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Abstract. This paper extends the stochastic mean-semivariance model to a fuzzy multiobjective model, where apart from return and risk, 

also liquidity is considered to measure the performance of a portfolio. Uncertainty of future return and liquidity of each asset are modeled 

using L-R type fuzzy numbers that belong to the power reference function family. The decision process of this novel approach takes into 

account not only the multidimensional nature of the portfolio selection problem but also realistic constraints by investors. Particularly, it 

optimizes the expected return, the semivariance and the expected liquidity of a given portfolio, considering cardinality constraint and upper 

and lower bound constraints. The constrained portfolio optimization problem resulting is solved using the algorithm NSGA-II. As a 

novelty, in order to select the optimal portfolio, this study defines the credibilistic Sortino ratio as the ratio between the credibilistic risk 

premium and the credibilistic semivariance. An empirical study is included to show the effectiveness and efficiency of the model in 

practical applications using a data set of assets from the Latin American Integrated Market. 
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1. Introduction  

 

Multi-criteria decision making includes a group of operational research methods that pursue decision making in 

the presence of multiple criteria, goals, or objectives. This type of method differs from traditional single-objective 

operational research methods and is intended to support decision makers in the simultaneous optimization of 

several objectives that usually conflict with each other  (Čižo et al., 2020) and those related to financial 

investments are not an exception (Aznar & Guijarro, 2016; García et al., 2013, 2018; García, González-Bueno, 
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Oliver, & Riley, 2019; Masood et al., 2019). A characteristic example of multi-criteria decision making is the 

portfolio selection problem. 

 

Portfolio selection is concerned with the allocation of investor’s wealth amongst different types of financial 

securities. The main goal is to minimize the risk of terminal wealth while the expected terminal wealth equals a 

prescribed level. The first breakthrough work on this topic was the seminal mean-variance model by Markowitz, 

(1952). In this classical work, Markowitz used the mathematical expectation of the portfolio’s return and its 

variance as the return and the risk measures, respectively. However, when portfolio returns are typically 

asymmetric, the variance becomes a less appropriate risk measure, because it considers high returns that investors 

want as equally undesirable as low returns that investors dislike (Li & Qin, 2014). In other words, both risk 

measures penalize extreme upside (gains) and downside (losses) deviations from the expected return (Gupta, 

Mittal, et al., 2013). In order to solve this problem, several downside risk measures (i.e. measures that only 

consider the negative deviations from a reference return level) have been proposed: semivariance (Markowitz, 

1959), lower partial moment (Bawa, 1975; Fishburn, 1977), semi-absolute deviation (Speranza, 1993), value at 

risk (VaR) (J.P.Morgan, 1996), and conditional value at risk (CVaR) (Rockafellar & Uryasev, 2000, 2002). 

Semivariance is one of the most commonly accepted downside risk measures. Its main advantage over variance is 

that it does not consider values beyond the critical value (i.e. gains) as risk (Gupta, Mittal, et al., 2013). 

Furthermore, it is a more appropriate risk measure when an investor is concerned about underperformance rather 

than over performance of the portfolio (Markowitz et al., 1993).  

 

The traditional portfolio optimization model focuses only on the risk-return trade-off  (García et al., 2015; 

Markowitz, 1952; Speranza, 1993). However, it is important to consider other criteria which might generate equal 

or greater satisfaction level for investors. By considering other criteria in the portfolio selection model, it may be 

possible to obtain portfolios in which a less favorable return or risk is compensated by portfolio’s performance as 

measured by other criteria (Gupta, Inuiguchi, et al., 2013).  

 

Other than return and risk, liquidity is also one of the main concerns for investors when making decisions. 

Liquidity has been considered as a fuzzy variable on portfolio decision-making in previous studies (Arenas-Parra 

et al., 2001; Gupta et al., 2008, 2010, 2011; Jalota et al., 2017a, 2017b). Generally, investors’ preference is to own 

portfolios that contain liquid assets which can be easily liquidated in the future. Therefore, it is reasonable to 

include liquidity as an additional criterion in the mean-semivariance base model, in order to make this model 

more realistic and usable in a real situation. 

