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Abstract: Despite its widely tested and proven usefulness, there is still room for improvement in
the basic permutation entropy (PE) algorithm, as several subsequent studies have demonstrated in
recent years. Some of these new methods try to address the well-known PE weaknesses, such as
its focus only on ordinal and not on amplitude information, and the possible detrimental impact of
equal values found in subsequences. Other new methods address less specific weaknesses, such as
the PE results’ dependence on input parameter values, a common problem found in many entropy
calculation methods. The lack of discriminating power among classes in some cases is also a generic
problem when entropy measures are used for data series classification. This last problem is the one
specifically addressed in the present study. Toward that purpose, the classification performance
of the standard PE method was first assessed by conducting several time series classification tests
over a varied and diverse set of data. Then, this performance was reassessed using a new Shannon
Entropy normalisation scheme proposed in this paper: divide the relative frequencies in PE by the
number of different ordinal patterns actually found in the time series, instead of by the theoretically
expected number. According to the classification accuracy obtained, this last approach exhibited a
higher class discriminating power. It was capable of finding significant differences in six out of seven
experimental datasets—whereas the standard PE method only did in four—and it also had better
classification accuracy. It can be concluded that using the additional information provided by the
number of forbidden/found patterns, it is possible to achieve a higher discriminating power than
using the classical PE normalisation method. The resulting algorithm is also very similar to that of PE
and very easy to implement.
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1. Introduction

Despite its relatively young age in comparison with other entropy statistics, permutation entropy
(PE) has already become one of the most utilised time series entropy-related measures. It was proposed
in the well known paper by Bandt and Pompe [1] in 2002, and since then, it has given rise to a number
of applications and further algorithm developments. This number is growing exponentially [2],
which confirms the goodness of the PE approach.

Regarding PE applications, this measure has been used in many fields, such as medicine,
engineering, seismology, and economics. In medicine, it has been frequently used as a diagnostic aid
to disclose information hidden in physiological time series. The most common physiological time
series processed using PE are probably electroencephalograms (EEG) and electrocardiograms, but in
the form of R-wave interval series (RR records). For example, in [3], PE was applied to EEG records
to find seizure-free, pre-seizure, and seizure phases. This a recurrent application in many similar
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studies. The work described in [4] assessed two classifiers based on logistic regression and quadratic
discriminant analysis to detect obstructive sleep apnea using PE as one of the features extracted from
RR records. Other biomedical signals successfully processed using PE are body temperature time
series [5] and glucose records [6]. These are just a few examples of the huge number of medical
applications based on PE. A more detailed survey is described in [2].

Engineering is another field that has exploited the PE capabilities. It has been mainly used in
mechanical engineering for fault detection. That is the case in [7], where the authors described a
mathematical tool based on PE for bearings fault type diagnosis. Many similar applications can
be found in the scientific literature [7,8]. There are other novel and interesting implementations in
mechanical engineering, such as [9], where PE was used to assess road flatness.

Seismology and economics are emergent fields of PE utilisation. The work in [10] used noise
randomness assessed by PE to quantify its changes as a possible precursor of volcanic activity.
An example of PE used in economics is [11]. This work described a method based on PE to detect
changes in stock market data.

The basic PE algorithm has also been improved or customised since its initial version. PE is based
on the relative frequency of ordinal patterns that can be drawn from a time series, but it overlooks
the information embedded in the amplitude. As a consequence, some PE-derived methods have
been devised to address this problem, such as the weighted permutation entropy [12] (WPE), the fine
grained permutation entropy [13] (FGPE), and the amplitude aware permutation entropy [14] (AAPE).
A comparative analysis of these measures has been recently reported in [15]. Other problems, such as
order ambiguities due to equal value samples in subsequences (ties), have been addressed in [14,16],
with practical analyses described in [17,18]. Other PE algorithm tweaks can be found in the scientific
literature; for instance, the bubble entropy (BE) method [19], aimed at improving the robustness of PE
in terms of input parameters.

However, there is another topic related to PE that has not been very much exploited in practical
term—forbidden patterns. When analysing the order (either ascending or descending) of a numeric
subsequence of length m, theoretically, any of the m! possible permutation patterns could be found.
This is true for random sequences where the probability of occurrence of each ordinal pattern is not
zero, provided the total length suffices to allocate even the least probable pattern. Nevertheless, if the
sequence exhibits a certain degree of determinism, some order relations will never occur—the
so-called forbidden patterns [20]. Actually, the numbers of admissible/forbidden patterns have
been demonstrated to provide information with system distinguishing power [21], and a few studies
have exploited this new feature independently of PE for signal classification [22]. Based on all these
previous studies, we hypothesised that a new scheme that could combine standard PE and a metric
related to the number of forbidden patterns, could better portray the dynamics of the underlying time
series, and therefore result in a more powerful measure for signal classification.

Thus, this paper describes a modified PE method by means of integrating the number of ordinal
patterns found (the complementary of the number of forbidden/missing patterns) in the normalisation
step. With this simple customisation, the resulting new method, referred to in this paper as PE2,
in contrast to the standard method, PE1, is clearly more robust and more powerful in terms of signal
classification than the PE1 method, as the experiment results, using a varied and diverse set of time
series, demonstrate in Section 3.

The structure of the paper is as follows. Section 2.1 describes the PE1 algorithm, followed by
Section 2.2, describing the new variant proposed, PE2. Section 2.3 details the time series datasets used
in the experiments. The metrics employed to quantify and assess the performance of the approaches
are outlined in Section 2.4. The quantitative results of all the cases analysed are presented in Section 3.
The Discussion section (Section 4) provides an interpretation of the results. Finally, the conclusions are
described in Section 5.
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2. Methods

2.1. Permutation Entropy

The present study is based on the original PE algorithm described in [1]. This method computes
a normalised histogram of ordinal patterns found in the subsequences drawn from a time series,
when sorted in ascending order, from which the Shannon entropy is calculated. The length of these
subsequences is defined by an input parameter, the embedded dimension m.

