Document downloaded from:

http://hdl.handle.net/10251/166576

This paper must be cited as:

Perea Rojas Marcos, F.; Menezes, MBC.; Mesa, JA.; Rubio-Del-Rey, F. (2020).
Transportation infrastructure network design in the presence of modal competition:
computational complexity classification and a genetic algorithm. Top. 28(2):442-474.
https://doi.org/10.1007/s11750-019-00537-x

The final publication is available at

https://doi.org/10.1007/s11750-019-00537-x

Copyright - gpringer-Verlag

Additional Information



Noname manuscript No.
(will be inserted by the editor)

Transportation infrastructure network design in
presence of modal competition: computational
complexity classification and a genetic algorithm

Federico Perea® - Mozart B.C. Menezes -
Juan A. Mesa - Fernando Rubio-del-Rey

Received: date / Accepted: date

Abstract In this paper we analyze the computational complexity of trans-
portation infrastructure network design problems, in the presence of a com-
peting transportation mode. Some of these problems have previously been
introduced in the literature. All problems studied have a common objective:
the maximization of the number of travelers using the new network to be
built. The differences between them are due to two factors. The first one is
the constraints that the new network should satisfy: 1) budget constraint, 2)
no-cycle constraint, 3) both constraints. The second factor is the topology of
the network formed by the feasible links and stations: 1) a general network,
2) a forest. By combining these two factors, in total we analyze six problems,
five of them are shown to be NP-hard, the sixth being trivial. Due to the
NP-hardness of these problems, a genetic algorithm is proposed.
Computational experiments show the applicability of this algorithm.

Keywords Networks/graphs - Transportation - Computational complexity -
Genetic Algorithms.

Federico Perea (corresponding author)

Departamento de Estadistica e Investigacién Operativa Aplicadas y Calidad, Universitat
Politecnica de Valencia (Spain)

Tel.: 434 963877000

Fax: +34 963877000

E-mail: perea@eio.upv.es

Mozart Menezes,

NEOMA Business School Department of Information Systems, Supply Chain Management
and Decision Sciences 1 Rue du Maréchal Juin, 76130 Mont-Saint-Aignan, (France), E-mail:
mozart.menezes@neoma-bs.fr

Juan A. Mesa
Departamento de Matemadtica Aplicada II, Universidad de Sevilla (Spain), E-mail:
jmesa@us.es

Fernando Rubio-del-Rey
E-mail: fernando.rubio.rey@outlook.es



2 Federico Perea* et al.

1 Introduction

This paper presents strategic level optimization models for transportation in-
frastructure design in competition with alternative transportation modes, and
discusses on their computational complexity. After a discussion of some proper-
ties of the problems introduced, we present a metaheuristic approach, which
is assessed based on running time and quality of the solutions returned.

The transportation systems are a crucial issue for a well organized soci-
ety. The sequential transportation planning process starts with infrastructure
network design. Thus, the efficiency and other properties of a transportation
system strongly depend on the infrastructure network design. The following
steps are: line planning, timetabling, and rolling stock and crew scheduling
(2], [5], [23]). Often, the infrastructure network construction requires a large
investment, and the decisions involved have a strategic character, deserving to
be tackled by analytical models, which can be done with the help of operations
research, see [15].

Generally, there are several agents involved in the transportation system
design: regulation and transportation agencies, users, network constructors
and operational companies. Although these agents’ objectives are sometimes
conflicting, a future high utilization of the infrastructure is a common goal for
all of them.

Usually, when a transportation network is going to be introduced, other
transportation systems are already functioning. This fact makes the problem
even more challenging, as the utilization of the new infrastructure heavily
depends on the benefits that such new infrastructure provides to the users, in
comparison with those offered by competing transportation networks.

Network design problems deal with the selection of (undirected) edges
or (directed) arcs, in accordance with an objective function, regarding some
origin-destination flows requirements. The academic literature related with
network design is spread among several areas. For instance, the location of
subnetworks on networks is a well studied field. Two reviews of the research
conducted in the 1990s and before are [17] and [1]. More recent references on
the location of subtrees on trees are [25] and specially the review [21]. During
the last years, the research on network design expanded according to the area
of application. Regarding transportation, the interested reader is referred to
the survey [11].

Often, users choose transportation systems based on travel times. This in-
duces decision makers to select a subnetwork, where the total travel time is
minimal. In other words, given a set of feasible links and stations that can
be built, the problem consists of selecting subset of them, so that some ob-
jective function, which takes into account time to complete origin/destination
pair paths, is optimized. This is the topic dealt with in [22]. Mathematical
programming models and heuristic algorithms for solving the infrastructure
transit network design problem, with mode choice, can be found in [16] and

[6].



Title Suppressed Due to Excessive Length 3

In this paper, the objective function considered is the number of potential
travelers that will use the network to be built. In other words, the goal is to find
a set of feasible links and stations such that the resulting network maximizes
the future utilization of traffic, subject to some very general constraints. In
some formulations we require the solution to be a set of tree-networks (i.e., a
forest network) and/or to satisfy a budget constraint. Potential travelers will
use the new transportation network if this network offers them a higher utility
than other transportation alternatives.

We analyze problems that take into account time-aspects for consumer-
choice of transportation systems, and we discuss on their complexity. These
problems are proven to be NP-hard. We also show that relaxing some of their
constraints does not necessarily make them less complex.

The complexity of these problems, both in computation and structure, sug-
gests the application of heuristics and metaheuristics. In this paper we propose
a genetic algorithm. Genetic algorithms (GA) are among the most commonly
used metaheuristics for solving combinatorial optimization problems. As ex-
amples of applications of GA within the specific area of transportation network
design, we can mention the works [4] and [3]. These two papers underline the
effectiveness of the genetic algorithm methodologies for the Transit Routing
Problem and the Transit Scheduling Problem, with satisfactory results. [18]
also address a transit network design problem by means of genetic algorithms.
Two different algorithms are proposed to improve the initial solution obtained,
both based on a greedy procedure. [24] proposed a GA for a distribution net-
work problem. [26] formulated another genetic algorithm for a robust network
design problem. The reader may note that the literature on transportation
optimization and genetic algorithms is very extensive, and a complete review
of it is out of the scope of this paper.

In short, the contribution of this paper is threefold:

1. We prove the supermodularity of the estimated ridership objec-
tive function which will be useful for characterizing the compu-
tational complexity of the non-cyclic constrained problem.

2. We formally classify the complexity status of several problems as
NP-hard. These problems have a common aim: finding a network
that maximizes the trip coverage in competition with alternative
transportation modes.

3. We propose a Genetic Algorithm that improves upon the other metaheuris-
tic introduced in the literature (a GRASP algorithm in [6]) and shows
satisfactory results in terms of speed and quality.

The rest of the paper is organized as follows. In Section 2, we define the
problems to be studied. The objective function of these problems is further an-
alyzed in Section 3. Section 4 shows the main theoretical results of this paper,
regarding the computational complexity of the problems introduced. In Section
5 we describe the genetic algorithm proposed. In Section 6, the performance
of the genetic algorithm is tested in a computational experience, and some of



4 Federico Perea* et al.

its parameters are calibrated. The paper finishes with some conclusions and
suggests directions for future research.

2 The railway network design problem

In this section, we formally describe the transportation network design prob-
lems under consideration. We assume that there is a set of feasible links (edges)
and stations (nodes) that can be built. The objective is to select a subset of
these links and stations, which will constitute the new network, contained in
the underlying network. The new network will compete with existing trans-
portation systems, in the sense that travelers will choose the new network if
and only if such network offers the highest utility. Therefore, the objective is
for the new network to attract as many travelers as possible.

We will define different problems, depending on the structure of the new
network (forest or general graph), and on the presence or not of budget con-
straints. To illustrate, the new network could be a railway network. We want to
remark that other transportation modes can fit within the problems proposed,
which can be formally described from the following input data:

1. A set N = {v1,v9,...,v,} C R? of potential sites for railway stations is
given (cities or junctions). We will use the indexes i,7j,k,p,q to denote

nodes. Node v; is located in (v},v?) € R?, and is denoted by means of its

177
subindex i, whenever this creates no confusion.

2. Aset E C N x N of (undirected) edges linking the elements in N is known,
yielding the undirected connected graph G = (N, E), of which links (edges)
and stations (nodes) are to be selected. The set of (directed) arcs associated
to E is denoted as A(FE), or just A when no confusion may arise. Let £,
denote the length of edge e € E. We say that S is a subgraph of G if both
the node set and the link set of S are subsets of those of G, and S itself
is a graph. For the sake of clarity, and abusing notation, in this paper
S C G denotes that S is a subgraph of G. Let N(S) and E(S) denote the
node set and the edge set of S for any S C G, respectively. Let d°(p, ¢) be
the shortest-path distance between v, and v, on the network S. Let £ be
the set of all sub-graphs of G that are forests, i.e. contain no cycles.