 

In most of the above-referred studies, asset returns were assumed to be a random variable, and portfolio selection 

models were developed under the assumption that future asset performance may be correctly captured by past 

asset performance. However, stock markets are complex and randomness is not the only type of uncertainty 

actually (Huang, 2010). Moreover, stock markets are affected by vagueness and ambiguity associated to linguistic 

expressions such as “high risk”, “low profit” and “low liquidity” used by investors and investment experts (Gupta, 

Inuiguchi, et al., 2013; Gupta, Mittal, et al., 2013). Owing to vague and ambiguous information, the fuzzy set 

theory (Zadeh, 1965) has been used for capturing and modeling the information about investor’s subjective 

preferences in portfolio investment. Assuming that returns are fuzzy, a vast literature is available applying 

possibility measures on the portfolio selection problem (Carlsson et al., 2002; Vercher et al., 2007; Vercher & 

Bermúdez, 2012; Wang & Zhu, 2002). Although possibility measures are widely used, they are not self-dual 

(Huang, 2008, 2009, 2010). As an alternative, Liu and Liu (B. Liu & Liu, 2002) proposed a self-dual credibility 

measure to overcome the limitations of the possibility measure. Since then, some researchers suggest modeling 
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assets return using credibility measures (García, González-Bueno, Oliver, & Tamošiūnienė, 2019; Huang, 2006a, 

2010, 2006b; Jalota et al., 2017a; Mehlawat, 2016; Vercher & Bermúdez, 2015).  

 

An important aspect to consider in fuzzy portfolio optimization is the shape of the membership functions that will 

best fit the historical asset performance data. Portfolio selection models based on fitting of L-R fuzzy numbers 

(González-Bueno, 2019; Jalota et al., 2017a; Saborido et al., 2016; Vercher & Bermúdez, 2013, 2015) model the 

uncertainty of the return on a given portfolio directly instead of using the combination of uncertainties of the 

individual assets. There are only few studies which model the return of each asset by L-R fuzzy numbers (Jalota 

et al., 2017b; Vercher, 2008; Vercher et al., 2007). In this paper, we extend the literature on multiobjective 

portfolio selection model by assuming that the return on each asset is an L-R power fuzzy variable. 

 

Another issue is that portfolio decision-making based on fitting of L-R fuzzy numbers is usually developed in a 

possibilistic environment. In fact, to the best of our knowledge, there are only three studies which treat portfolio 

return by means of credibility distributions  (Jalota et al., 2017a, 2017b; Vercher & Bermúdez, 2015). Credibility 

measures are consistent with the law of excluded middle and the law of contradiction (i.e., they have the self-

duality property), which is needed both in theory and in practice. In this way, it is fundamental to study their 

application as the basic measure of the occurrence of a fuzzy event in the portfolio selection problem. 

 

Most portfolio optimization models in the literature have been evaluated in financial markets such as the Madrid 

Stock Exchange (Spain) (Bermúdez et al., 2012), the National Stock Exchange of Mumbai (India) (Mehlawat, 

2016), the Shanghai Stock Exchange (China) (Ren et al., 2017) and the New York Stock Exchange (USA) (J. Liu 

et al., 2015), among others. To the best of our knowledge there are not empirical studies that have been developed 

in Latin American capital markets. Thus, this study makes a contribution to the literature by applying a portfolio 

optimization model in the Latin American Integrated Market (MILA by its Spanish acronym) which integrates the 

stock exchange markets of Chile, Colombia, Mexico, and Peru. 

 

The concept of optimal portfolio falls under modern portfolio theory (Markowitz, 1952). It assumes that investors 

act rationally and always try to minimize risk while striving for the highest return possible. One well-known 

measure to evaluate portfolio performance is the Sortino ratio (Sortino & Price, 1994). It is a modification of the 

Sharpe ratio and focuses on returns that are below a certain threshold. The Sortino ratio exhibits more power and 

less bias than the Sharpe ratio when the distribution of excess returns is skewed. In order to select the optimal 

portfolio, in this paper we define for the first time the credibilistic Sortino ratio as the ratio between the 

credibilistic risk premium and the credibilistic semivariance. 