Formally, the input time series under analysis is defined as a vector of N components x =

{x0, x1, . . . , xN−1}. A generic subsequence extracted commencing at sample xj of x is defined as a
vector of m components xm

j =
{

xj, xj+1, . . . , xj+m−1
}

. In its original state, the samples in xm
j can be

assigned a default growing set of indices given by πm = {0, 1, . . . , m− 1}. The subsequence xm
j

undergoes, then, an ascending sorting process, and the sample order changes in it are mirrored in the
vector of indices πm. The resulting new version of this vector, πm

j = {π0, π1, . . . , πm−1}, with xj+π0 ≤
xj+π1 ≤ xj+π2 . . . ≤ xj+πm−1 , is compared, in principle, with all the possible m! ordinal patterns of
length m. When a coincidence is found, a specific associated counter to that pattern, ci ∈ c, is increased.
This process is repeated with all the possible N − (m− 1) subsequences (0 ≤ j < N −m + 1) until the
complete histogram is obtained. Each bin of the histogram is finally normalised by N− (m− 1) in order
to get an estimation of the probability of each ordinal pattern: p = {p0, p1, . . . , pm!−1}

∣∣∣pi =
ci

N−(m−1) .
This vector of probabilities is used to calculate PE as:

PE(x, m, N) = −
m!−1

∑
k=0

pklog pk, ∀pk > 0 (1)

There is another input parameter for PE, the embedded delay τ. This parameter, when τ > 1,
defines the time scale at which PE is computed, and it can contribute to gain a deeper insight into the
temporal correlations of the time series [23]. However, since this parameter is almost equivalent to a
downsampling process [14], and given that the present study is a comparative study in relative terms,
we took τ = 1 in all the experiments, as in many other works [1,14,19,22].

Some numerical examples of PE computation can be found in the literature. For examples,
see [15,18,24].

For comparative purposes, another improved version of PE will be included in some experiments,
WPE [12]. The difference is to use a weight factor applied to the relative PE frequencies that
quantifies amplitude values. The weighting factor for each relative frequency is given by wj =

1
m

m−1

∑
k=0

(
xj+k − X m

j

)2
, X m

j being the arithmetic mean of xm
j . The new value W becomes the new

denominator instead of N −m− 1, with W =
N−m

∑
j=0

wj. Further WPE details are described in [15].

2.2. Permutation Entropy Using the Number of Patterns Found

Forbidden patterns, in the sense of patterns that will never occur in a sequence regardless of its
length, have been demonstrated to provide additional information about the determinism degree of
the underlying time series [21]. These forbidden patterns can even be considered as a new dynamical
property [21,25], and have already been used successfully as a quantifier to assess stock market
inefficiency [22]. In cases of unobserved patterns due to low probabilities of occurrence in a relatively
short time series, namely, not truly forbidden but missing patterns [25], they can also be considered
potential distinguishing features if all the records are balanced with regard to length [26]. The numbers
of forbidden and admissible patterns are two sides of the same coin, since they are complementary
and totalise the theoretical number of possible patterns m!.

In a more formal way, if the probability of an ordinal pattern πi is Pπi , for an admissible pattern
Pπi > 0, whereas Pπi = 0 for a forbidden pattern (these probabilities can be thought of as relative
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frequencies for finite length time series). A forbidden pattern implies there is no xm
j in x for which the

ordinal pattern is πi. The presence of a forbidden pattern is heuristically linked to determinism [25],
and its presence causes an even higher number of forbidden patterns for longer subsequences, which
can also be exploited from a classification point of view, as will be described in the experiments later.
For example, if π3

i = {2, 1, 0} is a forbidden pattern of x, for m = 4, {3, 2, 1, 0}, {2, 3, 1, 0}, {2, 1, 3, 0},
and {2, 1, 0, 3} will be also forbidden patterns [20], and so on.

Periodic sequences excellently illustrate the concept of forbidden patterns (a purely deterministic
time series). Let x = {1 , 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3} be a periodic sequence of length N
and period 3. All the subsequences of length m = 3 that can be extracted from x are x3

0 = {1, 2, 3} ,
x3

1 = {2, 3, 1} , x3
2 = {3, 1, 2} , x3

3 = {1, 2, 3} , x3
4 = {2, 3, 1} , x3

5 = {3, 1, 2} , x3
6 = {1, 2, 3} , x3

7 = {2, 3, 1}
, x3

8 = {3, 1, 2} , x3
9 = {1, 2, 3} , x3

10 = {2, 3, 1} , x3
11 = {3, 1, 2} , . . . , x3

N−m = {1, 2, 3}.
When the previous subsequences are ordered, the results are: π3

0 = {0, 1, 2} , π3
1 = {2, 0, 1} ,

π3
2 = {1, 2, 0}, and these three motifs keep repeating indefinitely. It can be easily concluded that motifs
{0, 2, 1}, {1, 0, 2}, and {2, 1, 0}, will never be found in x, even for N → ∞. These three motifs could
therefore be considered forbidden patterns.

Given that PE looks at the dynamics of a time series in terms of relative frequency of ordinal
patters, but overlooks the additional information provided by the number of forbidden/admissible
patterns (which is also related to the randomness of the time series [20]), we hypothesised that there
could exist a potential synergy between the two sources. After studying several integration possibilities,
a straightforward and simple solution was to change the PE probability normalisation factor N−m+ 1,
which accounts for the number of subsequences that can be drawn from the time series, by the actual
number of different ordinal patterns found, termed T.

In principle, PE becomes non-normalised this way, since ∑
∀p

pk 6= 1 in most cases. The T value can

be considered a rescaling or weighting factor that embeds the forbidden patterns information in the
modified PE measure, PE2, and its additional class discriminating power would be lost if an individual
normalisation took place on a signal by signal basis (intrinsic). In order to keep the PE2 results within a
reasonable interval, as with other similar measures, including PE, it is recommended to adopt a global
feature normalisation scheme (extrinsic) after PE2 computation, if normalisation is desired.

There are many feature normalisation methods reported in the scientific literature: Z-Score,
Min-Max, and other linear and non-linear scaling methods [27]. In case it is necessary, we propose
using a linear proportionate normalisation scheme [28]. Each PE2 value can be divided by the sum of
all the PE2 values. Therefore, each result accounts for its relative contribution within the entire set of
results; it does not destroy proportionality (namely, discriminating power), and the newly computed
value can be easily related to the original value. In other words, order and differences are not lost or
modified. Moreover, it is not based on arbitrary choices, and its implementation is straightforward.
An even more convenient variation of this method would be to divide the PE2 values by the maximum
PE2 value obtained in order to keep the range of possible results between 0 and 1 [29], more easily
interpretable.

