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Abstract: Manifold socio-economic processes shape the built and natural elements in urban areas. 
They thus influence both the living environment of urban dwellers and sustainability in many 
dimensions. Monitoring the development of the urban fabric and its relationships with socio-
economic and environmental processes will help to elucidate their linkages and, thus, aid in the 
development of new strategies for more sustainable development. In this study, we identified 
empirical and significant relationships between income, inequality, GDP, air pollution and 
employment indicators and their change over time with the spatial organization of the built and 
natural elements in functional urban areas. We were able to demonstrate this in 32 countries using 
spatio-temporal metrics, using geoinformation from databases available worldwide. We employed 
random forest regression, and we were able to explain 32% to 68% of the variability of socio-
economic variables. This confirms that spatial patterns and their change are linked to socio-
economic indicators. We also identified the spatio-temporal metrics that were more relevant in the 
models: we found that urban compactness, concentration degree, the dispersion index, the 
densification of built-up growth, accessibility and land-use/land-cover density and change could be 
used as proxies for some socio-economic indicators. This study is a first and fundamental step for 
the identification of such relationships at a global scale. The proposed methodology is highly 
versatile, the inclusion of new datasets is straightforward, and the increasing availability of multi-
temporal geospatial and socio-economic databases is expected to empirically boost the study of 
these relationships from a multi-temporal perspective in the near future. 

Keywords: urban growth; socio-economic variables; spatio-temporal metrics; global analysis; 
IndiFrag; GHSL; OECD. 

 

1. Introduction 

Urban form organizes people, space and flows. As such, urban areas are simultaneously shaped 
by economic and demographic processes; social relations; legal and political systems; and historical, 
cultural and climate contexts; etc. [1,2]. The urbanization process affects dwellers in many 
dimensions. For example, one impact concerns cities, where air pollution and its impact on health, 
inequality and environmental degradation are increasing threats as a consequence of rapid growth 
[3]. The development of urban areas is not only conditioned by manifold local and regional factors 
but also by global trends that contain drivers and consequences. Earth Observation (EO) provides the 
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tools to remotely capture resulting urban expansion and allows the characterization of urban 
environments spatially across time at different scales. It allows the measurement from coarse to fine 
patterns of urban form and dynamics in a consistent way [4]. 

Identifying social, economic and environmental underlying processes of urbanization and land-
use/land-cover (LULC) changes improves our understanding of cause–effect relationships and helps 
in the development of strategies for sustainable development [5]. Socio-economic factors and land-
use planning play an important role in determining human behavior (e.g., mobility and leisure), 
resilience, and the risk of diseases, among other factors, which have a great impact on human well-
being. For example, the prevalence of non-communicable diseases, such as those related to physical 
health, dietary habits or alcohol consumption, has been related to the socio-economic status of the 
population [6,7]; in addition, the availability of accessible green spaces has been associated with a 
reduction of the risk of cardiovascular and respiratory diseases [8]; meanwhile, habitat loss and 
fragmented landscapes increase the probability of the emergence of infectious diseases in humans 
[9–11]. 

In recent years, the number of studies quantifying the relationships between EO-derived data 
and socio-economic variables has risen. Consequently, various elements of the built and natural 
environment, as well as atmospheric parameters derived from EO, have been related to different 
socio-economic indicators: For example, image-derived metrics and features have been used to model 
poverty levels. For example, severe poverty was associated with the travel time to major market 
towns, and the percentage of woodland and winter crop cover [12]. Duque et al. [13] developed a 
composite poverty index based upon a wide set of variables related to land cover composition and 
urban spatial patterns. Poverty was found to be higher in areas with less impervious surfaces with 
the absence of clay roofs, a higher complexity of the urban fabric, and a lower diversity of landscapes 
[13]. Similarly, deprived living conditions in major UK cities were related with population density, 
vast portions of unbuilt land, regular street patterns and cul-de-sacs [14]. Meanwhile, a local study 
in Liverpool, UK found that the percentage of vegetation and water, and the variability and 
homogeneity of the image intensity values were the best predictors of deprivation [15]. GDP exhibits 
a high correlation not only with built-up density in a set of Canadian cities [16] but also with the 
intensity and density of night-time lights in a city of China [17]. On the other hand, urban green 
spaces have been related to health and well-being. In general, the percentage and proximity of 
greenness in the living environment have a positive relationship with physical and mental health, 
and with a decrease in surface temperatures [18]. Regarding air quality, it has been related to both 
the built and natural environments. Continuous urban development was associated with better air 
quality in urban areas of the USA, while the presence of proximate forest was significantly related to 
an improvement in air quality when demographic factors and the degree of urbanization were 
controlled for [19]. Generally, a low centrality of the urban fabric, a low density, worse transport 
services and limited land diversity are correlated with higher pollutant concentrations [20]. 

A general finding from these studies is that the built-up structure, night-light emissions, 
transport network, population distribution and LULC configuration and diversity are related to 
socio-economic-ecological factors in urban areas. Such relationships have been mainly analyzed 
based on correlations, multiple regression and random forest methods; they proved to be techniques 
suitable for modeling statistical variables by means of EO-derived data. However, the majority of 
studies are intra-urban analyses conducted at the city level, with only few at the regional or national 
levels. A minority are based on global inter-urban analyses, which provide a more comprehensive, 
but less detailed, picture of development patterns. Examples of inter-urban studies demonstrated 
that, in European cities, an equal distribution of LULC is associated with lower inequality in life 
satisfaction [21] and that quality-of-life-related indicators can be modeled by means of LULC spatial 
metrics [22]. In urban areas of the USA, similarities in the structures of urban landscapes were linked 
to transport behaviors [23]. 

On balance, relationships between the built and natural environments and socio-economic-
ecological factors have been proven, but large area and multi-temporal analyses remain rare. These 
analyses bring the opportunity to create, based on predetermined relationships, spatial indicators of 



ISPRS Int. J. Geo-Inf. 2020, 9, 436 3 of 22 

 

social, economic and environmental parameters among and across countries. In this direction, 
geospatial data have been used as proxies of income inequality [24,25], unsustainable urban growth 
[23], economic disparities [26] and GDP, especially useful in countries with low-quality statistical 
systems [27]. Hence, unraveling the links between urban form and LULC and statistical variables, 
both at a particular moment in time and in terms of their evolution over time, aids in mapping and 
assessing the temporal evolution of socio-economic and ecological processes. Some examples in this 
regard are foreseeing the loss of farmland and food security issues [28], predict the risk of and 
exposure to diseases [10] or comparing the evolution of socio-economic factors, such as employment 
and poverty, in response to specific policies [29,30]. 