 

In this paper, the stochastic mean-semivariance portfolio selection model is extended to a credibilistic 

multiobjective model, where apart from return and risk, also liquidity is considered to measure portfolio 

performance. Return and liquidity are considered as L-R power fuzzy variables. The decision process of this novel 

approach considers not only the multidimensional nature of the portfolio selection problem but also realistic 

constraints required by investors. Concretely, it optimizes the expected return, the semivariance and the expected 

liquidity of a given portfolio, considering budget, bound and cardinality constraints. The introduction of these 

realistic constraints convert the problem into a constrained multi-objective problem that is NP-hard, and 

traditional methods of optimization cannot be used to find efficient portfolios. To overcome this problem, the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied. An empirical study is presented to show the 

effectiveness and efficiency of the proposed approach. 
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The remainder of the paper is structured as follows: Section 2 introduces some basic definitions and notations 

regarding L-R fuzzy numbers and the credibility theory. Section 3 describes the multiobjective credibilistic mean-

semivariance-liquidity (MCMSL) portfolio selection model. Section 4 presents the solution methodology to solve 

the above model with the NSGA-II algorithm. Section 5 illustrates our proposal with an empirical study using a 

data set from the MILA Market. Finally, the main conclusions are drawn in Section 6. 

 

2. L-R Fuzzy numbers and credibility theory         

    
This section briefly presents some essential definitions regarding L-R fuzzy numbers and the credibility theory for 

a better understanding of the proposed multiobjective credibilistic mean-semivariance-liquidity portfolio selection 

model that is introduced in section 3.  

 

2.1. L-R Power fuzzy numbers 

Definition 1. Functions L, R (Dubois & Prade, 1980). The functions  are reference functions of a 

fuzzy number  , they satisfy the following conditions:  

(i) L(1) =  R(1) = 0, L(0) =  R(0) = 1 

(ii) L(x) and R(x) are strictly decreasing and upper semicontinuous functions. 

  

Definition 2. L-R Fuzzy number (Dubois & Prade, 1980). A fuzzy number  [i.e. ] is said to be 

an L-R fuzzy number if its membership function has the following form: 

 
 

where (b – a) and (d – c) show the left and right spreads of  , respectively; is the core of i.e., 

;  and  are the reference functions that define the left and right shapes of , respectively. 

Following Jalota et al. (2017a), this study considers the reference functions of the power family of positive 

parameters  and , where , and , respectively. Throughout this paper, L-R power fuzzy 

numbers will be denoted by . 

 

2.2 Credibility theory 

Credibility theory, founded by B. Liu (2004) y refined by B. Liu (2007), is a branch of mathematics that studies 

the behavior of fuzzy phenomena. 

 

Definition 3. Credibility measure (B. Liu & Liu, 2002). Let ξ be a fuzzy variable with membership function µ, 

and x a real number.  The credibility measure of a fuzzy event, characterized by ξ ≤ x, is defined by eq. (1). 

 
(1) 

 

The credibility measure of L-R power fuzzy numbers is obtained deriving the eq. (1) (Jalota et al., 

2017a): 
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As , therefore 

 
 

Definition 4. Expected value (B. Liu & Liu, 2002). Let ξ be a fuzzy variable. Then the expected value of ξ is 

defined by eq. (2) provided that at least one of the two integrals is finite. 

 
(2) 

 

The crisp equivalent expression for the credibilistic expected value of an L-R power fuzzy number is obtained 

deriving eq. (2) (Jalota et al., 2017a): 

 
(3) 

 

Definition 5. Semivariance (B. Liu & Liu, 2002). Let ξ be a fuzzy variable with finite expected value  = . 

Then the semivariance of ξ is defined by eq. (4). 

 (4) 

where, 

 
 

Finally, the crisp equivalent expression for the credibility-measure-based semivariance of an L-R power fuzzy 

number was derived by Jalota et al. (2017a): 
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(5) 

 

3. Multiobjective credibilistic mean-semivariance-liquidity portfolio selection model 

 

In this section, the proposed mathematical model to solve the multiobjective portfolio selection problem in the 

light of the credibility theory is discussed. The parameters and variables used in this study to formulate this model 

are: 

 

Parameters 

: fuzzy rate of return of the i-th asset denoted by an L-R power fuzzy number , 

: fuzzy liquidity of the i-th asset denoted by an L-R power fuzzy number , 

 fuzzy expected return of the portfolio denoted by an L-R power fuzzy number  ,  

expected return of the portfolio,  

: maximal fraction of the capital allocated to the i-th asset , 

: minimal fraction of the capital allocated to the i-th asset , 

k : number of assets in the portfolio. 