3. Let ¢; € RT be the cost of building a station at node v; € N, and let cij €
R be the cost of building the link {v;,v;} € E for the railway network
(we will assume links can be used in both directions). A bound Cpax € RT
on the available budget is also given. In our problems, if {v;,v;} € E is
built, so should stations v;,v; € V.

4. Let W C N x N be the set of origin/destination (O/D) pairs. Parameter
gpq is the number of travelers of O/D pair (v,,v,), and u/L7 is a parameter
of the problem that defines the utility for this O/D pair using the alter-
native transportation system. Such utility takes into account several
characteristics such as travel time, price of trip, comfort, etc. We assume
that the demand is concentrated at nodes, and that a demand pair cannot



Title Suppressed Due to Excessive Length 5

use the railway network S C G if such two points are not connected in it
(that is, we do not allow mode change during a trip).

5. For every S C G, ugq defines the utility of the railway network S for O/D
pair (vp,vq). This utility depends on the shortest path between v, and
vg on S. We will assume that the utility is monotone, in the sense that

ugq < ugq for all S C T'. If there is no path between v, and v, in S C G,

S _ _
we set Upg = —00.

Remark 1 Because the utility of an O/D pair is a function of the paths between
the two points, if S C T are forests, and both vy, v, € N(S), then ugq = ugq.
This is due to the fact that, the only path between these two nodes in S and
T is the same.

Given S C G, the proportion of travelers of the O/D pair (vp,v,) that
will use the railway network S, depends on the utility of the railway network
defined by S, and that of the alternative mode for this O/D pair, and is
estimated by means of gp(ugq —uTY where ¢ : R — [0, 1] is a function that

) Pq
satisfies:

1. limgy— oo @(z) = 0 (no traveler of (vp,v,) will use the railway network,

as uy, is much less than u/ L), This implies that, if S C G has no path
between v, and v,, and therefore ugq = —00, then none of this O/D pair

travelers will use the railway network.

2. limg 400 p(x) = 1 (all travelers of (vp, vq) will use the railway network, as
ugq is much higher than uquT).

3. is non-decreasing so, assuming the utility of the alternative mode is fixed,
the higher the utility of the railway network, the higher the proportion of

users that will take this mode.

ALT ig fixed in our problems, and for the sake of readability, from

Pq
: : 5 i s ALT :
now on we will write ¢(u;, ) instead of ¢(uy, — u;."" ), whenever this creates

no confusion. To illustrate, two examples of such ¢ functions are:

Because u

1. A logit function defined as

S ) _ 1
1+ e 72w

_WALTY
Upq )

where v1,v2 > 0 are parameters that need to be calibrated and depend on
the instance.
2. A binary function defined as

ALT

S ALT
Ppaq '

@(ugq) =1if ugq >ul, @(ugq) =0 if up, <wuy,

Using this function, ¢(u3,) = 1 means that the O/D pair is covered.

Whereas the logit function gives a smooth estimate of the proportion of trav-
elers that will use the railway network according to utilities, and can take any
real number in the interval (0,1), the binary function assumes that either all



6 Federico Perea* et al.

travelers of a given O/D pair will use railway network (¢(uy,) = 1) or none
(¢(us,) = 0). The logit function was used by [16] and [20], whereas [14] and
[6] make use of the binary function to estimate ridership.

From this function ¢, the estimated ridership of the railway network can
be defined, that is, an estimation of the number of travelers who will use it.

Definition 1 Z(5) :== 32, . ew 9pap(us,) is the estimated ridership of rail-
way network S.

The cost of the railway network will also be used in the rest of the paper,
and is defined as:

Definition 2 C(95) := ZviEN(S) ci + Z{vi,Uj}eE(S) ci; is the cost of railway
network S.

We now define the three railway network design (RND) problems that are
the topic of our paper. The first one (RND1) was studied in [6], with binary
ridership function, and consists of finding a subnetwork of G that maximizes
Z(-), subject to a budget constraint. The other two problems (RND2, RND3)
impose for the railway network to have no cycles. The difference between the
two latter problems is the presence or not of budget constraints. Although the
no-cycle constraint could be considered artificial, we were inspired by the fact
that new railway networks usually are a tree. To illustrate, consider the Spanish
high-speed railway network, which started functioning in 1992. After more
than 25 years functioning, by the time this paper was written, this network
had 30 stations and some 2400 km, but no cycles at all. Other examples are
the French or the Italian high-speed railway networks. One could say that, for
a network to have cycles is a sign of maturity. We now formally describe the
three problems.

1. RND1:
max Z(S)

st S CG, (1)
C(S) < Chax-
This problem consists of finding the subnetwork of G, satisfying the budget

constraint, that maximizes the estimated ridership.

2. RND2:
max Z(S5)

s.t.: S CG, @)
C(5) < Cuax;
S has no cycles.
This problem consists of finding the forest contained in G, satisfying the
budget constraint, that maximizes the estimated ridership.

3. RND3:
max Z(S5)

s.t.: S CG, (3)
S has no cycles.
This problem consists of finding the forest contained in G that maximizes
the estimated ridership (without any budget constraint).



Title Suppressed Due to Excessive Length 7

3 Properties of the objective function

In this section, we analyze some properties of the ridership function, which
will help us later in our computational complexity results. The next lemma
states three easy-to-prove properties: the ridership function Z(S) is positive,
monotone non-decreasing, and separable by connected components.

Lemma 1l 1. Z(S)>0, VS CQG.
2. Z(S), S € &, is non-decreasing in S.
3. If S consists of m connected components {S, ..., Sm }, then Z(S) = >, Z(Sk).

Proof Tt is trivial that the ridership function Z(-) is non-negative. The mono-
tonicity property is true because, when adding an edge to a network, the utility
using the railway does not decrease for any O/D pair (as the lengths of the
shortest paths do not increase when a new edge is added), and therefore the
number of travelers using the railway network does not decrease either. The
separability property follows from the fact that gp(ugq) = 0 if there is no path
in S between v, and vy.

We now prove that our objective function satisfies the supermodularity
property in problems RND2 and RND3.

Theorem 1 Z is supermodular on the set of forests S.
Proof The function Z(S) is supermodular in S if and only if (see [19])

Z(SU{e})—Z(S)<Z(Tu{e})—Z(T), VSCTand e ={eq, e} ¢ E(T),
(1)
where S U {e} is the graph resulting when adding edge e (and its endnodes, if
necessary) to graph S, for all S C T and e ¢ E(T). Similarly, we denote S\ {e}
the network resulting when removing edge e from network S, and possibly one
or both of its endnodes. In our case, it is imperative that S,7,S U {e} and
T U {e} are elements of £ (forests).
Without loss of generality, assume that T is a forest with m trees. Let us
divide the proof into three cases.

e Case i: T'U{e} is a forest with m + 1 trees.
This is a very simple case. It implies that,

Z(SU{e}) = Z(5) = Z(T U{e}) - Z(T), (5)

because if edge e induces a new subtree in 7" then it will induce a subtree in
S C T. Thus, both sides of the equality reduce to Z({e}), see Lemma 1.
e Case ii: T'U{e} is a forest with m trees.

Let Tj be the tree of T that edge e connects to. Note that e ¢ E(Tk).
Without loss of generality, let node e;, be a leaf in T, U{e}. Let S, be the tree



8 Federico Perea* et al.

of S U {e} that edge e belongs to. That is, e € E(S.). Note that E(S.) may
be equal to {e} if edge e is a tree by itself in S U {e}.

2T U {e}) - 2(T) = 2Ty U {e}) - Z(T})
= Z (gp,eb SD(U;?,’ZL;{E}) + geb,p‘P(UZ}};{e})) (6)

PEN (TrU{e})

> Z (gp,eb @(U;?,’Zf{e}) + geb,p@(ug,ﬁ{e}))(ﬂ
PEN((SNTy)U{e})

> Z (gp,eb@(uikef{e}) + geb,pW(uQ,g{e})) (8)
PEN(Se)

= Y Gpepuns,) + ge,pp(uss,) 9)
PEN(Se)

= Z(Se) = Z(Sec —{e}) = Z(S U {e}) — Z(5). (10)

The equality in (6) follows from the fact that the difference in ridership
between Ty, U {e} and T} is given by the traffic linked by e; (7) follows from
(SNTy)U{e} C Ty U{e} and the monotonicity of Z(S) (Lemma 1); and (8)
follows from the monotonicity property and the fact that S, C (SNTy) U {e}.
We define the intersection of two graphs S and T as the graph in which all
nodes and all edges belong to both S and T'. (9) is true because the path from
vp € N(Se) to ep is the same in T'U {e} and in Se. The equalities in (10) are
a direct consequence of the definition of Z.

e Case #i: T U {e} is a forest with m — 1 trees.