For example, in [15] the sequence x = {−0.45 , 1.9, 0.87, −0.91, 2.3, 1.1, 0.75, 1.3, −1.6,
0.47, −0.15, 0.65, 0.55, −1.1, 0.3} was analysed from a PE perspective (N = 15, m = 3). As a
result, the counter of the frequencies for each ordinal pattern obtained was c = {0, 4, 3, 1, 2, 3},
with p = {0, 0.31, 0.23, 0.08, 0.15, 0.23}, using N − m + 1 = 13 as the normalisation factor. Since
the ordinal pattern {0, 1, 2} was not found (a missing pattern, because x is a random sequence
and {0, 1, 2} would occur if given more samples), applying PE2, p would have instead given p =

{0, 0.8, 0.6, 0.2, 0.4, 0.6} (T = 5), from which PE2(x, 3, 15) = 2.135 whereas PE1 was PE1(x, 3, 15) =

2.20 [15]. Once the PE2 values from all the time series under analysis were computed, the normalisation
scheme described above could be applied, although it would not be necessary for classification
purposes because the differences would already be in the resulting PE2 values.

As for the PE1 algorithm, a PE2 algorithm can be implemented in many ways, but we have
chosen to use a bubble sort approach to obtain the ordered indices, and dynamically update the
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list of different ordinal patterns found, termed Πm (initially empty), instead of assuming a set with
all the possible m! permutations. This implementation is less computationally efficient due to the
list operations (searching and appending), but it is better suited to implementing the improvements
devised in the PE2 algorithm. Besides, it can be more memory-efficient, since, in case of forbidden
patterns, as in many chaotic time series [22,30,31], there is no need to store all the theoretically possible
m! ordinal patterns, only those really found in the data. This could entail significant memory savings
when m is relatively large and/or forbidden patterns are frequent [26]. Last but not least, a linked-list
facilitates the implementation and even integration of other PE variants based on a dynamic generation
of patterns, such as FGPE [13]. Based on this approach, a suggested implementation is shown in
Algorithm 1.

Algorithm 1 Permutation entropy scaled by the number of patters found (PE2) algorithm.

Input: x, m > 2, N > m + 1
Initialisation: PE2← 0, c← {∅}, p← {∅}, Πm ← {∅}
for j← 0, . . . , N −m do

xm
j ←

{
xj, xj+1, . . . , xj+m−1

}
πm ← {0, 1, . . . , m− 1}
bSorted← false
while (bSorted=false) do . Bubble sort

bSorted← true
for i← j, . . . , j + m− 2 do

if (xi > xi+1) then
swap(xi, xi+1)
swap(πi, πi+1)
bSorted← false

end if
end for

end while
bFound← false
for i← 0, . . . , sizeof (Πm) do . List search

if πm
j = Πm

i then . Ordinal pattern found
ci ← ci + 1 . Update counter
bFound← true
break . Pattern found, exit loop

end if
end for
if not bFound then . Ordinal pattern not found

Πm ⇐ πm
j . Append pattern to list

c⇐ 1 . Append and initialise pattern count
end if

end for
T = sizeof (Πm)
for i← 0, . . . , T do

p⇐ pi ← ci
T . DESNORMALISATION

PE2← PE2+(−pilog pi)
end for

Output: PE2(x, m, N)

The PE2 algorithm can become equivalent to PE just by replacing T by N − m + 1 at the line
labelled DESNORMALISATION in Algorithm 1. If the records are very short, it is not just a question
about forbidden patterns but about the low probabilities of certain ordinal patterns. If all the classes
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exhibit the same behaviour in terms of length, this should not be an influencing factor; otherwise, a
length normalisation scheme should be devised.

2.3. Experimental Dataset

First, the addition of synthetic databases was considered, since this kind of records is also very
useful for characterising the performances of methods under more controlled conditions. In a very
recent paper [32], we proposed to use a hidden Markov model to create synthetic records based on
transition probabilities of their ordinal patterns of length m = 3. This is a very suitable tool to create a
synthetic dataset for the present study, since the main difference between PE1 and PE2 is the use of the
number of actual ordinal patterns found. Assigning a 0 probability to some ordinal pattern transitions,
the frequency of the destination pattern can be minimised, and for m > 3, the probability of derived
patterns is likely to reach 0, since the number of forbidden patterns grows superexponentially [20].

aij being the transition probability between consecutive states qi and qj at time t, aij =

p
[
Statet+1 = qj|Statet = qi

]
, and the following correspondence between model states and ordinal

patterns: q0 ← (0, 1, 2), q1 ← (0, 2, 1), q2 ← (1, 0, 2), q3 ← (1, 2, 0), q4 ← (2, 1, 0), and q5 ← (2, 0, 1),
100 records of two synthetic classes were generated using this model. For one class, the transition
probabilities were aij = {0.5, 0.5, 0.0}, and for the second class aij = {0.5, 0.0, 0.5}, probabilities defined
as in [32]. Therefore, each class penalised a different transition, and that would impact the number of
patterns found at m = 4 and beyond in a different way for each class, since the model is not symmetric
(see details in [32]). An example of the resulting signals is shown in Figure 1. The experiments on
these records used 10 random realisations in each test.
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Figure 1. Example of synthetic signals of the experimental database.

In addition, a real experimental dataset was chosen with the primary goal of assembling a publicly
available collection of widely representative data of the most common time series entropy applications.
This would enable other researchers to replicate the experiments and draw sound conclusions about
the most likely performance under a disparity of conditions, not just for a single dataset/case, as occurs
in many studies. Figure 2 depicts an example of one signal from each dataset used, described next:

• BONN. This database was collected at the Department of Epileptology, University of Bonn [33],
and is a frequently used dataset found in many similar research studies [17,34–38]. The length of
the records is 4097, with two classes of 100 time series each, corresponding to seizure-free and
seizure-included electroencephalograms (EEGs). This dataset was chosen due to its popularity
among the scientific community, and because EEGs are the focus of many entropy-related studies.

• GAIT. The records included in this dataset were drawn from Physionet gait in the ageing and
disease database [39]. Although this is a small collection of gait data, with only five subjects per
class, we found it very representative of another group of physiological data, not as common as
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EEGs, and useful to explore algorithms’ performances. The 15 records correspond to five healthy
young adults, five healthy old adults, and five old adults with Parkinson’s disease. The data are
stride intervals [40]. The length of the records is around 800 samples for healthy subjects, and it
is 200 for pathological ones, which suffices for a representative classification analysis using PE,
according to recent studies [26]. Anyway, a variation of this subset, termed GAIT2, where all the
records were cut short to 200 samples, was included in the experiments for comparative purposes.