There has been a recent call regarding the need for cross-comparative empirical analyses across 
different regions that reveal the consistency of these relationships and that allow the drawing of 
reliable conclusions on the sustainability of urban development [2,31,32]. However, these analyses 
are usually limited by the scarce or inconsistent availability of data at a global scale. For the needed 
socio-economic datasets, currently, the availability of global and still comparable data at resolutions 
of intra-urban scale is still limited. On the one hand, some institutions are delivering socio-economic 
and environmental statistics for cities and functional urban areas. Two examples are the City Statistics 
from Eurostat [33] and the Organization for Economic Co-operation and Development (OECD) [34]. 
They provide comparable statistics associated with territorial units with large-scale coverage for 
multiple time periods. On the other hand, there has been a growing interest in integrating statistical 
and spatial information to produce spatially explicit socio-economic data, swapping from irregularly 
shaped boundaries to a regular surface, easing comparisons within and across regions at lower levels. 
Two of these initiatives are GEOSTAT [35] and the Socioeconomic Data and Applications Center 
(SEDAC) [36]. Although the variables and the time coverage are still limited, they are promising data 
sources that are under development. For the needed spatial datasets, concurrently, recent EO-based 
efforts have been made in the global mapping and characterization of human settlements and land 
covers over time. Some examples are the Global Urban Footprint (GUF), which is a worldwide map 
of urban settlements with an unprecedented spatial resolution of 12 m for the years 2010–2013 [37]; 
the Global Human Settlement Layer (GHSL), which represents human presence in the past (1975, 
1990, 2000 and 2014) with a spatial resolution of 30 m [38]; the Atlas of urban expansion, which 
collects data on urban expansion from a global sample of 200 metropolitan areas [39]; and the 
GlobeLand30 [40] and the Climate Change Initiative (CCI) [41], which provide global land cover data 
at spatial and temporal resolutions of 30 m (2000 and 2010) and 300 m (from 1992 to 2018), 
respectively. Furthermore, the development of methods and algorithms to automatically classify 
urban environments across the globe is progressing rapidly e.g.,: [42–44]. The global coverage and 
high spatial and temporal resolutions of EO-derived products combined with the high capacity to 
automatize processes allows the frequent updating of geospatial datasets. This, however, is still an 
issue in socio-economic databases, since they depend on surveys and censuses with low temporal 
frequency, and they are limited or even inexistent in some geographic areas. 

Accordingly, our aim is to use spatial patterns and their development over time as proxies of 
socio-economic parameters at the global level. With the help of easily quantifiable spatial metrics 
extracted from openly available EO-derived and ancillary data, we aim to prove the feasibility. With 
the growing availability of spatial and socio-economic datasets, this is an opportunity in terms of 
methodological fine-tuning for defining empirical methods that could be applied globally in the near 
future, when higher-resolution data with a global reach will be available. In this context, a semi-
global analysis will bring the opportunity to obtain first fundamental conclusions and foresee 
potential subsequent analyses when more and higher resolved (i.e., spatially, temporally, 
thematically, and better quality) data become available. Therefore, the purpose of this study is to 
quantify the relationships between socio-economic and environmental variables, such as income, 
inequality, GDP, air quality and employment, and spatio-temporal metrics issued from geospatial 
databases, both on a specific date and in terms of their variation over time. Subsequently, the purpose 
is to identify the spatio-temporal metrics that are most related to socio-economic and environmental 
variables and can be extracted on a massive scale from current global geospatial databases. 
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2. Materials and Methods 

In this study, we leveraged multi-temporal open datasets with global and semi-global 
geographic and socio-economic data. Figure 1 outlines the general workflow of the study. The 
manifold datasets are described in Section 2.1, while Section 2.2 defines the preprocessing steps to 
ensure the harmonization of datasets that are necessary for the subsequent extraction of spatio-
temporal metrics (Section 2.3). Then, the spatio-temporal metrics are related to the socio-economic 
variables from a multi-temporal perspective by means of regression models, and the relevant metrics 
are identified (Section 2.4). 

 

Figure 1. Workflow. First, data are downloaded and prepared for further analysis. Second, socio-
economic variables are selected from the OECD database for the years 2000 and 2014. Third, spatio-
temporal metrics are extracted from geographic data for each boundary individually (functional 
urban areas, FUAs) corresponding to the same two years. Last, socio-economic variables (dependent 
variables) and spatio-temporal metrics (independent variables) are combined and split into training 
and test samples to build regression models and rank the contribution of metrics. 

2.1. Socio-Economic, EO-Derived and Ancillary Datasets 

2.1.1. Global Human Settlement Layer (GHSL) 

The GHSL consists of a global multi-temporal classification of built-up areas created by the Joint 
Research Centre from the European Commission. The GHSL considers “built-up” as building 
footprint areas (i.e., roofed constructions above ground). It is derived from Landsat imagery 
collections at a 30 m spatial resolution in four time steps: 1975, 1990, 2000 and 2014. We used the latest 
version of the product released at the end of 2019, which has considerable improvements over the 
previous version, the GHS_BUILT_LDSMT_GLOBE_R2018A_3857_30_V2_0 [38], for the years 2000 
and 2014 to coincide with the socio-economic data. The dataset is a categorical raster in VRT format, 
with GeoTIFF tiles, where different categories represent built-up land at each epoch, water, non-built 
land and no data, in the coordinate reference system (CRS) Pseudo Mercator (EPSG: 3857). Source: 
https://doi.org/10.2905/jrc-ghsl-10007. 

2.1.2. OECD Regional Statistics 
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The OECD offers the regional statistical database in which the metropolitan areas dataset is the 
lowest level [34]. This dataset contains data on demographic, economic, income distribution, 
environmental and labor statistics. For February 2020, 649 functional urban areas (FUAs, representing 
the cities and their commuting zones) with over 250,000 inhabitants in 33 OECD member countries 
and Colombia from the year 2000 onwards were available. The variables presented in the database 
are calculated using different methods. The majority are modeled based on the aggregation of local 
administrative data, and others, using geospatial data sources (e.g., air quality) or by downscaling 
variables available from larger regions through the use of population grids (e.g.,: GDP) [45]. 

We gathered statistics for 32 countries for the years 2000 and 2014, or the previous or following 
year when data were not available; for example, the Gini and income variables were only available 
for the years 2013, 2015 and 2016; we used them as an approximation for the year 2014. The 
availability differs widely between years and countries, and from variable to variable; therefore, the 
number of FUAs we applied varied between variables. We selected socio-economic variables related 
to economic, income, labor and environmental topics for 2014 and for change between 2000 and 2014 
(Table 1). The statistical data used in this study refer to data available in the metropolitan areas 
dataset as of February 2020. The list of FUAs available for each socio-economic and environmental 
variable and their values are presented in detail in the supplementary material (Table S1). FUAs with 
over 250,000 inhabitants not listed are due to their unavailability for our study years. Since the OECD 
Regional Statistics are updated from time to time, changes in the available FUAs and socio-economic 
variables may occur. For this reason, the original downloaded dataset is included in the 
supplementary material; source: https://doi.org/10.1787/data-00531-en. 