In this case, edge ¢ is joining two trees in T'. Let us call them T and T~.
Assume e, € Tt and e, € T~. Let ST = SNT+ and S~ = SNT~. Then,
from the separability of Z (see Lemma 1),

Z(Tu{e})—Z(T)=2Z(T - uTtu{e}) —(Z(T")+ Z(TT))

CUT*Ufe
= Z o (tpg " Vo)
v EN(T), vaEN(TH)
U e
+ > pgp(ugy, VTR (1)

vpEN(TF), v €N(T-)

Let us now calculate Z(S U {e}) — Z(S). Due to Lemma 1, this difference
is equal to

Z(STuS~u{e})— (Z(ST)+ Z(57)). (12)
This difference is calculated according to three possible cases:

1. ST U S~ U{e} consists of three trees. In such case, (12) is

Z({e}) = geaeb(p(uislb) + Gepea @(uifga)



Title Suppressed Due to Excessive Length 9

2. STUS~ U{e} consists of two trees. Without loss of generality assume such
two trees are ST U {e} and S~. In this case, (12) is

Tu{e Tu{e
Z(STu{el) = 25T = Y gpelpe, 1) + geppp(ul, 1)
vpEN(ST)

3. STUS~ U{e} is one tree. In this case (12) is

R I TR DR Raae)

vpEN(S™), vg€N(ST) vpEN(ST), vg€N(ST)

In any of the three cases, and due to the monotonicity of Z, (11) > (12).
Therefore,
Z(Tu{e})—Z(T) > Z(SU{e}) — Z(9).

Remark 2 The supermodularity property does not hold for problem RNDI,
which is shown in Example 1.

Ezxample 1 Let G be the complete 3-node graph, in which all edges have cost
zero and length 1. Let g1 2 = 1, and let g,y = 0 for any other O/D pair. Define
the utility of O/D pair (vp,v4) using the road network as u;‘qLT = —d%(p,q),
where d%(p,q) is the distance between v, and v, on the network S, for all

S C G. It is easy to see that uf%T = —1. For any S C G, define the utility of

O/D pair (vp,vq) using the railway network S as ugq = —0.1d%(p, q).
Consider ¢ as the binary function, that is, @pq(ugq) = 1if ugq > u;f‘qLT,

and zero otherwise.
Let S = 0, T = ({v1,v2,v3},{{v1,v3}, {v2,v3}}),e = {v1,v2}. It follows
that uig{e} = uf;{e} =-0.1, uf, = —o0, uf, =—0.2.

Then, Z(S U {e}) = 9172(‘0(’[1,?;{6}) = 1. Analogously, Z(S) =0, Z(T) =
Z(T U{e}) = 1. This proves that, for some S C T,

Z(5U{e}) = Z(8) > Z(T'U{e}) — Z(T),

and therefore Z(-) is not supermodular for RND1.

4 Computational complexity

In this section we discuss on the theoretical complexity of the three problems
proposed.

4.1 Problems RND1 and RND2 complexity

We now prove that both RND1 and RND2 are NP-hard.
Proposition 1 RND1 is NP-hard.



10 Federico Perea* et al.

The proof is similar to the one found in [14], only changing the way in
which the input data are organized, and is included in the Appendix for
the sake of completeness. The problem treated in this paper is slightly
different from the problem treated in [14]. The main difference is
that we now consider that the proportion of passengers attracted by
the railway network could be any function taking its values in the
interval [0, 1], whereas in [14] this function was binary (for each OD
pair, either all passengers were attracted or none). The same proof
could be used to show that RND2 is NP-hard, as the solution network has no
cycles.

Corollary 1 Problem RND2 is NP-hard.
The proof to this result is in the Appendix.

4.2 Complexity of RND3

Problem RND3 consists of maximizing the estimated ridership so that all nodes
have a station and are part of the system, and there are no cycles. That is, we
want to find E; C E such that (N, E;) € &, (N, E;) maximizes the ridership.
Therefore, RND3 is:

Maximize Z(F;) = By, 13
EtCEaZ)((}\I/:I,lElf)eeg ( 2 (v yz):ewgpq (p(upq) ( )

Note that, for the sake of simplicity, we refer to a graph (N, E;) only by its
set of edges (F:), whenever this creates no confusion.

The following lemma proves that, a forest that maximizes ridership (solu-
tion to problem RND3) is a spanning tree.

Lemma 2 For any disconnected E; : (N, Ey) € &, there exists (N, E;) € €
such that (N, E;) is a tree and Z(Ey) < Z(E}).

Proof Assume that E; consists of m trees, E}, .., E¥". Without loss of gen-
erality, assume that Ejlc and E]% can be connected without creating a cycle,
and let E be the tree we obtain by connecting E} and EJ% It is obvious that
such two subtrees exist since GG is connected. Connect the two subtrees, and
call the new forest E]T, which consists of m — 1 trees, E, E?, ..., E¥". Because

B} Ef B3 Ef
Upd = Upd Y vp,vg € N(E}), and upd = upd ¥ vy,v, € N(E}) (see Remark

1) we have,

Z(Ef) - Z(Ey) = Z(E) + > _ Z(E}) - > _ Z(E}) (14)
k=3 k=1
= Z(E) - (Z(E}) + Z(E})) (15)
= (Z(Ep)+Z(B))+ Y. gpae(upy)) (16)
(vp,vg)EE™*

— (Z(E}) + Z(E})) 2 0, (17)



Title Suppressed Due to Excessive Length 11

where E* = {{vp, vy} C N(E) : (v, € N(E}),vq ¢ N(E})) or (v, ¢ N(E}),vq €
N(E})) or (vp € N(EF),v4 & N(E})) or (v, ¢ N(E}),vq € N(EY)) or (vp,vg ¢
(N(E})UN(E?)))}. The process above can be repeated, until a spanning tree
is formed.

Recall that minimizing a submodular function is equivalent to maximizing
a supermodular function. Problem RND3 seems to have nice properties that
suggest that it is easy to solve: after all, minimizing a submodular function is
not NP-hard, and the minimum (modular) spanning tree is an easy problem
that is solved with a greedy-type algorithm (Kruskal’s Algorithm). In fact,
minimizing a submodular function without constraints is strongly polynomi-
ally solvable (see [9] and [10]). Matroidal constraints can be added without
increasing the problem’s complexity, as long as further properties of the set
function are present, such as symmetry (see [9] and [10]). Unfortunately, our
objective function does not have those properties. On the contrary, RN D3 is
an NP-hard problem. We state this with the following proposition.

Proposition 2 Problem RN D3 belongs to the class of NP-hard problems.

Proof The proof follows from [8]. In that paper, the authors show that min-
imizing a submodular set function subject to the solution being a spanning
tree is NP-hard.

Further discussion on the hardness of some well known submodular mini-
mization problems with extra constraints can be found in [12] and [19].

4.3 When graph G is a forest

After a careful look at the proof of Proposition 1, one can derive that both
RND1 and RND2 are still NP-hard, even when the underlying graph G is a
forest. This comes from the fact that the graph used in this proof is a tree.
On the other hand, assuming this topology for the underlying graph, problem
RND3 is trivial, because the complete graph G is a solution to it.

Corollary 2 When the graph of potential links and stations is a forest, both
RND1 and RND2 are NP-hard, and RNDS3 is trivial.

5 A Genetic Algorithm

Due to the complexity of these problems, in this section we give an efficient pro-
cedure to solve them. More specifically, we will propose an efficient procedure
to find feasible solutions to RND1, since this is the problem most commonly
found in practice, out of the problems presented in this paper. Adaptations
of this algorithm to RND2 and RND3 are straightforward, and will be ex-
plained at the end of this section.



12 Federico Perea* et al.

Genetic Algorithms (GA) are among the most generally used metaheuris-
tics for solving combinatorial optimization problems. Their functioning is based
on genomics and evolutionary processes in nature. The main idea of a genetic
algorithm is to simulate the evolution of a population of individuals (in our
case, individuals are feasible solutions to the problem). The aim is to obtain
better and better populations, which implies better and better solutions.

