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ABSTRACT

Cucurbit chlorotic yellows virus (CCYV) p22 has recently been reported to be a weak local suppressor of RNA silencing 

for which interaction with cucumber SKP1LB1 through an F-box-like motif was demonstrated to be essential. Using a 

bacterially expressed maltose-binding protein (MBP) fusion of CCYV p22 in electrophoretic mobility shift assays (EMSA), 

we have examined in vitro its ability to bind different RNA templates. Our experiments showed that CCYV p22 is able to 

bind to ss and ds long RNAs, in addition to ss and ds siRNA molecules. CCYV p22 deletion mutants (MBP_CCYV DEL1-

4) were produced that covered the entire protein, with MBP_CCYV DEL2 corresponding to the F-box motif and its

flanking sequences. None of these deletions abolished the capacity of CCYV p22 to bind ss- and dsRNA molecules. 

However, deletions affecting the C-ter middle part of the protein did not efficiently bind either ss- or dsRNA molecules 

indicating that essential elements for this interaction are located in this region. Our EMSA experiments showed an 

increased affinity for CCYV p22 binding 24 nt-long ss siRNAs, which agrees with the previous report of reduced 

accumulation of siRNAs in GFP/ CCYV p22 agroinfiltrated leaf patches. Taken together, our data adds to current 

knowledge of the mode of action of suppressors of RNA silencing encoded by genes sited at the 3’-terminus of crinivirus 

genomic RNA 1, and  shed light on the involvement of CCYV p22 in the suppression of RNA silencing or/and in another 

role in the virus life cycle via RNA binding.
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1. Introduction

Cucurbit chlorotic yellows virus (CCYV) is a newly-assigned member of the genus Crinivirus (Gyoutoku et al., 2009), first 

observed in greenhouse-grown melons in Japan (2004). CCYV infections have been reported in cucurbit crops in Asia, 

North Africa, the Mediterranean basin and, recently, in the United States (Huang et al., 2010; Abrahamian et al., 2013; 

Bananej et al., 2013; Orfanidou et al., 2014; Wintermantel et al., 2019). The symptomatology of CCYV (leaf yellowing) 

and natural transmission by Bemisia tabaci whitefly biotypes MEAM1 and MED does not differ from that of Cucurbit 

yellow stunting disorder crinivirus (CYSDV), and like most other characterized criniviruses, it has a bipartite genome 

(Kiss et al., 2013). CCYV RNA 1 (8,607 nucleotides), contains four open reading frames (ORFs), the first two of which 

encode proteins involved in virus replication. CCYV RNA 2 (8,041 nt) contains eight ORFs encoding proteins involved in 

virus encapsidation and movement (Okuda et al., 2010).

Interestingly, the RNA 1 of most criniviruses downstream of the RNA-dependent RNA polymerase gene (RdRp; Fig. 1) 

includes 0-3 similarly-sized ORFs encoding proteins that share  low levels (25-40%) of amino acid homology. A number 

of these proteins, including CCYV p22, have been reported to be viral suppressors of RNA silencing (VSRs): Lettuce 

chlorosis virus p23, Sweet potato chlorotic stunt virus (SPCSV) RNase3 and p22, Tomato chlorosis virus (ToCV) p22, 

CYSDV p25 and Tomato infectious chlorosis virus p27 (Kreuze et al., 2005; Cañizares et al., 2008; Cuellar et al., 2009; 

Kataya et al., 2009; Kubota & Ng, 2016; Mashiko et al., 2019; Orfanidou et al., 2019; Chen et al., 2019). 