Table 1. Description of socio-economic and environmental variables modeled for 2014 or their change 
between 2000 and 2014. 

Variable Description Year/s 

GDP 

Gross domestic product per capita (GDP) is the value added created 
through the production of goods and services during a certain period 

per capita. It is expressed in United State dollars (USD) constant 
prices and constant Purchasing Power Parities (PPPs) with the base 

year 2010 (i.e., differences in price levels between countries are 
eliminated based on PPP rates). The GDP is less suitable for 

comparisons over time, as growth is affected by changes in prices 
and dollars per capita [46]. 

2014 

Gini 

It is an indicator of income inequality among individuals. The Gini 
coefficient is based on the comparison of the cumulative proportions 
of the population against the cumulative proportions of income they 
receive; this ratio ranges from 0 in the case of perfect equality to 1 in 

the case of perfect inequality [47]. 

2014 

Income 

It is defined as household disposable income in a particular year 
measured in USD. It consists of earnings, self-employment and 

capital income and public cash transfers; taxes and contributions are 
deducted [47]. 

2014 

Air quality 

Fine particulate matter (PM2.5) is the air pollutant that poses the 
greatest risk to health, affecting more people than any other 
pollutant. Chronic exposure to PM2.5 increases the risk of 

respiratory and cardiovascular diseases. Average level in µg/m³ [48]. 

2014 
2000/2014 

Employment 
rate 

Employment rate measures the extent to which available labor 
resources (people available to work) are being used, calculated as the 

ratio of the employed to the working age population (aged 15 or 
over) [49]. 

2000/2014 

Population Population, all ages. It is used to derive a spatio-temporal metric. 2000/2014 
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2.1.3. Boundaries of EU-OECD FUAs. 

The OECD and the European Commission have jointly developed a harmonized definition of 
FUAs in a consistent way across countries, as the city and its commuting zone (with a population 
greater than 50,000). FUAs represent the economic and functional spatial extent of the city (using 
population density and travel-to-work flow data). They were defined to maximize international 
comparability, to overcome the limitations of using purely administrative approaches, and for policy 
analyses on topics related to urban development [50]. This dataset was used for two different reasons: 
(i) to provide a spatial dimension to the socio-economic data (Figure 2), and (ii) to delimit the 
geographic datasets with the same boundary in order to extract metrics and statistics at the same 
level as for the socio-economic variables. The boundaries of the FUAs can be downloaded by country 
in shapefile format in the CRS WGS84 (EPSG:4326); source: http://www.oecd.org/regional/regional-
statistics/functional-urban-areas.htm. 

 
Figure 2. Example of the gross domestic product per capita (GDP) in USD for the year 2014 combined 
with the FUA boundaries in 32 OECD countries: (A) Canada, the USA and Mexico; (B) and (C) 
European countries; (D) Chile; (E) Australia; (F) South Korea and Japan. “No data” FUAs are included 
in the OECD metropolitan area dataset but do not have a GDP value for the year 2014. The complete 
list of FUAs and GDP per capita values can be found in Table S1. 

2.1.4. Climate Change Initiative Land Cover 

Land cover data from the Land Cover project of the European Space Agency Climate Change 
Initiative (CCI-LC) were used to obtain land cover densities and dynamics due to urban growth and 
development. The CCI-LC project delivers consistent global land cover maps at a 300 m spatial 
resolution on an annual basis for 1992 to 2018 [41]. We used the ESACCI-LC-L4-LCCS-Map-300m-P1Y-
1992_2015-v2.0.7 dataset for the years 2000 and 2014 to coincide with the rest of the datasets. The land 
cover map is a categorical multiband raster, in GeoTIFF format in the CRS WGS84, where each band 
represents one year. Source: ftp://anon-ftp.ceda.ac.uk/neodc/esacci/. 

2.1.5. Road Network 
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The Global Roads Inventory Project (GRIP) dataset was developed to provide a recent and 
consistent global road dataset for use in global environmental models [51]. We used five different 
datasets to cover the regions included in OECD FUAs (North America, Central and South America, 
Europe, South and East Asia and Oceania). The datasets are in shapefile format in the CRS WGS84. 
Source: https://www.globio.info/download-grip-dataset. 

2.2. Preprocessing and Harmonization of Datasets 

The data came in different formats, resolutions and coordinate reference systems; therefore, 
some preliminary steps were necessary before integrating the data from different sources. The 
required data and codes to reproduce this work have been made available in the supplementary 
material. The preprocessing steps were as follows: 
• The boundaries of the EU-OECD FUAs from each country were merged in a shapefile, and only 

those FUAs with statistical information in the metropolitan area dataset were kept. Colombian 
FUAs were not included in the analysis due to GHSL underclassification, cloud presence or a 
lack of socio-economic variables. 

• The European region of the GRIP dataset was georeferenced using control points from 
OpenStreetMaps, as it was originally displaced (about 100 m). 

• Then, two built-up epochs were extracted from the GHSL. Categories 4 to 6 represent the built-
up area in 2000, and categories 3 to 6, that in 2014. This generated two built-up maps. 

• Regarding the CCI-LC, two bands corresponding to the years 2000 and 2014 were extracted 
(bands 9 and 23). The legend of the CCI-LC was grouped into seven major land cover types, as 
follows: agricultural areas (categories from 10 to 30, both included), high semi-/natural 
vegetation (40–100 and 160–180), low semi-natural/natural vegetation (110–153), urban areas 
(190), bare areas (200–202), water bodies (210) and permanent snow (220). To see the original 
legend and the link between the categories and land covers, refer to the European Space Agency 
(ESA) [41]. This process generated two land cover maps. 

• The resulting global built-up and land cover maps and road network dataset were clipped using 
the boundaries of the FUAs in the CRS of the dataset to be clipped, transforming the FUA 
boundaries when necessary. 

• After that, the built-up and land cover maps in their original spatial resolutions were vectorized 
to shapefile format, since the tool used for the extraction of the metrics works with vector data. 

• Finally, the data were transformed to a local projected CRS to allow the measurement of areas 
and distances, which are basic attributes in most of the spatial metrics. To do so, the centroid of 
the FUA was used to determine the EPSG code to project the data to their Universal Transverse 
Mercator (UTM) zone (e.g., Madrid has the EPSG code 32630, which corresponds to the CRS 
WGS84/UTM zone 30N). Thus, all the FUAs have similar adapted and local CRSs in the same 
units, meters. 
As a result, for each individual FUA, there were two built-up maps and two land cover maps 

for 2000 and 2014, the road network, and the boundary delimiting the area of analysis, with a common 
format and CRS prepared for further analysis. 