• FANT. The fantasia dataset contains 120 min of electrocardiographic and respiration data from 20
young and 20 elderly healthy subjects, and it is also available at [39]. Only the RR-interval time
series were used in the experiments in this paper. RR records are also a field of intensive research
[4,41–44]. A detailed description of this database can be found in [43].

• RATS. Records of blood pressure readings from Dahl SS rats on high and low salt diets [45].
The database contains nine records of each class, sampled at 100 Hz, with a total length of 12,000
samples [39].

• WORMS. This database corresponds to the recorded 2D movement of genetically-modified worms
[46–48], and is publicly available at www.timeseriesclassification.com. It was included to have a
dataset not related to physiological records, and to widen the scope of the analysis. Specifically,
there were 181 records of two classes (76 wild-type and 105 mutant type) of length 900 in this
subset used in the experiments.

• HOUSE. The records in this database are also publicly available at www.timeseriesclassification.
com, and they correspond to non-physiological data too. There are two classes of 20 records each,
with 1022 samples per record [49].

• PAF. This dataset contains paroxysmal atrial fibrillation (PAF) records [50]. There are two classes
of 25 records, each one (PAF and PAF-free episodes) five minutes in duration. These records were
also drawn from [39].
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PAF
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Figure 2. Example of real signals of the experimental database.

2.4. Performance Analysis

The performance of each approach under analysis was quantified using the classification accuracy:
ratio of correctly classified records. Significance of this classification was qualitatively assessed by
means of sensitivity (Se) and specificity (Sp), since very unbalanced results (for example, 0.7 accuracy
with Se = 0.4 and Sp = 1 is not considered significant, at least a minimum 0.6 result is required),
reflect an underlying poor discriminating power, regardless of the global classification accuracy.
The classification threshold was taken as the ROC (receiver operating characteristic) curve point closest
to the (0,1) coordinates [51]. It is important to note that the goal of the study was not to design an
optimal classifier, but to carry out a fair comparison between the performances of the two measures
tested under the same conditions.

www.timeseriesclassification.com
www.timeseriesclassification.com
www.timeseriesclassification.com
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The quantitative significance of the classification accuracy was assessed by means of an unpaired
Wilcoxon–Mann–Whitney test. This is a very robust test that does not require data normality [52].
The significance threshold was set at α = 0.05.

3. Results

The experiments were first carried out using the synthetic dataset described before. Since the
transition probabilities were quite different, both PE1 and PE2 were capable of finding significant
differences between the two classes generated. These results are shown in Table 1. It is important to
note that as m increased, and the differences between classes in terms of patterns found became greater,
and so did the PE2 accuracy, whereas PE1 performance was lower.

Table 1. Performances achieved using the synthetic records, including the number of patterns found in
each case.

Method m = 3 4 5 6 7 8

PE1 Accuracy 1± 0 0.65± 0.04 0.86± 0.07 0.97± 0.01 0.66± 0.09 0.71± 0.08
PE2 Accuracy 0.83± 0.01 0.87± 0.09 0.91± 0.03 1± 0 1± 0 0.99± 0.01

Patterns Class 1 4.32± 0.46 8.30± 0.45 19.51± 0.63 40.85± 1.63 93.14± 2.99 182.82± 5.79
found Class 2 4.33± 0.47 10.01± 0.76 22.71± 1.50 53.35± 1.91 117.08± 5.79 209.71± 8.65

Table 2 shows the classification performances and statistical significance of the results achieved
by the standard PE1 on real records. These experiments also included a variation of the parameter
m, from 3 to 8, since input parameter influence is another topic of intense debate and research in the
scientific literature.

Table 2. Classification results achieved using PE1 applied to the real experimental dataset. Classification
performance is quantified with three parameters: sensitivity, specificity, and accuracy.

m = 3 4 5 6 7 8

BONN 0.93, 0.90, 0.91 0.93, 0.89, 0.91 0.92, 0.89, 0.90 0.91, 0.89, 0.90 0.93, 0.85, 0.89 0.90, 0.85, 0.87
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

GAIT

0.40, 1, 0.70 0.60, 1, 0.80 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1
p = 0.9168 p = 0.2505 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090

0.60, 0.80, 0.70 0.40, 1, 0.70 0.80, 0.80, 0.80 1, 0.80, 0.90 1, 0.80, 0.90 1, 0.60, 0.80
p = 0.4647 p = 0.4647 p = 0.1171 p = 0.0282 p = 0.0282 p = 0.1171

0.80, 0.60, 0.70 0.60, 0.80, 0.70 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1
p = 0.6015 p = 0.6015 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090

GAIT2

0.60, 0.80, 0.70 0.80, 0.80, 0.80 0.80, 0.60, 0.70 1, 0.60, 0.80 1, 0.40, 0.70 0.60, 0.60, 0.60
p = 0.4647 p = 0.0758 p = 0.7540 p = 0.4647 p = 0.7540 p = 0.7540

0.60, 0.60, 0.60 1, 0.60, 0.80 0.80, 0.80, 0.80 1, 0.60, 0.80 0.80, 0.40, 0.60 0.40, 0.80, 0.60
p = 0.9168 p = 0.2505 p = 0.2505 p = 0.3472 p = 0.8335 p = 1

0.80, 0.60, 0.70 1, 0.40, 0.70 0.60, 0.60, 0.60 0.60, 0.60, 0.60 0.60, 0.60, 0.60 0.60, 0.60, 0.60
p = 0.4647 p = 0.6015 p = 0.9168 p = 0.9168 p = 0.5970 0.9157

FANT 0.66, 0.66, 0.66 0.88, 0.55, 0.72 0.77, 0.66, 0.72 0.77, 0.66, 0.72 0.77, 0.66, 0.72 0.66, 0.77, 0.72
p = 0.4015 p = 0.2696 p = 0.1451 p = 0.1451 p = 0.1222 p = 0.1023

RATS 0.75, 0.55, 0.65 0.7, 0.65, 0.675 0.55, 0.65, 0.60 0.75, 0.50, 0.625 0.70, 0.50, 0.60 0.45, 0.75, 0.60
p = 0.2792 p = 0.2133 p = 0.2674 p = 0.4488 p = 0.7867 p = 0.4651