 

Decision variables 

: proportion of the total funds invested in the i-th asset, 

: a binary variable indicating whether the i-th asset is contained in the portfolio. It takes value 1, if the i-th asset 

is included in the portfolio, otherwise takes value 0. 

 

3.1 Objective functions 

Return 

Considering that in financial markets several non-probabilistic factors may affect asset returns, this paper assumes 

that an investor has decided to allocate his/her total wealth among n risky assets that offer fuzzy returns. The core, 

support and shape parameters of the fuzzy return of each asset are obtained from the empirical percentiles of their 

historical returns (Vercher, 2008; Vercher & Bermúdez, 2012, 2013, 2015). The support of , that is, the interval 

[  is given by the 3th and 97th percentile, respectively. The core of , that is, the interval [  is given 

by the 45th and 55th percentile, respectively. The positive shape parameters  and  are obtained in such a way 

that the fuzzy and empirical quartiles coincide, that is,  , where  , and , 

where .  Then, the maximization of the expected return of the portfolio can be expressed as: 
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(6) 

 

Risk 

Portfolio risk is estimated by means of the semivariance measure. Thus, the minimization of semi-variance of the 

portfolio can be expressed as: 

 

(7) 

 

Liquidity 

Liquidity is one of the most important aspects that concern decision-makers in portfolio selection. Liquidity is 

defined as the probability of converting an investment into cash without any significant loss in value (Arenas-

Parra et al., 2001; Gupta, Mittal, et al., 2013). Generally, investors prefer portfolios which can be liquidated at 

higher expected values as well as portfolios for which liquidation values are more certain. In this study, the 

liquidity of an asset is defined by the stock liquidity indicator: 

 

(8) 

where DOT is the number of days within the observed period in which the stock was at least traded once; TDP is 

the total number of days in the period; NST is the number of stock trades during the period; TAS is the total 

trades of all stocks during the period; TSV is the trading stock volume in USD in the period and TAV is the 

trading volume of all stocks in USD in the period.  

 

Because of incomplete information, stock liquidity indicators are only vague estimates. This study assumes that 

the indicators of stock liquidity are fuzzy numbers. The parameters of the L-R power fuzzy numbers are obtained 

from the empirical percentiles of the historical liquidity data, as previously explained. The maximization of the 

expected liquidity of the portfolio can be expressed as: 

 

(9) 
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3.2 Constraints 

 

Capital budget constraint on the assets is expressed as 

 

(10) 

No short selling of assets is expressed as 

 (11) 

Maximal fraction of the capital that can be invested in a single asset is expressed as 

 (12) 

Minimal fraction of the capital that can be invested in a single asset is expressed as 

 (13) 

Number of assets held in the portfolio is expressed as 

 

 

(14) 

 

3.3 The decision problem 

The multiobjective credibilistic mean-semivariance-liquidity portfolio selection model is formulated as: 

 

 

 

 
 

Following Vercher and Bermúdez (2013), an admissible portfolio  is said to be Pareto-efficient if there is no 

other admissible portfolio  such that , , and , with at least one strict 

inequality. The set of Pareto-efficient portfolios defines the efficient frontier, which could be seen as a surface in 

the 3-D space of the three objectives F (F1, F2, F3).  
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4 Solution methodology 

 

In the above paragraph, a multiobjective credibilistic portfolio selection model was formulated where their 

objective functions correspond to the crisp goals of return, risk and liquidity. Note that the calculation of expected 

return, downside risk and expected liquidity depends on both i) the characteristics of the L-R power fuzzy returns 

and the L-R power fuzzy liquidity of each asset, and ii) the average of the fuzzy numbers. Furthermore, the 

introduction of realistic constraints into the suggested model convert the problem from a classical quadratic 

optimization problem to a quadratic mixed-integer problem that is NP-hard. In order to overcome this drawback, 

multiobjective evolutionary algorithms (MOEAs) have been successfully applied for generating solutions of the 

constrained portfolio optimization problems.  