2.3. Extraction of Spatio-Temporal Metrics 

In order to quantify the urban form and urban growth spatial patterns of the FUAs, we 
computed spatio-temporal metrics for the built-up, road network and land cover maps. We used the 
IndiFrag tool [52], which compiles an exhaustive set of indices to quantify urban spatial patterns and 
dynamics from LULC maps. We applied a set of uncorrelated metrics that allow the measurement of 
density, aggregation and spatial distribution properties and their variation over time (we discarded 
metrics with a Pearson’s r > 80%, the ones affected by the size of the boundary, and diversity and 
contrast metrics). Two types of metrics were considered: the spatial metrics extracted for one date 
and the multi-temporal metrics computed using maps from two different dates. Therefore, a set of 
spatial metrics was extracted to quantify the urban form in 2014, and another set of spatio-temporal 
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metrics was extracted for the years 2000 and 2014 to measure the urban growth spatial patterns and 
land cover dynamics. 

Some metrics are applied specifically to the largest and second largest urban cores of the FUA, 
instead of to the entire built-up area. The cores are based on the urban morphological zone definition 
of the European Environment Agency (EEA) [53], “a set of urban areas laying less than 200 m apart”. 
From the largest built-up patch, the core is measured by including all the built-up patches within a 
distance of 200 m, and the same applies for the second largest built-up patch. In this manner, one core 
split by a feature such as a river, or two built-up pixels connected by a corner were included in the 
urban core. 

2.3.1. Spatial Metrics (2000 and 2014) 

We calculated the following spatial metrics individually for the two time points 2000 and 2014: 
• The urban compactness (C) measures the complexity and fragmentation of the built-up area; it 

is for both the FUAs and for the largest urban core (CUC). High values show a more compact 
shape and aggregated distribution; it ranges from 0 to 100. 

• The dispersion index (DI) is the ratio between the normalized number of patches and the 
proportion of built-up area occupied by the largest patch [54]. Low values indicate coalescence, 
while high values represent dispersion. 

• The normalized area-weighted standard distance (AWSD) measures the centrality of the built-
up area, quantifying the degree to which objects are concentrated around their centroid. It is 
normalized to the shape and size of the FUA by means of the “maximum distance”, measured 
as the standard distance of a regular grid covering the FUA extension to the centroid. 
Normalized values range from 0 to 100, where lower distances show a concentrated distribution 
of built-up patches around the core, and higher values show built-up patches homogeneously 
distributed across the entire FUA, without a special clustering around the center. 

• The density is the percentage of built-up area (DU) and other land covers (D) relative to the total 
FUA area. 

• The percentage of the urban core (LUC) is the percentage of the built-up area that occupies the 
largest core. When the value is high, it shows a monocentric form. Since the spatial metric is 
highly correlated to the DI, only the change was computed and included as a multi-temporal 
metric. 

• The second largest urban core (SLUC) is the percentage of the built-up area that occupies the 
second largest core. When the value is close to LUC, it suggests a polycentric form. 

• The elongation ratio (ERUC) of the largest urban core quantifies the elongation shape of the urban 
core. This metric is commonly used in hydrology [55]; it measures the elongation, dividing the 
diameter of the circumference with the same area as the core by the largest side of the core. It 
ranges from 0 to 1. Values closer to zero show elongated shapes, i.e., a linear urban form. 

• The density of road network (D road) is the total length of roads per square kilometer. 

2.3.2. Multi-Temporal Metrics (2000–2014) 

• We calculated the following metrics as the differences between the spatial metrics for the two 
different years, 2000 and 2014: the change in urban compactness (CCH), urban core compactness 
(CUC CH), dispersion index (DICH), normalized area-weighted standard distance (AWSDCH), 
density (DUCH, DCH), percentage of the urban core (LUC CH), second largest urban core (SLUC CH) 
and elongation ratio (ERUC CH). 

• The urban change rate (UCR) is the percentage of built-up growth relative to the built-up area 
for the first date. 

• The area-weighted mean expansion index (AWMEI) is equal to the sum of adjacencies to the 
built-up area across all the new patches weighted by their area. It quantifies the aggregation and 
densification of growth. It ranges from 0 to 100. A high value indicates a densification (infilling 
growth) and therefore a more compact growth pattern, and an intermediate value shows 
expansive growth, while a low value represents scattered growth. 
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• The area-weighted mean accessibility index (AWMAI) quantifies the accessibility of new built-
up patches to the road network. This is measured with the mean of the inverse distance between 
the new built-up patches and their closest roads, weighted by the areas of the patches. It ranges 
from 0 to 100. Higher values show shorter distances to roads and better accessibility. 

• The population and urban growth imbalance index (PUGI) it measures the inequality between 
the increase in the built-up area with respect to population growth or decline (based on 
population counts from Table 1). It provides information related to the land consumption per 
capita (i.e., the amount of built-up land per population change) and the degree of sprawl in the 
urbanization process [56]. Positive values show more urban growth, zero means equal growth, 
and negative values mean higher population growth. 

• The change proportion (CP) of the land cover is the ratio representing the change in a particular 
land cover with respect to the total area of the FUA, and it measures the relative area of change. 

2.4. Regression Models and Identifying Spatio-Temporal Metrics’ Relevance 

We used random forest regression models to quantify how much urban spatial patterns and 
their change over time are related to socio-economic indicators and their multi-temporal variations. 
The use of random forest over linear and non-linear regression models has been discussed in the 
recent literature. Many studies have compared different algorithms, and random forest performed 
the best in most of the cases e.g.,: [15,17,57–59]. Random forest is a supervised learning algorithm that 
uses an ensemble learning method for classification and regression [60]. For building the models, we 
trained 500 decision trees with random splits of two thirds of the data, leaving one third for testing, 
which is the out-of-bag (OOB) sample. The predictions and accuracies of the models are calculated 
with the OOB samples. This method builds the model by minimizing the mean square error (MSE). 
In order to evaluate the model’s performance, we applied the following accuracy indices to the OOB 
sample: (i) The coefficient of determination (R2) measures the proportion of the total variability 
explained by the model; (ii) the MSE measures the average squared difference between the observed 
value and its prediction; and (iii) the root mean squared error (RMSE) is the standard deviation of 
the differences between the observed values and their predictions; the RMSE estimates the 
concentration of predictions around the 1:1 line (when the prediction equals the observation), and it 
is measured in the same units as the observed variable, which limits the comparison of models of 
different units. Therefore, we also included (iv) the normalized RMSE with the standard deviation 
(sd-NRMSE). It represents the ratio between the variation not explained by the model against the 
overall variation in the observed variable. The sd-NRMSE will be close to zero if the model explains 
the variation well and around one when it explains it partially, and bigger values indicate a weak 
performance [61]. (v) The normalized range-based RMSE (range-NRMSE) gives the error as a 
percentage of the total range of the observed variable [61]. 

