KSD_or performs similarly
than PCOMB_and_text, and we also see that in this case, the combined analyses that use fusion of
text and keystroke data perform better in general. On the other hand, if a strict threshold for class
detection on the ANNs that work with text data is set, even when it can be seen that the combined
analyses that perform fusion of text and keystroke data improve in terms of propagation, this change
does not accomplish25 May 2020 making these analyses better than the best performing non-fusion
analyses: (PCOMB_and_text and PCOMB_and_ksd). Finally, setting the threshold for the ANNs
that perform stress analysis to strict detection does not have a strong effect on the propagation in
general (even when a small improvement from the case without altering thresholds can be seen in
general), except in the case of the stress analysis and PCOMB_or_ksd; that improves 6.14% from the
case without altering thresholds, while still performing lower than PCOMB_and_ksd. Additionally,
this case does not manage to make the combined fusion analyses to be better than the best performing
non-fusion analyses.

4.4. Reformulation of the Advisor Agent

Since there has been an addition of new analyzers in the system and experiments performed for
knowing which analyzers work best at detecting states in the user that propagate more and therefore
might be more informative for the advisor agent, this agent has been redesigned and its decision
making process for generating feedback updated. The selection of the analyses used in the advisor
agent is done because the experiments have shown that as a general trend they are the best at detecting
a state that propagates more in the network, and they are shown in the following. As has been stated
in the previous section, the advisor agent accomplishes two different tasks: the calculation of the
combined analyses from the data given by the four analyzer agents, and the generation of feedback to
the users interacting in the SNS that generated the message being analyzed.

In accordance with the experiments performed, the first task of the advisor agent has been
determined to be the calculation of three different combined analyses, selected from the results of
the experiments that aimed to discover which analysis is more informative at detecting a state of
the user that propagates more in the SNS. The three combined analyses computed in this agent are
the following: PCOMB_and_text, PCOMB_and_ksd, and PCOMB_TEXT_AND_KSD_or. The two
combined analyses that use only one data source (PCOMB_and_text and PCOMB_and_ksd) use the
“and” version of combined analysis. Finally, the combined analysis of text and keystroke dynamics use
an “or” version of combined analysis, taking the output of the text combined analysis and keystroke
dynamics combined analysis as input. This selection of analyses is done based on the results of the
experiments, as has been shown in Figures 4–13.

The second task of this agent is to generate feedback to the user, based on the data generated on
the analysis. The rules used for this process are based on the following:

1. As the default case, if there are no issues detecting input, or with data availability or neutral
detections, then the warning is generated when a negative message is detected by the text and
keystroke dynamics data combined analysis.

2. The tokenizer sometimes is not able to detect any token in the input text; in this case, the feedback
to warn the user is generated when the sentiment and stress combined analysis on keystroke
dynamics data assigns a negative label to the message.

3. One source of data is not available, text or keystroke dynamics, so the warning is generated if the
combined analysis on the available data detects a negative message.

4. The class probability detected is in the range of 0.5–0.525 for both sentiment and stress analysis
on one kind of data, meaning that the ANN models for this data source detect a neutral state.
In this case, the warning is generated if the combined analysis on the other data source detects
a negative message outside of the mentioned range of class probability. If both data sources
generated an output with a class probability inside the mentioned range, then the combined
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analysis of text and keystroke dynamics data is used for the generation of the warning, doing so
if a negative message is detected by this combined analysis.

5. Conclusions and Future Work

In the present work, we introduced new agents capable of performing sentiment and stress
analysis on keystroke dynamics data into a MAS presented in a previous work, in order to improve
the capacity of the MAS when predicting user states that could generate a problem or make risks arise
from the social interaction. The MAS guides users on a SNS or another online social environment by
analyzing the data of a user that posts a message and giving feedback to the user if this message is
deemed negative by the MAS agents analyses. We also propose different versions of combined analysis
that use both sentiment analysis and stress analysis on text data and on keystroke dynamics data, to be
used in the advisor agent of the MAS for the task of generating feedback to the users. For discovering
what analyses are more informative to be used in the generation of warnings or feedback, and thus
improve the system ability to prevent negative outcomes and risks in a social online environment,
we integrated our MAS into a private SNS called Pesedia and performed experiments with real users
during a period of one month. During this period, we gathered the dataset of text and keystroke
dynamics data used for training the machine learning models. We performed a laboratory experiment
with the data from the dataset not used for training that aimed at discovering which analyses are
able to predict a state of the user that propagates more to the replies of the message analyzed in the
network. In this way, we would be able to know what analyses can be considered more informative
to be taken into account for warning the users, in terms of their ability to detect a state that may
potentially propagate more in the network. We also launched experiments with different setups in the
threshold for class detection in the ANNs that perform the analysis.

Regarding the experimentation with the different analyses for discovering which one detects
a state that propagates more to the replies, we found that the best analyses are the “or” version of
combined text and keystroke analysis that uses “and” combinations of sentiment and stress analysis,
and the “and” versions of text combined analysis and keystroke dynamics combined analysis. Analyses
on only keystroke dynamics also shown high results of propagation but the combined version of
sentiment and stress on keystroke dynamics was better than the non-combined analyses. Moreover,
when setting a high threshold for class detection (making the detection process more strict, by selecting
one class only with a 70% of probability or more), in the ANNs that perform analysis on keystroke
dynamics data and in the ANNs that perform sentiment analysis, the best analysis that combines text
and keystroke data approaches the best single data type analysis. This is not the case when altering
the threshold for the ANNs that perform analysis on text data and that perform stress analysis.

The proposed approach, as shown by the experiments, can help users navigating in an online
social environment be aware that the information they post has a chance of generating negativity
or high stress in the network, and thus can help prevent risks. Nevertheless, the targeted users in
our proposed system are people of a young age, and so we built and trained models with data from
people of ages between 12 and 15 years old; therefore, it is not granted that the performance of the
system implemented will be the same when used in online social environments with older or more
experienced users. Despite this limitation, in [7] we built text data analyzers (which also included
combined analysis) that were able to predict sentiment and stress states of the users that propagated
to the replies of messages in the SNS twitter.com, which has a wide range of users; therefore, it has
been shown that analyzers of text data can be used for this purpose. Moreover, data privacy is a
limitation for the proposed system, since it relies on the analyses on user data to generate feedback
and potentially prevent risks. Consequently, if the users do not consent the use and analysis on their
data, the system will be unable to work and provide feedback or warnings.

For future lines of work, we plan on exploiting the different available data and analyses in the
MAS with a case-based reasoning module, to be able to generate feedback that is more useful to the
user. This new module is expected to improve the current advisor agent, which uses a series of rules
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to decide which output from the analyzers to use to give or not feedback and warnings to the users.
New ways of guiding users through their experience, apart from warning for posting or not could be
implemented. Additionally, we will aim to improve the interface for warning and guiding users with
additional widgets.
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