The genetic algorithm first builds an initial population. Afterwards, crossover
and mutation operations will be applied in order to improve this initial pop-
ulation. After each of these two operations, the population is updated in the
following way: if one of the new solutions found is better than the worst ele-
ment of the population I, then the new solution enters the population and I,
is removed. Algorithm 1 summarizes the GA proposed. The functions involved
in it will be detailed in the rest of this section.

Data: An RND1 instance
Generate the initial population with 4.,,x solutions;
while There is time available do
Randomly select two elements of the population;
Do the crossover operation;
Update the population;
Select an element of the population;
Do the mutation operation with probability p.,;
Update the population;
end
Result: The best element of the population.

Algorithm 1: Scheme of the genetic algorithm.

5.1 Initial population

The initial population is built by executing the constructive phase of the
GRASP algorithm designed in [6] a number of times. A high-level description
of how this algorithm works is explained here for the sake of completeness.

This GRASP algorithm is divided into two phases, which are repeated a
number of times. At each iteration, we first construct a feasible solution in the
construction phase. Such a phase begins with a randomly chosen edge. In the
next step, a new edge is randomly selected out of a restricted candidate list,
consisting of the edges that maximize the gain in the objective function when
they are individually added to the one chosen before. Next we add one more
edge to the previously chosen two edges in the same greedy way. This process
is repeated until no more edges can be added without violating the budget
constraint. All elements in the initial population are created this way.

In order to have a population consisting of different solutions, if the GRASP
algorithm finds a solution that is already in the population, then this solution



Title Suppressed Due to Excessive Length 13

is discarded and a new execution of the GRASP is run in order to find a new
solution. The size of the initial population is a parameter of the algorithm,
denoted by imax-

Two versions of the GRASP algorithm will be executed:

— One in which only connected networks are allowed (GRASP1).
— Another in which non-connected networks are allowed (GRASP2).

The difference between these two versions is that in the first one, the restricted
candidate list consists only on the edges incident to the network built so far in
the process that do not violate the budget constraint. The second version only
imposes for an edge to be in the restricted candidate list that the inclusion of
such edge does not violate the budget constraint.

The crossover and mutation operations of the rest of the algorithm will be
the same, independently of the choice of GRASP algorithm for building the
initial population.

5.2 Codification

The solutions found in the initial population have to be coded in such a way
that the genetic algorithm operations can be applied. If G = (N, E) is the
graph of feasible links and stations and |E| = m, then a solution to RND1 will
be uniquely characterized by a list of m zeroes and ones. If position k" of this
list is one, then the k' edge of the underlying graph G is part of the solution.
Otherwise, if the k*" entry of this list is zero, then the corresponding edge is
not part of the solution.

To illustrate, consider G = (N, E) with E = {{1,2},{1,3},{2,3},{2,4}}.
The solution consisting of edges {1,2} and {2,3} is coded as (1,0, 1,0). Each
element of this vector is called a bit.

5.3 Crossover

The crossover operation is designed in the following way. Two solutions are
randomly chosen in the current population, which will be the parents. Let us
denote these parents as I; and I, and let us denote as I and I} the offsprings
resulting after crossing I; and Is. We will consider in our experiments the
single-point crossover and the two-point crossover.

— Single-point: an integer p. € {1,...,m — 1} is randomly generated. Then,
I will take the first p. bits of I; and the last m — p. bits of I5. Conversely,
I, will take the first p. bits of Iz and the last m — p. bits of I.

Example: assume I; = (1,0,1,0) and I = (0,1,1,0). Assume further that
pe=1. Then, I! = (1,1,1,0) and I, = (0,0, 1,0).

— Two-point: two integers p. € {1,...,m — 1} and p, € {p. + 1,...,m} are
randomly generated. Then, I] will take the first p. bits of I, bits p.+ 1 to
pl. of Iz, and the last m — p/, bits of I;. Conversely, I}, will take the first p,



14 Federico Perea* et al.

bits of Iy, bits p. + 1 to p.. of I, and the last m — p., bits of I. If p/, = m,
then we have the single-point crossover.

Example: assume the same I; and I as before, and p. = 2, p., = 3. Then,
I; = (1,0,1,0) and I} = (0,1,1,0). Note that, in this case, the offsprings
are the same solutions as the parents.

In case the resulting offspring is “too expensive”, i.e., it is not a feasible
solution because it exceeds the budget, then its edge (and the corresponding
stations) that most reduces the total cost is removed. This procedure is re-
peated until a solution that does not violate the budget constraint is obtained.

In case the resulting offspring is “too cheap”, i.e., there is enough remaining
budget to include more edges, then the solution is augmented following the
same GRASP methodology to build the initial population.

After the crossover operation, if I improves the worst element of the pop-
ulation T, then the population is updated by including I; and removing I,,.
The same is repeated with IJ.

5.4 Mutation

First, one solution I of the current population is randomly selected. The muta-
tion operation consists of randomly selecting a bit of T that has value zero (in
position bg), and randomly selecting a bit of I that has value one (in position
b1). Then, both bits are exchanged with a certain probability and the resulting
solution is denoted as I’.

If the resulting solution is “too expensive” or “too cheap”, the solution
is corrected following the same procedures defined before for the crossover
operation.

Example: I = (1,0,1,0). by is randomly selected, either 2 or 4 (the bits
that are equal to zero). Assume by = 2. Then, b; is randomly selected, either
1 or 3 (the bits that are equal to one). Assume b; = 3. Then, we exchange the
positions by = 2 and by = 3, and the new element is I' = (1,1,0,0).

After the mutation operation, the population is updated by including I’
and removing I. This update is only different in case I is the best element
of the population, in which case I’ substitutes I in the population only if
I' improves I (that is to say, the best element found so far remains in the
population).

5.5 Extensions to RND2 and RND3

The GA presented before for RND1 can easily be extended to RND2
and RND3, as follows:

RND2 In the constructive phase, a new arc is only added if it does not
produce any cycle. The crossover and mutation operations are
only performed if the resulting networks have no cycles.



Title Suppressed Due to Excessive Length 15

RND3 The same as for RND2 but, in this case, the budget is not a
limitation. So the constructive phase will continue until no more
arcs can be added without provoking a cycle.

6 Computational experience

This section summarizes a computational experience over a set of randomly
generated instances. We solve each instance for the three problems introduced
in this paper. RND1 is solved by means of the MILP in the appendix and the
genetic algorithm presented in Section 5, for different values of its parameters.
RND2 and RND3 are only solved by means of the genetic algorithms, as the
no-cycle constraints would make the model intractable even for small instances.

6.1 Instance generation

In these experiments, we consider four basic configurations for the underlying
graph G: 3x3, 5x2, 4x3, 5x3, where n X m means that a rectangular grid with n
horizontal cells, and m vertical cells, is created, the sides of each cell being of
unitary length. For each grid, there are c cells that generate a higher number
of trips. We tested three values for this parameter, ¢ € {0,1,2}, and we call
these cells centers. Such attraction centers are randomly chosen in the grid.

One node is randomly located inside each cell in the grid, imposing that
such node is not too close to its cell sides. To illustrate, the node located
in the cell delimited by coordinates (0,0), (0,1), (1,0), (1,1) has coordinates
(0.5 + U(—0.25,0.25),0.5 + U(—0.25,0.25)), where U(a,b) denotes a uniform
random distribution between a and b. Besides, inside the center cells four more
nodes are located. Therefore, the n X m configuration with ¢ centers consists
of n - m + 4c nodes. The edge set of each configuration is built by joining the
nodes of neighboring cells with probability 1/2. Afterwards, the neighbors of
neighbors are directly linked with probability 2/7, the resulting graph being G.
These probabilities were chosen so that the resulting underlying networks were
not too dense nor too sparse, mimicking the network density usually found in
practice. Although most of the railway networks can be represented by planar
graphs we have considered a more general setting allowing edge crossings. Each
combination of grid and number of centers was randomly replicated 5 times,
therefore having in total 4 x 3 x 5 = 60 different instances. An example of an
underlying network generated for these experiments is shown in Figure 1.

We now show two indicators that asses the connectivity and the density
of the underlying networks. The connectivity of the arising networks can be
measured by means of the connectivity indicator defined as the number of
edges divided by the number of nodes:

5 % (18)



16 Federico Perea* et al.

Fig. 1 Example of an underlying graph: grid 3x3, one center.