WORMS 0.61, 0.67, 0.65 0.60, 0.71, 0.66 0.65, 0.68, 0.67 0.64, 0.70, 0.67 0.65, 0.70, 0.68 0.65, 0.70, 0.68
p = 0.0405 p = 0.0402 p = 0.0340 p = 0.0271 p = 0.0177 p = 0.0096

HOUSE 0.70, 0.60, 0.65 0.75, 0.55, 0.65 0.65, 0.60, 0.62 0.70, 0.60, 0.65 0.75, 0.50, 0.62 0.70, 0.55, 0.62
p = 0.1941 p = 0.1762 p = 0.1941 p = 0.1440 p = 0.1677 p = 0.1198

PAF 0.76, 0.88, 0.82 0.80, 0.84, 0.82 0.80, 0.80, 0.80 0.92, 0.72, 0.82 0.96, 0.68, 0.82 0.92, 0.68, 0.80
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p = 0.0002
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The previous experiments for PE were repeated using the new approach: PE2. These additional
results are shown in Table 3.

Table 3. Classification results achieved using the new approach, PE2, applied to all the time series
databases. Classification performance is quantified with three parameters: sensitivity, specificity,
and accuracy.

Dataset m = 3 4 5 6 7 8

BONN 0.93, 0.89 ,0.91 0.93, 0.89, 0.91 0.90, 0.97, 0.93 0.91, 0.90, 0.90 0.46, 0.79, 0.62 0.91, 0.81, 0.86
p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p = 0.1782 p < 0.0001

GAIT

1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1
p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090

0.60, 0.80, 0.70 0.60, 0.80, 0.70 1, 0.80, 0.90 0.60, 0.80, 0.70 1, 0.40, 0.70 0.80, 0.80, 0.80
p = 0.2505 p = 0.2505 p = 0.0472 p = 0.9168 p = 0.9168 p = 0.2505

1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1
p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090 p = 0.0090

GAIT2

0.60, 0.80, 0.70 0.80, 0.80, 0.80 0.80, 0.60, 0.70 0.60, 1, 0.80 0.40, 1, 0.70 0.60, 0.60, 0.60
p = 0.4647 p = 0.0758 p = 0.6015 p = 0.6015 p = 0.6015 p = 0.7373

0.60, 0.60, 0.60 1, 0.60, 0.80 0.60, 0.60, 0.60 0.60, 1, 0.80 0.40, 0.80, 0.70 0.60, 0.60, 0.60
p = 0.9168 p = 0.2505 p = 0.9168 p = 0.4647 p = 1 p = 1

0.80, 0.60, 0.70 1, 0.40, 0.70 0.60, 0.80, 0.70 0.60, 0.60, 0.60 0.60, 0.60, 0.60 0.40, 0.60, 0.50
p = 0.4647 p = 0.6015 p = 0.7540 p = 0.9168 p = 0.5970 p = 0.9112

FANT 0.65, 0.60, 0.62 0.9, 0.50, 0.70 0.70, 0.60, 0.65 0.85, 0.50, 0.67 0.70, 0.80, 0.75 0.45, 0.75, 0.60
p = 0.0514 p = 0.0619 p = 0.0883 p = 0.0483 p = 0.0024 p = 0.1595

RATS 0.66, 0.66, 0.66 0.77, 0.77, 0.77 0.77, 0.77, 0.77 0.77, 0.77, 0.77 0.77, 0.77, 0.77 0.77, 1, 0.88
p = 0.4015 p = 0.0469 p = 0.0379 p = 0.0379 p = 0.151 p = 0.0091

WORMS 0.61, 0.67, 0.65 0.60, 0.71, 0.66 0.65, 0.68, 0.67 0.73, 0.68, 0.70 0.65, 0.52, 0.58 0.55, 0.51, 0.52
p = 0.0405 p = 0.0511 p = 0.0386 p < 0.0001 p = 0.0874 p = 0.6569

HOUSE 0.70, 0.60, 0.65 0.75, 0.55, 0.65 0.75, 0.50, 0.62 0.55, 0.70, 0.62 0.60, 0.65, 0.62 0.55, 0.70, 0.62
p = 0.1941 p = 0.1762 p = 0.2339 p = 0.1677 p = 0.2335 p = 0.1231

PAF 0.60, 0.76, 0.68 0.60, 0.48, 0.54 0.80, 0.68, 0.74 0.60, 0.56, 0.58 0.72, 0.52, 0.62 0.56, 0.60, 0.58
p = 0.0141 p = 0.7341 p = 0.0064 p = 0.2815 p = 0.3669 p = 0.2815

In order to better support the addition of the number of admissible/forbidden patterns in
the PE method, this number was computed for each dataset. The results of this experiment are
shown in Table 4. A great difference between the number of patterns found for the classes under
comparison, would suggest that the addition of this number could make a significant contribution to
the discriminating power of PE.

Table 4. Actual number of patterns found in each dataset in terms of mean value ± standard deviation.

m = 3 4 5 6 7 8

BONN 6± 0/6 24± 0/24 113.10± 5.37/120 374± 57.17/720 780.43± 154.06/5040 1288.65± 269.85/40,320
6± 0/6 23.03± 1.54/24 79.87± 17.00/120 192.42± 61.17/720 369.93± 127.66/5040 624.79± 211.50/40,320

GAIT
6± 0/6 24± 0/24 100.60± 5.88/120 199± 25.17/720 230± 29.27/5040 235.60± 30.18/40,320
6± 0/6 24± 0/24 119.60± 0.48/120 466.80± 15.52/720 734.40± 41.62/5040 803.20± 57.72/40,320
6± 0/6 24± 0/24 119.20± 0.74/120 429.80± 22.43/720 669.60± 45.23/5040 739.20± 43.06/40,320

FANT 6± 0/6 24± 0/24 119.80± 0.50/120 616.35± 40.47/720 2259.95± 282.22/5040 4470.40± 572.96/40,320
6± 0/6 24± 0/24 119.65± 1.10/120 649.65± 59.37/720 2428.60± 486.31/5040 4592.40± 914.47/40,320

RATS 6± 0/6 15.77± 2.89/24 31.55± 10.41/120 54.44± 21.48/720 86.78± 38.89/5040 132± 68.39/40,320
6± 0/6 13.22± 1.81/24 25± 7.33/120 42.22± 16.55/720 65.44± 29.84/5040 95.11± 46.98/40,320