These RNA 1-encoded proteins appear to utilize differential modes of action to suppress RNA silencing. For example, 

SPCSV ORF2 encodes a putative RNase III-like protein (RNase3), which enhances the RNA silencing suppression 

activity of SPCSV p22 via its endonuclease activity (Kreuze et al., 2005). SPCSV RNase3 binds and subsequently 

cleaves, long dsRNA molecules and in vitro processes siRNAs into ~14 bp products that become inactive in RNA 

silencing (Cuellar et al., 2008; Weinheimer et al., 2014). For ToCV, the suppression of RNA silencing is mediated by 

proteins encoded by RNA 1 (p22) and RNA 2 (coat protein, minor coat protein). In common with SPCSV RNase3, ToCV 

p22 also binds dsRNA, but unlike the former prevents the cleavage of dsRNA molecules by RNase3-type Dicer 

homologue enzymes (Landeo-Ríos et al., 2016). The RNA-binding ability of the prototype Lettuce infectious yellows 

crinivirus (LIYV) RNA 1–encoded p34 has also been reported (Wang et al., 2010) but its silencing suppressor activity 

remains in question as studies in the Nicotiana benthamiana 16c line did not provide evidence to support its being a 

VSR (Kiss et al., 2013). Interestingly, LIYV p34 has been shown to be a trans-enhancer of RNA 2 replication (Yeh et al., 

2000).

Taking into consideration these findings and the reported reduced accumulation of GFP-specific siRNA in GFP/ CCYV 

p22 co-infiltrated leaf patches (Chen et al., 2019), we examined the ability of CCYV p22 to bind RNA in vitro. Our data 

show that CCYV p22 is able to bind ss, dsRNA and siRNAs and suggests a higher degree of diversity in the modes of 

action of crinivirus-encoded VSRs.

2. Materials & Methods
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2.1 Plasmid construction  

The cDNA encoding CCYV p22 was reverse transcribed and PCR amplified from total RNA isolated from of CCYV-

infected cucumber plant material (a kind gift of Profs V. Maliogka and N. Katis, University of Thessaloniki), using the 

specific oligonucleotide primers CCYVp22FBam & CCYVp22RPst (see Table 1). The primers incorporated restriction 

sites that were subsequently used to introduce the amplicon into a pMAL-c2x expression vector, downstream and in 

frame with an N-terminal maltose binding protein moiety (MBP-CCYV p22). All recombinant proteins were expressed 

in BL21/DE3 Escherichia coli cells.

2.2 Mutagenesis of CCYV p22 

The CCYV p22 deletion mutants were designed to remove four sequential segments of protein, each of them including a 

cluster of basic amino acids, as these tend to be associated with RNA-binding. The DEL2 deletion lacks amino acid 

residues 39-75, encompassing the F-box-like motif identified by Chen et al., comprised of residues 53-57. To produce 

each mutant, the ‘round-the-horn’ site-directed mutagenesis strategy (Moore, 2015) was employed to delete specific 

CCYV p22 coding sequences of regions from pMAL c2x-CCYV p22. Briefly, the entire construct minus each desired 

deletion was PCR amplified as a linear element. The use of Q5 polymerase (NEB) resulted in blunt-ended products 

without any extraneous nucleotides, and the primers had been 5’-phosphorylated prior to amplification, which facilitated 

self-ligation of the amplicons with T4 ligase to produce novel MBP fusion constructs ready for expression studies. To 

create the first deletion (DEL1) lacking amino acids 1-38, the reverse primer CCYVp22Del1R (-1R) corresponded to the 

plasmid sequence immediately upstream of the CCYVp22 coding sequence, while the forward primer (-1F) was sited 

immediately downstream of the deletion. The primer pairs used to make the subsequent deletions were designed from 

the CCYV p22 cDNA sequences flanking each deletion, except for the forward primer (-4F) used to delete of the final 

segment of the protein which corresponded to the stop codon plus the downstream vector sequence. The double mutant 

DEL1&2 was made using the primer pair -F2 & -R1. The sequences of all primers are included in Table 1, with a 

schematic depiction of the fusion proteins shown in Fig 6A.

2.3 Expression in E. coli and purification of recombinant proteins 

Expression, crude isolation and amylose resin column purification of the MBP protein and the recombinant MBP-ToCV 

p22, MBP-CCYV p22, MBP-CYSDV p22, MBP-CYSDV p25, and MBP-CCYV p22 deletion mutants was according to the 

manufacturer’s standard protocols (New England Biolabs). Induction of protein expression with 1mM IPTG was all cases 

carried out at 18 °C for 16 h. The purified proteins were analysed and quantified on 12 % sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie blue dye. 