The average value of such S parameter equals 2.29. If we separate by configu-

ration, the average connectivity indicator results as expressed in Table 1.
The density of the networks is assessed by means of the number of edges

divided by the number of edges of the complete graph, following this formula:

E]

n(n—1)/2 (19)

"}/:

The average value of such v parameter equals 0.32. The average results per
configuration are shown in Table 1. Since the range of the connectivity and
density indicators for non-planar networks are [(n—1)/n, (n—1)/2] and [2/n, 1],
respectively, we may state that the underlying networks proposed are not too
connected nor too dense, as usually happens in practice.

Table 1 Connectivity and density parameters of the underlying networks randomly gener-
ated for the experiments.

Configuration  Connectivity = Density

3x3 2,36 0,39
4x3 2,33 0,31
5x2 2,28 0,34
5x3 2,18 0,24
Overall 2,29 0,32

The cost of building a station in node v;, denoted as ¢;, is randomly gen-
erated as a U(7-10%,13-10°), meaning that on average, each station costs one
million monetary units.

The utility of the road network for each OD-pair (p,q) is assumed to be
2.21 times the Euclidean distance between v, and vy, that is uALT = 2.21d,q,
as suggested in [13]. This utility includes both the traveling time (estimated
as twice the Euclidean distance) and the price of the journey (0.21 monetary
units per length unit), equally weighted.



Title Suppressed Due to Excessive Length 17

The cost of building each link, ¢;;, is fixed to its Euclidean length times
107, meaning that building the tracks costs ten million monetary units per
length unit.

Then, a weight is assigned to each node, which is inversely proportional to
the sum of the distances from this node to the centers: w; = 1/(1+ d;), where
d; is the sum of the distances from node ¢ to the centers of the corresponding

instance (if ¢ = 0 we set d; = 0). Afterwards, the OD matrix is computed
2.9

as follows. The flow between nodes v, and v, is set to gpq = 100wpwqeff—;’pq,
where d, is the Euclidean distance from v}, to vg. The calibration of the values
of these parameters can be found in [13].

The maximum budget allowed is set to be 25% of the cost of building the
whole network G, that is to say, Ciax = 0.25(3;cn ¢ + 2o jyep Cij)-

For each OD pair (p, q), in these experiments we consider that the utility of
the railway network depends on the riding time, the number of stops, and the
ticket price, as detailed in the Appendix, Equation (38). In order to mimic the
behavior of many railway networks (specially metro and commuter networks),
the ticket price depends on the zones in which the OD nodes are located. In
these experiments, the nodes are divided into three different zones, depending
on their distances to the centers. The ticket price depends on how many zone
changes you have to do in your journey on the network. Full data about the
instances are available from the authors upon request. Note that the instances
of this paper extend those used in [6], by including attraction centers, different
zones, the possibility of directly linking neighbors of neighbors, a more realistic
model for the passenger flows, among other changes. We believe that the new
set of instances better reflects realistic situations.

6.2 Algorithms tested

We solved RND1 for each of the above described 60 instances, by means of the
mixed integer linear program (MILP) shown in the Appendix. The solver used
was CPLEX 12.6, on Virtual Windows 7 machines with 2 virtual processors
and 8 GBytes of RAM memory. A virtualization server composed of 30 blades
is employed. Each blade runs two Intel XEON E5420 processors running at
2.5 GHz. and 16 GBytes of RAM memory. For all instances, the maximum
computational time was set to one hour. The genetic algorithms were coded
and executed in for Microsoft VBA.

In order to test the validity of the GA presented in Section 5 over RND1
and RND2, we also solved the 60 instances by means of this algorithm com-
bining different parameter values, as explained below. The size of the initial
population was set to tmax = 10. In order to calibrate the other parameters,
a full factorial design of experiments was performed, modifying the following
factors:

— Factor “Constructive algorithm”, taking three levels: GRASP1 (allowing
only connected networks), GRASP2 (allowing non-connected networks as
well), random generation.



18 Federico Perea* et al.

— Factor “Number of crossover points”, taking three levels: {0, 1,2}.
— Factor “Probability of mutation”, taking three levels: {0, 0.25,0.50}.

Therefore, each of the 60 instances was solved by the GA with each of the
possible 33 = 27 combinations of factors, having in total 27 x 60 = 1620
executions of the genetic algorithms, for each RND problem (2 x 1620 = 3240
executions in total). Each execution run until no improvement was found in 100
consecutive iterations, or a maximum CPU time of 600 seconds was reached.

The reader may note that if the number of crossover points is zero, then
the crossover operation is not performed. Similarly, the mutation operation is
not performed if the probability of mutation is zero. In case both are zero,
only the constructive phase is performed. In such case, after the generation
of the initial population, the constructive algorithm runs until 100 solutions
are generated without no improvement in the best solution, or the 600-second
time limit is reached.

6.3 Results for RND1

We now summarize the results obtained in the 60 RND1 instances.

6.3.1 Effect of GA operators

The first output we want to analyze is the impact that the crossover and
mutation operations have on the initial population. That is, do these two
operators improve the initial population? For this aim, we have computed the
percentage increase in coverage (PIC), between the value given by the initial
solution (Z;) and the value given by the best solution found at the end of the
genetic algorithm (Z,), computed as follows:

Zg— Z;

Z;

In the following tables, column “Crossover” denotes the number of crossover
points used, and column “Mutation” denotes the probability of mutation. The
next three columns give the average values of the characteristic tested, for each
of the three constructive algorithms proposed for the generation of the initial
population. This way, column “GRASP1” gives, for the combination of number
of crossover points and probability of mutation detailed in the corresponding
row, the average value over all instances (CPU time, objective function, etc).
Similarly, columns GRASP2 and RANDOM give the average values obtained
for these constructive algorithms.

In Table 2 we observe that, regardless of the number of crossover points
and probability of mutation, the genetic algorithm operators always improve
the solution obtained in the initial population, no matter the constructive al-
gorithm used. We observe a larger improvement if the initial population is
built randomly, because such initial population has networks with lower cov-
erage. An ANOVA analysis shows that the three factors considered (number of

PIC =100 (20)



Title Suppressed Due to Excessive Length 19

Table 2 Overall percentage increase in coverage (%) of the crossover and mutation opera-
tions over the initial population for the different GA tested, for RNDI.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 10,52 10,64 43,63
1 0 9,37 10,56 102,00
2 0 11,03 7,75 81,25
0 0.25 1,61 5,16 33,29
1 0.25 11,17 10,45 101,76
2 0.25 11,57 10,06 94,93
0 0.5 5,45 7,51 72,64
1 0.5 11,48 9,71 100,22
2 0.5 11,39 8,58 102,31

crossover points, probability of mutation, constructive algorithm) significantly
affect the improvement caused by the genetic operations, with individual p-
values equal to 0, 0.03, and 0, respectively.

We also want to check how much time is needed to perform the genetic op-
erations. Therefore, we have computed the percentage increase in time (PIT),
between the time needed to compute the initial population (¢;) and the time
that the crossover and mutation operations run until finding the best solution
(tg), computed as follows:

PIT = 100%. (21)

K2

In Table 3 we observe that the time that the crossover and mutation oper-

Table 3 Overall percentage increase in time (%) between the time to find the initial pop-
ulation and the time needed by the genetic, for the different GA tested, for RND1.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 279,18 452,69 754,88
1 0 438,96 384,53 1795,64
2 0 418,50 289,00 1960,71
0 0.25 89,69 101,86 280,54
1 0.25 492,51 404,19 2048,29
2 0.25 527,18 346,48 2430,32
0 0.5 235,74 179,11 764,24
1 0.5 693,00 392,70 2624,96
2 0.5 531,81 487,55 2437,55

ations run heavily depend on the constructive operator. For example, for 2
crossover points and probability of mutation 0.5, the genetic operations run
for 5.31 times more than the GRASP1 to generate the initial population. If the
GRASP2 algorithm was used for the generation of the initial population, this
factor is 4.87. If the initial population is randomly generated, the GA operators
run for 24.37 times more than the generation of the initial population. This
factor is much larger when the initial population is built randomly, because



20 Federico Perea* et al.

such generation takes less time than using one of the GRASP algorithms. An
ANOVA analysis shows that the three factors considered (number of crossover
points, probability of mutation, constructive algorithm) significantly affect the
extra time needed by the genetic operations, with individual p-values equal to
0, 0.0003, and 0, respectively.

6.3.2 Quality of solutions

The second output we want to analyze is the quality of the solution returned,
both by the MILP and by the GA. The quality of the MILP can be summarized
in terms of number of optimal solutions guaranteed, and average MILP gap.
These measures are summarized below.

— 47 out of the 60 instances were solved to optimality, which makes 78.3% of
solutions with gap = 0.