In order to explore the relevance of the spatio-temporal metrics in terms of their relationships 
with socio-economic and environmental variables, we ranked the metrics according to the variable 
importance measure. This is a widely used and robust index that captures nonlinear and interaction 
effects [15,17,57,62]. It reflects the increase in the MSE when a metric is randomly permuted in a tree, 
averaged over all trees. Metrics with larger differences were ranked first in terms of importance. 
Additionally, to test the significance of the metrics’ importance in the model, the MSE was compared 
against a null distribution of the MSE. We did this by running the model 100 times and permuting 
the dependent variable randomly, reporting the significantly important metrics (p-value < 0.05). We 
built different models for the same variable combining subsets of spatio-temporal metrics (for 
example, using only spatial metrics for 2014, adding the road density, the PUGI, the land cover 
change, and/or the multi-temporal metrics). In this manner, the final model only keeps the 
combination that performs best, removing the metrics with a negative influence based on the 
importance measure. Finally, since the random forest regression and the variable importance measure 
do not report the positive or negative relationships between variables and metrics, we divided the 
socio-economic variables into five quantiles with the same number of FUAs from lower to higher 
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levels. Thereby, we represented the standardized values (z-score) of the significantly important 
metrics for each quantile. This eases the interpretation of found relationships. 

3. Results 

3.1. Estimation of Socio-Economic Variables 

Table 2 reports the accuracy indices of the regression models for the socio-economic and 
environmental variables for 2014 using the best subsets of metrics. For the metrics included in each 
model Sub-Section 3.3. 

Table 2. Accuracy indices for mono-temporal models. GDP per capita, Gini, income and air quality 
regression models for 2014 using spatio-temporal metrics. FUAs represents the total number of FUAs 
in the model; R2, the coefficient of determination; MSE, the mean square error; RMSE, the root mean 
square error in the same units as the variable; and sd-NRMSE and range-NRSME, the standard 
deviation and range-based normalized RMSE, respectively. 

Variable (unit) FUAs R2 MSE RMSE sd-NRMSE range-NRMSE 
GDP (USD) 597 43.97 102,028,574 10,101 0.7479 0.1234 
Gini (ratio) 142 52.2 0.0011 0.0326 0.689 0.1577 

Income (USD) 280 68.07 45,985,090 6781 0.564 0.1232 
Air quality (µg/m³) 599 52.9 20.8591 4.5672 0.6857 0.1324 
The model for the gross domestic product per capita (GDP) explained almost 44% of its variability 

(R2), which shows a mid-high relationship with the urban spatial pattern. It has a mean error of 10,101 
USD (RMSE), representing 12.3% of the total range of the GDP (range-RMSE). FUAs like Obihiro in 
Japan, Lane in USA, and Wuppertal in Germany had the lowest errors. However, the errors with 
respect to the total variability of the GDP are considerably high (sd-NRMSE = 0.75), due to the 
presence of some outliers when the GDP is high (e.g., San Francisco and Luxembourg, Figure 3). The 
model was not able to capture the spatial attributes, particularly in FUAs with relative high GDP 
values. Regarding the income inequality of individuals (Gini), the number of available FUAs and 
countries is limited. Still, 52% of its variability was explained by the model (R2) with an error of 0.03, 
which represents 16% of its range. However, the variability between the FUAs is not totally captured 
by our model (sd-NRMSE = 0.69). In this case, both low and high inequalities, relative to the sampled 
FUAs, were over- and under-estimated by the model (Figure 3). For instance, Bordeaux in France and 
Oslo in Norway have low Gini values, and the model predicted much higher values. On the contrary, 
Calgary and Vancouver in Canada, New Haven and Miami in the USA, and Lisbon and Porto in 
Portugal were underestimated, since much lower inequality values were predicted. Meanwhile, 
examples of good estimates are Fayette in USA, Winnipeg in Canada and Florence in Italy. The income 
model is the one with best performance. It shows the highest R2 and lowest sd-NRSME. It explained 
68% of the total variability of the income between the FUAs by means of spatio-temporal metrics. The 
errors with respect to the total variability of income are considerably low (sd-NRMSE = 0.56), 
representing 12% of the income range within the FUAs (range-NRMSE), with a mean error of 6781 
USD (RMSE). The model failed in the estimation of low income values, especially seen in Mexican 
FUAs (Figure 3) with the exceptions of Benito Juarez, Hermosillo and Tijuana; one reason might be 
that they present different urban forms and growth patterns but very similar mean income values at 
the FUA level. Finally, according to the environmental variable, the air quality due to fine particulate 
matter is also related to the urban spatial patterns. Almost 53% of its variability was explained by 
means of the spatio-temporal metrics with a mean error of 4.56 µg/m³, representing 13% of the air 
quality range (range-NRMSE). However, the error relative to the variability of the air quality is 
considerable (sd-NRMSE = 0.68). When the particular matter was above 30 µg/m³, the model 
predicted lower values (Figure 3). This underestimation is especially seen in the FUAs in Mexico 
(olive green), Korea (electric blue), Poland (dark pink) and Santiago in Chile (dark green). As seen in 
Figure 3, the RMSE is highly sensitive to outliers. Even if the majority of the FUAs have a good 
prediction (they are close to the 1:1 line, e.g., for the Netherlands, Germany, France and the USA), the 
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lack of ability of the model to estimate some of them, creating outliers, widely increases the RMSE 
and their normalized values. 

 

Figure 3. Observed versus predicted variables in mono-temporal models. The more the FUAs, 
represented as points, that are closer to the 1:1 line, the better the estimation by the model. The black 
dashed lines show the 1:1 lines (lines of perfect fit), while the blue dashed lines show the root mean 
square error of the model (± RMSE). The labels for the FUAs with the highest errors are shown, to 
identify outliers. The color represents the country. The units are GDP and income, USD; Gini, ratio; 
and air quality, PM2.5 in µg/m³. 

3.2. Estimation of the Variation of Socio-Economic Variables 

Regarding the temporal variation of the socio-economic and environmental variables, as 
expected, the performance of the models was lower than that of the mono-temporal models; however, 
a significant amount of Air quality change and Employment change was explained by spatio-temporal 
metrics (Table 3). 