2.4 Preparation of DIG-labelled RNA probes
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Two different DIG-labelled negative sense (-) ssRNA probes were created by transcription of linearized plasmids 

containing cDNAs corresponding to either a 296 nt fragment derived from Penicillium stoloniferum virus F segment 3 

(PSV-Fs3) or the entire 3’ UTR (346 nt) of CCYV RNA 2, that had been linearized with restriction enzymes at the end of 

the coding sequence, using T3 RNA polymerase in the presence of DIG-11-UTP. 

A dsRNA probe was created by mixing equimolar amounts of the (-) PSV-Fs3 probe and a homologous (+) sense probe 

transcribed in the opposite sense from the same plasmid cut at the far end of the cDNA sequence using T7 polymerase. 

The two strands were allowed to anneal under gradual cooling following heat denaturation. 

The three small (21, 22 and 24 nt) ssRNAs (5’-GGCAAGUAUAGAGUCAATCCC-3’, 5’-

GGCAAGUAUAGAAGUCAAUCCC-3’, and 5’-GGCAAGUAUAGAUAAGUCAATCCC-3’), each incorporating a DIG 

molecule at its 3’ end, have been previously described (Serra-Soriano, 2015).

The small DIG-labelled dsRNAs (ds siRNAs) were designed as two complementary 21 nt oligonucleotides (5’-

ACUGGAGUUGUCCCAAUUCUU-3’ and 5’-GAAUUGGGACAACUCCAGUGA-3’) with each incorporating a molecule of 

DIG attached to a 2 nt 3’ overhang and synthesized and provided as a duplex (Eurogentec). 

2.5 Electrophoretic mobility shift assays

Nucleic acid-protein interactions were analysed by electrophoretic mobility shift assay (EMSA). For these assays 7 ng of 

DIG-labelled riboprobe was denatured (5 min at 95 °C), and incubated with either increasing amounts (0-6 μg) of MBP 

fusion protein, or with 6 μg MBP, for 30 min at room temperature in 1X binding buffer (10 mM Tris-HCl pH 8.0, 100 mM 

NaCl and 50 % glycerol) with 1U of Recombinant Ribonuclease Inhibitor (NEB). The samples were then resolved in 1 % 

TAE agarose gels before capillary transfer to positively charged nylon membranes (Hybond-N, GE Healthcare 

Amersham). Following fixation by baking of the nucleic acids to the membrane (80 °C for 2 h), localization of the DIG-

labelled probes was achieved by development with an anti-DIG system (Roche Diagnostics) according to the 

manufacturer’s protocol.

For the EMSAs with the siRNAs, resolution of the products was achieved by different means: the samples incubated with 

the 21-24 nt ss siRNAs were separated on 5 % polyacrylamide gels (Tris-acetate pH 7.2) at 75 mA for 30 min in 360 mM 

Tris-pH 7.2, 300 mM NaOAc and 1.1 mM EDTA, with the transfer was achieved using semi-dry electrotransfer in 1X 

TBE. For the 21 nt ds siRNAs, samples were resolved on 2.5 % TAE agarose gels, and transferred by capillary action.

2.6 Effect of ionic coditions on RNA-binding 

The salt-dependence assay was conducted as above, but using fixed amounts of MBP-CCYV p22 and DIG-labelled 

PSV-F (-) probe (5 µg, and 7 ng respectively), incubated together with increasing concentrations of NaCl (0, 230, 300, 

400, 500, 600 and 750 mM) present in the binding buffer.
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2.7 Competition assays 

For the competition experiments, non-labelled dsRNA of P. stoloniferum virus F+S (PSV-F+S) was extracted from virions 

by phenol-chloroform extraction and ethanol precipitation of a glycerol stock kindly provided by Dr. R. Coutts (University 

of Hertfordshire, UK). The extract consists of 5 dsRNA elements ranging in size from 677-1753 nt.