— The average gap over all instances is 5.9%. If we restrict this analysis to the
13 instances in which the gap is strictly positive, this average gap increases
to 27%.

In the rest of the section, we will divide our analysis in these two sets of
instances: those which were solved to optimality in less than one hour by the
MILP, and those which were not.

In order to asses the quality of the GA, we measure the relative percent
deviation (RPD) with respect to the solution found by the MILP. For each
instance and each algorithm, the RPD was measured as follows:

ZymiLp — 4y

RPD = 100 (22)

ZMILP
where Z; is the coverage of the solution yielded by the corresponding genetic
algorithm, and Zysrrp is the coverage of the solution found by the MILP. We
have, for the two sets of instances, the following results:

— All instances.
Table 4 shows the average RPD of the genetic algorithms tested over all
60 RND1 instances.
In terms of deviation with respect to the MILP solution, the genetic algo-
rithm with 2 crossover points, probability of mutation 0.5, and GRASP2
for generating the initial population yields the best results (average RPD
equal to 2.19%). An ANOVA analysis shows that the three factors con-
sidered (number of crossover points, probability of mutation, constructive
algorithm) significantly affect the RPD, with individual p-values equal to
0, 0.01, and 0, respectively.

— Instances with gap = 0.
Table 5 shows the average RPD of the genetic algorithms tested over the 47
instances solved to optimality by the MILP. Thus, for instances in which
the MILP found the optimal solution, there are some combinations of the
genetic algorithm which find solutions only 1.32% far from these optimal



Title Suppressed Due to Excessive Length 21

Table 4 Average RPD of genetic algorithms with respect to MILP solution, over all RND1
instances, in %.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 3,31 3,04 31,46
1 0 3,53 2,38 12,85
2 0 2,52 2,31 11,83
0 0.25 7,84 7,93 37,69
1 0.25 2,26 2,71 10,46
2 0.25 2,71 2,45 9,32
0 0.5 5,54 6,07 23,38
1 0.5 2,45 3,01 9,59
2 0.5 2,63 2,19 10,72

Table 5 Averge RPD of genetic algorithms with respect to MILP solution, over RND1
instances solved to optimality, in %.

Constructive algorithm
Crossover Mutation | GRASP1 GRASP2 RANDOM
0 0 2,53 2,00 26,54
1 0 2,76 1,71 10,55
2 0 1,88 1,50 9,26
0 0.25 8,13 8,02 34,76
1 0.25 1,45 2,19 7,85
2 0.25 1,67 1,91 7,72
0 0.5 5,09 5,10 21,07
1 0.5 1,47 2,21 7,55
2 0.5 1,32 1,85 8,92

solutions, on average (the genetic algorithm with 2 crossover points, proba-
bility of mutation 0.5, using GRASP1 as constructive). An ANOVA analy-
sis over the instances solved to optimality only, shows that the three factors
considered (number of crossover points, probability of mutation, construc-
tive algorithm) significantly affect the RPD, with individual p-values equal
to 0, 0.01, and 0, respectively.

6.3.3 CPU time

The third output we want to analyze is the computational effort of the algo-
rithms presented. In the previous section we showed that the relative percent
deviations of the solutions found by the genetic algorithms are quite controlled,
around 2% on average for the best combinations of GA parameters. We will
now analyze the CPU time of the GA algorithms.

— All instances.
The average CPU time of the MILP is 1072.3 seconds, whereas the aver-
age CPU time of the genetic algorithms is as given in Table 6. Roughly
speaking, the genetic algorithm gets solutions which are on average 2% far
from the MILP (Table 4), in one third of the time. An ANOVA analysis
over the instances solved to optimality only, shows that the three factors



22 Federico Perea* et al.

Table 6 Average CPU time of genetic algorithms, over all RND1 instances.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 357,39 389,25 166,17
1 0 327,51 357,28 234,88
2 0 329,45 334,33 262,48
0 0.25 164,43 170,56 43,93
1 0.25 361,79 343,95 293,93
2 0.25 364,61 353,87 319,71
0 0.5 216,58 215,37 115,89
1 0.5 390,79 367,73 329,45
2 0.5 369,77 374,09 324,28

considered (number of crossover points, probability of mutation, construc-
tive algorithm) significantly affect the CPU time, with individual p-values
equal to 0, 0.01, and 0, respectively.

— Instances with gap = 0.
The average CPU time of the MILP is 373.0 seconds, whereas the average
CPU time of the genetic algorithms is as given in Table 7. We observe that,

Table 7 Average CPU time of GA algorithms for RND1 instances with GAP=0. %.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 270,22 312,62 107,74
1 0 241,40 265,90 175,70
2 0 236,33 240,08 195,30
0 0.25 84,54 78,75 26,67
1 0.25 278,07 267,91 216,44
2 0.25 283,97 262,79 247,23
0 0.5 130,23 121,36 77,33
1 0.5 315,47 283,68 265,00
2 0.5 292,19 301,58 248,78

again, the fastest combination of factors is given by randomly building the
initial population, not doing the crossover operation, and applying prob-
ability of mutation 0.25. An ANOVA analysis over the instances solved
to optimality only, shows that the three factors considered (number of
crossover points, probability of mutation, constructive algorithm) signifi-
cantly affect the CPU time over the instances solved to optimality, with
individual p-values equal to 0, 0.01, and 0, respectively.

6.3.4 Summary of results for RND1

Table 8 shows, for any of the variables studied, the best combination of genetic
algorithm factors in the RND1 instances. As we noted before, all factors are
individually significant for every variable studied.

Although we observe that randomly built initial solutions are the ones in-
ducing the most improvement when applying the GA operators, that is just



Title Suppressed Due to Excessive Length 23

Table 8 Best combination of Genetic Algorithm factors (crossover points, probability of
mutation, constructive algorithm).

Variable Best combination of GA factors

Improvement of coverage over initial population (2,0.5,RANDOM)

Time increase over initial population (1,0.5,RANDOM)

Average RPD over all instances (2,0.5,GRASP2)

Average RPD over instances solved to optimality (2,0.5,GRASP1)
Average CPU time over all instances (0,0.25,RANDOM)

Average CPU time over instances solved to optimality (0,0.25,RANDOM)

a consequence from the fact that the initial population is worse than when
applying the other two constructive approaches for the initial population. We
also observe how the best quality solutions are obtained when using 2 crossover
points and probability of mutation 0.5. Given the lack of dominance between
GRASP1 and GRASP2 as seed for the best quality solution, the logical rec-
ommendation is to always try both.

6.4 Results for RND2

We now summarize the results obtained in the 60 RND2 instances.

6.4.1 Effect of GA operators

Like in the RND1 instances, the first output we want to analyze is the impact
that the crossover and mutation operations have on the initial population.
For this aim, in Table 9 we show the average PIC for all combinations of
parameters tested. We observe that the genetic algorithm operators always

Table 9 Overall percentage improvement in coverage (%) of the crossover and mutation
operations over the initial population for the different GA tested, for RND2.

Constructive algorithm
Crossover Mutation | GRASP1 GRASP2 RANDOM
0 0 13,43 12,16 44,76
1 0 11,55 12,42 80,31
2 0 11,12 11,28 84,56
0 0.25 4,55 3,09 36,34
1 0.25 10,13 11,81 100,94
2 0.25 11,68 12,57 92,43
0 0.5 8,57 5,60 60,34
1 0.5 12,46 12,44 101,06
2 0.5 11,17 11,21 106,78

improve the solution obtained in the initial population. Again, we observe a
larger improvement if the initial population is built randomly, because such ini-
tial population has networks with lower coverage. An ANOVA analysis shows
that the three factors considered (number of crossover points, probability of



24 Federico Perea* et al.

mutation, constructive algorithm) significantly affect the improvement caused
by the genetic operations, with individual p-values equal to 0, 0.02, and 0,
respectively.

With respect to the increase in CPU time, we now observe a larger increase
than in the RND1 instances, in CPU time with respect to the time devoted to
build the initial population, see Table 10. An ANOVA analysis shows that the

Table 10 Overall time increase % (PIT) between the time to find the initial population
and the time needed by the genetic, for the different GA tested, in RND2.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 1235,19 1097,28 1393,18
1 0 1325,85 831,69 1578,55
2 0 1554,27 860,94 1516,50
0 0.25 294,97 164,64 280,85
1 0.25 1740,22 1034,19 2113,50
2 0.25 1870,47 1106,99 2167,68
0 0.5 772,11 364,73 575,79
1 0.5 2176,10 1204,70 2439,73
2 0.5 2076,93 1213,09 2311,92

three factors considered (number of crossover points, probability of mutation,
constructive algorithm) significantly affect the extra time needed by the genetic
operations, with all individual p-values equal to 0.