Table 3. Accuracy statistics for multi-temporal change models. Air quality and employment rate 
change regression models for the period between 2000 and 2014 by means of spatio-temporal metrics. 
FUAs is the total number of FUAs included in the model; R2, the coefficient of determination; MSE, 
the mean square error; RMSE, the root mean square error in the same units as the variable; and sd-
NRMSE and range-NRSME are the standard deviation and range-based normalized RMSE, 
respectively. 
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Variable (unit) FUAs R2 MSE RMSE sd-NRMSE range-NRMSE 
Air quality change (µg/m³) 599 41.16 0.6172 0.7856 0.7664 0.1076 
Employment change (%) 313 31.56 10.7334 3.2762 0.826 0.1413 
First, the change in air quality, measured as the variation in the content of fine particulate matter 

in the air (µg/m³), was predicted with an R2 of 41%, which shows that only part of its variability was 
captured by the model. It has a mean error of 0.78 µg/m³, which represents 11% of the range in the 
variable (range-NRMSE). However, compared to the total variability of the air quality, this is 
considerably high (sd-NRMSE = 0.76). According to Figure 4, all the FUAs experienced an 
improvement in air quality between 2000 and 2014. The largest drops in air pollution were measured 
in some Mexican and Polish FUAs, which were not properly modeled, resulting in underestimation. 
However, the air quality change in Aguascalientes in Mexico, New York in USA or Modena in Italy, 
among many other FUAs, was successfully modeled. Second, the change in the employment rate was 
partially explained by means of spatio-temporal metrics (R2 = 32%). The mean error was 3.3, 
accounting for 14% of the range in the change variable. When compared to the variability in the 
employment change, this is quite high (sd-NRMSE = 0.83), and the model slightly explained the 
inherent variation in the employment change within the FUAs. Figure 4 shows that the highest drops 
in employment rates (e.g., in Dublin in Ireland, and Benton and Washoe in the USA) were 
underestimated and much lower rates were predicted. On the contrary, the greatest increases in 
employment in the study period were in Nice and Marseille in France, or Barcelona in Spain, which 
were also underestimated. In fact, the range of the predicted values (−8.5 to 1.5) was much lower than 
the range of actual employment change (−15 to 8.1), and the model was not able to properly capture 
this variation with the spatio-temporal metrics. Nevertheless, good estimates were made, for 
example, in Chicago, Washington and Dallas in the USA and Rouen and Seville in France and Spain, 
respectively. 

 

Figure 4. Observed versus predicted changes in variables according to the models. The more the 
FUAs, represented as points, that are closer to the 1:1 line, the better the estimation by the model. The 
black dashed lines show the 1:1 lines (lines of perfect fit), while the blue dashed lines show the root 
mean square error of the model (± RMSE). The labels for the ten FUAs with the highest errors are 
shown, to identify outliers. The units are air quality, PM2.5 in µg/m³, and employment, %. 

3.3. Relevance of Spatio-Temporal Metrics 

Figure 5 portrays the importance and significance of the spatio-temporal metrics for the modeled 
variables. They are represented by the mean and standard deviation of the increase in the MSE when 
a metric is permuted, so that the higher the increase, the higher the importance. The two most 
important metrics that are key in all the models are the urban compactness (CT2) and the urban core 
compactness (CUC T2); both measure the compact shape and aggregation level of the built-up and the 
core urban area. The changes in the built-up and urban core compactness (CCH and CUC CH) are also 
important for the GDP and the change in air quality, and their effect on other socio-economic 
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variables is lower or was not included. The dispersion index (DIT2) is relevant for the estimation of 
the Gini and the change in air quality, but less so for the rest of variables, as well as its change over 
time (DICH), which has a low influence. Another relevant metric is the centrality and concentration of 
the built-up elements relative to their centroid (AWSDT2). This metric is very informative regarding 
the spatial configuration of the built-up areas in the FUAs, and its inclusion in the model improves 
the estimation of the Gini, GDP, air quality and change in employment rate; with regard to income 
and air quality change, its influence is lower but still significant (p-values < 0.05). On the contrary, the 
change in the centrality (AWSDCH) presents very low importance; it is not significant and was even 
removed from the models for its negative effect. This could be due to the fact that the change is very 
low with the exception of in a few Japanese, Korean and Mexican cities that present significant 
changes in the concentrations of the built-up areas. The urban density (DUT2) has a medium influence 
in all the models, but it is not significant enough. On the contrary, its change (DUCH) is important for 
GDP and employment change. The elongation ratio was removed for its negative influence in the 
GDP and Gini models, and it has a slight but non-significant importance for the rest of the models. 
The densities of the land covers are important for different indicators. The density of agricultural 
land (Dagric. T2) influences the Gini, air quality and its change. Low vegetation land (Dlow veg. T2) 
contributes to the Gini, air quality and employment change. The density of the road network (Droad) 
improves the prediction of the Gini and changes in air quality and employment, but its contribution 
is not significant. Concerning the urban change rate (UCR), it only influences the change in air quality, 
as its impact on the rest of variables is not significant (p-values > 0.05). The densification of growth 
(AWMEI) also contributes in an intermediate manner to the GDP, Gini and change in employment 
rate. An important metric for the change in the variables is the accessibility of the new built-up 
elements to the road network (AWMAI), and it also contributes to the GDP and Gini. On the other 
hand, the imbalance between the built-up footprint and population growths (PUGI), which provides 
information not only about the inequality between newly developed land and demographic 
dynamics but also about urban sprawl, was significantly important for all the models except the Gini. 
Regarding the land cover change proportions, the agricultural land change (CPagric.) is detected as 
important for estimating the Gini, income, air quality and its change in the FUAs, as well as low 
vegetation land change, which influences the GDP, Gini, income, air quality and employment change. 
The change in high vegetation land is important for air quality change and GDP per capita. 
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Figure 5. Spatio-temporal metrics’ importance for the different regression models. The importance is 
represented by the mean and the standard deviation of the increase in the MSE (the units and final 
MSE of the model can be found in Tables 2 and 3). Blue bars indicate statistically significant variables 
in the model. Where the bar is missing, the metric is not included in the model. 