3. Results 

3.1. CCYV p22 binds single stranded-RNA in vitro in a sequence non-specific manner

In order to generate crinivirus RNA1-encoded target proteins CCYV p22, CYSDV p22 and p25 and ToCV p22 (Fig. 1), 

expression in E. coli bacterial cells of the respective MBP-fusions was IPTG-induced overnight at 18°C. This treatment 

resulted in adequate quantities of intact soluble fusion proteins, which could then be isolated at high purity by amylose 

column chromatography. 

Initially, progressively increasing amounts of each purified MBP-fusion protein was tested in EMSA. In the binding 

reactions, 7 ng of in vitro transcribed DIG-labelled single stranded (ss) RNA was incubated with increasing amounts of 

purified protein. The electrophoretic mobility of the RNA probe after incubation with the protein was compared with that 

of the free probe in non-denaturing agarose gels and examined following transfer onto nylon membranes. In these 

experiments, Melon necrotic spot virus (MNSV) coat protein (CP) was used as a positive control for its previously 

documented ability to bind ssRNA in a non-specific manner (Fig. 1A; Serra-Soriano et al., 2017). When a 390 nt long 

ssRNA derived from the MNSV 3’-untranslated region (UTR) was used as a probe (Navarro et al., 2006), an alteration on 

the RNA migration pattern could be observed in the presence relatively large amounts of CCYV p22: an initial RNA shift 

was detected when 2 g of protein were used and, when 4 g or more protein was introduced, a high molecular weight 

RNA:protein complex could be observed in the upper part of the gel (Fig. 2D). Identical experiments using CYSDV p22 

and p25 did not generate any RNA shift (Fig. 2B-C). 

The RNA-binding ability of CCYV p22 was further investigated against two more RNA probes. When the complete CCYV 

RNA 2 3’-UTR (346 nt) was used, a progressive decrease of the free RNA signal could be observed (Fig. 3A). At this 

point it is important to note that although a heat denaturation step was introduced to relax the secondary structure of the 

RNA, free RNA population still showed a high proportion of highly structured RNA molecules that disappeared after 

increasing concentrations of the protein. In an additional EMSA, the 296 nt-long ssRNA probe derived from the 

Penicillium stoloniferum virus F segment 3 (27-322 nt) was used (Fig. 3B). In this assay, a gradual reduction of the free 

RNA signal could be observed as MBP-CCYV p22 concentrations in the binding reaction progressively increased (1-6 

g), whereas complete disappearance occurred when at least 6 g of MBP-ToCV p22 was included. Again, the free 

RNA band disappeared, and the resulting complex, which could not enter the electrophoresis gel, was even difficult to 

transfer to a nylon membrane (a step required for the detection of the probe; see Materials and Methods section) as 
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previously described (Herranz and Pallas, 2004). High concentrations of non-recombinant MBP (expressed and purified 

under the same conditions as the recombinant MBP-CCYV p22) were also tested. There was no detectable reduction in 

either free RNA probe or the formation of a retarded RNA:MBP complex, ruling out the possibility that MBP or any 

contaminating proteins from E. coli might contribute to the RNA-binding activity attributed to MBP-CCYV p22. 

Collectively, these experiments suggested a non-sequence specific ability of CCYV p22 to bind ssRNA in vitro.