WORMS 5.93± 0.56/6 23.59± 2.64/24 96.77± 21.11/120 251.07± 114.37/720 378.43± 188.75/5040 456.52± 208.39/40,320
5.95± 0.48/6 23.45± 2.38/24 99.80± 24.40/120 273.28± 108.67/720 425.19± 117.21/5040 524.13± 203.89/40,320

HOUSE 6± 0/6 24± 0/24 106.15± 14.75/120 358.30± 94.82/720 664.90± 155.76/5040 854.30± 121.47/40,320
6± 0/6 23.95± 0.21/24 110.40± 11.40/120 396.90± 92.47/720 722.90± 142.14/5040 899.45± 101.64/40,320

PAF 6± 0/6 24± 0/24 108.44± 12.88/120 300.48± 68.53/720 406.92± 94.72/5040 437.52± 92.95/40,320
6± 0/6 23.52± 0.94/24 87.24± 15.42/120 199.48± 45.72/720 286.88± 51.14/5040 335.88± 46.67/40,320
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Despite the results shown in Tables 2 and 3, some of them could be debatable due to the low
number of subjects, especially in the case of the GAIT database. For this reason, we have included
two plots of the PE1 and PE2 values obtained to visually check the validity of the classification results
for the GAIT database and for the RATS database, with nine members in each class. These plots are
depicted in Figures 3 and 4 respectively. Anyway, it is important to note that the analysis should be
viewed in comparative terms. We are not proposing a classifier for this GAIT dataset; we are assessing
whether PE2 performs better than PE1 or not.
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Figure 3. Range of values for PE1 and PE2 using the optimal m value to achieve the maximum possible
classification accuracy in each case, using the three classes in the GAIT database (OH: old, healthy; OP:
old, Parkinson’s; YH: young, healthy). The OP class is clearly distinguished from the other two in both
cases. The other two groups overlap in one or two class members.
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(a) Range of values for PE1 in one experiment of the
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Figure 4. Range of values for PE1 and PE2 using the optimal m value to achieve the maximum possible
classification accuracy using the two classes in the RATS database (High: high salt diet; Low: low salt
diet). There is an overlapping of three or four members in PE1 for both classes, and that is surely why
PE1 did not achieve statistical significance. For PE2, all the members in class High can be classified
correctly, with an overlapping of the two top members of the Low class. This corresponds to the
numerical results 0.77, 1, and 0.88 in Table 3.

A summary of the best statistically significant performance achieved using the two approaches
assessed (PE1,PE2) is shown in Table 5 for real records. As hypothesised, the combination of PE and the
actual number of patterns, the newly proposed scheme PE2, achieved the highest accuracy, and was
more robust (only one dataset was not significant), than PE alone. Since in a previous study [15],
WPE exhibited the best performance of a group of PE algorithm improvements, Table 5 also includes
the results of applying this method, along with a denormalised version (WPE + number of patterns
found) using the same approach as for PE2, since WPE also enables the computation of the measure
without including the number of expected patterns. WPE has also outperformed PE in other studies,
such as in [53,54].
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Table 5. Summary of the performances achieved by PE1 and PE2, including comparison with the
same approach applied to WPE. Only the best significant case is reported, including the corresponding
m value, in terms of classification accuracy only. If statistical significance was not achieved,
the performance was labelled NS.

Dataset PE1 PE2 WPE WPE+Patterns

BONN m = 3 m = 5 m = 3 m = 3
0.91 0.93 0.80 0.96

GAIT

m = 7 m = 5 m = 5 m = 4
1 1 0.90 0.90

0.90 0.90 NS 0.80
1 1 0.90 1

FANT NS m = 7 m = 8 m = 6
0.75 0.82 0.77

RATS NS m = 8 m = 3 m = 3
0.88 0.77 0.94

WORMS m = 8 m = 6 m = 6 m = 6
0.68 0.70 NS NS

HOUSE NS NS m = 8 m = 8
0.72 0.90

PAF m = 6 m = 5 m = 4 m = 4
0.82 0.74 0.80 0.86

Other factors that are taken into account to assess the utility of an entropy measure are its
dependence on parameters or artefacts, such as time series length and robustness against noise.
The results of a length influence analysis are shown in Table 6. In this case, PE1 and PE2 were
compared using m values for which their performances were most similar and significant, and datasets
with at least 750 samples in their time series.

Table 6. Accuracy achieved for different lengths N. Values tested were 50, 250, 500, and 750. Datasets
had to be at least 750 samples long. Embedded dimension was chosen in order to get the most similar
performances for PE1 and PE2, provided the classification had statistical significance.

Dataset Method N = 50 250 500 750

BONN (m = 6) PE1 0.67 0.78 0.83 0.83
PE2 0.62 0.65 0.73 0.74

GAIT (m = 5) PE1 (0.60, 0.60, 0.70) (0.70, 0.70, 0.70) (1, 0.70, 1) (1, 0.70, 1)
PE2 (0.50, 0.60, 0.70) (0.80, 0.70, 0.70) (1, 0.70, 1) (1, 0.80, 1)

WORMS (m = 5) PE1 0.61 0.61 0.63 0.65
PE2 0.59 0.62 0.68 0.71

Synthetic (m = 6) PE1 0.56± 0.01 0.77± 0.03 0.92± 0.04 0.96± 0.02
PE2 0.60± 0.01 0.90± 0.01 0.91± 0.02 0.99± 0.01

The results of the noise robustness test are shown in Table 7. It is important to note that the
time series were probably already affected by noise, whose level was not known. Therefore, this test
considered the signals completely free of noise when computing the resulting SNR, but in reality it
should be considered lower in practical terms. The levels tested were 40, 30, 25, 20, and 15 dB SNR.
The noise was a random uniform time series added to the experimental datasets, with 10 realisations
for each test.
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Table 7. Accuracy achieved for different levels of synthetic noise. Values tested were 40, 30, 25, 20, and
15dB SNR. Embedded dimension was chosen in order to get the most similar performances of PE1 and
PE2, provided the classification had statistical significance. GAIT results only correspond to a single
case (between healthy young and old adults), since the others were 1 for all the tests.