Analyzing the performance of relevant spatio-temporal metrics against the socio-economic 
variables complements the interpretation of the relationships found with the models. Therefore, the 
FUAs were split into five quantiles based on the socio-economic variable values, where quantile 1 
groups low values, and 5, high values. Then, the standardized values of the selected spatio-temporal 
metrics were represented with boxplots (Figure 6). This figure shows a selection of spatio-temporal 
metrics whose relationships with socio-economic variables are described and analyzed in the 
discussion section. The full set of graphs representing the spatio-temporal metrics per socio-economic 
variable can be found in the supplementary material (Figures S1–S6). 
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Figure 6. Boxplots of selected relevant spatio-temporal metrics sorted according to their importance. 
The socio-economic variables: (A) GDP; (B) Gini; (C) income; (D) air quality; (E) air quality change; 
and (F) employment rate change, are divided into five quantiles (Q1 to Q5, from low to high values), 
and the standardized values of the metrics are shown for each quantile. The table on the bottom-right 
shows the mean values of the socio-economic variables per quantile. Air quality measures the fine 
particulate matter (higher values mean more pollutants and lower air quality). The units are GDP and 
income, USD; Gini, ratio; air quality, µg/m³; and employment, %. 

4. Discussion 

The combination of multi-source and multi-temporal datasets for almost six hundred functional 
urban areas across 32 countries led us to extract insights into the relationship between urban spatial 
patterns and socio-economic and environmental variables at a semi-global scale. By means of a 
machine learning algorithm, random forest regression, we were able to partially model some socio-
economic variables and their change using spatio-temporal metrics extracted from geospatial 
databases. We explained between 68% and 44% of the variability of the income, Gini, GDP per capita 
and air quality variables with the sole use of spatial information. This central result proves that the 
spatial appearance of urban areas and their change are related to the socio-economic and 
environmental indicators for these areas. 

We are aware that we have neither considered macro-economic or other overarching global 
developments nor considered intra-urban variabilities, but still, we can conclude that these 
relationships exist. With regard to their variations, we analyzed the relationships with the metrics for 
only two of them (i.e., air quality and employment rate), since many variables were not available for 
two dates (such as income or Gini) or the change over time is not a good indicator of development, 
as is the case for GDP [46]. Nevertheless, we explained 41% and 32% of the variation in the air quality 
and employment rate, respectively, which suggests that the spatial component may relate partially 
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to how these indicators change. Overall, however, we found that there are fundamental correlations 
between the spatial urban structure and socio-economic-ecological variables. Multi-temporal 
changes, however, cannot be estimated one-to-one from this correlation, since, for example, spatial 
urban structures are subject to certain inertia in contrast to economic developments. 

The use of random forest regression has strengths and weaknesses. Its interpretability compared 
to that of parametric regression is reduced since the function is unknown. However, with the variable 
importance measure, it is possible to identify those independent variables that have strong influence 
in the model [15,57], the ones with partial influence, and the ones adding noise or uncertainty. 

We investigated the relationship between socio-economic, environmental and spatial variables 
and found evidence of their links. The compactness degree of built-up areas and their cores is highly 
associated with the average income in FUAs. In particular, more compact values are found in lower-
income FUAs, while there are higher incomes in less compact, and thus more scattered, urban 
configurations (Figure 6c). This assumption might be influenced by independent differences in 
compactness and income across countries. However, we found a similar negative correlation between 
income and compactness in the FUAs from the USA (Pearson’s r = −42%), for instance, which shows 
that this trend is not only determined by geographic or cultural aspects. Salvati and Carlucci [63] 
found that discontinuous settlements in Northern Italy (low compactness) had higher disposable 
incomes, and related the phenomenon to suburbanization processes typical in the developed and 
economically active regions of Europe. Besides, we measured nonlinearities, where a higher loss of 
agricultural land between 2000 and 2014, higher fragmentation of built-up areas and sprawl (more 
urban expansion than population growth) occurred in middle-income FUAs, while low- and high- 
income FUAs had built-up areas that were more spatially centralized and populations that outpaced 
built-up growth (Figure 6c). Cities in countries with higher incomes have been previously related to 
higher levels of land consumption and urban fragmentation [64]; however, this study disregarded 
income variation within cities from the same country. Income inequality, here measured with the 
Gini, was lower in the FUAs with compact urban cores that at the same time presented dispersed and 
more spatially homogeneous built-up areas (Figure 6b). These FUAs experienced higher densification 
and accessibility with urban growth between 2000 and 2014, which means more infilling and 
expansive urban growth closer to the road network. While the density of agricultural land was 
higher, they also lost higher proportions than more unequal FUAs in terms of income. In this sense, 
Boulant et al. [65] claimed that the Gini was higher in larger cities, which usually provide more 
opportunities to dwellers but, in return, widen income inequalities. Meanwhile, Angel et al. [64] 
related cities in countries with higher income inequalities to urban sprawl, in terms of lower 
population densities. Nevertheless, we did not find a significant relation between the Gini and PUGI 
index (which also accounts for sprawl). The GDP per capita was higher in less compact built-up 
shapes that experienced an increase in urban density between 2000 and 2014 (Figure 6a). This trend 
was also found by Weilenmann et al. [66], where wealth was positively related to higher urban 
densities and higher degrees of dispersion. We identified lower GDPs in compact FUAs that 
experienced dispersed growth with more population growth than built-up expansion between 2000 
and 2014 (Figure 6a). However, we found the positive correlation between GDP and the degree of 
urban centrality within Mexican FUAs not observed at the global level. Huang et al. [67] also found 
a negative relationship between GDP per capita and compactness, stating that wealth brings more 
private motor vehicles and highways, which, in developed countries, contributes to the facilitation of 
life in outlying suburban areas; meanwhile, the lower motorization in developing countries results 
in more compact urban forms, as dwellers live close to their working places, usually in the inner city. 

In the environmental dimension, air quality was better in FUAs with lower densities of 
agricultural land but higher densities of low semi-natural/natural vegetation land and water bodies 
(Figure 6d). We also found a relationship between the pollution in the FUAs and compact shapes, 
both from the urban footprint and the urban core. The analysis of the compact shape of urban 
footprints has been proposed as a valuable indicator—besides population density, land-use mix, 
connectivity and accessibility—to be monitored in order to mitigate climate change. Angel et al. [68] 
claimed that, other factors being equal, compact shapes reduce energy use and gas emissions. On the 
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contrary, Bechle et al. [69] did not find a significant correlation between compactness and NO2 
concentration, but they did find such with leapfrog development and higher population densities. 
Regarding the change in air quality, more compact FUAs improved their air quality between 2000 
and 2014, together with an increase in accessibility and a higher consumption of agricultural land as 
a consequence of urban growth (Figure 6e). Last, concerning the employment rate change, positive 
rates were found in FUAs with compact urban cores, a denser urban growth (i.e., infilling and 
expansive growth types) and an improvement in accessibility (Figure 6f). This seems contradictory 
to the negative relationship between income and GDP, and built-up and urban core compactness; 
this may have a two-fold explanation: first, the subset of FUAs in the employment model does not 
represent the same geographic regions as in the GDP or income models (Table S1); second, the OECD 
defines the employment rate as the ratio of the employed population over the working age 
population [49], therefore, an increase in employment accompanied by a higher increase in the 
population of working age will result in a negative change. The employment rate model associated a 
higher drop in the employment rate with a higher density of low vegetation land together with 
greater consumption of low vegetation land due to urbanization between 2000 and 2014. Changes in 
employment have been previously related to LULC change in Portugal, where changes in land uses 
had a direct impact on labor [70]. In summary, we determined that built-up and urban core 
compactness are the most influential metrics for all the socio-economic variables analyzed, which has 
also been previously noticed by other authors [68,71]. 