3.2. CCYV p22 binds double-stranded RNA molecules 

To check the capability of MBP-CCYV p22 to bind dsRNA molecules, the same quantities of DIG-labeled ssRNA probe 

and purified MBP-CCYV p22 were incubated in the presence of increasing amounts of unlabeled Penicillium 

stoloniferum virus (PSV) genomic dsRNA extracted from purified virions (Buck & Kempson-Jones, 1970; Fig. 4A). In this 

experiment, the introduction of increasing amounts of a dsRNA competitor (in molar ratios of 1:1, 1:3, 1:10 with the 

ssRNA probe) resulted in a progressive reversion of the bound ssRNA to a free state (Fig. 4A). To confirm that dsRNA 

molecules bound to the recombinant MBP-CCYV p22, EMSAs were also carried out using in vitro DIG-labelled PSV 

dsRNA (Fig. 4B). In these experiments, it can be observed that the dsRNA probe was also shifted in a similar manner to 

that seen with the ssRNA (Fig. 2B) but with lower affinity, as a larger quantity of protein was required to produce the 

same degree of probe shifting. These results indicate that CCYV p22 binds both ss- and dsRNA in a non-sequence 

specific manner but in the latter case with apparent lower affinity.

3.3. The effect of ionic conditions on the in vitro binding activity of CCYV p22

The dependence of CCYV p22 RNA-binding ability on electrostatic interactions was assessed by progressively 

increasing the NaCl concentration in the incubation mixtures and evaluating the complex dissociation by quantifying the 

appearance of free RNA via film densiometry (Fig. 5). Previous results for MBP-CCYV p22 binding to ss- and dsRNA- 

(Fig. 3B and 4B), had indicated preferential binding to ss- rather than dsRNA, and similar results were obtained the 

dependence of this binding on electrostatic interactions was examined. By comparing both IC50s, there appears to be a 

stronger interaction between CCYV p22 and ssRNA molecules: a 600 mM NaCl concentration was required to reduce 

the binding to 50 % of the maximal level (Fig. 5B), while only 300 mM NaCl was sufficient to produce the same effect in 

the case of the dsRNA binding (Fig. 5D).These results reveal a higher stability of the ssRNA-protein complexes, in terms 

of the NaCl molarity required to dissolve them, that are similar to those observed for some other RNA-binding proteins of 

viral origin (Brantley & Hunt, 1993; Richmond et al., 1998; Marcos et al., 1999). These observations suggest that the 

formation of the complex is not solely the consequence of the electrostatic interactions between the RNA and the basic 

amino acids of p22. 

3.4. Characterization of the RNA-binding domain of CCYV p22

Following characterization of the binding of CCYV p22 to different RNA molecules, attempts were made to identify the 

particular region of the protein responsible for the RNA binding properties. For this purpose, a set of five MBP-CCYV p22 
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deletion mutants that together covered the complete length of CCYV p22 were constructed (Fig. 6A). Each MBP-CCYV 

p22 mutant was utilized in three different amounts (0.3, 3 and 6 g) in EMSA assays, incubating them with either ss- or 

dsRNA PSV-derived DIG-labelled probes (Fig. 6B and 6C, respectively). In these experiments, and similarly to full length 

MBP-CCYV p22, all the mutants were able to bind ssRNA molecules more efficiently (Fig. 6B). Some deletions (del1, 

del2 and del 1+2) cause the protein to bind with a higher affinity whereas others (del 3 and del 4) bound the probe less 

efficiently.  A similar behaviour was observed for the dsRNA probe (Fig. 6C). These results suggest that the F-box (Chen 

et al., 2019), which is entirely included in DEL 2, is not essential for ssRNA binding but that within the terminal amino 

acid residues 76-188 (DEL 3 and DEL 4) there are elements essential for dsRNA binding.

3.5. CCYV p22 exhibits siRNA-binding ability

siRNAs (21, 22 and 24 nucleotides long) are produced when long dsRNA molecules are cleaved by DICERs and 

constitute key components of the RNA silencing effector complex RISC, providing specificity for downstream targeted 

degradation of mRNA. Each group interacts with different AGO proteins to produce RISC complexes that confer effective 

silencing activity (Voinnet, 2005; Pumplin & Voinnet, 2013). The ability of CCYV p22 to bind ss and ds siRNAs was also 

tested (Fig. 7).

For this purpose, approximately 7 ng of each of the randomly synthesized ss siRNAs, of 21, 22 or 24 nucleotides (Fig. 