Dataset Method SNR = 40 dB 30 dB 25 dB 20 dB 15 dB

BONN (m = 6) PE1 0.87± 0.00 0.81± 0.00 0.78± 0.01 0.78± 0.01 0.80± 0.00
PE2 0.87± 0.00 0.78± 0.00 0.78± 0.01 0.83± 0.01 0.83± 0.01

GAIT (m = 5) PE1 0.80± 0.10 0.63± 0.05 0.80± 0.10 0.66± 0.11 0.63± 0.05
PE2 0.80± 0.00 0.76± 0.05 0.80± 0.00 0.73± 0.05 0.70± 0.00

WORMS (m = 5) PE1 0.66± 0.01 0.65± 0.01 NS NS NS
PE2 0.66± 0.01 0.65± 0.01 NS NS NS

PAF (m = 5) PE1 NS NS NS NS NS
PE2 0.72± 0.00 0.70± 0.00 0.70± 0.02 0.70± 0.01 0.71± 0.01

Synthetic (m = 6) PE1 1± 0.00 0.85± 0.22 0.89± 0.01 0.78± 0.03 NS
PE2 0.99± 0.00 0.83± 0.23 0.83± 0.02 0.74± 0.06 NS

4. Discussion

There was a clear correlation in Table 1 between differences in patterns found and accuracy
achieved using PE2 in synthetic records. Since the ordinal patterns were generated using a length
of 3, for m = 3, and its multiple m = 6, the performance of PE1 was high, but far lower for other m
values used in the computation. Those patterns scarcely or did not at all, at m = 3, give rise to a set
of forbidden patterns for m > 3. The number of forbidden patterns grows superexponentially [20],
and that is why the differences between classes became more apparent for higher m values, and only
PE2 was able to take advantage of this effect.

PE2 yielded a higher classification accuracy than PE1 for all the experimental real datasets except
PAF, and it was equal in the GAIT case (Table 5). Moreover, PE1 was unable to find differences in three
out of the seven datasets, whereas PE2 only failed in one. Therefore, it can arguably be concluded
that PE2 has a greater discriminating power than PE1. The experimental dataset was reasonably very
varied and diverse, chosen from publicly available repositories, and used in other similar works.

It is important to note that the PE1 and PE2 results for low m values were very similar. This is
probably due to the fact that there is no significant difference in terms of number of patterns found
between classes for such low values. In fact, these differences become more apparent beyond m = 5
(Table 4).

Specifically, results for the BONN database were Se = 0.93, Sp = 0.90, and Acc = 0.91 for PE with
m = 3, and 0.90, 0.97, and 0.93 respectively, for PE2 with m = 5. This is not a great difference, probably
because the PE1 performance was already very good, despite the clear differences in terms of patterns
found. The situation was the same for the GAIT dataset results. For the FANT dataset, PE1 did not
find significant differences for all the m values tested, but PE2 did for m = 6, 7, precisely where the
relative differences between the two classes in terms of patterns found was the highest. This was also
the case for the RATS dataset: PE1 failed, but PE2 found differences, with higher accuracy correlated
with higher relative differences in the number of patterns found; the maximum performance being
reached at m = 8. The separability of the classes in the WORMS dataset was slightly improved with
PE2. This could be due to the high variability in the number of patterns found, quantified in terms of
standard deviation (Table 4). The records in the HOUSE dataset were not distinguished by any of the
measures tested. This was the only case. These records, as can be seen in Figure 2, are very dichotomic,
and it is very likely that just a few ordinal patterns monopolise most of the matches, making it difficult
to correctly capture the differences between records [26]. In other words, it is not only the number of
patterns found, as with such a regular time series, the motif histogram will be extremely biased.
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The results for WPE also confirmed that the number of actual patterns found carries significant
discriminant information. This method has already demonstrated its performance in previous
studies [12,15], and the replacement of the weights as the normalisation factor by the number
of different patterns found, as for PE (WPE + patterns in Table 5), further improved the WPE
performance in most of the experiments. This fact suggests that the PE2 approach can be a transversal
improvement that could be applied to many methods at the normalisation stage in order to enhance
their discriminating power, not just as a method on its own.

A case that deserved further investigation was the PAF dataset, since this was the only case with
better PE1 performance, despite significant differences and low variability in number of patterns
between the two classes (Table 4). The hypothesis was that, somehow, the information provided by
ordinal patterns and number of patterns cancelled each other out. A straightforward approach to solve
this problem was to change the arithmetic operation in which T was involved, use a multiplication
instead of a division. The PAF experiments were repeated with this PE2 algorithm tweak, whose
results are shown in Table 8. PE2 performance improved significantly and again was better than PE1.

Table 8. Classification results achieved using the new approach, PE2, applied to the PAF dataset, and
p⇐ pi ← ci ∗ T instead of p⇐ pi ← ci

T .

Dataset m = 3 4 5 6 7 8

PAF 0.68, 0.72, 0.70 0.64, 0.76, 0.70 0.72, 0.96, 0.84 0.72, 0.88, 0.80 0.72, 0.92, 0.82 0.68, 0.84, 0.76
p = 0.0080 p = 0.0067 p < 0.0001 p < 0.0001 p = 0.0003 p = 0.0009

The results in Table 8 confirm that the patterns found provide discriminant information, but maybe
in some specific cases the approach should be slightly different in terms of integration with ordinal
patterns. This experiment was repeated for some records that already exhibited good performances
using the initial approach described in Algorithm 1. These additional results, shown in Table 9,
confirm PE2 is a robust approach in general, and only a few specific cases, such as that of PAF, need a
more customised scheme. However, even with both approaches, it was impossible to find significant
differences for the HOUSE database.

Although the desnormalisation can be detrimental for low m values when not all the records have
the same length, for greater m values the forbidden patterns become more apparent and the additional
information provided should make PE2 outperform PE1. In other words, in the worst case PE2 and
PE1 should be equivalent in terms of classification accuracy, but for real time series, which usually
exhibit some degree of determinism, PE2 will yield the best performance. With the two approaches
proposed, PE2 is a clear winner over PE1.

Table 9. Classification results achieved using the new approach PE2, applied to other datasets, and
p⇐ pi ← ci ∗ T instead of p⇐ pi ← ci

T .