 

The most commonly-used MOEA for solving the constrained portfolio optimization problem is the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (Liagkouras & Metaxiotis, 2015), first introduced by Deb et 

al. (2002), which is the one applied in our study. The procedural steps of this algorithm are those described by 

Deb et al. (2002) and Palanikumar et al. (2009).  

 

The experimental parameters’ configuration for testing this algorithm are: population size (400), distribution 

index for crossover (10); probability of crossover (0.9); distribution index for mutation (50); probability of 

mutation (0.01); and the maximum number of generations (500). Fig. 1 shows the overall structure of the 

MCMSL modelling approach. 

 

 

5 Experimental results  

 

5.1. Data description 

The Latin American Integrated Market is an integrated trading venture between the stock markets of Chile, 

Colombia, Mexico and Peru that began operating in May 30, 2011. MILA market allows, for example, Mexican 

investors to buy Chilean or Colombian securities without the need to open brokerage accounts in these two 

foreign stock markets. While the individual MILA markets are relatively small, their combination provides 

investors with a larger set of securities to choose. In this way, they can extend their possibilities of diversification 

and potentially improve the risk-return trade-off in their portfolios. 

 

In order to illustrate the usefulness of the MCMSL model, this paper presents a real-world empirical study using 

for the first time a data set extracted from the MILA market. The data correspond to weekly closing adjusted 

prices and their indicators of stock liquidity, observed in t = 239 periods from June 03, 2011 until December 25, 

2015. According to the World Federation of Exchanges (WFE) by the end of 2015 the number of listed companies 

in the MILA market were 804. The candidate stocks to be included in the investment portfolio must meet 

following two conditions during the study period: i) they have been traded every week; and ii) they have an 

average monthly trading volume higher than the average monthly trading volume presented on their own national 

stock market. Once these conditions are considered, only 29 assets, n=29 are available. The exchange codes of the 

29 assets are PFDAVVNDA, PFBCOLOM, CORFICOLCF, ALFA, ALSEA, AC, ASUR, BIMBO, BOLSA, 

CEMEX, KOF, FEMSA, GCARSO, GENTERA, GFNORTE, GMEXICO, GAP, MASECA, KIMBER, 

LIVERPOOL, TLEVISA, AESGENER, AGUAS-A, CHILE, BCI, ITAUCORP, CCU, ENELCHILE and SM-
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CHILE B. For convenience in the description of the notation, we label these 29 assets successively as A1, A2,…, 

A29.  

 

 

5.2. Results 

Returns of assets rit are obtained as , i = 1, 2, …, 29; t = 1, 2, …, 239, where pit is the 

closing  price of the i-th asset on Friday of week t. Then, the membership function of the L-R fuzzy return 

( and the liquidity are obtained from the empirical percentiles of their historical returns and indicators of 

stock liquidity, respectively, as was explained in Section 3. 

 

Pareto Optimal Set

(or Efficient Solutions Set )

Model the Uncertainty 

Pareto Optimal Frontier 

(or Efficient Frontier)

Define the Risk Free

Select Optimal Portfolio

Subject to some Constraints
1-Year Treasury Constant 

Maturity Rate

Apply MOEA - NSGAII

Determine Matrix of 

1-Year Treasury

Define the Expected Return 

of the i-th Asset

Define the Expected Liquidity 

of the i-th Asset

Maximize Portfolio´s Return Minimize Portfolio´s Risk Maximize Portfolio´s Liquidity

Determine Matrix of Returns Determine Matrix of Liquidity

Model the Uncertainty of Future 

Return on the i-th Asset

Model the Uncertainty of Future 

Liquidity of the i-th Asset

Adjusted Closing Prices Stock Liquidity 

    ; i = 1, 2, ..., n; t = 1, 2, ..., T     ; i = 1, 2, ..., n; t = 1, 2, ..., T 

           
        

    
    

       
    

        
    

    

        

                           

            

 

   

               

 

   

                          

     
           

      

   ; t = 1, 2, ..., T 

                           

    

      

 
      

 

      
 

 
Figure 1. Overall structure of the MCMSL modelling approach. 
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Tables 1 and 2 show the fuzzy data regarding return and liquidity for the 29 selected assets, and their crisp 

credibilistic mean values. When the parameters of the membership function of each L-R fuzzy return are 

analyzed, it is noted that the left and right spreads are different, i.e., (b-a) ≠ (d-c). This evidence confirms the 

existence of asymmetry in the 29 fuzzy returns and, therefore, the choice of the semivariance was the most 

appropriate decision. 