7A, 7B and 7C, respectively) were incubated with varying concentrations of purified MBP-CCYV p22. As the MBP-CCYV 

p22 concentration progressively increased, siRNA:protein complexes could be observed to remain in the wells of the gel. 

It should be noted that the 24 nt-probe required lower amounts of MBP-CCYV p22 to form a detectable complex (Fig. 

7C).

The ability of MBP-CCYV p22 to bind to ds siRNAs was also examined. MBP and ToCV p22 were also included as 

negative controls, as the latter although a strong VSR, has been reported not to bind 21-nt ds siRNAs (Landeo-Rios et 

al., 2016). As shown in Fig. 7D, identical migration was observed for the 21 nt dsRNA probe whether alone or following 

incubation with MBP or MBP-ToCV p22. On the contrary, at high concentrations of MBP-CCYV p22 (2-6 g) 

ribonucleoprotein complexes with reduced electrophoretic mobility were formed in a concentration-dependent manner.

 

4. Discussion

In recent years, it has become apparent that a number of proteins encoded by 3’-proximal ORFs of crinivirus RNA 1 are 

able to suppress RNA silencing (Kreuze et al., 2005; Cañizares et al., 2008; Cuellar et al., 2009; Kataya et al., 2009; 

Kubota & Ng, 2016; Mashiko et al., 2019; Orfanidou et al., 2019; Chen et al., 2019) or/and to bind RNA (Wang et al., 

2010; Weinheimer et al., 2014; Landeo-Ríos et al., 2016). For these proteins, typically expressed from the earliest 

stages of infection (Klaassen et al., 1996; Salem et al., 2009; Orilio et al., 2014), there is increasing evidence that 

significant divergence in their manner(s) of action exists. 
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Our first EMSA experiments showed that relatively large amounts of MBP-CCYV p22, but not CYSDV p22 and p25, were 

able to incorporate positive sense ssRNA derived from an unrelated (MNSV 3’-UTR) genomic segment into a complex of 

high molecular weight. More efficient RNA binding was achieved using the in vitro-transcribed 3’-UTR of CCYV RNA2 as 

the probe, since lower amounts of protein were required to shift it. For all ssRNA probes, the type of RNA:protein 

complex formed suggested a sequence non-specific type of binding. The gradually decreasing mobility of the probe 

RNA, observed for both ssRNA or long dsRNAs, is most probably an indication that multiple units of p22 can bind to the 

RNA, a notion that is supported by the lack of abolishment of the binding by any of the DEL mutants to the ssRNA probe. 

EMSA results obtained with ss and dsRNA probes revealed a preference of CCYV p22 for ssRNA molecules since a 

lower amount of protein was required for probe shifting and a higher concentration of NaCl was required to dissociate the 

RNA:protein complex. These results also suggest that other, non-electrostatic interactions may be involved in the binding 

process.

CCYV RNA 1-encoded p22 is a reported weak suppressor of RNA silencing and in coinfiltration experiments in the 

tissues surrounding the GFP- and p22-infiltrated area, a fine dark zone appeared, indicating there to be no interference 

with the short-range cell-to-cell movement of RNA silencing signal (Orfanidou et al., 2019). Moreover, CCYV p22 is able 

to suppress local silencing directly induced by the production of dsRNA, suggesting that it inhibits RNA silencing in 

parallel with, or downstream of, the production of dsRNA. Northern blots by Chen and co-workers (2019) showed the 

reduced accumulation of GFP-specific siRNAs in GFP/ p22-agroinfiltrated patches and may indicate a mechanism that 

alters their abundance or integrity. This observation prompted us to investigate the ability of CCYV p22 to bind RNA. 

Although a non-specific in vitro RNA binding activity alone cannot be used to predict the in vivo function of a protein, the 

finding that CCYV p22 binds in vitro ss- and ds siRNAs firstly suggests a connection with its RNA silencing suppression 

activity, and secondly, that it may contribute to the reduced GFP-specific 24 nt-long siRNAs accumulation reported by 

Chen et al., (2019). Interestingly, our experiments also show increased binding affinity for the 24 nt-long ss siRNAs.