Dataset m = 3 4 5 6 7 8

BONN 0.93, 0.90, 0.91 0.49, 0.84, 0.66 0.92, 0.92, 0.92 0.93, 0.93, 0.93 0.92, 0.94, 0.93 0.92, 0.94, 0.93
p < 0.0001 p = 0.0137 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

FANT 0.65, 0.60, 0.62 0.55, 0.75, 0.65 0.75, 0.60, 0.67 0.80, 0.45, 0.62 0.60, 0.55, 0.57 0.85, 0.45, 0.65
p = 0.0547 p = 0.0547 p = 0.0398 p = 0.4488 p = 0.7660 p = 0.1440

WORMS 0.60, 0.68, 0.65 0.63, 0.70, 0.67 0.68, 0.51, 0.58 0.67, 0.59, 0.62 0.68, 0.64, 0.66 0.70, 0.65, 0.67
p = 0.0494 p = 0.0015 p = 0.1698 p = 0.1301 p = 0.0564 p = 0.0300

Despite the p ⇐ pi ← ci ∗ T change applied to the PAF case, the new method proposed is still
that described initially in Algorithm 1. This final adjustment hints that there might not be a single way
to integrate the information of the relative frequency of motifs with its absolute number, and other
studies will be necessary to find a better combination and a more optimised algorithm. We tried to
keep a very similar algorithm to PE to facilitate adoption and implementation, but there is room for
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PE2 improvement with regard to generalisation, performance, and even normalisation that will have
to be addressed in further studies.

The results for the GAIT2 database were not significant (all GAIT records cut short to 200 samples),
and therefore, were far worse than those for GAIT. It could be argued that differences in the GAIT case
were mainly due to differences in lengths, and this could be the case when comparing old–healthy with
old–Parkinson’s, and young–healthy with old–Parkinson’s, since the lengths were 800–200 originally
in both cases. However, the comparison of old–healthy with young–healthy became not possible as
well, and this pair had the same length in the GAIT database. Therefore, it can be arguably stated that
the lack of significance was due to the insufficient length, since 200 samples are borderline [26], not the
lack of differences in length, another factor that requires further research. Anyway, the important point
is the comparative analysis between PE1 and PE2.

It could also be hypothesised that the differences in number of patterns found would suffice to
classify the records. In order to assess this point, a few experiments were repeated using the complete
PE2 method and only the number of actual patterns found as single classification features. Although
in some cases the performances of both approaches were very similar (for example, for the BONN
database, with m = 6, the performances were PE2 = 0.935 vs. 0.930), in others, they were quite different
(For the RATS dataset, with m = 6, the performances were PE2 = 0.78 vs. 0.72). Since the computational
cost of both approaches is almost the same (the algorithm should be run almost completely; only the
final Shannon calculation could be omitted), such a simplification is not advisable because not all the
differences only lie on the number of admissible patterns.

The parameter and noise influence analysis provided an additional insight into the PE2 approach
capabilities. The comparative length influence analysis between PE1 and PE2 in Table 6 showed that
both metrics exhibit a similar robustness against N variations and short lengths. For extremely short
lengths, 50 samples, it was not possible to find differences between classes, which is understandable
since 50 samples do not suffice to provide a reasonable pattern frequency estimation. At 250 samples,
most of the results became significant, but it was at 500 samples where both methods provided
significant classifications in all cases, except PE1 for the WORMS database. With 750 samples,
performances were really close to those achieved with the entire records.

The performances of PE1 and PE2 with regard to noise interference seemed very similar, except for
the PAF dataset (Table 7). This could be due to the fact that noise impact can also be considered in terms
of new ordinal patterns; random time series usually contain all the possible m! patterns as a sign of
non-determinism. Therefore, since the difference between PE1 and PE2 lies on the number of patterns
found, it can arguably be assumed that, in general, as the noise level increases, PE2 will converge to
the PE1 performance, since the differences in terms of number of patterns will become blurred.

PE2 is derived from PE1, and without specific studies yet, it would be sensitive to assume that
some PE1 drawbacks can be inherited by PE2. Thus, PE1 could be influenced by amplitude differences
in the ordinal patterns [15], by ties [17], or by the record length [26]. A similar set of characterisation
studies would be necessary specifically for PE2 to shed some light on these possible issues.

5. Conclusions

Every year quite a number of new tools to quantify the dynamical features of time series are described
in the scientific literature. These new tools are claimed to be more efficient in algorithmic terms, more
sensitive, more robust, or less dependent on input parameters, among many other possible benefits.

As such, PE2 was introduced as an improvement over PE by taking advantage of the differences
between time series classes in terms of numbers of different patterns actually found. The present
study assessed this discriminant power using several real-life datasets, and we could conclude that
the discriminating capabilities of ordinal patterns’ relative frequencies and their counts are clearly
complementary and synergistic. This led us to try to combine both measures in a single method to take
advantage of their strengths and simultaneously minimise their possible weaknesses. The scheme used
for PE using dynamic lists provided the algorithmic template to merge ordinal pattern and pattern
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number information together by changing the way histogram bins were normalised, and keeping the
algorithm’s implementation simple and similar to its ancestor PE.

According to the results obtained, the PE2 approach can be considered a very promising tool in
the field of symbolic dynamics. It should not be claimed to be a cure-all method, but the classification
performance confirmed the hypothesis, and PE2 seems to be able to seamlessly exploit the synergy
between PE and the number of patterns found in most cases. It was clearly more robust, since statistical
significance was reached in six out of the seven datasets, two more than with PE1 (PE). It also achieved
the maximum performance of the two methods tested in five cases, or six if the final PE2 algorithm
tweaking is considered (Section 4).

The PE2 algorithm is just a little bit more complex than that of PE, but more memory efficient,
since it only needs to store the patterns found, not all the possible m! ones. Moreover, the algorithm
introduced can be easily further optimised. In addition to implementation issues to save memory
requirements or computational cost, the algorithm could be improved in terms of ordinal and pattern
number influences on the final calculations by using a normalisation or weighting scheme based
on an additional parameter, such as A/1 − A, as in [14]. Additionally, other factors could be
included as additional symbols in the motifs. This way, other properties such as sequence amplitude,
would become part of the comparisons. In fact, we included the q parameter in the PE2 method,
as described in [13], and the classification performance of PE2 increased in some cases. The experiments
with WPE and WPE+Patterns also confirmed this point.

This new approach will need further studies using other databases and other integration schemes.
The influences of equal values in the subsequences [17], and time delay τ, could also be characterised.
Further integration with other PE improvements could be worth exploring [6,12–14,16] in future.
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