 

 
Table 1. L-R Fuzzy return of the assets and their crisp credibilistic mean values. 

 

Asset 
Return Crisp   

Credibilistic   

Mean Values  

A1 
 

-0.000597 

A2 
 

-0.002076 

A3 
 

-0.000703 

A4 
 

0.000740 

A5 
 

0.007611 

A6 
 

0.001791 

A7 
 

0.004403 

A8 
 

0.003348 

A9 
 

-0.000917 

A10 
 

0.000806 

A11 
 

0.001613 

A12 
 

0.001401 

A13 
 

0.002760 

A14 
 

0.002348 

A15 
 

0.002094 

A16 
 

-0.001333 

A17 
 

0.004919 

A18 
 

0.008572 

A19 
 

0.001981 

A20 
 

0.002775 

A21 
 

0.001456 

A22 
 

0.000812 

A23 
 

0.001879 

A24 
 

0.000077 

A25 
 

-0.000042 

A26 
 

-0.000413 

A27 
 

0.000436 

A28 
 

-0.000411 

A29 
 

-0.000270 
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Table 2. L-R Fuzzy liquidity of the assets and their crisp credibilistic mean values. 
 

Asset 
Liquidity Crisp   

Credibilistic  

Mean Values  

A1 
 

0.030722 

A2 
 

0.092907 

A3 
 

0.018482 

A4 
 

0.037472 

A5 
 

0.011686 

A6 
 

0.016395 

A7 
 

0.011421 

A8 
 

0.016319 

A9 
 

0.009491 

A10 
 

0.060546 

A11 
 

0.014618 

A12 
 

0.037388 

A13 
 

0.006586 

A14 
 

0.017247 

A15 
 

0.059734 

A16 
 

0.059066 

A17 
 

0.012885 

A18 
 

0.016613 

A19 
 

0.021585 

A20 
 

0.008648 

A21 
 

0.035228 

A22 
 

0.018320 

A23 
 

0.026568 

A24 
 

0.044302 

A25 
 

0.018951 

A26 
 

0.028187 

A27 
 

0.021116 

A28 
 

0.059899 

A29 
 

0.009100 

 

Let us assume that the diversification parameters are given by li= 0 and ui= 0.3 for every i = 1,2, …, 29. 

Following Gupta et al. (2014), it is not advisable to have very few or very large number of assets in the portfolio 

so as to achieve diversification. According to these authors, portfolio diversification by investors lies in the 

narrow range of 3-10 assets. Thus, following this recommendation, this study considers to set k = 10 assets for an 

admissible portfolio.  
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Fig. 2 shows a 3-dimensional plot of the final populations generated by NSGA-II for the MCMSL model. The 

group of points represents the set of non-dominated solutions (or efficient portfolios) for which none of the three 

objectives (return-risk-liquidity) can be improved without deteriorating another objective. NSGA-II supplies sets 

of efficient portfolios distributed over the Pareto optimal front, which provide investors with a true picture of 

trade-offs. Furthermore, each pair of functions has been plotted in bi-dimensional images in Fig. 3. It can be 

observed that bi-objective coverages of these Pareto optimal fronts present a suitable performance. 

 

 
Figure 2. Pareto optimal front of the MCMSL model 

 

Additionally, it is worthy to analyze the influence of the inclusion of liquidity as an additional portfolio selection 

criterion. Figure 3a shows that portfolios with the highest liquidity have the highest risk and the lowest return. 

Furthermore, high-return portfolios have medium and low risk but are rather illiquid. This outcome is confirmed 

by Fig. 3b and 3c. As expected, it is not possible for any portfolio to score well in all three criteria. There is no 

portfolio that dominates the rest in terms of achieving high return, low risk and at the same time being very liquid. 

For that reason, the most liquid portfolios are riskier and less profitable than their peers, while the most illiquid 

portfolios, in turn, are less risky and more profitable.  