This analysis does not account for causality and should be interpreted cautiously; nonetheless, 
it helped to disentangle some relationships between the spatial patterns of functional urban areas 
and socio-economic indicators. Besides, the findings presented cannot be generalized to regions not 
covered in the analysis. The majority of the FUAs analyzed were chosen due to data availability in 
developed or high-income countries. Thus, we cannot assume the same relationships in developing 
or low-income countries until new models with more datasets are tested. In this sense, this study is a 
first step in exploring these global relationships and sub-models in certain regions. 

In addition, some limitations should be considered when working with multi-temporal and 
global datasets. For example, the historical and cultural path dependencies of urban areas influence 
particular urban structures and land cover compositions. These influences should be considered 
when interpreting results at the global level. For instance, what might be considered a compact 
pattern in the USA versus Europe, and in high-income versus low-income countries or across 
continents, can be fundamentally different. Spatio-temporal metrics may have reflected those 
differences indirectly by means of the measured spatial patterns. Therefore, in future research, the 
inclusion of a categorical variable that groups FUAs with similar path dependencies or geographic-
cultural contexts would be worth exploring. 

On the other hand, the quality of the data is a crucial matter in this type of analysis. For instance, 
the GHSL used to describe the built-up areas had a balanced accuracy of 86% [72], which probably 
had an influence on the relationships found that remains unknown; however, with the interpretation 
of spatio-temporal metrics, we identified outliers that led to the detection of FUAs with classification 
errors, which were removed from the analysis, reducing the inclusion of potential errors in the 
models (Table S1). In this direction, the use of spatio-temporal metrics linked to a boundary could be 
used to identify areas with anomalies and, therefore, potential errors in the GHSL database. In the 
realm of the OECD metropolitan areas dataset, it is still a challenge to model the variation over time, 
since multi-temporal data availability drastically decreases, and, when available, the data accumulate 
possible errors that variables might have for the two individual dates. Since different methods are 
applied to gather socio-economic data at the FUA level, such as aggregation or disaggregation from 
lower and higher levels, the reliability widely depends on the accuracy of these methods; thus, socio-
economic variables are prone to uncertainties that we cannot quantify. It should be noted that the 
statistical data used in this study refer to data available in February 2020. After this date, OECD data 
are expected to be regularly updated and new cities, added to the database. However, this does not 
affect the proposed analysis, and the method still remains valid. Both statistical and geospatial open 
databases are dynamic, constantly being developed and improved; therefore, continuous changes 



ISPRS Int. J. Geo-Inf. 2020, 9, 436 18 of 22 

 

over time are expected. Besides, statistics sometimes include estimates and assumptions; thus, data 
produced by different organizations for the same area are not hard facts and might differ, so they 
should be used with caution. However, since we compare data from the same database, we may 
assume that the data are consistent and the comparisons, solid. The analysis was restricted by the 
availability of statistical variables and geospatial data, but the inclusion of additional environmental 
variables, more suitable economic and social variables (e.g., employment and GDP) at the 
metropolitan level, and additional geoinformation would be interesting to explore. Finally, the spatial 
boundaries used for extracting the urban spatial patterns of the EU-OECD FUAs rely on a consistent 
method for delineation; we recognized that due to various reasons such as the differing quality in 
datasets, the geometrical definition of the boundaries in some countries is not as fine as in others. For 
instance, Mexico, Chile and Japan showed coarser geometries than the USA or Europe, which might 
influence the spatio-temporal metrics, as the built-up areas were clipped using these boundaries. 

The identification of socio-economic phenomena and their cross-comparison among regions, 
countries and continents by means of metrics derived from available geospatial databases for urban 
environments is increasingly feasible. These databases are continuously improving; their updates are 
becoming more and more frequent since the processes are being automatized and an increasing 
number of satellites are providing freely available images with global coverage (e.g., the Landsat and 
Sentinel missions). In the foreseeable future, more comparable data with higher spatial and temporal 
resolutions will become available. Hence, the use of spatio-temporal metrics—describing urban 
spatial patterns and growth—linked to socio-economic and environmental indicators, and their 
change over the time, will help in improving the understanding of the drivers of the development in 
urban areas and their consequences at the global scale, which has been limited to date. Therefore, the 
proposed methodology, tested here with current semi-global data, could be extrapolated to a global 
scale as soon as more data become available. Furthermore, new spatial and socio-economic datasets 
at different scales should be explored soon, increasing the possibilities of new findings and analyses. 
Our preliminary outcomes show that there are common drivers and consequences of urban 
development within and across regions (e.g., the compactness of the built-up footprint influences or 
is related to household income, income inequality or GDP per capita in functional urban areas), 
indicating global trends. However, intra-urban variations should not be disregarded, since the high 
heterogeneity in terms of urban patterns and socio-economic factors existent within urban areas 
needs to be considered [2,31]. A future study should not only increase the geographical extent of the 
analysis but also include intra-urban variations as well as sensitivity analyses with varying spatial 
units. 

5. Conclusions 

Monitoring the development of the built and natural elements in urban areas and the 
identification of their relationships with socio-economic-ecological processes allows for the 
comparison of these processes across regions. This will be beneficial for the elucidation of global 
development trends and will help in the design of more sustainable development policies. In this 
study, we quantified empirical and significant relationships between socio-economic-ecological 
indicators (income, inequality, GDP, employment rate and air quality) and spatio-temporal metrics 
describing the built and the natural environments. The latter were extracted from available geospatial 
databases in a multi-temporal manner. The spatial metrics represent the spatial organization of urban 
areas and LULC and their change over a period of time. They proved to be good descriptors of socio-
economic and environmental processes in urban areas, tested in up to six hundred functional urban 
areas from 32 countries, reaching coefficients of determination varying from 32% to 68%. 

Moreover, we identified the most important metrics for modeling socio-economic and 
environmental indicators: the compactness of built-up areas and their urban core are the spatial 
attributes that better relate to socio-economic status. This could be used, for example, as a proxy of 
average household income in the analyzed FUAs. The concentration degree or built-up area relative 
to the center was important in all the models, especially for income inequality. Other relevant metrics 
were the dispersion index; the densification of growth and accessibility to roads, which quantify the 
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