6.4.2 Quality of solutions

The second output we want to analyze is the quality of the solution returned
by the GA. Since we do not have solutions given by the MILP, we compare the
results with respect to the best solution given by any of the genetics tested.
Therefore, in order to asses the quality of the GA, we measure the relative
percent deviation (RPD) with respect to the best solution found by any of the
GA tested, as follows:

ZBEST — Zg

RPD = 100 (23)

ZBEST
where Z, is the coverage of the solution yielded by the corresponding genetic
algorithm, and Zpggr is the coverage of the best solution found by any of
the 27 GA tested. Table 11 shows the average RPD of the genetic algorithms
tested over all 60 RND2 instances. In terms of deviation with respect to the
best solution found, the genetic algorithm with 2 crossover points, probability
of mutation 0.25, and GRASP1 for generating the initial population yields
the best results (average RPD equal to 1.44%). An ANOVA analysis shows
that the three factors considered (number of crossover points, probability of
mutation, constructive algorithm) significantly affect the RPD, with individual
p-values equal to 0, 0.007, and 0, respectively.



Title Suppressed Due to Excessive Length 25

Table 11 Average RPD of genetic algorithms with respect to the best solution found, over
RND2 instances, in %.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 1,69 2,40 32,19
1 0 2,79 2,11 14,90
2 0 1,56 2,98 16,64
0 0.25 8,54 8,86 33,89
1 0.25 2,05 2,80 12,50
2 0.25 1,44 2,56 11,72
0 0.5 5,11 6,06 28,25
1 0.5 1,93 2,09 9,29
2 0.5 1,93 2,15 10,92

6.4.83 CPU time

The average CPU time of the genetic algorithms in the RND2 instances is as
given in Table 12. It seems that the combination in which the GA converges

Table 12 Average CPU time of genetic algorithms, over RND2 instances.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 252,66 330,16 275,21
1 0 224,82 204,25 246,40
2 0 214,59 218,57 235,11
0 0.25 64,08 68,60 56,59
1 0.25 244,50 240,11 301,16
2 0.25 249,37 278,37 302,82
0 0.5 120,41 115,47 113,94
1 0.5 283,03 271,31 324,81
2 0.5 280,66 288,51 320,41

the fastest is that with no crossover operator, probability of mutation 0.25,
and initial population built randomly. An ANOVA analysis shows that the
number of crossover points is significant (p-value equal to 0), the probability of
mutation is also significant (p-value equal to 0.0005), whereas the constructive
algorithm is on the edge (p-value equal to 0.07), if we consider the standard
significance level of 0.05. This means that the constructive algorithm chosen
is not as relevant, when we speak about time until the algorithm stops, as the
other two factors.

6.4.4 Summary of results for RND2

Table 13 shows, for any of the variables studied, the best combination of
genetic algorithm factors in RND2 instances. As we noted before, all factors
are individually significant for every variable studied.

Like in RND1, building the initial population randomly yields the best re-
sults in terms of CPU time and improvement with respect to that initial pop-



26 Federico Perea* et al.

Table 13 Best combination of Genetic Algorithm factors (crossover points, probability of
mutation, constructive algorithm).

Variable  Best combination of GA factors

Improvement of coverage over initial population (2,0.5,RANDOM)
Time increase over initial population (1,0.5,RANDOM)

Average RPD over all instances (2,0.25,GRASP1)

Average CPU time over all instances (0,0.25,RANDOM)

ulation. However, the best quality solutions are obtained when using GRASP1
as a constructive, 2 crossover points, and 0.25 as probability of mutation.

6.5 Comparison between RND1 and RND2

In this section we compare the coverage obtained by the genetic algorithms
when the no-cycle constraint is imposed (RND2) and when the resulting net-
work is allowed to have cycles (RND1). Note that in both problems the budget
constraint is imposed. For this aim, we have compared the percentage differ-
ence between the coverage obtained for both problems as follows:

Zy— Za

Z4 =100
d 7

(24)

where Z; and Z5 are the trip coverage obtained when solving RND1 and
RND2, respectively. Table 14 summarizes these results. We observe how for

Table 14 Percentage difference between the trip coverage of RND1 and the trip coverage
of RND2, for all genetic algorithms tested.

Constructive algorithm
Crossover  Mutation | GRASP1 GRASP2 RANDOM
0 0 -1,34 2,21 1,46
1 0 0,17 1,66 2,14
2 0 0,90 2,78 3,85
0 0.25 -3,41 0,64 -15,88
1 0.25 0,07 2,53 2,72
2 0.25 -1,55 -0,18 -1,67
0 0.5 -2,48 1,49 -0,66
1 0.5 1,69 -1,36 -2,01
2 0.5 0,10 1,95 -3,78

15 combinations, the average coverage is better for RND1 (positive value in
the table), whereas for the other 12 combinations RND2 yields larger coverage
(negative value in the table). We also observe that the largest differences are
observed when using RANDOM for building the initial population. The largest
difference in favor or RND1 is obtained when using two crossover points and no
mutation operator (3.85%). The largest difference in favor of RND2 is obtained
when doing no crossover operation, and using 0.25 as probability of mutation
(15.88%).



Title Suppressed Due to Excessive Length 27

Regarding CPU times, we also compute the percentage difference between
the time until the stop criteria was met by the genetic algorithms in both
RND1 and RND2 (#; and ta, respectively), for every instance, as follows:

ty — to

tg =100 . (25)
tq

Table 15 summarizes these results. We observe that for 23 of the 27 possible

Table 15 Percentage difference between the time until stop of RND1 and that of RND2,
for all genetic algorithms tested.

Constructive algorithm
Crossover Mutation | GRASP1 GRASP2 RANDOM
0 0 29,30 15,18 -65,62
1 0 31,35 42,83 -4,90
2 0 34,86 34,62 10,43
0 0.25 61,03 59,78 -28,82
1 0.25 32,42 30,19 -2,46
2 0.25 31,61 21,34 5,28
0 0.5 44,40 46,39 1,68
1 0.5 27,57 26,22 1,41
2 0.5 24,10 22,88 1,19

combinations of factors, RNDI is slower than RND2 (positive values), on aver-
age. We also observe that the only combinations in which the GA over RND1
stopped sooner than the GA over RND2 are always when building the initial
population randomly.

Therefore, it seems that the GA obtains larger trip coverage when the
no-cycle constraint is not imposed (RND1), but also in longer CPU times.

7 Conclusions

This paper presents strategic level optimization models for transportation in-
frastructure, and discusses the complexity of these models and several of its
constraint-variations (six in total). Such variations appear when we combine
budget restrictions and topological constraints. We show when the problem
is trivial and when it is NP-hard. We provide examples of transformations to
prove NP-hardness. In this process, we investigate and show the submodularity
of the objective function of the problem.

Due to the proven complexity of these problems, we then turn our atten-
tion to metaheuristic-approaches. We test a Genetic Algorithm to address the
problem that we consider the most realistic case: budget constraint and no
restriction on the topology of the resulting network. Our tests suggest that
Genetic Algorithms are quite efficient in computational time and also in terms
of optimality gap.

A straightforward extension of both the MILP and the GA al-
gorithm comes with the objective is not to build a network from



28 Federico Perea* et al.

scratch, but rather to extend an existing network. In the correspond-
ing MILP, the variables referring to the existing facilities (stations
and links) should be fixed. Similarly, the GA algorithm would start
from the existing network, and add arcs and nodes in the same way
as described in this paper.

Acknowledgments

Mozart Menezes and Juan A. Mesa were partially supported by project MTM2015-
67706-P (MINECO/FEDER,UE). Federico Perea was partially supported by
Spanish Ministry of Science, Innovation, and Universities, under projects “OPTEP-
Port Terminal Operations Optimization” (No. RTI2018-094940-B-100) and
MTM2016-74983, financed with FEDER funds, and by the Universitat Politécnica
de Valéncia under grant SP20180164 of the program Primeros Proyectos de
Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y
Transferencia. All this support is gratefully acknowledged.