 

In order to analyze the relationship between the three criteria (return, risk and liquidity), Spearman’s rank partial 

correlation coefficient is applied. Doing this, the coherence of the relationship between return and risk can be 

checked, removing the influence of liquidity on both variables. We expect both variables to have a positive 

correlation, but the previous graphical analysis of Fig. 3a-c does not provide a clear answer. Furthermore, thanks 

to Spearman’s rank partial correlation coefficient we can get to know the relationship of both variables with 

liquidity. As presented in Table 3, there is a positive correlation between return and risk, meaning that more 

profitable portfolios are riskier. Regarding liquidity, more liquid portfolios are risker, but less profitable. 

Conversely, less liquid portfolios are less risky and more profitable. 
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(a) Downside Risk vs. Expected Return 

 

 
(b) Expected Liquidity vs. Expected Return 

 

 
(c) Downside Risk vs. Expected Liquidity 

Figure 3. Values of the three corresponding objective functions for all the solutions generatedby NSGA-II 
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Table 3. Spearman’s rank partial correlation matrix 
 

 Return Risk Liquidity 

Return 1.000   

Risk 0.660** 1.000  

Liquidity -0.811** 0.940** 1.000 
 

Note: ** Correlation is significant at the 0.01 level 

 

This relationship between liquidity and risk can be explained by the fact that more liquid assets are traded more 

often and therefore are subject to more volatility, increasing their risk. Regarding the liquidity-return correlation, 

the result suggests that companies which are traded more often are not so profitable than those with less trades. 

 

This paper has proposed a multiobjective approach to portfolio optimization considering return, risk and liquidity. 

In any given real-world investment scenario, an investor needs to pick a portfolio along the Pareto optimal front 

Fig. 3 that meets his/her preferences. In order to select the optimal portfolio, this study uses the Sortino ratio, 

which gauges the risk-adjusted return of an investment asset or portfolio. The Sortino ratio in a credibilistic 

environment is computed as: 

 

(15) 

 

where, is the expected fuzzy return of the portfolio,  is the fuzzy semivariance, and is the 

target or required rate of return, that is, the US 1-Year Treasury Constant Maturity Rate. 

 
Table 4. ETF versus optimal portfolio selected 

 VaR Return Liquidity 

ETF MILA TRC 0.2920 0.0488 0.0167 

Optimal Portfolio 0.2150 0.0651 0.0327 

 

Finally, it is convenient to compare the performance of the optimal portfolio resulting from the MCMSL model 

proposed with the performance of a similar investment alternative in the market. Table 4 compares the optimal 

portfolio selected using the proposed Sortino ratio with its benchmark, the ETF MILA TRC, which tracks the 

MILA market. Table 4 shows that the selected portfolio beats the benchmark regarding the three selected criteria, 

return, risk and liquidity. Thereupon, it is confirmed that the applied multiobjective portfolio selection model 

offers promising results for investors seeking additional goals beyond the return-risk optimization.  

 

6. Conclusions 

 

This paper extends the stochastic mean-semivariance model to a credibilistic multiobjective model in which 

return, risk and liquidity are employed to measure portfolio performance. In order to quantify the uncertainty of 

the future returns and the liquidity of each risky asset, this study proposes to use L-R power fuzzy numbers, where 

its membership function is build using the sample percentiles of the historical data set of the returns and liquidity, 

respectively. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied to select efficient portfolios in 

the fuzzy return-risk-liquidity trade-off in the presence of cardinality constraint and upper and lower bound 

constraints. To illustrate the usefulness of the proposed model and the solution approach for the multiobjective 
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portfolio selection, this paper presents a real-world empirical study using a data set extracted from the Latin 

American Integrated Market MILA. The computational results of the numerical experiments establish that the 

proposed MCMSL model supplies sets of efficient portfolios uniformly distributed over the Pareto optimal front, 

which provide the investor a true picture of trade-offs. Additionally, by maximizing the Sortino ratio for the first 

time in a credibilistic environment, this study selects the optimum investment weights in a portfolio, and analyzes 

its performance in relation to another alternative investment during a period of one year. 

 

Based on the fuzzy set theory, this research developed a novel approach by employing a distinctive return-

semivariance-liquidity measure to gauge the portfolio performance in Latin American emerging financial markets. 

In view of the above discussions, this study concludes that the proposed model provides decision-makers with an 

effective and practicable alternative to solve the portfolio selection problem. 
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