CCYV p22 possesses an F-box-like motif essential for the interaction with cucumber SKP1LB1 and for its silencing 

suppressor activity. However our CCYV p22 DEL2 mutant could still bind ss or dsRNA molecules in vitro. For the most 

intensely-studied crinivirus, LIYV, the binding of RNA by p34 has been proposed to bridge RNA 1-encoded replication 

proteins to RNA 2, in the only crinivirus identified to date for which the RNA 1 and 2 share no nucleotide conservation at 

their 3’-UTRs (Kiss et al., 2013). An additional role for CCYV p22 in the virus life cycle cannot be discounted. SPCSV 

utilizes a VSR (p22) and an RNaseIII-type protein, the latter cleaves siRNAs to effect RNA silencing suppression in a 

cooperative manner (Weinheimer et al., 2014). The possibility that CCYV p22 may exhibit a similar activity was not 

addressed in this study. Interestingly, the VSR ToCV p22, which has a stronger and longer lasting effect than CCYV p22, 

has been shown to preferentially bind long dsRNAs (but not siRNA) and protect them from cleavage (Landeo-Rios et al., 

2016). In this context, the present study adds data in the body of information towards a high degree of sophistication in 

the modes of action and other potential biological role(s) of crinivirus VSRs.
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Fig. 1. Schematic representation of the RNA 1 of eight criniviruses. CCYV = Cucurbit chlorotic yellows virus (JQ904628); 

CYSDV = Cucurbit yellow stunting disorder virus (NC_004809); BnYDV = Bean yellow disorder virus (NC_010560); LCV 

= Lettuce chlorosis virus (NC_012909); SPCSV = Sweet potato chlorotic stunt virus (NC_004123); ToCV = Tomato 

chlorosis virus (NC_007340); LIYV = Lettuce infectious yellows virus (NC_003617), and BYVaV = Blackberry yellow vein 

associated virus (NC_006962.2). Different boxes represent specific ORFs: patterned boxes represent ORFs that 

encoded RNA-binding proteins and grey shaded boxes represent ORFs that code for suppressors of RNA silencing.

Fig. 2. Representative EMSA assays with a DIG-labelled probe from Melon necrotic spot virus (MNSV) 3’-untranslated 

region. MNSV CP was used as a positive control (A) and the ssRNA-binding ability of other three crinivirus-encoded 

proteins was tested: B) CYSDV p22, C) CYSDV p25 and D) CCYV p22. A constant amount of the DIG-labelled RNA 

probe (7 ng) was incubated with increasing amounts of the proteins (as indicated). To visualize the interactions, after 

incubation the RNA/protein mixtures were resolved on agarose gels and transferred to nylon membranes. The RNAs 

were detected with anti-DIG antibody and chemiluminescent substrate.

Fig. 3. Affinity of Cucurbit chlorotic yellows virus (CCYV) to different size and nature ssRNA probes. Representative 

EMSA assays with A) 346 nt 3’-UTR RNA 2 CCYV DIG-labelled ssRNA, B) 296 nt Penicillium stoloniferum virus-F DIG-

labelled ssRNA. Maltose binding protein (MBP) and Tomato chlorosis virus p22 were used as negative and positive 

controls, respectively. A constant amount of the DIG-labelled RNA probes was incubated with increasing amounts of 

MBP-CCYV p22 (as indicated above). 

Fig. 4. Representative EMSA assays showing the affinity of Cucurbit chlorotic yellows virus (CCYV) p22 to dsRNA 

molecules in competition analysies where A) an unlabeled Penicillium stoloniferum virus (PSV) genomic dsRNA 

extracted from purified virions served as a competitor and B) a 296 nt PSV-F DIG-labelled dsRNA probe. Maltose 

binding protein (MBP) and Tomato chlorosis virus  p22 were used as negative and positive controls, respectively. 