References

1. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Annotated Bibliography in Combi-
natorial Optimization, chap. Network design. John Wiley and Sons, New York (1997)

2. Bussieck, M., Winter, T., Zimmermann, U.: Discrete optimization in public rail trans-
port. Mathematical Programming 79(1-3), 415444 (1997)

3. Chakroborty, P.: Genetic algorithms for optimal urban transit network design.
Computer-Aided Civil and Infrastructure Engineering 18, 184-200 (2003)

4. Chakroborty, P., Dwivedi, T.: Optimal route network design for transit systems using
genetic algorithms. Engineering Optimization 34(1), 83-100 (2002)

5. Desaulniers, G., Hickman, M.D.: Transportation Handbooks in operations research and
management science, vol. 14, chap. Public Transit, pp. 69-127. Elsevier, Amsterdam
(2007)

6. Garcia-Archilla, B., Lozano, A.J., Mesa, J.A., Perea, F.: GRASP algorithms for the
robust railway network design problem. Journal of Heuristics 19(2), 399-422 (2013)

7. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company (1979)

8. Goel, G., Karande, C., Tripathi, P., Wanga, L.: Approximability of combinatorial prob-
lems with multi-agent submodular cost functions. ACM SIGecom Exchanges 9(1), 1-4
(2010)

9. Grotschel, M., Lovész, L., Schrijver, A.: The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1, 169 — 197 (1981)

10. Grotschel, M., Lovész, L., Schrijver, A.: Geometric Algorithms and Combinatorial Op-
timization, 2nd ed. Springer-Verlag, New York (1993)

11. Guihaire, V., Hao, J.K.: Transit network design and scheduling: a global review. Trans-
portation Research Part A 42, 1251-1273 (2008)

12. Jegelka, S.S.: Combinatorial problems with sub-modular coupling in machine learning
and computer vision. Thesis ETH Zurich (2012)

13. Laporte, G., Mesa, J.A., Ortega, F.A.: Assessing the efficiency of rapid transit configu-
rations. Top 5, 95-104 (1995)

14. Laporte, G., Mesa, J.A., Perea, F.: A game theoretic framework for the robust railway
transit network design problem. Transportation Research Part B 44, 447-459 (2010)

15. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and
algorithms. Transportation Science 18, 1-55 (1984)



Title Suppressed Due to Excessive Length 29

16. Marin, A., Garcia-Rédenas, R.: Location of infrastructure in urban railway networks.
Computers and Operations Research 36(5), 1461-1477 (2009)

17. Mesa, J.A., Boffey, B.T.: A review of extensive facility location in networks. European
Journal of Operational Research 95, 592-603 (1996)

18. Nayeem, M.A., Rahman, M.K., Rahman, M.S.: Transit network design by genetic algo-
rithm with elitism. Transportation Research Part C: Emerging Technologies 46, 30-45
(2014)

19. Nembhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. A Wiley-
Interscience publication (1999)

20. Perea, F., Mesa, J.A., Laporte, G.: Adding a new station and a road link to a road-rail
network in the presence of modal competition. Transportation Research Part B 68,
1-16 (2014)

21. Puerto, J., Ricca, F., Scozzari, A.: Extensive facility location problems on networks: an
updated review. TOP 26(2), 187-226 (2018)

22. Schmidt, M., Schébel, A.: Location of speed-up subnetworks. Annals of Operations
Research 223(1), 379-401 (2014)

23. Schobel, A.: Line planning in public transportation: models and methods. OR Spectrum
34(3), 491-510 (2012)

24. Sourirajan, K., Ozsen, L., Uzsoy, R.: A genetic algorithm for a single product network
design model with lead time and safety stock considerations. European Journal of
Operational Research 197(2), 599-608 (2009)

25. Székely, L., Wang, H.: On subtrees of trees. Advances in Applied Mathematics 34,
138-155 (2005)

26. Ukkusuri, S.V., Mathew, T.V., Waller, S.T.: Robust transportation network design un-
der demand uncertainty. Computer-Aided Civil and Infrastructure Engineering 22, 6-18
(2007)

Appendix
7.1 Proofs

We begin this appendix with the proof of Proposition 1.

Proof We prove this result by reduction from the knapsack problem. Consider
the knapsack problem with item values equal to b;, and item weights equal to
w;, 1 =1,...,n, and capacity wmax, which is formulated as:

max y . bix;
s.t.: Z?:l w;T; S Wmax (26)
z; € {0,1},i=1,...,n.

Consider the following input data: N = {vg, v1,...,vn}, E = {{vo,v;} : i =
1L.on}, W= {(vo,v;) : i = 1,...,n}, Cnax = Wmax, C0,i = 0, ¢; = w;, 1 =
1,...,n, see Figure 2. Choose gy i, {o,;, and u(‘ifT so that go,i¢(£o,i —uéiLT) =b;
for all © = 1,...,n. For this, choose uéiLT =wand fp; =Lforali=1,.,n
so that ¢(¢ —u) > 0. Note that these values exist because lim ¢y, 1oo(x) = 1.
Let ¢* = ¢(¢ — u). Then define go; = b;/¢™.

Solving this instance of RND1 solves the knapsack problem (26). So, if
there was an algorithm that could polynomially solve this RND1 instance,
you would be able to solve the knapsack problem in polynomial time, which

is a contradiction because the knapsack problem is NP-hard (see [7]).



30 Federico Perea* et al.

V1 v Un,

Vo

Fig. 2 A network to proof the NP-hardness of RND1.

The proof to Corollary 1 follows.

Proof The reader may note that, with the input data in the proof of Propo-
sition 1, the solution to problem RND1 is the same as the solution to problem
RND2, with the same data (because the underlying chosen network (N, E) is
a star, and therefore any subnetwork of it is also a star).

7.2 MILP model

We now detail the MILP program we designed for solving the RND1 problem
in the experiments, similar to the one introduced in [6]. The following variables
are needed:

— y; is a binary variable to decide whether or not node v; is a station of the
railway network.

— x;; is a binary variable to decide whether or not edge (4, j) is a link of the
railway network.

— rpq is a binary variable to decide whether or not there is a path for OD-pair
(p,q) in the railway network.

— Wpq is a binary variable to decide whether or not the railway network has
a better utility than the road network for OD-pair (p, q).

— f{i is a binary variable to decide whether or not OD-pair (p,q) will use
edge (¢,7) from v; to v; in their route on the railway network.

The objective of our model is to maximize the railway trip coverage:

max Z IpqWpq- (27)

(p.a)eW

The constraints of our model have been grouped according to their aims

— Budget constraints,

Z Cij Tij + Z iy < Chax- (28)

(1,7)€E n;EN



Title Suppressed Due to Excessive Length 31

— Edges can be used in both senses, and if a link is built, then its endnodes
must be stations of the railway network,

T = x4, (1,7) € E, (29)
Lij S Yis (’La.j) € Ea (30)

— Routing demand conservation constraints,

Yo =0, ) eW, (32)

i:(i,p)EA
Z f;:]q =Tpg, (p,q) €W, (33)
Ji(p.j)EA
Z 1 =1pe (0q) €W, (34)
i:(1,q)€EA
S M=0, pgew, (35
j:(g,5)€A
oo — > =0, Yké{pat, bW, (36)
i:(i,k)EA ji(k,j)EA
— Location-Allocation constraints
fip}q + qu -1 S Z'ij, (’L,]) c A, (p, q) S W (37)

— Disutility of the railway network

= > digfl M1 —rpg) +t(( D

(i.j)eA (i,4)€A
+7(|zone, — zoney| + 1) (38)

— Splitting demand constraints

(Upg — U?qLT) — M(1 - wye) <0. (39)

where M is a real number sufficiently large.

Constraint (28) states that construction costs cannot exceed the budget, Cyyax-
Constraints (29) allow the constructed links to be used in both directions.
Constraint (30) and (31) impose that, if a link is built, then its corresponding
endnodes should have a station. Constraints (32) to (36) are flow conservation
constraints for variables f. Note that if 7, = 0, there will be no flow from p to ¢
via the railway network. Constraints (37) force that demands are only allocated
through public arcs if the corresponding edges are built. Constraints (38) define
the utility of each OD-pair in the railway network, which depends on the riding
time, the number of stops, and the journey price. In these experiments, we took

s = 0.5 and v = 1. This implies that the stop time at stations is 0.5, and



32 Federico Perea* et al.

that the ticket price is 1, 2, or 3, if the number of zone changes is 0, 1, or
2, respectively. Note that the utility of (p,q) is a large enough constant M if
there is no path from p to ¢ in the railway network. Constraints (39) impose
for each OD-pair (p,q) that, if their utility using the road network is better
than their utility using the railway network, then wyq = 0, and therefore this
OD-pair is not covered.

Besides these constraints, we also added to our model the following cuts:

fzqu S xijav (paQ) € Wa (’La.j) € A

Wpq < Tpg-

The first one imposes that no edge can be used if its corresponding link is not
built. The second one imposes that an OD-pair without a path in the railway
network cannot be covered. Previous experience showed that these two cuts
significantly reduced the computational times.