Constant amounts (7 ng) of the 346 nt 3’-untranslated region CCYV RNA 2 DIG-labelled ssRNA and MBP-CCYV p22 

were incubated with increasing amounts of unlabeled PSV dsRNA competitor (A) and, a constant amount of the 296 nt 

PSV-F DIG-labelled dsRNA probe was incubated with increasing amounts of MBP-CCYV p22 (B) as indicated above. To 

visualize the interactions, the RNA/proteins were transferred to nylon membranes and the RNAs detected with anti-DIG 

antibody and chemiluminescent substrate.

Fig. 5. Influence of NaCl concentration on the RNA-binding activity of MBP-CCYV p22. Both PSV-F DIG-labelled ss- (A) 

and dsRNA (C) probes were incubated alone or with with a constant amount of MBP-CCYV p22 (5 μg) in the presence of 

increasing concentrations of NaCl, before and the migration of the DIG-labelled RNA probe was analysed by EMSA. 

Protein-RNA complexes were analysed on a 1 % agarose gel and quantified by densiometry. The fraction of free RNA 

[RNA]/[RNA]t was plotted against [NaCl] in mM for the ss- (B) and dsRNA (D) EMSAs.

Fig. 6. Analysis of RNA-binding properties of Cucurbit chlorotic yellows virus (CCYV) p22 deletion mutants. A) 

Schematic representation of the maltose bnding protein (MBP)-CCYV p22 fusion protein and its deletion mutants, 
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showing the deleted amino acids of each construct on the right. Representative EMSAs showing the affinity of MBP-

CCYV p22 fusion protein and its deletion mutants to the 296 nt PSV DIG-labelled ss- (B) and dsRNA (C) probes. A 

constant amount of the DIG-labelled RNA probe was incubated with increasing amounts of the fusion proteins for the 

RNA-binding assay. MBP was used as negative control. To visualize the interactions, the RNA/ proteins were transferred 

to a nylon membrane and the RNAs detected with anti-DIG antibody and chemiluminescent substrate.

Fig. 7. Affinity of Cucurbit chlorotic yellows virus p22 to 21, 22 and 24 nt ssRNAs and 21 nt dsRNAs. Representative 

EMSAs with A) 21, B) 22 and C) 24 nt DIG-labelled ssRNAs and D) 21 bp DIG-labelled dsRNA. A constant amount of 

the DIG-labelled RNA probe was incubated with increasing amounts of MBP-CCYV p22 (as indicated above each lane). 

Maltose-binding protein and Tomato chlorosis virus p22 were used as negative controls for the 21 nt dsRNA binding 

assay. 
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Table 1 Primer pairs used to create the MBP-CCYV p22 fusion protein and its deletion mutants. 

Oligonucleotide Primer 

Name            Primer sequence (5’-3’)            Position in CCYV RNA1    Use 

           Acc. No AB5237788

CCYVp22FBam GGATCCATGAATAATCGTAAATTTTTCGA 7791- 7813 cDNA cloning 

CCYVp22RPst CTGCAGTTATATTACGAACTTATTAAGAG 8357- 8335 cDNA cloning

CCYVp22_Del1F TTCAGTTTAGATGATGACATAATATACG 7905 – 7932 RTH

CCYVp22_Del1R GGATCCGAATTCTGAAATCCTTC 7794 - 7895 RTH

CCYVp22_Del2F GTCACAGAGTATGATGTGTGTG 8016 - 8037 RTH 

CCYVp22_Del2R CAGGAAATATCGACAATCTTTCACA 7904 - 7880 RTH 

CCYVp22_Del3F CTCTCCATTGATGTAGAACTCGA 8184 - 8206 RTH 

CCYVp22_Del3R GAAAAATTCTCTAAACAACCTTGGGT 8105 - 7990 RTH 

CCYVp22_Del4F TAACTGCAGGCAAGCTTGGCA 8357 - 8354 RTH 

CCYVp22_Del4R AAAAAGTCTTATAAGATCACCGATGG 8183 - 8305 RTH 
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